Synergistic combination of electronic and electrical properties of SnO_2 and TiO_2 in a single SnO_2 -TiO₂ composite nanofiber for dye-sensitized solar cells

Zinab H. Bakr^{a, b}, Qamar Wali^{a, c}, Jamil Ismail^a, Naveen Kumar Elumalai^d, Ashraf Uddin^d, Rajan Jose^{a, *}

^a Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang, 26300, Kuantan, Malaysia

^b Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt

^c Materials Research Laboratory, Department of Physics, University of Peshawar, Peshawar, 25120, Pakistan

^d School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia

ABSTRACT

Tin dioxide (SnO₂) and titanium dioxide (TiO₂) are popular metal oxide semiconductors; they are explored for many applications because of their unique properties. This paper details that electronic and electrical properties of SnO₂ and TiO₂ can be synergistically combined in an one-dimensional nano-structure, such as electrospun nanofibers. The resulting composite nanofibers (CNFs) showed beneficial properties when used as a photoanode in dye-sensitized solar cells (DSSCs). In particular, the CNFs showed higher conduction band energy than SnO₂ and higher electrical conductivity than TiO₂. The SnO₂-TiO₂ CNFs are synthesized by electrospinning a polymeric solution containing equimolar concen-tration of tin chloride and titanium alkoxide precursors and subsequent annealing. The composite for-mation is demonstrated by X-ray diffraction and energy dispersive X-ray measurements and morphology by scanning electron microscopy. Synergy in electronic and electrical properties are demonstrated by cyclic voltammetry, absorption spectroscopy, and electrochemical impedance spectroscopy. Dye-sensitized solar cells fabricated using the CNFs as photoanode showed higher open circuit voltage and short circuit current density than those achieved using pure SnO₂ and pure TiO₂, respectively.

Keywords: Renewable energy, Energy conversion materials Photovoltaics, Hybrid nanofibers Electrospinning