Contents

Electromyograph (EMG) Signal Analysis to Predict Muscle Fatigue During Driving ... 405
Muhammad Amzar Syazani Mohd Azli, Mahfuzah Mustafa, Rafiuddin Abdubrani, Amran Abdul Hadi,
Syarifah Nor Aqida Syed Ahmad and Zarith Liyana Zahari

Time-Frequency Analysis from Earthing Application 421
Jun Hou Ting, Mahfuzah Mustafa, Zarith Liyana Zahari, Dwi Pebrianti,
Zainah Md Zain, Nurul Hazlina Noordin and Rafiuddin Abdubrani

Energy Spectral Density Analysis of Muscle Fatigue 437
Noor Aisyah Ab Rahman, Mahfuzah Mustafa, Rosdiyana Samad,
Nor Rul Hasma Abdullah and Norizam Sulaiman

Modelling Automatic IoT Home Light System (SmartLi)
by NODEMCU ESP8266 .. 447
Muhammad Muttaqin A. Rahim, Nor Shazwanie Ramli,
Najwa Raihana Abdul Wahab and Rohana Abdul Karim

Development of Automated Gate Using Automatic License Plate Recognition System 459
Luai Taha Ahmed Al-Mahbashi, Nurhafizah Abu Talip Yusof,
Syamimi Shaharum, Mohamad Shaiful Abdul Karim
and Ahmad Afif Mohd Faudzi

Design of T-Shaped UWB Antenna with Dual Band Rejection
Using Inverted U- and C-Shaped Slots 467
Salwa Awang Akbar, Ahmad Syahiman Mohd Shah,
Ahmad Afif Mohd Faudzi, Sabira Khatun, Syamimi Mardiah Shaharum,
Nurhafizah Abu Talip @ Yusof and Mohamad Shaiful Abdul Karim

Inter Vehicle Communication System for Collision Avoidance 475
Nurul H. Noordin, Althea C. Y. Hui, Nurulfadzilah Hassan
and Rosdiyana Samad
Electromyograph (EMG) Signal Analysis to Predict Muscle Fatigue During Driving

Muhammad Amzar Syazani Mohd Azli1, Mahfuzah Mustafa1, Rafiuddin Abdubrani1, Amran Abdul Hadi1, Syarifah Nor Aqida Syed Ahmad1, Zarith Liyana Zahari1,2

1 Universiti Malaysia Pahang, Pahang, Malaysia
2 Universiti Kuala Lumpur British Malaysian Institute, Selangor, Malaysia
mahfuzah@ump.edu.my

Abstract. Electromyography (EMG) signal obtained from muscles need advance methods for detection, processing and classification. The purpose of this paper is to analyze muscle fatigue from EMG signals. At beginning, 15 subjects will answer a set of questionnaires. The score of the questionnaires will be calculated and the score will determine if the driver is fatigue or mild fatigue or fatigue based on their driving habit. Next, EMG signals will be collected by placing two surface electrodes on the Brachioradialis muscle located at the forearm while driving Need For Speed (NFS) game. A simulation set of steering and pedals will be controlled during the driving game. The drivers drive for two hours and the EMG signal will be collected during they are driving. The output signals will be pre-process to remove any noise in the signal. After that, the data is normalized between value 0 to 1 and the signal is analyzed using frequency analysis and time analysis. Mean and variance will be calculated for time domain analysis and graph of mean vs variance is plotted. In frequency domain analysis, Power Spectral Density (PSD) is extracted from the peak frequency of PSD in each signal is obtained. All result will be divided into three classes: non-fatigue, mild-fatigue and fatigue. Based on result obtained in time domain, average normalized mean (non-fatigue: 0.5004), mild-fatigue: 0.497) and (fatigue: 0.494). While, for frequency domain analysis, average peak frequency (non-fatigue: 13.379Hz), mild-fatigue: 11.969Hz) and (fatigue: 12.782Hz).

Keywords: EMG, muscle fatigue, driver fatigue, time-domain, frequency-domain.

1 INTRODUCTION

Muscle fatigue is the decrease in ability of a muscle to generate force. Muscle fatigue can cause to road accident Usually, muscle fatigue in driving will occur when the driver drive for a long period of time. According to statistic from Malaysia Institute of Road Safety Research (MIROS), in 2016, 521466 total accidents were reported. These crashes resulted in 1.38% deaths \cite{1}. Muscle fatigue is one of the factor contributes to the road accident. Muscle fatigue is common problem faced by most of the drivers. Muscle fatigue can cause the driver to fall asleep or muscle cannot function well during