Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018

NUSYS’18

Editors: Md Zain, Z., Ahmad, H., Pebrianti, d., Mustafa, M., Abdullah, N.R.H., Samad, R., Mat Noh, M. (Eds.)

ISSN 2194-5357 (print) ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
https://doi.org/10.1007/978-3-030-00979-3

Library of Congress Control Number: 2018955576

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc., in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Contents

Electromyograph (EMG) Signal Analysis to Predict Muscle Fatigue During Driving ... 405
Muhammad Amzar Syazani Mohd Azli, Mahfuzah Mustafa, Rafiuddin Abdulrani, Amran Abdul Hadi, Syarifah Nor Aqida Syed Ahmad and Zarith Liyana Zahari

Time-Frequency Analysis from Earthing Application ... 421
Jun Hou Ting, Mahfuzah Mustafa, Zarith Liyana Zahari, Dwi Pebridan, Zainah Md Zain, Nurul Hazlina Noordin and Rafiuddin Abdulrani

Energy Spectral Density Analysis of Muscle Fatigue 437
Noor Aisyah Ab Rahman, Mahfuzah Mustafa, Rosdiyana Samad, Nor Rul Hasma Abdullah and Norizam Sulaiman

Modelling Automatic IoT Home Light System (SmartLI) by NODEMCU ESP8266 .. 447
Muhammad Muttaqin A. Rahim, Nor Shazwanie Ramli, Najwa Raihana Abdul Wahab and Rohana Abdul Karim

Development of Automated Gate Using Automatic License Plate Recognition System ... 459
Luai Taha Ahmed Al-Mahbashi, Nurhafizah Abu Talip Yusof, Syamimi Shaharum, Mohamad Shaifull Abdul Karim and Ahmad Afif Mohd Faudzi

Design of T-Shaped UWB Antenna with Dual Band Rejection Using Inverted U- and C-Shaped Slots 467
Salwa Awang Akbar, Ahmad Syahirman Mohd Shah, Ahmad Afif Mohd Faudzi, Sabira Khatun, Syamimi Mardiah Shaharum, Nurhafizah Abu Talip @ Yusof and Mohamad Shaifull Abdul Karim

Inter Vehicle Communication System for Collision Avoidance 475
Nurul H. Noordin, Althea C. Y. Hui, Nurulfaizalilah Hassan and Rosdiyana Samad

IOT—Eye Drowsiness Detection System by Using Intel Edison with GPS Navigation ... 485
Auni Syahirah Abu Bakar, Goh Khai Shan, Gan Lai Ta and Rohana Abdul Karim

Automatic Detection of Diabetic Retinopathy Retinal Images Using Artificial Neural Network 495
Syamimi Mardiah Shaharum, Nurul Hajar Hashim, Nurhafizah Abu Talip @ Yusof, Mohamad Shaifull Abdul Karim and Ahmad Afif Mohd Faudzi
Energy Spectral Density Analysis of Muscle Fatigue

Noor Aisyah Ab Rahman1, Mahfuzah Mustafa1, Rosdiyana Samad1, Nor Rul Hasma1, Norizam Sulaiman1.

1Universiti Malaysia Pahang, Pahang, Malaysia

nooraisyahabrahman@gmail.com

Abstract. Driver's vigilance level is easily distracted when in a state of fatigue and drowsiness. Most drivers' shows sign of visual fatigue and loss of vigilance during long and monotonous driving. Their ability to maintain adequate driving performance is affected by various factors. Popular technique to estimate driver's vigilance level is physiological measure that use electromyogram (EMG) signal in estimating driver muscle fatigue while driving. In this project, the EMG signal will be obtained by attaching the electrodes to the biceps brachii of each 15 subjects during playing Need for Speed (NFS) game for two hours. Before that, subjects will answer a set of questionnaires and the scores obtained will be calculated. From the questionnaires, driver condition can be determined whether the driver is non-fatigue or mild fatigue or fatigue. Then signal preprocessing is applied to remove artifact in EMG signal. Next, the EMG signal is analyzed by using frequency domain analysis and Energy Spectral Density (ESD) extracted from the analysis. Mean, variance and peak energy of ESD is obtained from all the samples. Based on result obtained, the normalized mean (non-fatigue: 0.0514-0.1255), (mild fatigue: 0.0554-0.0802) and (fatigue: 0.0069-0.0188). For the variance range (non-fatigue: 0.0050-0.0311), (mild fatigue: 0.0054-0.0802) and (fatigue: 0.0006-0.0047). While for the peak energy of ESD (non-fatigue: 28480-294300 J/Hz), (mild fatigue: 99440-120500 J/Hz) and (fatigue: 5377.7-11440 J/Hz).

Keywords: Fatigue; ESD; EMG;

1 Introduction

Recently, the numbers of car crashes or road accidents are still increasing even though lot of improvements in road and vehicle design for the driver safety. According to the statistics from the Malaysian Institute of Road Safety Research (MIROS) 489 606 road crashes with 6706 road deaths in the year 2015, and the number of crashes is two times higher than a year before\cite{1}. Scanning for the countermeasures to decrease the measure of car crashes and upgrade the public road safety has turned into an earnest issue for the governments and automakers. It is very important to create an automatic system that intelligently can recognizes the driver's unfit status and makes warning to the drivers once necessary.