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Abstract In this paper, the problem of free convection
boundary layer flow on a solid sphere in a micropolar
fluid with Newtonian heating, in which the heat trans-
fer from the surface is proportional to the local surface
temperature, is considered. The transformed boundary
layer equations in the form of partial differential equa-
tions are solved numerically using an implicit finite-
difference scheme. Numerical solutions are obtained
for the local wall temperature, the local skin friction
coefficient, as well as the velocity, angular velocity
and temperature profiles. The features of the flow and
heat transfer characteristics for different values of the
material or micropolar parameter K , the Prandtl num-
ber Pr and the conjugate parameter γ are analyzed and
discussed.
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Nomenclature
a radius of the sphere
hs heat transfer parameter for Newtonian heating
Cf skin friction coefficient
f dimensionless stream function
g acceleration due to gravity
Gr Grashof number
H angular velocity of micropolar fluid
j microinertia density
K material parameter of micropolar fluid
k thermal conductivity
Pr Prandtl number
Re Reynolds number
T fluid temperature
T∞ ambient temperature
U∞ free stream velocity
u,v velocity components along the x and y

directions, respectively
x, y Cartesian coordinates along the sphere and

normal to it, respectively

Greek Letters
β thermal expansion coefficient
γ conjugate parameter for Newtonian heating
μ dynamic viscosity
ν kinematic viscosity
θ dimensionless temperature
κ vortex viscosity
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ϕ spin gradient viscosity
ρ fluid density
ψ stream function

1 Introduction

The essence of the theory of micropolar fluid flow lies
in the extension of the constitutive equation for New-
tonian fluid, so that more complex fluids such as parti-
cle suspensions, liquid crystal, animal blood, lubrica-
tion and turbulent shear flows can be described by this
theory. The theory of micropolar fluid was first pro-
posed by Eringen [1]. Extensive review of the theory
and applications can be found in the review article by
Ariman et al. [2]. Nazar et al. [3, 4] studied the free
convection boundary layer flow on a solid sphere in a
viscous and micropolar fluid with constant wall tem-
perature (CWT) and constant heat flux (CHF), respec-
tively. Generally, in modelling the convective bound-
ary layer flow problems, the boundary conditions that
were usually applied are constant wall temperature or
heat flux. However, the Newtonian heating (NH) con-
ditions have been used only recently by Merkin [5] to
study the free convection boundary layer over verti-
cal surfaces with Newtonian heating. The asymptotic
solution near the leading edge and the full numerical
solution along the whole plate domain have been ob-
tained numerically, whilst the asymptotic solution far
downstream along the plate has been obtained analyti-
cally. On the other hand, the situation with Newtonian
heating occurs in many important engineering devices,
for example in heat exchanger where the conduction in
solid tube wall is greatly influenced by the convection
in the fluid flowing over it. Further, for conjugate heat
transfer around fins where the conduction within the
fin and the convection in the fluid surrounding it must
be simultaneously analyzed in order to obtain the vi-
tal design information and also in convection flows set
up when the bounding surfaces absorb heat by solar
radiation (see Chaudhary and Jain [6]).

Recent demands in heat transfer engineering have
requested researchers to develop various new types of
heat transfer equipments with superior performance,
especially compact and light-weight ones. Increasing
the need for small-size units, focuses have been cast
on the effects of the interaction between developments
of the thermal boundary layers in both fluid streams,
and of axial wall conduction, which usually affects
the heat exchanger performance. Since the early paper

by Luikov et al. [7], many contributions to the topic
of conjugate heat transfer have been produced. Excel-
lent reviews of the topics of conjugate heat transfer
problems can be found in the book by Martynenko
and Khramtsov [8] and the review paper by Kimura
et al. [9]. Recently, Salleh et al. [10–14] and Merkin
et al. [15] considered the forced convection bound-
ary layer flow at a forward stagnation point, free,
mixed and forced convection boundary layer flows
on a sphere, horizontal circular cylinder and stretch-
ing sheet with Newtonian heating, respectively. These
problems have been extended to viscous and microp-
olar fluids by many investigators such as [16–20] in
various ways either with constant wall temperature
and concentration, constant heat and mass fluxes or
with heat generation.

Therefore, the aim of the present paper is to study
the free convection boundary layer flow on a solid
sphere with Newtonian heating in a micropolar fluid.
The full governing boundary layer equations are first
transformed into a system of non-dimensional equa-
tions via the non-dimensional variables, and then into
non-similar partial differential equations before they
are solved numerically by the Keller-box method, an
implicit finite-difference scheme as described in the
book by and Cebeci and Bradshaw [21]. Results are
presented for the local wall temperature, the local skin
friction coefficient, as well as the velocity, angular ve-
locity and temperature profiles.

2 Mathematical model

Consider a heated sphere of radius a, which is im-
mersed in a viscous and incompressible micropolar
fluid of ambient temperature T∞. The surface of the
sphere is subjected to a Newtonian heating (NH). We
assume that the equations are subjected to a New-
tonian heating of the form proposed by Merkin [5].
Under the Boussinesq and boundary layer approxima-
tions, the basic equations are (see Eringen [1], Nazar
et al. [3, 4])

∂

∂x̄
(r̄ū) + ∂

∂ȳ
(r̄ v̄) = 0, (1)

ρ

(
ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)

= (μ + κ)
∂2ū

∂ȳ2
+ ρgβ(T − T∞) sin

(
x̄

a

)
+ κ

∂H̄

∂ȳ
,

(2)
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ρj

(
ū

∂H̄

∂x̄
+ v̄

∂H̄

∂ȳ

)
= −κ

(
2H̄ + ∂ū

∂ȳ

)
+ ϕ

∂2H̄

∂ȳ2
, (3)

ū
∂T

∂x̄
+ v̄

∂T

∂ȳ
= ν

Pr

∂2T

∂ȳ2
, (4)

where r̄(x̄) = a sin(x̄/a) and we assume that ϕ = (μ+
(κ/2))j . The boundary conditions of (1)–(4) are

ū = v̄ = 0,
∂T

∂ȳ
= −hsT ,

H̄ = −n
∂ū

∂ȳ
at ȳ = 0,

ū → 0, T → T∞, H̄ → 0 as ȳ → ∞,

(5)

where ū and v̄ are the velocity components along the
x̄ and ȳ directions, respectively, T is the local tem-
perature, ρ is the fluid density, g is the gravity accel-
eration, β is the thermal expansion coefficient, ν = μ

ρ

is the kinematic viscosity, μ is the dynamic viscos-
ity, κ is the vortex viscosity, H̄ is the angular veloc-
ity of micropolar fluid, j is the microinertia density, ϕ

is the spin gradient viscosity, Pr is the Prandtl num-
ber and hs is a heat transfer parameter for Newtonian
heating.

It is worth mentioning that in boundary conditions
(5), n is a constant and 0 ≤ n ≤ 1. The value n = 0,
which indicates H̄ = 0 at the wall, represents concen-
trated particle flows in which the particle density is
sufficiently great that microelements close to the wall
are unable to rotate or it is called “strong” concentra-
tion of microelements [22, 23]. The case correspond-
ing to n = 1

2 results in the vanishing of antisymmetric
part of the stress tensor and represents “weak” concen-
tration of microelements [24]. In this case, the particle
rotation is equal to fluid vorticity at the boundary for
fine particle suspension. When n = 1, we have flows
which are representative of turbulent boundary layer
[25]. The case of n = 1

2 is considered in the present
study, in order to compare some results with those of
Nazar et al. [3, 4] for the CWT and CHF cases in vis-
cous fluids, respectively, who also considered the case
of n = 1

2 (refer [11]). It is worth mentioning that the
correct boundary condition to be applied to the spin
is still an open question. However, the most common
boundary conditions used in the literature are the van-
ishing of the spin on the boundary, the so-called strong
interaction (n = 0) and the opposite extreme, the weak
interaction (n = 1

2 ), which is the vanishing of the mo-
mentum stress on the boundary [23].

We introduce now the following non-dimensional
variables (Nazar et al. [3]):

x = x̄

a
, y = Gr1/4

(
ȳ

a

)
, r = r̄

a
,

u =
(

a

ν

)
Gr−1/2ū, v =

(
a

ν

)
Gr−1/4v̄, (6)

H =
(

a2

ν

)
Gr−3/4H̄ , θ = T − T∞

T∞
,

where Gr = gβT∞a3

ν2 is the Grashof number for New-
tonian heating (NH). The microinertia density j is
taken to be j = a2Gr−1/2. Substituting variables (6)
into (1)–(4) then become

∂

∂x
(ru) + ∂

∂y
(rv) = 0 (7)

u
∂u

∂x
+ v

∂u

∂y
= (1 + K)

∂2u

∂y2
+ θ sinx + K

∂H

∂y
(8)

u
∂H

∂x
+ v

∂H

∂y
= −K

(
2H + ∂u

∂y

)
+

(
1 + K

2

)
∂2H

∂y2

(9)

u
∂θ

∂x
+ v

∂θ

∂y
= 1

Pr

∂2θ

∂y2
(10)

where K is the material or micropolar parameter de-
fined as K = κ

μ
. The boundary conditions are

u = v = 0,
∂θ

∂y
= −γ (1 + θ),

H = −1

2

∂u

∂y
at y = 0

u → 0, θ → 0, H → 0 as y → ∞

(11)

where γ = ahsGr−1/4 represents the conjugate pa-
rameter for Newtonian heating. We notice that (11)
gives θ = 0 when γ = 0, corresponding to having
hs = 0 and hence no heating from the sphere exists
(see Salleh et al. [11, 12]). To solve (7) to (10), sub-
jected to the boundary conditions (11), we assume the
following variables:

ψ = xr(x)f (x, y), θ = θ(x, y),

H = xh(x, y)
(12)

where ψ is the stream function defined as

u = 1

r

∂ψ

∂y
and v = −1

r

∂ψ

∂x
(13)

which satisfies the continuity equation (7). Thus, (8)
to (10) then become
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(1 + K)
∂3f

∂y3
+

(
1 + x

sinx
cosx

)
f

∂2f

∂y2
−

(
∂f

∂y

)2

+ sinx

x
θ + K

∂h

∂y

= x

(
∂f

∂y

∂2f

∂x∂y
− ∂f

∂x

∂2f

∂y2

)
, (14)

(
1 + K

2

)
∂2h

∂y2
+

(
1 + x

sinx
cosx

)
f

∂h

∂y
− ∂f

∂y
h

− K

(
2h + ∂2f

∂y2

)
= x

(
∂f

∂y

∂h

∂x
− ∂f

∂x

∂h

∂y

)
, (15)

1

Pr

∂2θ

∂y2
+

(
1 + x

sinx
cosx

)
f

∂θ

∂y

= x

(
∂f

∂y

∂θ

∂x
− ∂f

∂x

∂θ

∂y

)
, (16)

subject to the boundary conditions

f = ∂f

∂y
= 0,

∂θ

∂y
= −γ (1 + θ),

h = −1

2

∂2f

∂y2
at y = 0

∂f

∂y
→ 0, θ → 0, h → 0 as y → ∞

(17)

At the lower stagnation point of the sphere, x ≈ 0,
(14) to (16) reduce to the following ordinary differen-
tial equations:

(1 + K)f ′′′ + 2ff ′′ − f ′2 + θ + Kh′ = 0 (18)(
1 + K

2

)
h′′ + 2f h′ − f ′h − K(2h + f ′′) = 0 (19)

1

Pr
θ ′′ + 2f θ ′ = 0 (20)

and the boundary conditions become

f (0) = f ′(0) = 0, θ ′(0) = −γ
(
1 + θ(0)

)
,

h(0) = −1

2
f ′′(0) at y = 0, (21)

f ′ → 0, θ → 0, h → 0 as y → ∞
where primes denote differentiation with respect to y.
The physical quantities of interest in this problem are
the local skin friction coefficient, Cf and the local wall
temperature, θw(x), which are given by (when γ = 1)

Cf =
(

1 + K

2

)
x

∂2f

∂y2
(x,0),

θw(x) = −1 − ∂θ

∂y
(x,0)

(22)

where Cf = τw/(ρU∞2) is the skin friction coeffi-
cient and τw = [(μ+ κ)(∂ū/∂ȳ)+ κH̄ ]ȳ=0 is the wall
shear stress.

At the lower stagnation point of the sphere, x ≈ 0,
the skin friction coefficient and the wall temperature
are measured by f ′′(0) and θ(0), respectively.

3 Solution procedure

Equations (14) to (16) subject to boundary condi-
tions (17) are solved numerically using the Keller-box
method as described in the book by Cebeci and Brad-
shaw [21]. The solution is obtained by the following
four steps:

• reduce (14) to (16) to a first-order system,
• write the difference equations using central differ-

ences,
• linearize the resulting algebraic equations by New-

ton’s method, and write them in the matrix-vector
form,

• solve the linear system by the block tridiagonal
elimination technique.

The step size �y in y, and the edge of the boundary
layer y∞ had to be adjusted for different values of pa-
rameters to maintain accuracy.

4 Results and discussion

Equations (14) to (16) subject to the boundary condi-
tions (17) are solved numerically using the Keller-box
method for the case of Newtonian heating (NH) with
four parameters considered, namely the material pa-
rameter K , the Prandtl number Pr, the conjugate pa-
rameter γ and the coordinate running along the sur-
face of the sphere, x. The numerical solution starts at
the lower stagnation point of the sphere, x ≈ 0, and
proceeds round the sphere up to the point x = 120°.
Values of K considered are K = 0 (Newtonian fluid),
1, 2 and 3 (micropolar fluid) and values of Pr con-
sidered are Pr = 0.7, 1 and 7 at different positions
x = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°,
100°, 110°, and 120°. It is worth mentioning that small
values of Pr (�1) physically correspond to liquid met-
als, which have high thermal conductivity but low vis-
cosity, while large values of Pr (�1) correspond to
high-viscosity oils. It is worth pointing out that specifi-
cally, Prandtl number Pr = 0.7, 1.0 and 7.0 correspond
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to air, electrolyte solution such as salt water and water,
respectively.

The values of the skin friction coefficient and the
wall temperature in a Newtonian fluid (K = 0) and
γ = 1 are shown in Table 1. In order to verify the ac-
curacy of the present method, the present results are
compared with those reported by Salleh et al. [12]. It is
found that the agreement between the previously pub-
lished results with the present ones is very good. We
can conclude that this method works efficiently for the
present problem and we are also confident that the re-
sults presented here are accurate.

Tables 2 and 3 present the values of the wall tem-
perature, θ(0) and the skin friction coefficient, f ′′(0)

Table 1 Values of the skin friction coefficient f ′′(0) and the
wall temperature θ(0) at the lower stagnation point of the
sphere, x ≈ 0, when Pr = 0.7, 1 and 7, K = 0 (Newtonian fluid)
and γ = 1

Pr f ′′(0) θ(0)

Salleh et al. [12] Present Salleh et al. [12] Present

0.7 8.9610 8.9609 26.4590 26.4584

1 6.1411 6.1409 17.2876 17.2861

7 1.2487 1.2489 3.3635 3.3651

Table 2 Values of the wall temperature θ(0) at the lower stag-
nation point of the sphere, x ≈ 0, for various values of K when
Pr = 0.7, 1 and 7 and γ = 1

Pr 0.7 1 7

K Present Present Present

0 26.4584 17.2861 3.3651

1 38.3841 25.2867 4.6309

2 49.1395 32.4395 5.5150

3 59.3500 39.2872 6.4152

Table 3 Values of the skin friction coefficient f ′′(0) at the
lower stagnation point of the sphere, x ≈ 0, for various values
of K when Pr = 0.7, 1 and 7 and γ = 1

Pr 0.7 1 7

K Present Present Present

0 8.9609 6.1409 1.2489

1 7.4816 5.1336 0.9790

2 6.8457 4.6987 0.8600

3 6.4721 4.4437 0.7900

at the lower stagnation point of the sphere for various
values of K when Pr = 0.7, 1 and 7 and γ = 1, respec-
tively. It is found that for fixed Pr, as K increases, the
value of θ(0) increases but f ′′(0) decreases. Also, it is
found that for fixed K , as Pr increases, both θ(0) and
f ′′(0) decrease. From these tables, the values of θ(0)

are higher for micropolar fluid (K 	= 0) than those for
a Newtonian fluid (K = 0) but the values of f ′′(0) are
lower for micropolar fluid (K 	= 0) than those for a
Newtonian fluid (K = 0).

Tables 4 to 7 present the values of the local wall
temperature θw(x) and the local skin friction coeffi-
cient Cf for various values of x when Pr = 0.7, 1 and
7, K = 0 and 1 and γ = 1, respectively. It is found
that, for fixed K , as Pr increases, both the θw(x) and
Cf decrease. From these tables, for a fixed Pr, as x

increases, i.e. from the lower stagnation point of the
sphere, x ≈ 0, and proceeds round the sphere up to the
point x = 120°, both the values of θw(x) and Cf in-
crease. On the other hand, the values of θw(x) and Cf

are higher for micropolar fluid (K = 1) than those for
a Newtonian fluid (K = 0).

The graphs of f ′′(x,0) and θ(x,0) for some values
of Pr when K = 1 and γ = 1 are plotted in Figs. 1
and 2, respectively. It is found that, as Pr increases,
both f ′′(x,0) and θ(x,0) decrease. For small values
of Pr (�1) the difference value changing is higher
than for large values of Pr (�1) and it is seen that
the surface temperature is very sensitive to the Prandtl

Table 4 Values of the local wall temperature, θw(x) for various
values of x when Pr = 0.7, 1 and 7, K = 0 and γ = 1

Pr 0.7 1 7

x Present Present Present

0° 26.4590 17.2876 3.3635

10° 56.8602 36.1847 5.4172

20° 59.4033 37.7239 5.5141

30° 61.1367 38.7087 5.5857

40° 62.7065 39.6506 5.6687

50° 64.3987 40.7060 5.7880

60° 66.2689 41.8821 5.9499

70° 68.5102 43.2987 6.1331

80° 71.1541 44.9755 6.3583

90° 74.2967 46.9734 6.6289

100° 78.0623 49.3714 6.9555

110° 82.6233 52.2792 7.3530

120° 88.2340 55.8588 7.8427
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Table 5 Values of the local skin friction coefficient, Cf for var-
ious values of x when Pr = 0.7, 1 and 7, K = 0 and γ = 1

Pr 0.7 1 7

x Present Present Present

0° 0.0000 0.0000 0.0000

10° 2.8206 1.8939 0.2909

20° 5.7090 3.8817 0.5854

30° 8.7332 5.8418 0.8785

40° 11.5864 7.7431 1.1618

50° 14.3102 9.5616 1.4186

60° 16.7934 11.2211 1.6778

70° 19.1415 12.7925 1.9052

80° 21.2356 14.1966 2.1172

90° 23.0291 15.4035 2.3029

100° 24.4695 16.3780 2.4569

110° 25.4947 17.0803 2.5741

120° 26.0269 17.4585 2.6466

Table 6 Values of the local wall temperature, θw(x) for various
values of x when Pr = 0.7, 1 and 7, K = 1 and γ = 1

Pr 0.7 1 7

x Present Present Present

0° 38.3841 25.2867 4.6309

10° 87.8744 56.9775 8.1822

20° 92.0951 59.5915 8.3870

30° 94.7977 61.2801 8.5329

40° 97.2352 62.8666 8.6958

50° 100.0066 64.5873 8.8945

60° 102.9836 66.4993 9.1265

70° 106.5506 68.7977 9.4142

80° 110.7602 71.5168 9.7615

90° 115.7666 74.7564 10.1802

100° 121.7694 78.6456 10.6867

110° 129.0451 83.3636 11.3034

120° 135.5077 89.1734 12.0632

number variations. To get a physically acceptable so-
lution, Pr must be greater than or equals to some crit-
ical value, say Prc, i.e. Pr ≥ Prc, depending on γ .
It can be seen from these figures that f ′′(x,0) and
θ(x,0) become large as Pr approaches the critical
value Prc = 0.025 when γ = 1.

Figure 3 illustrates the variation of the wall temper-
ature θ(x,0) with conjugate parameter γ when Pr = 7
and K = 1. Also, to get a physically acceptable solu-

Table 7 Values of the local skin friction coefficient, Cf for var-
ious values of x when Pr = 0.7, 1 and 7, K = 1 and γ = 1

Pr 0.7 1 7

x Present Present Present

0° 0.0000 0.0000 0.0000

10° 3.7233 2.5231 0.3796

20° 7.6625 5.1853 0.7686

30° 11.5608 7.8181 1.1500

40° 15.2420 10.3761 1.5207

50° 18.9680 12.8203 1.8764

60° 22.2741 15.0547 2.2030

70° 25.4072 17.1748 2.5154

80° 28.2108 19.0749 2.7984

90° 30.6248 20.7150 3.0470

100° 32.5814 22.0499 3.2546

110° 34.0003 23.0267 3.4144

120° 34.6476 23.5785 3.5171

Fig. 1 Graph of f ′′(x,0) with Prandtl number Pr when K = 1
and γ = 1

Fig. 2 Graph of θ(x,0) with Prandtl number Pr when K = 1
and γ = 1
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Fig. 3 Variation of the wall temperature θ(x,0) with conjugate
parameter γ when Pr = 7 and K = 1

Fig. 4 Temperature profiles near the lower stagnation point of
the sphere, x ≈ 0, when Pr = 0.7, 1 and 7, K = 1 and γ = 1

tion, γ must be less than or equals to some critical
value, say γc, i.e. γ ≤ γc, depending on Pr. It can be
seen from this figure that θ(x,0) becomes large as γ

approaches the critical value γc = 3.5020 when Pr = 7
and K = 1.

Figures 4 and 5 display the temperature and ve-
locity profiles, respectively, near the lower stagnation
point of the sphere when Pr = 0.7, 1 and 7, K = 1 and
γ = 1. From Fig. 4, it is found that as Pr increases,
the temperature profiles decrease and also the thermal
boundary layer thickness decreases. This is because
for small values of the Prandtl number Pr (�1), the
fluid is highly conductive. Physically, if Pr increases,
the thermal diffusivity decreases and this phenomenon
leads to the decreasing manner of the energy transfer
ability that reduces the thermal boundary layer. On the
other hand, from Fig. 5 it is shown that for fixed K , as
Pr increases, the velocity profiles decrease.

Temperature and velocity profiles near the lower
stagnation point of the sphere for some values of K ,
namely K = 0, 1 and 2 when Pr = 1 and γ = 1 are

Fig. 5 Velocity profiles near the lower stagnation point of the
sphere, x ≈ 0, when Pr = 0.7, 1 and 7, K = 1 and γ = 1

Fig. 6 Temperature profiles near the lower stagnation point of
the sphere, x ≈ 0, when K = 0, 1 and 2, Pr = 1 and γ = 1

Fig. 7 Velocity profiles near the lower stagnation point of the
sphere, x ≈ 0, when K = 0, 1 and 2, Pr = 1 and γ = 1

plotted in Figs. 6 and 7, respectively. It is found that
when Pr is fixed, as K increases, both the temperature
and velocity profiles increase. Figures 8 and 9 display
the angular velocity or microrotation profiles near the
lower stagnation point of the sphere for some values of
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Fig. 8 Angular velocity profiles near the lower stagnation point
of the sphere, x ≈ 0, when Pr = 0.7, 1 and 7, K = 0 and γ = 1

Fig. 9 Angular velocity profiles near the lower stagnation point
of the sphere, x ≈ 0, when Pr = 0.7, 1 and 7, K = 1 and γ = 1

Pr, namely Pr = 0.7, 1 and 7 when K = 0 and K 	= 0
and γ = 1, respectively. These figures show that the
angular velocity is completely negative for K = 0,
while it may be positive for K = 1 (or for other val-
ues of K 	= 0). It is also noticed from these figures that
as the material parameter K increases, the angular ve-
locity profiles decrease.

5 Conclusions

In this paper, we have numerically studied the problem
of free convection boundary layer flow on a sphere in a
micropolar fluid with Newtonian heating. We are inter-
ested to see how the material parameter K , the Prandtl
number Pr and conjugate parameter γ affect the flow
and heat transfer characteristics. We can conclude that:

• when Pr and γ are fixed, as K increases, the tem-
perature and velocity profiles increase, while when
K and γ are fixed, as Pr increases, the temperature,
velocity and angular velocity profiles decrease;

• when Pr and γ are fixed, the values of θw and Cf

are higher for micropolar fluids (K 	= 0) than those
for a Newtonian fluid (K = 0);

• when K and γ are fixed, as Pr increases, both the
values of θw and Cf decrease;

• to get a physically acceptable solution, Pr must be
greater than Prc depending on γ , and also, γ must
be less than γc depending on Pr.
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