Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018
NUSYS'18

Editors: Md Zain, Z., Ahmad, H., Pebrianti, d., Mustafa, M., Abdullah, N.R.H., Samad, R., Mat Noh, M. (Eds.)

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
https://doi.org/10.1007/978-3-030-00979-3

Library of Congress Control Number: 2018955576

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Muhammad Muzakkir Ahmad Roslan, Herdawatie Abdul Kadir, Khalid Isa, Radzi Ambar, Mohd Rizal Arshad, Maziyah Mat Noh and Mohd Helmy Wahab

Development of an Autonomous Underwater Vehicle for Target Acquisition .. 65
Leong Wai Lunn Alexander, Khalid Isa, Herdawatie Abdul Kadir and Radzi Ambar

Robust Controller Design for Autonomous Underwater Glider Using Backstepping Super Twisting Sliding Mode Control Algorithm 79
Maziyah Mat Noh, M. R. Arshad, Rosmiwati Mohd-Mokhtar, Zainah Md Zain, Qudrat Khan and Herdawati Abdul Kadir

PSpHT-II: A Water Strider-Like Robot with Cylindrical Footpad ... 99
Vi Vi Gan, Addie Irawan, Niirmel Ranjanendran and Siti Noor Zuliana

An Accurate Characterization of Different Water Properties Using Resonant Method for Underwater Communication Activity 113
Salwa Awang Akbar, Ahmad Syahiman Mohd Shah, Ainul Sharizli Abdullah, Nurhafizah Abu Talip Yusof, Sabina Khatun, Syamimi Mardiah Shaharum and Mohamad Shaiful Abdul Karim

Statistical Relationship Between Multibeam Backscatter, Sediment Grain Size and Bottom Currents 121
Mohd Azhafiz Abdullah, Razak Zakariya and Rozaimi Che Hasan

Part II Control, Instrumentation and Artificial Intelligent Systems
Stabilization of Two-wheeled Wheelchair with Movable Payload Based Interval Type-2 Fuzzy Logic Controller 137
N. F. Jamin, N. M. A. Ghani, Z. Ibrahim, M. F. Masrom and N. A. A. Razali

Stabilization Control of a Two-Wheeled Triple Link Inverted Pendulum System with Disturbance Rejection 151
M. F. Masrom, N. M. Ghani, N. F. Jamin and N. A. A. Razali

Integration of PI-Anti-windup and Fuzzy Logic Control with External Derivative Solution for Leg’s Robot Angular Joint Precision 161
Wan Mohd Nafis Wan Lezaini, Addie Irawan and Ahmad Nor Kasruddin Nasir
PSpHT-II: A Water Strider-like robot with Cylindrical Footpad

Gan Vi Vi¹, Niirmel Ranjanendran, Siti Noor Zuliana and Addie Irawan²

¹,² Robotics and Unmanned System (RUS) group,
Faculty of Electrical & Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan,
Pahang Malaysia.
vv95yeah@gmail.com¹, addieirawan@ump.edu.my²

Abstract. Water strider or Gerridae is very lightweight insect and has a long leg that able to stand and even jump on the surface of water surface tension. Mimicking this creature become one of the favorable areas in the bioinspired robotics field. A Portable Striding pH Tester (PSpHT) is one of the robotics systems that mimicking water strider with quadruped mechanism. The first PSpHT design had successfully operated with real-time pH monitoring, and long-haul remotely control. However, weakness in its footpad still existed when the rapid spatial motions were not making PSpHT faster enough on the water surface. Therefore this paper presents the improvement progress on PSpHT and introducing its second version named PSpHT-II. In this progress, a new footpad with light cylindrical shape is proposed by considering the water surface tension. The polypropylene-based footpad hold with light aluminum alloy as a link of the spatial leg and the flat plate was added as the paddler on each side of the footpad as water surface breaker. The leg design is recalculating and fabricated regarding the Archimedes principle and surface tension theory by considering the balance forces between the air and water. According to the calculations and buoyed test, the proposed cylindrical footpad is less submerged compares to the previous footpads designed. On the other hand, the proposed spatial motion was simulated for verification. As for validation, PSpHT-II was validated by running the system on the lakeside of Universiti Malaysia Pahang, Pekan, Pahang Campus. The experiment shows the additional paddlers help PSpHT-II striding faster and stable although with a mild and windy situation.

Keywords: Water strider, cylindrical footpad, spatial striding gait pattern.

1 Introduction

Water strider characteristics have gained more attention and attracted among robots especially for those who focus on bio-inspired arthropods robot, to develop a bionic water strider systems or at least mimicking its biological behaviors [1–4]. Water Strider, or Gerridae, is an insect that able to stand, walk and even jump on the surface of water such as rivers, ponds and open seawater with weight 10 dynes and length at about