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Abstract. Measuring the accuracy of diagnostic tests is crucial in many application areas in-
cluding medicine, machine learning and credit scoring. The receiver operating characteristic
(ROC) curve is a useful tool to assess the ability of a diagnostic test to discriminate among
two classes or groups. In practice, multiple diagnostic tests or biomarkers may be combined
to improve diagnostic accuracy, e.g. by maximizing the area under the ROC curve. In this
paper we present Nonparametric Predictive Inference (NPI) for best linear combination of two
biomarkers, where the dependence of the two biomarkers is modelled using parametric copulas.
NPI is a frequentist statistical method that is explicitly aimed at using few modelling assump-
tions, enabled through the use of lower and upper probabilities to quantify uncertainty. The
combination of NPI for the individual biomarkers, combined with a basic parametric copula to
take dependence into account, has good robustness properties and leads to quite straightforward
computation. We briefly comment on the results of a simulation study to investigate the perfor-
mance of the proposed method in comparison to the empirical method. An example with data
from the literature is provided to illustrate the proposed method, and related research problems
are briefly discussed.

Keywords. Bivariate diagnostic tests; copulas; diagnostic accuracy; lower and upper probabil-
ities; nonparametric predictive inference; ROC curve.

1 Introduction

Measuring the accuracy of diagnostics tests is crucial in many application areas including
medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular
statistical tool for describing the performance of diagnostic tests. The area under the ROC
curve (AUC) is often used as a measure of the overall performance of the diagnostics test [18].
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However, one diagnostic test may not be enough to draw a useful conclusion, thus in practice
multiple diagnostic tests or biomarkers may be combined to improve diagnostic accuracy [19].
There are several approaches in the literature which aim to find the best linear combination
of biomarkers in order to maximize the area under the ROC curve, and thus to improve the
diagnostic accuracy, see e.g. [13, 15, 17, 19]. These approaches either assume an underlying
distribution or focus on estimation. In this paper, we instead use nonparametric predictive in-
ference (NPI) for this setting with two biomarkers. NPI [1, 4] is a frequentist statistics method
which explicitly considers prediction, which is an attractive alternative to the classical estima-
tion perspectives in this context as one is mainly interested in the performance of a diagnostic
test for a future patient or healthy person to whom the test is applied.

We first present the basic concepts and notation used in this paper. Let D be a binary
variable describing the disease status, i.e. D = 1 for disease and D = 0 for non-disease. Suppose
that the result of a diagnostic test, X, is a continuous random quantity, such that large values
of X are considered more indicative of disease. We assume that we have diagnostic test results
for two groups, the first consisting of people known to have the disease, often referred to as
‘patients’ or ‘cases’, and the second consisting of people known not to have the disease, referred
to as ‘non-patients’ or ‘controls’. Test results for members of these groups are denoted with
superscripts corresponding to the value of the disease status D, so X1 for the disease group
and X0 for the non-disease group. The Receiver Operating Characteristic (ROC) curve is
defined through the combination of False Positive Fraction (FPF) and True Positive Fraction
(TPF) over all values of the threshold c, i.e. ROC = {(FPF(c),TPF(c)), c ∈ (−∞,∞)}, where
FPF(c) = P (X0 > c|D = 0) and TPF(c) = P (X1 > c|D = 1). An ideal test completely
separates the patients with and without the disease for a threshold c, i.e. FPF(c) = 0 and
TPF(c) = 1. A useless or uninformative test fails to distinguish between patients and non-
patients for all thresholds c, which would be reflected by FPF(c) = TPF(c) for all thresholds c
[18].

In many cases, a single numerical value or summary may be useful to represent the accuracy
of a diagnostic test or to compare two or more ROC curves [18]. A useful summary is the
area under the ROC curve, AUC. The AUC measures the overall performance of the diagnostic
test. Higher AUC values indicate more accurate tests, with AUC = 1 for ideal tests and
AUC = 0.5 for uninformative tests. The AUC is equal to the probability that the test results
from a randomly selected pair of diseased and non-diseased subjects are correctly ordered [18],
i.e. AUC = P

[
X1 > X0

]
.

To estimate the ROC curve for diagnostic tests with continuous results, the nonparametric
empirical method is popular due to its flexibility to adapt fully to the available data. This
method yields the empirical ROC curve, which will be considered in this paper for comparison
to the NPI method which we introduce. Suppose that we have test data on n1 individuals from
a disease group and n0 individuals from a non-disease group, denoted by {x1i , i = 1, . . . , n1}
and {x0j , j = 1, . . . , n0}, respectively. Throughout this paper we assume that the two groups
are fully independent, meaning that no information about any aspect related to one group
contains information about any aspect of the other group. For the empirical method, these
observations per group are assumed to be realisations of random quantities that are identi-
cally distributed as X1 and X0, for the disease and non-disease groups, respectively. The

empirical estimator of the ROC is R̂OC =
{(

F̂PF(c), T̂PF(c)
)
, c ∈ (−∞,∞)

}
with T̂PF(c) =

1
n1

∑n1
i=1 1

{
x1i > c

}
and F̂PF(c) = 1

n0

∑n0
j=1 1

{
x0j > c

}
, where 1{A} is the indicator function
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which is equal to 1 if A is true and 0 else. The empirical estimator of the AUC is given by

ÂUC = 1
n1n0

∑n0
j=1

∑n1
i=1 1

{
x1i > x0j

}
[18].

In this paper we consider the linear combination of results of two diagnostic tests applied
to the individuals from the disease and non-disease groups. Let XD and Y D be continuous
random quantities representing the results of the two diagnostic tests for disease group D = 0, 1.
Consider a weighted average of the two test results, TD(XD, Y D) = αXD + (1− α)Y D, where
α ∈ [0, 1] and the coefficient α is chosen to maximize the AUC associated with the composite
score TD, where the ROC curve is used with the combined test score T 1 for all patients and T 0

for all non-patients [19].

Suppose that we have two test results for each of the n1 individuals from a disease group and
n0 individuals from a non-disease group, we denote these observations by

{
(x1i , y

1
i ), i = 1, ..., n1

}
and

{
(x0j , y

0
j ), j = 1, ..., n0

}
, respectively. Consider a weighted average of the test results, t1i =

αx1i + (1−α)y1i for the disease group and t0j = αx0j + (1−α)y0j for the non-disease group, where
α ∈ [0, 1]. The empirical estimator of the ROC curve corresponding to the combined test score
is

R̂OC =
{(

F̂PF(c), T̂PF(c)
)
, c ∈ (−∞,∞)

}
(1)

with

T̂PF(c) =
1

n1

n1∑
i=1

1{t1i > c} , F̂PF(c) =
1

n0

n0∑
j=1

1{t0j > c}

The AUC associated with TD(XD, Y D) is [19]

ÂUC =
1

n1n0

n0∑
j=1

n1∑
i=1

1
{
αx1i + (1− α)y1i > αx0j + (1− α)y0j

}
(2)

It is best to use that value of α which maximizes the AUC in Equation (2), we denote this by α̂.

This paper is organized as follows. Section 2 provides a brief introduction to NPI for ROC
analysis with a single biomarker. Section 3 reviews the combination of NPI for marginals with a
parametric copula [6] and applies this method to the bivariate diagnostic test setting introduced
above. Section 4 briefly discusses initial insights from a simulation study investigating the
performance of our method, followed by an example of the application of our method to data
from the literature. Some concluding remarks are provided in Section 5.

2 NPI for ROC analysis

In this paper we present Nonparametric Predictive Inference (NPI) for best linear combination
of two biomarkers, where the dependence of the two biomarkers is modelled using parametric
copulas. NPI is a frequentist statistical method that is explicitly aimed at using few modelling
assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty.
NPI is based on the assumption A(n), proposed by Hill [12], which gives a direct conditional
probability for a future real-valued random quantity, conditional on observed values of n related
random quantities. Effectively, A(n) implies that the rank of the future observation among the
observed values is equally likely to have each possible value 1, . . . , n+ 1. Hence, this assumption
is that the next observation has probability 1/(n + 1) to be in each interval of the partition of
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the real line as created by the n observations. We assume here, for ease of presentation, that
there are no tied observations (these can be dealt with by assuming that such observations differ
by a very small amount, a common method to break ties in statistics).

Inferences based on A(n) are predictive and nonparametric, and can be considered suitable
if there is hardly any knowledge about the random quantity of interest, other than the n ob-
servations, or if one does not want to use any such further information in order to derive at
inferences that are strongly based on the data. The assumption A(n) is not sufficient to derive
precise probabilities for many events of interest, but it provides bounds for probabilities via
the ‘fundamental theorem of probability’ [10], which are lower and upper probabilities [1, 2].
Augustin and Coolen [1] proved that NPI has attractive inferential properties, it is also exactly
calibrated from frequentist statistics perspective [14], which allows interpretation of the NPI
lower and upper probabilities as bounds on the long-term ratio with which the event of interest
occurs upon repeated application of this statistical procedure.

NPI has been presented for assessing the accuracy of a classifier’s ability to discriminate
between two groups for binary data [7], for diagnostic tests with ordinal observations [11] and
with real-valued observations [8]. NPI has also been presented for three-group ROC surfaces,
with real-valued observations [9] and with ordinal observations [5], to assess the ability of a
diagnostic test to discriminate among three ordered classes or groups.

We briefly introduce NPI for diagnostic accuracy, following Coolen-Maturi et al. [8]. The
NPI method is different from the nonparametric empirical method as it is explicitly predictive,
considering a single next future observation given the past observations, instead of aiming at
estimation for an entire assumed underlying population. In NPI uncertainty is quantified by
lower and upper probabilities for events of interest. The NPI lower and upper ROC curves,
and the corresponding lower and upper AUC, have been derived by Coolen-Maturi et al. [8],
corresponding to the assumptions A(n1) for the disease group and A(n0) for the non-disease
group, where the inferences consider one future patient from each group.

Suppose that X1
i , i = 1, . . . , n1, n1 + 1, are continuous and exchangeable random quantities

from the disease group and X0
j , j = 1, . . . , n0, n0 + 1 are continuous and exchangeable random

quantities from the non-disease group, where X1
n1+1 and X0

n0+1 are the next observations from
the disease and non-disease groups following n1 and n0 observations, respectively. As mentioned
before, we assume that both groups are fully independent. Let x11 < . . . < x1n1

be the ordered
observed values for the first n1 individuals from the disease group and x01 < . . . < x0n0

the ordered
observed values for the first n0 individuals from the non-disease group. For ease of notation, let
x10 = x00 = −∞ and x1n1+1 = x0n0+1 = ∞. We assume that there are no ties in the data. The
NPI lower and upper ROC curves are [8]

ROC =
{(

FPF(c),TPF(c)
)
, c ∈ (−∞,∞)

}
(3)

ROC =
{(

FPF(c),TPF(c)
)
, c ∈ (−∞,∞)

}
(4)
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where

TPF (c) =P (X1
n1+1 > c) =

∑n1
i=1 1

{
x1i > c

}
n1 + 1

(5)

TPF (c) =P (X1
n1+1 > c) =

∑n1
i=1 1

{
x1i > c

}
+ 1

n1 + 1
(6)

FPF (c) =P (X0
n0+1 > c) =

∑n0
j=1 1

{
x0j > c

}
n0 + 1

(7)

FPF (c) =P (X0
n0+1 > c) =

∑n0
j=1 1

{
x0j > c

}
+ 1

n0 + 1
(8)

where P and P are NPI lower and upper probabilities [1]. It is easily seen that FPF(c) ≤
F̂PF(c) ≤ FPF(c) and TPF(c) ≤ T̂PF(c) ≤ TPF(c) for all c, which implies that the empirical
ROC curve is bounded by the NPI lower and upper ROC curves [8].

The NPI lower and upper AUC, which are the areas under the NPI lower and upper ROC
curves given in (3) and (4), respectively, are also equal to the NPI lower and upper probabilities
for the event that the test result for the next individual from the disease group is greater than
the test result for the next individual from the non-disease group, and given by [8]

AUC =P
(
X1

n1+1 > X0
n0+1

)
=

1

(n1 + 1)(n0 + 1)

n0∑
j=1

n1∑
i=1

1
{
x1i > x0j

}
(9)

AUC =P
(
X1

n1+1 > X0
n0+1

)
=

1

(n1 + 1)(n0 + 1)

 n0∑
j=1

n1∑
i=1

1
{
x1i > x0j

}
+ n1 + n0 + 1

 (10)

It is interesting to notice that the imprecision in these lower and upper AUCs, AUC− AUC =
n1+n0+1

(n1+1)(n0+1) , depends only on the sample sizes n0 and n1.

3 NPI with parametric copula for bivariate diagnostic tests

In this section we present NPI for the weighted average of the two diagnostic tests to optimize
the diagnostic accuracy with consideration of the dependence structure through the use of a
parametric copula. Taking into account the dependence between two diagnostic test results for
the same person is important when considering the combination of the bivariate test results,
as it can influence the accuracy of detection of diseases [3]. We use the recently introduced
predictive inference method for bivariate data which consists of NPI for each of the marginals in
combination with a parametric copula, where the parameter is estimated using the available data
[6]. This is a relatively straightforward method for prediction of a bivariate random quantity,
where imprecision resulting from the use of NPI for the marginals provides robustness with regard
to the assumed copula for small sample sizes. We introduce this method here immediately with
application to the linear combination of two diagnostic test results, for more details on this
predictive method we refer to Coolen-Maturi et al. [6].

Consider a bivariate random quantity of diagnostic test results, (X,Y ), let (XD
nD+1, Y

D
nD+1)

be the next future bivariate random quantity of diagnostic test results and let TD
nD+1 = αXD

nD+1+
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(1−α)Y D
nD+1, with α ∈ [0, 1], be the weighted average of the two test results for a future person

from the group with disease status D. For the disease group, the lower probability for the event
that the sum of the next future observations will exceed a particular threshold ξ is

S1
c(t) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈L1
t

h1il(θ̂1) (11)

with L1
t = {(i, l) : αx1i−1 + (1− α)y1l−1 > ξ}, and the corresponding upper probability is

S
1
c(t) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈U1
t

h1il(θ̂1) (12)

with U1
t = {(i, l) : αx1i + (1 − α)y1l > ξ}, where ξ ∈ (−∞,∞) and S1

c(t) and S
1
c(t) are the

lower and upper survival functions for the sum of the next future observations, T 1
n1+1, where

dependence is taken into account as explained next, and a subscript c is added to key notations
throughout this chapter to emphasize the use of an assumed copula.

The quantities h1il(θ̂1) are crucial to this method, as they take the dependence between the
two diagnostic test meausurements for the future person from the disease group into account, as
estimated based on the available data for this group with an assumed parametric copula. They
are defined as

h1il(θ̂1) = Pc(X̃
1
n1+1 ∈

(
i− 1

n1 + 1
,

i

n1 + 1

)
, Ỹ 1

n1+1 ∈
(
l − 1

n1 + 1
,

l

n1 + 1

)
|θ̂1) (13)

for i, l = 1, 2, . . . , n1+1, where Pc(·|θ̂1) represents the copula-based probability using a paramet-
ric copula, where θ̂1 is the estimated parameter value for this copula for the disease group. This
parameter can be multi-dimensional, but we will restrict attention later to widely used symmet-
ric parametric copulas with a single parameter. If one uses a multi-dimensional parameter, the
computational aspects of this method remain quite straightforward with only the estimation of
the parameter possibly becoming more complicated. The random quantities X̃1

n1+1 and Ỹ 1
n1+1

are both uniformly distribution on [0, 1] and they are dependent, with the dependence mod-
elled through the assumed copula. Note that X̃1

n1+1 is related to the random quantity X1
n1+1

through a transformation based on the assumption A(n1) for X1
n1+1, as explained in detail by

Coolen-Maturi et al. [6].
Similarly, for the non-disease group, the lower probability for the event that the sum of the

next future observations will exceed a particular threshold ξ is

S0
c(t) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈L0
t

h0jk(θ̂0) (14)

with L0
t = {(j, k) : αx0j−1 + (1− α)y0k−1 > ξ}, and the corresponding upper probability is

S
0
c(t) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈U0
t

h0jk(θ̂0) (15)

with U0
t = {(j, k) : αx0j + (1−α)y0k > ξ}, where ξ ∈ (−∞,∞) and S0

c(t) and S
0
c(t) are the lower

and upper survival functions for the sum of the next future observation, T 0
n0+1. The probabilities
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h0jk(θ̂0) are defined as

h0jk(θ̂0) = Pc(X̃
0
n0+1 ∈

(
j − 1

n0 + 1
,

j

n0 + 1

)
, Ỹ 0

n0+1 ∈
(
k − 1

n0 + 1
,

k

n0 + 1

)
|θ̂0) (16)

for j, k = 1, 2, . . . , n0 + 1 where Pc(·|θ̂0) represents the copula-based probability with estimated
parameter θ̂0 for the non-disease group.

The method used above combines NPI for the marginals with an assumed parametric cop-
ula, with its parameter estimated on the basis of available data [6, 16]. Effectively it requires
computation of the (n1 + 1)2 joint probabilities h1il for the disease group, and the (n0 + 1)2 joint
probabilities h0jk for the non-disease group, for the assumed parametric copula with estimated

parameter value θ̂1 and θ̂0, respectively; these are straightforward to compute for commonly
used parametric copulas. The parameters can be estimated straightforwardly as well, using any
suitable estimation method, e.g. maximum likelihood estimation [6]. Note that this method is
computationally far easier than the standard method with copula-based models, as through the
use of NPI for the marginals there is no need to simultaneously estimate the marginals and the
copula. In the approach outlined above, the transformation of the marginals is included through
the sets L1

t , U
1
t , L

0
t and U0

t in Equations (11), (12), (14) and (15), respectively. The use of these
sets also leads to additional imprecision in the inferences, which provides additional robustness
for the choice of the specific copula.

The NPI lower and upper survival functions from Equations (11), (12), (14) and (15) are used
to derive lower and upper FPF and TPF for the weighted average of the next future observations
per group, for different threshold values ξ, and these are combined to derive the corresponding
NPI lower and upper ROC curves. This leads to the following optimal bounds for the TPF and
FPF when considering the dependence structure with the assumed parametric copula,

TPFc (ξ) = S1
c(ξ) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈L1
t

h1il(θ̂1) (17)

TPFc (ξ) = S
1
c(ξ) = P (T 1

n1+1 > ξ) =
∑

(i,l)∈U1
t

h1il(θ̂1) (18)

FPFc (ξ) = S0
c(ξ) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈L0
t

h0jk(θ̂0) (19)

FPFc (ξ) = S
0
c(ξ) = P (T 0

n0+1 > ξ) =
∑

(j,k)∈U0
t

h0jk(θ̂0) (20)

The lower and upper ROC curves are again defined to be the optimal bounds for all such curves
corresponding to any pair of survival functions S1

c (t) and S0
c (t) for T 1

n1+1 and T 0
n0+1 in between

their respective lower and upper survival functions, as given by Equations (17) - (20). The ROC
curve with copula clearly depends monotonously on the survival functions, it is easily seen that
the optimal bounds based on our method, which are lower and upper ROC curves, are

ROCc =
{(
FPF c(ξ), TPF c(ξ)

)
, ξ ∈ (−∞,∞)

}
(21)

ROCc =
{(
FPF c(ξ), TPF c(ξ)

)
, ξ ∈ (−∞,∞)

}
(22)
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In order to optimize the diagnostic accuracy of the weighted average of the two future
diagnostic test results, we maximize the area under either the lower or the upper ROC curve, by
finding the value of α such that TD

nD+1 = αXD
nD+1+(1−α)Y D

nD+1 maximizes the respective AUC.
These lower and upper AUCs are derived as follows. For each block B1

il = (x1i−1, x
1
i )� (y1l−1, y

1
l ),

generated by the observed data, let t1i−1,l−1 = αx1i−1 + (1 − α)y1l−1 be the combined weighted

value corresponding to the left-bottom corner of the block, and t1i,l = αx1i + (1 − α)y1l the
combined weighted value corresponding to the right-top corner of the block. The same can be
defined for each block B0

jk = (x0j−1, x
0
j ) � (y0k−1, y

0
k), leading to t0j−1,k−1 = αx0j−1 + (1 − α)y0k−1

and t0j,k = αx0j + (1− α)y0k. In line with Equations (11) - (16), the lower AUC and upper AUC
associated with the weighted average for the bivariate diagnostic test results with parametric
copula can directly be defined as

AUCc = P (T 1
n1+1 > T 0

n0+1) =

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j,k < t1i−1,l−1}h0jk(θ̂0)

 (23)

AUCc = P (T 1
n1+1 > T 0

n0+1) =

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j−1,k−1 < t1i,l}h0jk(θ̂0)

 (24)

The derivations of these lower and upper probabilities, so the second equality in each of Equations
(23) and (24), are given in the Appendix. The arguments that these lower and upper probabilities
are indeed equal to the areas under the lower and upper ROCs, as given in Equations (21) and
(22), are identical to the arguments for the corresponding equalities in Equations (9) and (10)
as explained by Coolen-Maturi et al. [8]) and in the PhD thesis of Muhammed [16]. These lower
and upper AUCs are quite easy to maximize by searching over α ∈ [0, 1], we denote the value of
α which maximizes AUC by α̂c

L, and the value of α which maximizes AUC by α̂c
U .

4 Simulation and example

We performed a simulation study to investigate the performance of the proposed method against
the empirical method, the details of the simulation study are presented in the PhD thesis by
Muhammed [16]. It should be noted that these simulations took very substantial computation
time, because of the need to find maximum values for the linear combination coefficient α in
every run. Compared to this, the computation time required for the use of the bivariate inference
method described in Section 3 was neglectable.

We considered several cases, always sampling 10,000 runs in each case and using bivariate
Normal distributions for all (X,Y ), with variances 1 for both X and Y and correlation 0.5. We
particularly wished to investigate if the new method with NPI for the marginals and an assumed
parametric copula, with the parameter estimated using the data, would provide different weights
α compared to the empirical method. We applied four commonly used parametric copulas,
namely the Clayton, Frank, Gumbel and Normal copulas [16], the results were very similar
for all of these. The results of the simulations showed that our new method tends to give
slightly larger weight to the variable X or Y for which difference in the the means of the Normal
distributions for the disease and non-disease groups is larger. This is a promising feature for the
method, although the actual difference in the optimal weights was relatively small and tended to
disappear with increasing sample sizes. Overall, one could say that the simulation study showed
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slightly better performance of our method for small sample sizes (up to about 30 for each group)
but that there was no noticeable difference between this method and the empirical method for
larger sample sizes.

One reason for the perhaps somewhat surprising fact that our method, taking into account
dependence between the X and Y variables, did not perform substantially better than the
empirical method is likely to be the fact that we only considered data from bivariate Normal
distributions, hence with a linear dependence between the X and Y variables. Since the weighted
linear combination of the X and Y measurements therefore can take this model dependence into
account, there would be less benefit expected from the method taking dependence into account,
in particular also because we only used symmetric parametric copulas. For a clearer perspective
of our general method, it would be necessary to study its performance with different, that is
non-linear, underlying dependence structures. However, this would only be really successful
if there is good topic knowledge available which would guide the choice of parametric copula.
We are more hopeful on developing our method further by the use of nonparametric copulas
instead of a parametric copula. This will give far more flexibility on dependence structure that
can be taken into account, which will be particularly useful in practical scenarios with possibly
complicated, yet mostly unknown, non-linear dependence between the X and Y variables. This
provides a challenging direction for future research. The PhD thesis by Muhammed [16] contains
a first attempt towards combining NPI for the marginals with a nonparametric, kernel-based,
copula, but this work requires further development before it can be applied to combination of
multiple diagnostic tests.

As an example of the application of our method, we use a data set from the literature
resulting from a study of 90 pancreatic cancer patients and 51 control patients with pancreatitis
[20]. Two serum markers were measured on these patients, the carbohydrate antigen CA19-9
(biomarker X in our method) and the cancer antigen CA125 (biomarker Y ). The marker values
were transformed to a natural logarithmic scale and are displayed in Figure 1. To make sure that
our biomarkers tests results are comparable we used standardized values (i.e. with mean 0 and
variance 1) after the natural logarithmic transformation as inputs to our method. Objectives of
this example were to see if a weighted average of these two biomarkers could provide a better
diagnostic quantity than the individual biomarkers, and to see if the choice of parametric copula
in our method would make a substantial difference.

Using the individual biomarkers only, and the empirical ROC method, biomarker CA19-9
leads to empirical AUC equal to 0.8614 and biomarker CA125 to empirical AUC equal to 0.7056.
Using Equations (9) and (10), the NPI lower and upper AUC values using only biomarker CA19-
9 are 0.8347 and 0.8648, respectively, and when using only biomarker CA125 these values are
0.6883 and 0.7130, respectively. We applied our method with the Clayton, Frank, Gumbel and
Normal copulas. The optimal lower and upper AUC values for our method, with corresponding
values for α, are shown in Table 1.

These results show that there is very little difference in our method for the four different
parametric copulas considered. In terms of the AUC value, the Clayton copula performs best
but differences are mainly only in the third decimal. These lower and upper AUC values also
all bound the AUC value 0.8614 achieved by using only the best single biomarker CA19-9.
For all copulas the performance is, of course, substantially better than for the worst single
biomarker CA125, but we aim at using a weighted combination in order to improve on the best
individual biomarker. We also applied the empirical method for the linear combination of these
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Figure 1. Pancreatic cancer data set

Copula α̂c
L AUCc α̂c

U AUCc

Normal 0.7160 0.8306 0.7151 0.8896
Frank 0.7077 0.8324 0.7077 0.8920
Clayton 0.7066 0.8364 0.7061 0.8947
Gumbel 0.7215 0.8301 0.7226 0.8880

Table 1. Lower and upper AUC values and corresponding values of α

two biomarkers, this lead to maximum AUC equal to 0.8939 for α̂ = 0.7188, which is very close to
the upper AUC values achieved by our method, with only the Clayton copula providing a slightly
better upper AUC value. More importantly for practical purposes is that the optimal values
for α for all these methods is nearly identical. This example only indicates a hardly noticeable
improvement in diagnostic accuracy by combining the two biomarkers over the use of only the
single biomarker CA19-9. One possible reason for this is that taking the weighted average is too
restrictive if the individual biomarkers for the disease group and for the non-disease group have
correlations with different signs, but more importantly our current method with the use of these
basic symmetric parametric copulas only considers linear dependence, which is also taking into
account in the empirical combination method. The real benefit of our method is likely to show
for more complex dependence structures, which will require more flexible copulas to be used,
where nonparametric copulas are most likely to be most successful as long as the data sets are
suitably large.

5 Concluding remarks

This paper reported on intermediate results from an ongoing study into generalizing the NPI
approach to multivariate data, in particular considering the use of such methods for bivariate
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diagnostic tests. The study has shown that the computational aspects of the method for this
application are not a substantial problem, the computation time was mostly determined by the
need to find optimal linear combination coefficients, so not for the underlying novel statistical
methodology which combines NPI for the marginals with an estimated parametric copula. Sim-
ulation studies [16], which we briefly reported on, showed a small improvement of our method
on the far simpler empirical method in case of small data sets, but this advantage disappeared
for larger data sets. However, thus far only scenarios with linear dependences in the underlying
data models have been studies, for which the dependence can be taken into account by the
weighted average, also for the empirical method. Real benefit from our novel statistical method
is expected when there are more complex dependence structures, but this would require either
parametric copulas which reflect the dependence structure, and therefore may require detailed
topic knowledge, or the use of flexible nonparametric copulas. We are continuing our research
project mainly focussing on the second of these approaches, that is developing predictive in-
ference methods for bivariate data by combining NPI for the marginals with nonparametric
copulas, which can also be extended to multivariate data of higher dimension.

In principle our approach can be similarly applied to combination of biomarkers for diagnostic
tests if nonparametric copulas are used, so for this specific application a further research topic
is in the use of other combination functions of the biomarkers than weighted averages. For
practical applications, however, one may wish to stay with functions that lead to a reasonable
interpretation of the combination of the biomarkers, it will be interesting to explore combinations
of relatively straightforward combination functions with the use of nonparametric copulas in our
method and investigate the performance of the resulting methods.

Appendix

Proof. The lower probability for the event T 1
n1+1 > T 0

n0+1, given in Equation (23), is derived as
follows

P = P (T 1
n1+1 > T 0

n0+1)

=

n1+1∑
i=1

n1+1∑
l=1

P (T 0
n0+1 < αX1

n1+1 + (1− α)Y 1
n1+1, X

1
n1+1 ∈ (x1i−1, x

1
i ), Y

1
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1
l ))

=

n1+1∑
i=1

n1+1∑
l=1

P
(
T 0
n0+1 < αX1

n1+1 + (1− α)Y 1
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1
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1
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il
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≥

n1+1∑
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n1+1∑
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h1il(θ̂1)P (T 0
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=

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)

n0+1∑
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n0+1∑
k=1

P
(
αX0

n0+1 + (1− α)Y 0
n0+1 < t1i−1,l−1, (X

0
n0+1, Y

0
n0+1) ∈ B0

jk

)
≥

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)

n0+1∑
j=1

n0+1∑
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1{t0j,k < t1i−1,l−1}h0jk(θ̂0)

For the lower probability, we want to make the probability for the event T 1
n1+1 > T 0

n0+1 as

small as possible. To this end, the first inequality follows by putting the probability h1il(θ̂1)
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corresponding to the block B1
il to the left-bottom of the block, for all i, l = 1, . . . , n1 + 1.

Thus the corresponding combined weighted value is t1i−1,l−1 = αx1i−1 + (1− α)y1l−1. The second

inequality follows by putting the probability h0jk(θ̂0) corresponding to the block B0
jk to the right-

top of the block, for all j, k = 1, . . . , n0 + 1, and the corresponding combined weighted value is
t0j,k = αx0j + (1 − α)y0k. Because these configurations of the respective probability masses can
actually be achieved, this is the maximum possible lower bound for the probability of interest
and hence it is a lower probability.

The upper probability for the event T 1
n1+1 > T 0

n0+1, given in Equation (24), is derived as
follows

P = P (T 1
n1+1 > T 0

n0+1)
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P (T 0
n0+1 < αX1
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1
n1+1 ∈ (x1i−1, x

1
i ), Y

1
n1+1 ∈ (y1l−1, y

1
l ))

=

n1+1∑
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n1+1∑
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P
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n1+1 + (1− α)Y 1
n1+1, (X

1
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1
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il

)
≤

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)P (T 0
n0+1 < t1i,l)

=

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

P
(
αX0

n0+1 + (1− α)Y 0
n0+1 < t1i,l, (X

0
n0+1, Y

0
n0+1) ∈ B0

jk

)
≤

n1+1∑
i=1

n1+1∑
l=1

h1il(θ̂1)

n0+1∑
j=1

n0+1∑
k=1

1{t0j−1,k−1 < t1i,l}h0jk(θ̂0)

For the upper probability, we want to make the probability for the event T 1
n1+1 > T 0

n0+1 as

large as possible. To this end, the first inequality follows by putting the probability h1il(θ̂1)
corresponding to the block B1

il to the right-top of the block, for all i, l = 1, . . . , n1 + 1. Thus
the corresponding combined weighted value is t1i,l = αx1i + (1 − α)y1l . The second inequality

follows by putting the probability h0jk(θ̂0) corresponding to the block B0
jk to the left-bottom

of the block, for all j, k = 1, . . . , n0 + 1, and the corresponding combined weighted value is
t0j−1,k−1 = αx0j−1 + (1 − α)y0k−1. This is indeed an upper probability as it is the minimum
possible upper bound for the probability of interest.
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