Contents

Backstepping Control of Nonholonomic Car-like Mobile Robot in Chained Form ... 173
Norsuryani Zainal Abidin, Nurul Ain Mohamed, Zainah Md. Zain, Maziyah Mat Noh, Norhafizah Md. Zain and Dwi Pebrianti

Analysis of Mobile Robot Path Planning with Artificial Potential Fields ... 181
Hamzah Ahmad, Ahmad Nuur Fakhrullah Mohamad Pajen, Nur Aqilah Othman, Mohd Mawardi Saari and Mohd Syakirin Ramli

Data-Driven PID Tuning for Liquid Slosh-Free Motion Using Memory-Based SPSA Algorithm 197
Nik Mohd Zaitul Akmal Mustapha, Mohd Zaidi Mohd Tumari, Mohd Helmi Suid, Raja Mohd Taufika Raja Ismail and Mohd Ashraf Ahmad

Barnacles Mating Optimizer Algorithm for Optimization ... 211
Mohd Herwan Sulaiman, Zuriani Mustaffa, Mohd Mawardi Saari, Hamdan Duniyal, Ahmad Johari Mohamad, Mohd Rizal Othman and Mohd Ruslim Mohamed

Random Search in Energy Management Strategy (EMS) for Hybrid Electric Vehicles ... 219
Muhammad Syahmi Ghazali and Muhammad Ikram Mohd Rashid

Extended Bat Algorithm (EBA) as an Improved Searching Optimization Algorithm .. 229
Dwi Pebrianti, Nurainjina Qasima Ann, Luhur Bayuaji, N. R. Hasma Abdullah, Zainah Md. Zain and Indra Riyanto

Performance Comparison of Perturbation Signals for Time-Varying Water Temperature Modeling Using NARX-Based BPSO 239
Najidah Hamali, Mohd Nasir Taib, Ahmad Ihsan Mohd Yassin and Mohd Hizri Fazalul Rahim

Adaptive Fuzzy-PID Controller for Quad-Rotor MAV with Mass Changes .. 257
Goh Ming Qian, Dwi Pebrianti, Luhur Bayuaji, Rosdiyana Samad, Mahfuzah Mustafa and Mohammad Syarifullah
Backstepping Control of Nonholonomic Car-Like Mobile Robot in Chained Form

Nurul Ain Mohamed, Zainah Md. Zain*, Maziyah Mat Noh, Dwi PEBRIANTI

Robotics and Unmanned Research Group (RUS), Instrument & Control Engineering (ICE) Cluster, Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia. *zainah@ump.edu.my

Abstract. This project is attempts to stabilize an underactuated system based on the backstepping approach. The discontinuous time-invariant state feedback controller is designed for exponential stabilization of underactuated nonholonomic systems in chained form. System dynamic of the car-like robot with nonholonomic constraints were employed. The validity of the proposed approaches is tested through simulation on a car-like vehicle using Matlab software.

Keywords: Backstepping control, Underactuated system, Mobile robot

1 Introduction

The motion control of nonholonomic wheeled mobile robot (WMR) has received a great attention from researchers over the last few years. Most of the researches are focused on the fact that the WMR does not meet Brockett’s necessary condition for smooth feedback stabilization [1]. It is accepted that the larger the gap between the controllable and total degrees-of-freedom (DOF) of the WMR, the harder it is to control the robot [2]. The WMR cannot be stabilized to a point using the familiar smooth static-state feedback control laws due to this nonholonomic constraint.

The dynamic equations of a car-like vehicle mobile robot can be written in chained form as:

\[x_1 = u_1 \]
\[x_2 = u_2 \]
\[x_3 = x_2 u_1 \]
\[\vdots \]
\[x_n = x_{n-1} u_1 \]

(1)

where \(x = (x_1, x_2, \ldots, x_n)^T \in IR^n \) represents the state vector and \(u = (u_1, u_2)^T \in IR^2 \) represents the input vector.

Such a class of nonlinear systems cannot be stabilized via continuous based time-invariant system [1], which driven the search of other stabilizing controls for this