Contents

Data-Driven PID Tuning for Liquid Slosh-Free Motion Using Memory-Based SPSA Algorithm .. 197
Nik Mohd Zaitul Akmal Mustapha, Mohd Zaidi Mohd Tumari,
Mohd Helmi Suid, Raja Mohd Taufika Raja Ismail
and Mohd Ashraf Ahmad

Barnacles Mating Optimizer Algorithm for Optimization 211
Mohd Herwan Sulaiman, Zuriani Mustaffa, Mohd Mawardi Saari,
Hamdan Daniyal, Ahmad Johari Mohamad, Mohd Rizal Othman
and Mohd Rusllim Mohamed

Random Search in Energy Management Strategy (EMS) for Hybrid Electric Vehicles ... 219
Muhammad Syahmi Ghazali and Muhammad Ikram Mohd Rashid

Extended Bat Algorithm (EBA) as an Improved Searching Optimization Algorithm .. 229
Dwi Pebrianti, Nur Najmin Qasrina Ann, Luhur Bayuaji,
N. R. Hasma Abdullah, Zainah Md. Zain and Indra Riyanto

Performance Comparison of Perturbation Signals for Time-Varying Water Temperature Modeling Using NARX-Based BPSO 239
Najidah Hambali, Mohd Nasir Taib, Ahmad Ihsan Mohd Yassin
and Mohd Hezri Fazalul Rahiman

Adaptive Fuzzy-PID Controller for Quad-Rotor MAV with Mass Changes ... 257
Goh Ming Qian, Dwi Pebrianti, Luhur Bayuaji, Rosdiyana Samad,
Mahfuzah Mustafa and Mohammad Syafullah

Investigating State Covariance Properties During Finite Escape Time in H_\infty Filter SLAM .. 271
Hamzah Ahmad, Nur Aqilah Othman, Mawardi Saari
and Mohd Syakirin Ramli

Diagonalization of Covariance Matrix in Simultaneous Localization and Mapping of Mobile Robot 285
Maziatun Mohamad Mazlan, Nur Aqilah Othman and Hamzah Ahmad
Adaptive Fuzzy-PID Controller for Quad-rotor MAV with Mass Changes

Goh Ming Qian¹, Dwi Pebrianti¹,³, Luhur Bayuaji²,³, Rosdiyana Samad¹, Mahfuzah Mustafa¹ and Mohammad Syaflullah³
¹Faculty of Electrical & Electronics Engineering, University Malaysia Pahang, Campus Pekan, 26600 Pekan, Pahang.
²Faculty of Computer Science and Software Engineering, University Malaysia Pahang, Malaysia.
³Magister of Computer Science, University Budi Luhur, Indonesia.
gohmingqian@gmail.com / dwipebrianti@ump.edu.my

Abstract. Micro Aerial Vehicle (MAV) has become famous to be used in agricultural application such as for spraying operation, for watering plantation or spraying the pesticide, 2-D flow visualization image to measure the droplet distribution and so on. Due to the need to sustain food for all human population, there is need for development of effective spraying to increase the productivity. In crop spraying, the payload changes against time is the big challenge on the development of MAV. This is because the payload change problem could affect the altitude which is the position along z-axis of the MAV. In this research, a quad-rotor MAV is used as the platform. Then, an adaptive Fuzzy-PID controller for the altitude control by considering payload change is presented. The performance of altitude control by using adaptive Fuzzy-PID controller and PID controller are validated in this research study through simulation. The adaptive Fuzzy-PID controller is successfully designed for the changing of payload. The result shows the performance of adaptive Fuzzy-PID controller is better than PID controller on quad-rotor MAV control considering payload changes.

Keywords: Adaptive Fuzzy-PID controller, Quad-rotor MAV, Payload Change

1 Introduction

Recently, the viability of UAVs as a multipurpose research vehicle have been widely used in many practical applications such as military, rescue operation, photographing, payload carrier, agricultural and transportation [1]. The common types of UAVs are fixed-wing, rotary-wing UAV that includes helicopters and quad-rotor MAV [2]. Fixed-wing UAVs can fly at high speed and efficient in long distance travelling compared to rotary-wing UAVs. However, it requires a long runway take-off and landing [3]. The rotary-wing UAVs has advantages which are high maneuverability, vertical take-off and landing (VTOL) and hovering [4]. By comparing the maintenance cost and system design of rotary wing UAV, quad-rotor MAV has a simple design and low maintenance cost. Therefore, quad-rotor MAV as shown in Fig. 1 is chosen in this research because the size and safety is most practical for experimental testing.