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Abstract. Many real-world problems of statistical inference involve
dependent bivariate data including survival analysis. This paper presents
new nonparametric methods for predictive inference for survival analysis
involving a future bivariate observation. The method combine between
bivariate Nonparametric Predictive Inference (NPI) for the marginals with
parametric copula to take dependence structure into account. The proposed
method is a discretized version of the parametric copula. The NPI fits the
marginal and very straight forward computations. Generally, NPI is a
frequentist approach which infer a future observation based on past data.
The proposed method resulting imprecision is robustness with regard to the
assumed parametric copula in the marginal for prediction. This is practical
for small data set. The suggestion is to use a basic parametric copula for
small data sets. We investigate and discuss the performance of these
methods by presenting results from simulation studies. The method is
further illustrated via application in survival analysis using data sets from
the literature.

1 Introduction

Survival analysis is defined as a set of methods or tools for analysing data where the
variable is the time until the occurrence of an event of interest [1, 2, 3, 4]. For example,
time to be healed, time to death, length of stay in a hospital, time to marriage, time to
divorce, money paid by health insurance or viral load measurement.

In this study, we focus on time-to-event data such as onset of disease in medical and
time to failure of mechanical system in engineering. There are many methods use to
analysing the data such as proportional hazards and accelerated failure time models have
been developed. However, these methods are used when the assumption is independent [5,
6, 7]. For dependent assumption of observed failure time such as clustered survival data or
parallel events, those method are unsuitable whereby the dependent of the data are
unaccounted. For example, clustered survival data arise when event times belonging to the
same cluster are correlated. Consider diagnosis of hip fracture being healed in a dog from
[8]. In the study, the time to diagnosis is measured by two different imaging techniques.
The first technique is radiography (RX) and the second techniques is an ultrasound (US).
This resulting two clustered diagnosis times which should consider the dependence

* Corresponding author: noryanti@ump.edu.my

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 189, 03026 (2018)  https://doi.org/10.1051/matecconf/201818903026
MEAMT 2018



structure.
Therefore, in this paper, we introduce survival analysis data using Nonparametric

Predictive Inference (NPI) for the marginals with parametric copula to take dependence
into account. NPI is a frequentist statistical framework for inference on a future observation
based on past data observations [9]. The uncertainty in NPI is quantifies through
imprecision which only based on a few assumption. Basically, the imprecise probabilities is
a classic probability theory which allow for partial probability specification and useful if
applicable information is not enough and difficult to obtain. In this paper, we are focusing
on predictive inference involving a future bivariate observation for survival analysis data.

2 Methodology

2.1 Bivariate data

Let (Xi, Yi) be a bivariate random quantity where i = 1, . . . , n. Let Xn+1 and Yn+1 represent
the future observations of the random quantities X and Y , respectively and Xn+1 and Yn+1

represent the transformations of Xn+1 and Yn+1 as follows given in [10] and [11]:

          1 1 1 11 1
1 1, , , , , ,
1 1 1 1n n n ni i j j

i i j jX Y X x x Y y y
n n n n    

                    
  (1)

The transformation is from the real plane R2 into [0, 1]2, where i, j = 1, 2, ..., n + 1. The
method that follows is applied to the transformed data.

2.2 Copula

A Copula is a multivariate probability distribution for which the marginal probability
distribution of each variable is uniform. Copulas are used to describe the dependence
between random variables. By the well-known theorem by Sklar’s [12], every joint
cumulative distribution function F of continuous random quantities (X, Y ) can be written
as

F (x, y) = C(Fx(x), Fy (y)) (2)

for all (x, y) ∈ R2, where Fx(x) and Fy (y) are the continuous marginal distributions and C :
[0, 1] × [0, 1] → [0, 1] the unique copula associated to this joint distribution, F (x, y). So, a
copula is a joint cumulative distribution function whose arginal are uniformly distributed
on [0, 1] [12, 13].

By using the NPI marginal cumulative distribution functions, we have discretized
uniform marginal distributions on [0,1], which therefore fully correspond to copula [10, 11].
Therefore, the transformation shows that the arginal which we use NPI approach can be
easily combined with any parametric copulas to reflect the dependence structure.

2.3 Combine NPI with parametric copula

NPI on the arginal can be combinedwith the estimated parametric copula density, θ̂ as follows
[10],

  1 1
1 1, , ,
1 1 1 1ij C n n

i i j jh P X Y
n n n n

  

                  

   (3)

where i = 1, …, n and PC (·|θ̂) represents the copula-based probability with estimated density
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where i = 1, …, n and PC (·|θ̂) represents the copula-based probability with estimated density

θ̂. The values hij(·) are the main tools of our inferential method and the corresponding cdf,

   1 1
1 1

,
1 1

ji

ij C n n kl
k l

i jH P X Y h
n n

   
 

 
      


    (4)

As given in [10], equation hij (θ̂ ) can be considered to infer about an event E that
involves the next observation (Xn+1, Yn+1). Let E(Xn+1, Yn+1) denote the event of interest and
let   1 1,n nP E X Y  and   1 1,n nP E X Y  be the lower and upper probabilities, based on our
parametric method. We further define

   1 11 if ,
,

0 else
n nE X Y

E x y   


and  
 

,
max ,

ij
ij x y B
E E x y


 , so 1ijE  if there is at least one  , ijx y B for which  , 1E x y  ,

else 0ijE  . Then, we define  
 

,
min ,

ij
ij x y B
E E x y


 , so 1ijE  if  , 1E x y  for all  , ijx y B ,

else 0ijE  . As mentioned in [10], the blocks Bij = (xi−1, xi) (yj−1, yj), i, j = 1, . . . , n + 1 is
actually the result of transforming the observed data (xi, yi), i = 1, . . . , n, which divide R2 into
(n +1)2. This semi-parametric method presented above leads to the following lower and upper
probabilities for the event E(Xn+1, Yn+1) [10],

    1 1,n n ij
ij

P E X Y h   


(6)

    1 1,n n ij
ij

P E X Y h   


(7)

For example, we are interested in the event Dn+1 = Xn+1/Yn+1 > d where without loss of
generality, Y > 0. Then, the lower and upper probability for the event is

     
 

1
,

n ij
i j L

S d P D d h 


   


(8)
where L = {(i, j) : x(i−1)/y(j−1) > d}, and

     
 

1
,

n ij
i j U

S d P D d h 


   


where U = {(i, j) : x(i)/y(j) > d}. Basically, equation (8) and (9) are survival function
equations.

3 Results and discussions

3.1 Predictive performance

We performed a simulation study to obtain indications of the predictive performance of this
approach. Let  ,j j

i ix y be the jth simulated sample, i = 1, 2, . . . , n and j = 1, 2, . . . , N ,

and  ,j j
f fx y be the divisional simulated pair and the corresponding division is denoted by

j j j
f f fd x y , j = 1, 2, . . . , N. The first n pairs is used to build the proposed NPI with

parametric copula for each simulated sample. Then, the additional pair which consider as a
future observation is used to test the prediction performance of the proposed method. The
inverse of the lower and upper survival functions of Dn+1 in  S d and  S d , can be defined
as follows [10] for q∈ (0, 1),:

    1 infq d
d S q S d q


  

 (10)

(5)

(9)
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    1 infq d
d S q S d q


  

 (11)
The proposed method performs well, if the two following inequalities hold,

 1
1

1 N
j j
f q

j
p d d q

N 

  1 (12)

 2
1

1 N
j j
f q

j

p d d q
N 

  1 (13)

The data were simulated from a copula family and parametric method copula were used
in this simulation study;

Table 1. Simulated data from Clayton with estimated density copula, θ̂..

Based on the performance in table 1, we can see that all the values q∈ [p1, p2].

3.2 Example: survival analysis data

These data describe the lengths of time required for patients with headaches to achieve
relief, each patient receives a standard treatment and a new treatment on separate
occasions. The times are recorded to the nearest tenth of a minute [1]. Let (X, Y) denote the
bivariate variable (the time to relapse of the ith patient on the first treatment, the time to relapse
of the ith patient on the second treatment), and suppose that we are interested in the ratio of
these two values for the next observation, Dn+1 = Yn+1/Xn+1 > d where, without loss of
generality, X > 0.

For these data, we used bivariate Normal copula, C (θ̂) and the lower and upper
probabilities for the event are presented in fig.1.
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Fig. 1. Upper and Lower Probabilities Dn+1.

4 Conclusion
Generally, the main conclusion we draw from the prediction performance of this method is
performed well for small values of n, while for larger data sets a nonparametric copula can
be used in order to learn more about the dependence structure from the data. The
imprecision of the proposed method provides a sufficient robustness which consider to have
a good frequentist properties specifically for the predictive inferences. The results is
depending on the parametric copulas used, the random quantity and the percentiles studied.
The imprecision decreases for increasing sample size.
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