Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil

VekesBalasundram^a; Norazanalbrahim^a; Rafiziana Md.Kasmani^a; RuzinahIsha^b; Mohd. Kamaruddin Abd.Hamid^c; HasrinahHasbullah^c; Roshafima RasitAli^d

^a Clean and Efficient Energy Research Group, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia

- ^b Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
- ^c Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
 - ^d Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

ABSTRACT

The main objective of the current work is to investigate the influence of catalyst to biomass ratio (by weight%) on the catalytic upgrading of sugarcane bagasse derived pyrolysis vapours over cerium (Ce) loaded Hydrogen exchanged Zeolite Socony Mobil-5 (HZSM-5) catalyst via insitu fixed bed reactor. The temperature of pyrolysis was kept at 500 °C for all investigated samples. The HZSM-5 catalyst was used as a support with 1 wt% of Ce as promoter loaded via incipient wetness impregnation method. The biomass sample was fixed at 2 g, while the catalyst mass loading was loaded according to the catalyst to biomass ratio which are 0.5:1.0, 1.0:1.0, 1.5:1.0, and 2.0:1.0. For comparison, the non-catalytic and biomass catalytic over HZSM-5 catalyst was also pyrolyzed at the same operating conditions. The results show that the yields of pyrolysis oil and coke were significantly influenced by the use of Ce/HZSM-5 catalyst at various catalyst to biomass ratio than the catalytic pyrolysis over HZSM-5, in which generate higher pyrolysis oil yield (58.0–68.0 wt%) and lower coke yield (2.9–4.1%). The increasing loading of mass in Ce/HZSM-5 catalyst has additional effect with respect to C₆–C₈ hydrocarbon contents in pyrolysis oil than the catalytic samples over the HZSM-5 catalyst. Among the tested catalyst to biomass ratio, the catalyst to biomass ratio of 1.5:1 has demonstrated to be the potential candidates in the catalytic upgrading of sugarcane bagasse derived oxygenated pyrolysis vapours into higher content of C_6 - C_8 hydrocarbons (2.45%) in pyrolysis oil with lower coke yield (3.2%) over Ce/HZSM-5 catalyst. The bi-functional Ce/HZSM-5 catalyst was more effective in suppressing the coke formation in comparison to HZSM-5 catalyst at all investigated catalyst to biomass ratios and this was attributed to the synergistic effect of Ce on HZSM-5 support.

KEYWORDS:

Sugarcane bagasse; HZSM-5 zeolite; Cerium; Oxygenates; Hydrocarbons