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Abstract. The purpose of this study is to analyze the effects of covariance state update by means of modified 

algorithm of diagonal matrix using eigenvalue, and diagonalization function in MATLAB on the computa-

tional cost of extended Kalman filter based Simultaneous Localization and Mapping (SLAM). The multipli-

cations of the covariance matrix with other parameters increase its dimension, which is twice the number of 

landmarks and might result in erroneous estimation. This motivates this study in searching for ways to re-

duce the computational cost of the covariance matrix without minimizing the accuracy of the state estimation 

using eigenvalue method. The matrix diagonalization strategy which is applied to the covariance matrix in 

EKF-based SLAM must be examined to simplify the multiplication procedure. Therefore, improvement is 

needed to find better diagonalization method. Simulation results demonstrate that MATLAB’s built-in di-

agonalization function can reduce the computational cost. 
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1 Introduction 

These days, there has been expanding business enthusiasm for new utilizations of a robot other than modern 

creation. Not restricted to just mechanical robots, portable robots have broadening their applications in various 

distinctive areas from indoor robots to outside, space, in military or unsafe region, submerged, and airborne 

framework. Nevertheless, it has shown a great deal of difficulties to defeat in seeking after a genuinely self-

governing robot. One of the investigation districts that is acknowledged to give a response for this issue is 

known as Simultaneous Localization and Mapping (SLAM) issue. 

The Simultaneous Localization and Mapping (SLAM) problem asks if it is possible for a mobile robot 

to move autonomously and observing its surrounding in an obscure situation with no earlier data on its area, and 

have it simultaneously decided its location. 

In realizing a solution for SLAM problem, researcher has to deal with several issues such as uncertain-

ties, data association, and feature extraction. This examination reveals the vulnerabilities impact to the cova-

riance state as it adds to computational cost of Extended Kalman Filter based Simultaneous Localization and 

Mapping issue. 

In recent years, there are few methodologies have been presented, for example, extended Kalman filter 

(EKF), unscented Kalman filter (UKF), and Particle filter for estimation purposes. A large portion of those strat-

egies share the indistinguishable specialized properties where they depend on Bayesian strategy. Between pre-

viously mentioned approaches, EKF are the most commended technique for SLAM arrangement. The reason 

could be because of the channel offers simpler calculation to take after and has brought down computational 

cost contrasted with others. 

Extended Kalman filter (EKF) is a good way to learn about SLAM because of simplicity whereas 

probabilistic method is complex, but they handle uncertainty better contrasted with different methodologies, for 

example particle filter. Nevertheless, the entire covariance matrix in EKF-based SLAM should be refreshed 

each time another point of interest is identified. This methodology includes bunches of numerical tasks, subse-

quently will raise the computational cost. Besides, the measurement of covariance matrix will increase to double 

the quantity of historic point, as more landmarks are detected. It is known that the cost of O (m
2
), in which m is 

a total landmark of the map in EKF-based SLAM. For large environment the used of EKF is limited (only hun-

dred landmarks). As the landmarks increase it will affect the full covariance structure which is responsive to the 

effects of linearization errors which build up through time. 

Therefore, this study is focused on MATLAB simulation coding modification where the MATLAB 

command for finding eigenvalue and diagonal matrix directly used without changing the structure of diagonal 
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matrix. One of the process of finding the eigenvalue is done by some MATLAB simulation coding modification 

that designs so that the structure of covariance matrix will be diagonalized. 

Guivant and Nebot developed a decorrelation calculation with improve the covariance matrix [1]. A 

subset of the states will decorrelate the calculation that is feebly associated and drop the pitifully cross-

relationship terms in the covariance matrix. To diminish both computational and capacity costs in SLAM a posi-

tive semi definite matrix is added to the covariance matrix. 

Besides decorrelation algorithm, Julier and Uhlmann presented a covariance convergence strategy for 

SLAM, a combination system that consolidates two covariances when the relationships between them are ob-

scure [2], and this technique has been implemented not only in SLAM, but also in other applications [3] and this 

procedure has been executed in SLAM, as well as in different applications. In this strategy, the refresh proce-

dure is completed in two autonomous advances; refreshing the robot, at that point refreshing the historic point. 

In addition, there exists a parameter ω in the calculation that should be defined beforehand. 

Besides in Kalman filter, a method of decorrelating some of the updated state covariance of the H in-

finity filter has been suggested by Ahmad and Othman [4], in order to reduce the cost computation. This is due 

to Finite Escape Time problem in H infinity filter based Simultaneous Localization and Mapping problem as the 

Finite escape time has been one of the obstacles that holding the realization of H infinity Filter in many applica-

tions. As their discoveries, they proposed an outcome if the full rank of delta P is added to the covariance and 

without association with the other state components. However, there is also a possibility that may result un-

bounded uncertainties in the estimation of SLAM problem.   

 This study is conducted to analyze the behavior effects of covariance state update of different MATLAB 

simulation coding between modification algorithm of diagonal matrix using eigenvalue [5] and using algorithm 

build-in function of diagonalization directly. The results of the cause on the estimation and covariance behavior 

are presented, which have been obtained through simulations. 

2 Issue of Formulation 

2.1 Model of Simultaneous Localization and Mapping (SLAM) 

The equation of discrete time dynamic system can be represented for SLAM concerning process and observation 

model. The movements of the mobile robot illustrated from process model while the measurement of the map 

features described by the observation model with reference to the mobile robot position. Both models (i.e. 

process and observation model) of SLAM depicts on Fig. 1. An equation that represent SLAM process model 

from time k to time k + 1 for linear system is stated as 

k
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in which the state of landmarks and mobile robot represented by Xk, the state transition matrix represented by Fk, 

the control matrix represented by Gk, the control inputs represented by Uk, and the zero-mean Gaussian process 

noise with covariance Q represented wk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. SLAM model. 
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A combined state vector of landmarks mX and robot rX  represent the state vector of 2D SLAM at time k as 

follows 
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where the middle location of the mobile robot with reference to global coordinate frame represented by kx and 

ky and the direction angle of the mobile robot represented by kθ . The Cartesian coordinate ( ix , iy ), i= 1, 2,…, 

m  is correspond to the landmark model where m  is number of landmarks. A model of two-wheel mobile robot 

is applied through this study. [ ]T

kkkr yxX θ= is applied to signify the robot position or in this study 

sometimes we denote it as robot pose. The kinematic movement of mobile robot that illustrate the process form 

defined as ),,,( )()1( δυδωkkrkr uXfX =+  and [ ]Tkkku υω= in which 

Tkkk )(1 δωωθθ ++=+  

)cos()(1 kkkk Txx θδυυ ++=+  

)sin()(1 kkkk Tyy θδυυ ++=+  

with mobile robot angular acceleration control inputs defined as kω  and mobile robot velocity with related 

process noises, δω andδυ represent  by kυ . The time interval of one movement step defined as T. As land-

marks are assumed to be static, the process model for the landmarks [ ]T

ii yx ,  for i= 1, 2,…, m  is unaffected 

with zero noise. 

)()1( kmkm XX =+  

State observation or measurement processes are represented using an observation model 

iirkk

i

i

k VXH
r

z φ
φ

+=







= +++ 11)1(  

where the measurement matrix represented by kH and the zero-mean Gaussian noise with covariance matrix R  

represented by
iir

V φ . At time 1+k , the observation of i
th

 landmark is a range ir
 
and bearing iφ which shows the 

relative distance and angle of the mobile robot to the observed landmarks. It is assumed that the sensor in the 

robot operates with a range sensor and a bearing that keeps the observation of the landmark in the environment 

as well as the encoder on the wheel for vehicle speed measurement. Range and bearing are defined as 
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where ),,( 111 +++ kkk yx θ is current robot position, ),( ii yx  is position of observed landmark, 
ir

v and 
i

vθ  are 

the noises on the measurements 

2.2 SLAM Based on Extended Kalman Filter  

In this study the extended Kalman filter (EKF) is applied to estimate the location of mobile robot and land-

marks. First, based on the earlier system information, the state vector is predicted. After that using the measure-

ment data received from the sensors, the state vector will be estimated. Parameters of interest are the updated 

state vector 
kX̂  and the covariance matrix of the estimation kP . The elaborations of prediction and estimation 

of EKF are stated as follows.  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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A. Prediction (update of time) 

 

The estimation of the state vector at the instant k stated as 

[ ]Tmrk XXXXX ˆˆˆˆˆ
21 K=  

and kP
 
is the covariance matrix of the estimation error. The process model (Equations 1 to 4) is linearized as an 

extension of the Taylor series about 
kX̂  and thus leads to the next predicted state vector −

+1
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−

+1kP  

),0,,(ˆ
1 kuXfX kkk =−

+  
T

wkw

T

XkXk FQFFPFP ∇∇+∇∇=−
+1

 

where the Jacobian of f
 
with respect to kX  is represented by XF∇

 
and the Jacobian with respect to kω

 
is 

represented by ωF∇
 
the Jacobian with respect to kω . These Jacobians are valued from the Eq. 3 at 

kX̂  and 

have the subsequent expressions: 



















−
=∇

m

k

k

X

I

T

T
F

000

010ˆcos

001ˆsin

0001

θω

θω
, 







∇
=∇

m

X

F
F

0

γω
 

mI  and m0  is the character and null matrix individually with fitting measurements relying upon the quantity 

of points of landmark watched while the inspecting rate is T . There is no procedure noise for the landmarks as 

they are assumed to be stationary constantly. 

 

B. Updated (update estimation) 

  

The equation of the state vector and the error covariance matrix in the update procedure is framed by linearizing 

the observation model (Eq. 5) through the Taylor series development about −
+1

ˆ
kX . With the accessibility of es-

timation data information 1+kz , the mobile robot updates its current position relative to the position of observed 

landmarks 
T
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is a Kalman gain and has the following definition: 
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The Jacobian is represented by iH∇  in Eq. 5 with refer to kX assessed at −
+1

ˆ
kX and expressed as follows: 
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2.3 State Error Covariance Matrix 

Commonly, the covariance of two variants is the measure of the correlation between two variables. The amount 

of linear dependence between variables can be measured by the correlation theory. Matrix arrangement of robot 

position and landmarks covariance matrices and correlation among the robot and landmarks is the covariance 

matrix of a state estimate in SLAM. In SLAM the covariance matrix, P is defined as 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Covariance matrix of robot position is represented RRP , covariance matrix of the landmark position is 

represented by MMP and cross-covariance matrix of the robot and landmarks or cross-correlation between them 

is represented by RMP . 

In SLAM, the covariance matrix indicates the error associated with the estimates of the state of the robot and 

of the reference point. As of the covariance matrix information, the uncertainties and errors of estimation can be 

monitor either raise or decrease, in which they stand for the accuracy and consistency of the estimate. Conse-

quently, it is very crucial to research the behavior of the covariance matrix as it contributes significant issue in 

SLAM. 

Proposition 1: The determinant of the error covariance matrix is a measure of the volume of the uncertainty 

ellipsoid associated with the state estimate, which indicate the total uncertainty of that particular state estima-

tion [6]. 

The state error covariance in SLAM having dimension of ( )2
23 m+ , where m is a landmark. As robot 

detected the latest landmarks in its area the size of state error covariance will be increased. Eq. 15 represents the 

state error covariance matrix for SLAM. The covariance of the state error indicates the error associated with the 

estimates of the status of the reference points and of the robot, as defined in Proposition 1. The precision and 

consistency of the estimation could be represented by the state error covariance where the increment and decre-

ment of uncertainties could be observed. The smaller covariance value shows the better estimation. Neverthe-

less, if the actual value is bigger than the covariance value, the estimation is look like to have an inaccuracy, but 

the covariance indicates lesser value, then the estimation in this condition is said to be an optimistic estimation. 

The optimistic estimation is one of the problems in SLAM which have to take into account in EKF-based 

SLAM. 
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3 Matrix Diagonalization 

A matrix in which the top and bottom elements are all null is called the diagonal matrix. The contents of 

diagonal elements may fill up either with value or also null. For a n×n square matrix is said to be diagonal 

matrix if it stated as 

 Let the elements of ( )
jidD ,=  

( ) 0, =jid if }{ njiji ,...,2,1, ∈∀≠  

The multiplication step of the matrix is easier for a diagonal matrix where just diagonal elements are con-

cerned and this will make the operation faster and will require a lower computational cost if applied in SLAM. 

Let A  be a n×n square matrix. It is believed that there be present a number and a column matrix B with dimen-

sion of such that 

BAB λ=  

With the matching eigenvector B, λ is define as an eigenvalue of A. Then A is diagonalizable to a matrix D. 

There will usually be n number of eigenvalues for each n x n matrix, in which the eigenvalues could be actual, 

complex or the join of mutually numbers. 

 

(14) 

(15) 

(16) 
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Definition 1: Let A be a n x n square matrix and D is a diagonal matrix in which its diagonal elements are 

the eigenvalues of A, such as follows: 

 

 

Therefore, there exists the following relationship between matrix A and matrix D: 

( ) ( )DA detdet =  

( ) ( )DnormAnorm =  

Therefore, referring to Proposition 1 and to the behavior of the diagonal matrix presented by Eq.18, the pos-

sibility exists that the diagonalization through eigenvalues may be one of the alternative techniques to minimize 

the computational cost of SLAM based on EKF. The method was also motivated by the earlier works of  [1] and  

[7] that mainly investigated and discussed about the diagonalization of the updated state covariance matrix. 

3.1 Diagonalization of Covariance Matrix for EKF-based SLAM 

The behavior of covariance and estimation performance is examined through simulation by the effect of diago-

nalizing the covariance matrix. This is because the multiplication steps in covariance calculation become simple, 

as an effort to decrease the computational difficulty as well as computational cost. As the only diagonal ele-

ments involve in multiplication of a matrix with another diagonal matrix, it is much simpler and quicker. The 

study has been conducted based on two case studies: 

(1) Estimated covariance for both (robot and landmark) is diagonalized using eigenvalue MATLAB function 

and reconstruction of diagonal matrix as in [5]. 

(2) Estimated covariance for both (robot and landmark) is diagonalized using MATLAB function of diagonali-

zation directly. 

For the case study 1 the eigenvalue of estimated covariance is first calculated using the function stated as fol-

lows: 

)( 1

+
+= kn Peigλ

 
where nλ

 
represent the eigenvalue and )( 1

+
+kP represent the estimated covariance. Then the diagonal matrix 

will be build using the next function stated as follows: 

)(1),( nkD diagP λ=+
+  

where )(1),( nkD diagP λ=+
+

 is a diagonal matrix that built from eigenvalue. 

For the case study 2 the eigenvalue of estimated covariance is directly calculated using the MATLAB func-

tion stated as follows: 

[ ] )(, 1

+
+= kPeigDV  

where [ ]DV ,  is the MATLAB function of finding diagonal matrix directly. Next the diagonal matrix will be 

build using the function stated as follows: 

DP kD =+
+1),(

 

The above two cases are analyzed separately to find out the consistency and reliability of the proposed me-

thod.  

4 Simulation Results and Discussions 

The analyses through simulation for two case studies of different diagonalization algorithm coding are presented 

to examine the behavior of the estimation and covariance matrix of EKF-based SLAM. 

 Fig. 2 depicts the estimation of the the landmarks and mobile robot position under normal condition, (i.e. 

using normal covariance matrix). The simulation time for the mobile robot is 1000s and continuously detects the 

landmarks for every loop of motion, with constant speed. The uncertainties of the estimation are represented by 

the covariance-ellipses. Better estimation will show smaller ellipse. 
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Fig. 2. Position estimation and covariance under normal condition. 

 

 The simulations for two case studies as defined in Section 3 are conducted using the same parameters. The 

behavior of covariance through estimation in the first case as depicted in Fig. 3, while Fig. 4 shows the result of 

the second case study. It is apparent in the previously mentioned figures, that the estimation of the position of 

mobile robot and landmarks is possible even when the whole covariance is diagonalized through the technique 

defined in Section 3. However, the estimations demonstrated some acceptable errors. Estimation of landmark 

position in case 2 is better than that of in case 1. Moreover, this shows that the diagonalization method through 

finding of eigenvalues and rebuilding a diagonal matrix as defined in [5], is able to produce similar prediction 

behavior as compared to build-in MATLAB function of matrix diagonalization. 

On the other hand, the covariance behaves unusual in both cases, where the covariance decreases suddenly, 

and it is too tiny compared to the normal covariance as illustrated in Fig. 2. This situation illustrates the optimis-

tic estimation as described in Section 2.3 of this paper. 

The comparison of processing time of all methods is depicted in Table 1. Diagonalization method using built-

in function in MATLAB (Case 2) was found to be the fastest among all cases, about 15% faster than the normal 

condition. Case 1 also completed about 13% faster than the normal condition, despite additional steps taken in 

diagonalizing the covariance matrix. Furthermore, Case 2 produces more accurate estimation compared to Case 

1 as shown in Fig. 3 and Fig. 4. This is demonstrated by the true landmark being closer to the estimated land-

mark in Case 2. 

 

 

Table 1. Processing time for all cases. 

Covariance type Simulation time (s) Total processing time (s) Percentage of processing time 

reduction (%) 

Normal 1000 96.3977  

Case 1 1000 83.9984 12.86 

Case 2 1000 81.639 15.31 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Estimation of the state and covariance 

behavior of case two. 

Fig. 3. Estimation of the state and covariance 

behavior of case one. 
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5 Conclusion 

This paper presented an analysis of EKF-based SLAM execution under the states of diagonalized covariance of 

two cases as discussed in Section 3. Case 1 diagonalizes the covariance matrix through eigenvalues, while Case 

2 makes use of built-in diagonalization function in MATLAB. It was found that Case 2 completed the fastest 

compared to Case 1 and the normal condition. In addition, it was found that Case 2 produces more accurate 

estimation than Case 1. Future work will be using the build-in MATLAB function to further investigate on how 

to reduce computational cost of mobile robot SLAM. In addition, correction of optimistic value of covariance 

matrix is the subject of future investigation. 
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