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Abstract

Product reviews are the individual’s opinions, judgement or belief about a certain product or

service provided by certain companies. Such reviews serve as guides for these companies

to plan and monitor their business ventures in terms of increasing productivity or enhancing

their product/service qualities. Product reviews can also increase business profits by con-

vincing future customers about the products which they have interest in. In the mobile ap-

plication marketplace such as Google Playstore, reviews and star ratings are used as

indicators of the application quality. However, among all these reviews, hereby also known

as opinions, spams also exist, to disrupt the online business balance. Previous studies used

the time series and neural network approach (which require a lot of computational power) to

detect these opinion spams. However, the detection performance can be restricted in terms

of accuracy because the approach focusses on basic, discrete and document level features

only thereby, projecting little statistical relationships. Aiming to improve the detection of opin-

ion spams in mobile application marketplace, this study proposes using statistical based

features that are modelled through the supervised boosting approach such as the Extreme

Gradient Boost (XGBoost) and the Generalized Boosted Regression Model (GBM) to evalu-

ate two multilingual datasets (i.e. English and Malay language). From the evaluation done, it

was found that the XGBoost is most suitable for detecting opinion spams in the English data-

set while the GBM Gaussian is most suitable for the Malay dataset. The comparative analy-

sis also indicates that the implementation of the proposed statistical based features had

achieved a detection accuracy rate of 87.43 per cent on the English dataset and 86.13 per

cent on the Malay dataset.

Introduction

With technology advancement, the number of people using mobile applications are increasing

throughout the world, regardless of the platforms. This increase in mobile use also increases

the development of mobile application marketplaces [1]. As is understood, every mobile plat-

form operating system has its own mobile application marketplace for instance, Google Plays-

tore for Android and Apple Appstore for iOS. All these mobile application marketplaces host
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millions of “free” and “paid” mobile applications, comprising all sorts of categories and lan-

guages. The number of applications inside the mobile application marketplaces have exponen-

tially increased between 2009 until 2017 and currently, it carries a record of 2.8 million

available applications [2]. These applications get downloads every day by mobile phone users

for various usage. There are free applications and there are paid applications. Before purchas-

ing their desired applications, users sometimes like to review the feedback of previous custom-

ers to help them make decisions before clicking on the “Purchase” button. Thus, it can be

deduced that the feedback and opinions drawn from previous users can contribute signifi-

cantly to the customers’ decision to make or not make the purchase [3], particularly when high

cost applications are involved.

Unlike fact-based decision making which uses facts to arrive at a decision, opinion-based deci-

sion making uses others’ opinions or judgements to make selections between the alternatives pro-

vided. Often, the opinion of others is considered more highly than the consideration given to the

fact of the alternatives [4]. Although there are hundreds of legitimate opinions (i.e. negative or

positive) available, some of them are fake, called spam opinions and they exist to confuse the

users’ decision. In the case of mobile applications, developers and marketplace providers are con-

stantly challenged by the presence of opinion spams which disrupt their business [5]. Moreover,

the presence of fake opinions can be harmful to businesses and result in profit losses [6, 7].

This phenomenon raises concerns in the opinion mining domain whose job it is to detect

and filter any review spams [8]. Some of the early approaches used in detecting opinion spams

were based on manual judgements but this has become outdated because manual judgements

are unreliable [9]. The situation has become more dangerous and unpredictable as more and

more opinion spams seem to be emerging, making comments about the respective mobile

applications. Consequently, it becomes really difficult to differentiate between legitimate and

fake opinions and this has triggered a new trend of opinion mining which comes with senti-

ment analysis using Natural Language Processing (NLP) [10–12] which is able to detect opin-

ion spams automatically.

Prior to that, researchers such as Jindal and Liu [13] implemented a machine learning

approach by adopting the logistic regression to detect opinion spams, so did Li, Ott [14], Lin,

Zhu [15] and Ren and Ji [16] who likewise, used supervised machine learning to detect opinion

spams. However, earlier studies by Ren, Ji [17] and Li, Chen [18] implemented a hybrid

approach that combined supervised and semi-supervised machine learning to detect opinion

spams. Despite this being so, there were several limitations to the machine learning approach,

for example, using too many features, providing less accurate outcomes, poor flexibility and

high consumption of computational time.

Aiming to overcome such limitations, this study proposes using a model that contains sta-

tistical based features to detect opinion spams noted in language datasets. The model was

developed and then evaluated through the supervised boosting approach which includes the

XGBoost, GBM Adaboost, GBM Gaussian, GBM Poisson and GBM Bernoulli. The aim was to

see if they are efficient in detecting opinion spams noted in multilingual datasets (i.e., English

and Malay). For the purpose of this study, statistical based features taken from the review con-

tents as well as some newly recommended statistical based features were then implemented

into the dataset to facilitate analysis. It was deduced that this combination in approach is able

to produce multiple predictive models that enhance the accuracy in detection. Accordingly,

the contributions of this study are as follows:

a. Yelp’s English review datasets extracted from Mukherjee, Venkataraman [19] was used as

the public dataset in combination with the private Malay review dataset extracted from

Google Playstore.
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b. Focusing only on statistical-based features, this study adopted some features from previous

works and added some new features to be used in the model.

c. This study focusses on the boosting approach by using different boosting approaches (i.e.,

XGBoost, GBM Adaboost, GBM Gaussian, GBM Poisson, GBM Bernoulli) to detect the

opinion spams.

d. Empirical evidence was used to measure the machine learning performance of the detection

model.

e. A comparative evaluation of the current and newly proposed features was made through

the XGBoost to detect the opinion spams of both the public (i.e., English) and private (i.e,

Malay) datasets.

The remaining part of this paper is structured as follows: Section 2 presents the related and

previous works on opinion spam detection and the boosting approaches. Section 3 discusses

data collection, data processing, features generation and selection. Section 4 presents the

results and the evaluation of the private dataset along with a comparative analysis of the newly

proposed features on the public and private datasets. Section 5 concludes the work. Section 6

explains the limitations and the recommendation for future works.

Related works

Reviews or opinions regarding user feedback and user satisfaction about certain product con-

tents and contexts are often used by consumers to assess a particular product/service. They can

be helpful in assisting consumers with making decisions about their purchase. Product reviews

or consumer opinions are used extensively in businesses as a guide for future customers. In the

case of mobile applications, reviews made by other users can also be beneficial. Consumer

reviews about mobile application marketplaces such as Google Playstore, especially when cou-

pled by star ratings, can serve as indicators depicting the application’s quality for other users.

Likewise, manufacturers or producers offering such applications can use these reviews to

upgrade or further enhance their products or services. Although reviews may be an advantage

to both the users and producers, some reviews come across as opinion spams. Their existence

is unwelcomed because they can offset the balance of online businesses and this can be detri-

mental to business profits and losses. To address this issue, studies [20, 21] have introduced a

few ways of identifying these opinion spams.

The advancement of technology had led to the development of online businesses and so they

have also become part of the landscape on mobile applications. In today’s world, mobile users

are able to do transactions over their mobile phones and among the facilities provided is the

application that allows users or producers to post reviews. However, as is common with all activi-

ties that human beings create, some of these reviews are opinion spams which are fictitious opin-

ions given by fake users. Ott, Choi [9] focused on fictitious opinions by looking at crowdsourced

fake reviews data. They used n-grams based classifiers to detect these spams. This interest was

further extended by Mukherjee, Venkataraman [19] who also studied fictitious reviews by com-

paring the behavioural features of opinion spams with real-life Yelp reviews dataset. They used

the Support Vector Machine (SVM) for their detection. Their study showed that the use of beha-

vioural features enhanced the accuracy of their comparisons when compared to just using the n-

gram based approach. Nonetheless, they tested their approach by using generated datasets (i.e.

fictitious opinions) which were unable to portray spam detection in real-life reviews.

In an attempt to address this limitation and to portray a real-life review, a ranking-based

approach was introduced by Fei, Mukherjee [22]. They explored the reviews burstiness in
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detecting opinion spammers. They adopted the Loopy Belief Propagation (LBP) and Markov

Random Field (MRF) approach to study their data. Clearly, their study aimed to differentiate

spammers and legitimate users. Likewise, Akoglu, Chandy [23] also used the ranking-based

approach to study spam reviews and they proposed a framework called the FraudEagle which

explores the network and graph relationships of the reviews. This was done by using an itera-

tive propagation-based approach for the classifications. It was realised that the FraudEagle suc-

cessfully detected fraud-bots on an online review website. In a separate study, SPEAGLE was

introduced by Rayana and Akoglu [24] which uses information gathered from the review

metadata such as texts, timestamps, ratings and network information of the reviews to detect

spammers. Thus far, few studies have attempted to detect opinion spams by looking at lan-

guage specific reviews such as English, Malay, Chinese or other foreign languages.

To date, there is a Chinese language review site called DianPing which is currently available

for users to access the reviews of products and services. It is also gaining popularity among cus-

tomers who use it to check for local business reviews. It appears that opinion spams are also

common in this review site but it has been a challenge for reviewers and producers alike, to

detect these opinion spams. This is because there is no state-of-the-art approach to enable

them to perform this assessment. In an attempt to focus on opinion spams in a non-English

platform, Xu, Zhang [25] proposed two novel methods: the K-Nearest Neighbor (KNN) and

the general graph-based approach as a methodology. Their study focused on detecting collu-

sive spammers in a Chinese review website. Their results showed that the behaviour of the

reviewers also contributed in detecting opinion spams. Focusing on the same area of research,

Li, Chen [18] introduced the method called Positive-Unlabeled (PU) to detect fake opinions.

Here, reviews were collected from the popular Chinese review website, Dianping [26] and the

researchers used the supervised learning approach to detect the fake and unknown reviews.

While fake reviews are fictitious, unknown reviews could be fake or genuine. To be on the safe

side, the researchers decided to treat the unknown reviews as an unlabelled dataset [27]. Con-

sequently, this approach became known as the PU learning approach. Another study was

extended from this by Ren, Ji [17] who proposed using a novel semi-supervised model called

the mixing population and the individual property technique which applied to the PU learning

(MPIPUL) approach. It was apparent that the PU learning worked well in balanced datasets

and thus far, it has not been tested on imbalanced datasets.

Since existing approaches for opinion spam detection suffer from imbalanced datasets, it is

most likely that the outcome gathered would be less reliable. Thus Heydari, Tavakoli [28]

introduced an effective spam review detection approach that uses deviation of review rating,

activeness of the reviewers and content-based information by using time series. This method,

however, suffers from expensive computations processing time. In addition, these approaches

are less efficient in interpreting the semantic meanings and information that are contained

inside the review texts. Ren and Ji [16] thus proposed using the neural network model which

combines the convolutional neural network (CNN) and the recurrent neural network (RNN)

together in order to learn about the continuous document level representations of the reviews.

Their study showed that the neural model has a better generalisation ability as compared to

the discrete models.

Spammer detection involves detecting the users’ accounts or profiles that posted the spam

contents for malicious purposes. Some detection techniques have used n-gram, some have

used linguistics and pattern-based features but a highly-trained spammer able to avoid detec-

tion by carefully craft their reviews to make it look genuine. Hence Wang, Xie [29] proposed

the idea of using heterogeneous graphs to find and correlate the relationship that is present

between the reviewers and the reviews. This approach does not use any text information taken

from the reviews and it complements the previous approach thereby, increasing the chance of
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identifying opinion spammers. The graph-based method was also used by Xu, Zhang [25] in

their work. Meanwhile, Ye and Akoglu [30] proposed a two-step method to detect opinion

spammer’s groups and products by focussing on network footprints. This technique contains

two major modules which are Network Footprint Score (NFS) and GroupStrainer. The experi-

ments found that their approach outperformed existing methods that had studied Amazon

and iTunes datasets. This approach also gave a high accuracy rate of the spam detection. Even

though there are numerous opinion spams and spammer detection techniques, there are still

several limitations in terms of complexity, computational costs and number of features.

Recently, the neural network model has been widely used to detect opinion spams [16, 31].

However, it is known to contain high model complexity due to the high level of details of the

neural network. The higher the level of model complexity is, the higher the computational cost of

the neural network models [32] and this increases the amount of resources that need to be used

for the model adoption. In addition, Heydari, Tavakoli [28] proposed a time series approach to

detect opinion spams but it was noted that the method suffered from a high computational prob-

lem during the scoring phase. These issues thus restrict the performance of the approaches used

for detecting opinion spams as only suspicious intervals are being analysed. In that regard, an

additional approach is needed to improve the accuracy of detecting opinion spams.

There are numerous types of classifiers ranging from tree-based, regression, boosting and

ensemble to the sophisticated deep neural network architecture. Boosting approaches are cur-

rently on the rise among researchers with other popular classifiers being used for solving the

classification and regression problems.

Boosting

Boosting algorithm was initially introduced by Schapire [33] and it portrayed the idea of con-

verting weak learning algorithms into an algorithm with high accuracy. The work was followed

up by Friedman, Hastie [34] and Friedman [35] who then made boosting popular by utilising

it as an approach for the functional approximation of the logistic regression model. This reli-

able approach for solving many regression and classification problems is known as the gradi-

ent boosting machine. A minor modification was made later by Friedman [36] who adopted

the fitting of random subsamples of training sets without replacements. This modification is

known as stochastic gradient boosting and it was inspired by the bootstrap aggregating (bag-

ging) method noted in Breiman [37]. The residuals in the approach were based on the minimi-

sation of the loss function gradient and the stochastic gradient descent in regression. Boosting

is popular for its speed in building models and its robustness for prediction. Various boosting

systems are available for use in various programming and scripting languages. Table 1 shows

the comparison of major boosting systems based on their features.

It can be seen that the Generalised Boosted Regression Model (GBM) was applied in

Table 1 as a boosted regression classifier package in the R statistical software [39]. The GBM

package used the approach proposed by Friedman [35] with some modifications made on the

Table 1. Comparison of major boosting systems [38].

System Exact greedy Approximate global Approximate Local Out-of-core Sparsity aware Parallel

XGBoost Yes Yes Yes Yes Yes Yes

R GBM Yes No No No Partially No

pGBRT No No Yes No No Yes

Spark MLLib No Yes No No Partially No

Scikit-learn Yes No No No No No

H20 No Yes No No Partially Yes

https://doi.org/10.1371/journal.pone.0198884.t001

Detecting opinion spams through supervised boosting approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0198884 June 11, 2018 5 / 23

https://doi.org/10.1371/journal.pone.0198884.t001
https://doi.org/10.1371/journal.pone.0198884


implementation. This external package implements the AdaBoost’s exponential loss function

approach that was proposed by Freund and Schapire [40] who combined it with the gradient

descent algorithm developed by Friedman [35]. The GBM package has various implementa-

tions of distributions including Gaussian, AdaBoost, Bernoulli and Poisson. Every distribution

has its own class and method in calculating the initial value, the associated deviance, the gradi-

ent and the constants for predicting the terminal node. The distributions used in this study are

shown in Fig 1.

The Extreme Gradient Boosting (XGBoost) is an end-to-end gradient tree boosting system

that is scalable and fast in terms of performance [38]. Tree boosting is known for delivering

good results in a classification problem [41]. The XGBoost is known for winning various Kag-

gle competitions and for outperforming other types of classifiers. Only some ensemble classifi-

ers are able to outperform a nicely tuned XGBoost classifier [42]. The essence of the XGBoost

lies in the heart of the system. Panda, Herbach [43], Tyree, Weinberger [44] and Ye, Chow

[45] initially explored the functionality and effectiveness of a parallel tree boosting system. On

top of that, Chen and Guestrin [38] introduced a novel sparsity-aware algorithm for the paral-

lel tree boosting that treats non-presence as a missing value as well as learning the suitable

approach to handle the missing values. They then proposed a theoretically justified weighted

quantile sketch for an efficient calculation along with a smart cache-aware block structure for

out-of-the-core tree learning. Fig 2 shows the novel sparsity-aware split finding algorithm.

Fig 1. Different flavors of GBM distributions.

https://doi.org/10.1371/journal.pone.0198884.g001
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Boosting is widely used in various domains to solve classification and regression problems.

Persson, Bacher [46] used gradient boosted regression trees to predict the solar power genera-

tion on multiple sites. It was found to outperform the existing autoregressive models. Further

to that, gradient boosting was also used by Johnson, Ianiuk [47] to predict waste generations

across 232 different locations in New York city. The model accurately forecasted the weekly

municipal solid waste (MSW) with an average R2 scores of more than 0.88. Pierdzioch, Risse

[48] implemented the boosting approach in forecasting the volatility of gold price fluctuations.

Similarly, Zięba, Tomczak [49] implemented boosting in the prediction of bankruptcy. The

boosting approach has successfully increased the quality of the prediction as compared to

other existing techniques. This shows that boosting is increasingly used for solving various

classification and regression problems.

Fig 2. Novel sparsity-aware split finding algorithm [38].

https://doi.org/10.1371/journal.pone.0198884.g002
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This study adopts the boosting approach by using the XGBoost and GBM as the boosting

system which is then applied to the domain of opinion spam detection on multilingual data-

sets. This study also introduces new statistical features to increase the performance of the

model in detecting opinion spams in Malay and English language datasets.

Methodology

Aiming to detect opinion spams in mobile application marketplaces of multilingual datasets

(i.e., English and Malay), the statistical based features were proposed and then modelled with

supervised boosting approaches such as the Extreme Gradient Boost (XGBoost and General-

ized Boosted Regression Model (GBM). Fig 3 illustrates the research methodology workflow

which is divided into 4 phases: a) data collection, b) data processing, c) data analysis and d)

data classification.

Phase 1 (data collection)

There are two (2) datasets involved: a) public hotel dataset downloaded from Mukherjee, Ven-

kataraman [19] on 16th February 2017 and b) private dataset collected from Google Playstore.

The former contains English opinions gathered from the Yelp website (i.e. a commercial

review website that hosts reviews for numerous venues such as hotels and restaurants). Since

Yelp has its own filtering algorithm to filter spam opinions, it is very interesting to use Yelp’s

opinions dataset for the comparative evaluation. The availability of the public dataset for

English eases the work on opinion spam detection whereas there is a lack of public dataset for

the latter. Opinion spam detection in the Malay language is hard to come by.

Fig 3. Research methodology workflow.

https://doi.org/10.1371/journal.pone.0198884.g003
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Due to the inadequate Malay language public dataset, Google Playstore was accessed on 4th

December 2016 by using specific criteria as summarised in Table 2 for the private dataset col-

lection. Random selection of application in Google Playstore was applied and the collection

process focussed on applications from Malaysia only. Using a custom scripting, the collection

process collected 500 applications and they varied in categories ranging from entertainment,

education, games, sports to travels. Using a customised Python HTTP API script, the process

of extracting the opinion took 11 hours and a total of 44197 opinions were collected during the

process. The collected opinions were then stored in the HTML format. Since there is a lack of

published analysis on Malay opinion spam detection, it is worth noting that the current Malay

spam opinions dataset are significant for research, especially in the area of opinion spam

detection.

Phase 2 (data processing)

Three main processes are involved at this phase: a) data pre-processing and cleaning, b) lan-

guage filtration and c) labelling. Upon data being collected, the pre-processing was conducted.

The cleaning techniques engaged at this phase are important for clearing the unwanted infor-

mation and other residues from the raw data. In this study, data processing only involved the

private dataset because the public dataset was already well processed.

While collecting the reviews and opinions, it was noted that the HTTP POST requested for

replies with a raw HTML response. All these raw responses needed to be pre-processed for

them to become meaningful data. Every request taken from the opinion extracting session

contributed to one HTML raw file which contained a lot of unnecessary information and syn-

taxes. A snippet of the response is shown in Fig 4.

Fig 4 highlights the important information extracted from the data which are in bold. The

pre-processing phase used Python to iteratively extract the desired information from the raw

data file based on the important HTML class such as ‘review-body’ and ‘aria-label’ for every

review’s HTML div. This pre-processing led to each opinion having its own Javascript Object

Notation (JSON) entry. All opinions for a single application were stored in a single JSON file.

These files were saved into the local storage for precaution. All the texts were encoded in the

UTF-8 for standardisation. Each application has its own JSON file where every entry would

store the information, as displayed in Table 3. After saving the data to the local storage, the

data then proceed to the cleaning process.

As mentioned earlier, since this study has collected textual applications reviews, cleaning

the data was essential to make the review readable and easy to process. This study used Python

code and regular expressions (regex), a cleaning mechanism that removes all the punctuations

Table 2. Pre-processed elements from raw data.

Element Description

url URL to the app’s playstore page.

appId App id of the respective app.

title Name of the app.

summary Summary description of the app.

developer Content type of the request

icon URL to the app’s icon.

score Average rating of the app

price App’s price

free True/False indicator if the app is free or paid.

https://doi.org/10.1371/journal.pone.0198884.t002
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that were present on the opinions body and their title. Besides handling punctuations, the pro-

cess also replaces all missing values in every element of the reviews so as to become NA.

Language filtration. Even though this study explicitly defines the parameter for language

to be extracted, Google Playstore often mislabelled the application opinions. The reviews

extracted from the marketplace were a combination of English, Malay and Indonesian lan-

guages. Since the focus of this study was on the Malay opinions, appropriate steps needed to be

taken to filter unwanted opinions from the collected data. The process requires a 2-step lan-

guage filtration mechanism that allows filtering to be done on the English and Indonesian lan-

guage. Fig 5 depicts the flow of the filtration process.

The filtration process distinguishes the reviews with the correct language through the fol-

lowing steps:

a. The review was split into word tokens for comparison.

b. A comparison of word tokens in the reviews was performed through pattern-matching

detection based on 1028703 English words dictionary.

c. A counter calculated the number of English words that matched the respective review.

d. If the number of English words matching the counter is equal to a number of words in the

review, the system would drop the reviews and move on with the next review.

e. Pattern matching is also used to detect any Indonesian words based on 529 mostly used

Indonesian words.

f. The Indonesian words counter kept track of the number of words matched.

Fig 4. Snippet of raw HTTP response data.

https://doi.org/10.1371/journal.pone.0198884.g004

Table 3. List of elements extracted from a RAW response file.

Element Description Value Translation (English)

appID App id of the app. com.outfit7.talkingpierrefree com.outfit7.talkingpierrefree

appPrice Price of the app 0.0 0.0

appScore Avg rating of the app. 4.2 4.2

appTitle Name of app. Talking Pierre the Parrot Talking Pierre the Parrot

revAuthor Reviewer’s name. Maya Liya Maya Liya

revDate Date of the review submitted. 14 Mei 2015 14th May 2015

revRating Rating given by the reviewer. 5.0 5.0

revTitle Title of review Best Best

revText The review body. game ni sangat best This game is so good

https://doi.org/10.1371/journal.pone.0198884.t003
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g. A threshold was implemented because some Malay opinions mixed the language with some

Indonesia language since both languages share some words in common.

h. If the number of Indonesian words matched was higher than half of the number of words,

the system drops the reviews and proceeds with the next review.

This two-step language filtration mechanism effectively filters out 38639 English reviews

and 106 Indonesian reviews from the total of 44197 reviews collected. This filtration process

took nearly 10 hours on a normal Core i7 Hewlett Packard laptop with 4GB of RAM. The filter

resulted in 5452 reviews left. The filtered data were then saved into a MariaDB database for

labeling in the next part.

Opinion labelling. The opinion labelling process aims to classify the collected opinions

into two categories: a) fake or b) normal. To accomplish this, a simple web framework (i.e.

Flask) was used to ease the labeling work. The labelling process was done manually using spe-

cific rules as tabulated in Table 4. These rules were based on the works of Sharma and Lin [50]

and Geetha, Singha [51] who studied the relationship between customer review sentiments

and review ratings. Their findings indicated that there was consistency between review rating

and sentiment polarity.

Apart from using the rules recommended by prior studies, as noted in Table 4, the mean-

ingfulness of the opinions was also considered. This is because some reviews may receive

acceptable review ratings and polarity but they were not giving opinions but spamming the

Fig 5. The flow of two-step language filtration process.

https://doi.org/10.1371/journal.pone.0198884.g005
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review section. In this regard, they were excluded from the opinion dataset. This process

resulted in 5000 opinions that consist of 4048 normal and 952 spam opinions to be selected

while 452 opinions were dropped. The normal and spam opinions acted as the ground truth

for the private dataset.

Phase 3 (data analysis)

This phase used some data analysis and exploration techniques for the labeled dataset. In the

context of this study, analysis of the dataset was done using some notable data analysis tech-

niques. Following this, statistical features were generated and extracted from the dataset to pre-

pare them for feature selection. The feature selection process used the XGBoost features to

rank the functions which select the best features that would contribute to the detection model.

Exploratory data analysis. An exploratory data analysis was performed on the data col-

lected to uncover any hidden correlations or connections. The exploratory data analysis was

done on the labeled dataset using RStudio. The distribution of the reviewers’ sentiment polar-

ity across the datasets showed that of the 5000 opinions selected, 3649 were positive, 550 were

neutral and 801 were negative opinions. This study has investigated an interesting distribution

by analysing the opinion spams that were in the neutral sentiment polarity category which

were from the private dataset, as shown in Table 5. Findings suggest that opinions which were

labeled spam and categorised as neutral, mostly consist of questions and unrelated statements.

In addition, some reviews also comprised random alphabets, words and sentences.

In the next phase, the distribution of the ratings was examined, across normal and spam

opinions, in the private dataset. This was done by creating a grouped bar chart to visualise the

distributions as shown in Fig 6. The classes were unevenly distributed across different review

Table 4. Rules for labeling reviews.

Review rating Review sentiment polarity Label

[0, 1, 2] Negative Normal

3 Negative Spam

[4, 5] Negative Spam

[0, 1, 2] Neutral Spam

3 Neutral Normal

[4, 5] Neutral Spam

[0, 1, 2] Positive Spam

3 Positive Spam

[4, 5] Positive Normal

https://doi.org/10.1371/journal.pone.0198884.t004

Table 5. Sample of spam reviews in neutral sentiment polarity category in private dataset.

Review author Review text Translation (English) Rating

Aku Ya cacing ni halal ke haram bro ☺ bro, is this worm halal or haram ☺ 5

Amirul Izzat hmmm hmmm 5

Nadi Sudin 2016 2016 5

Abu Zaid pakai internet ke are you using the internet 5

badri timalsena Wew Wew 1

NA xgdjgokzfbbinovgvkbjjcbjkdvxfp xgdjgokzfbbinovgvkbjjcbjkdvxfp 5

Ina Evaina Aku belom coba game ni I haven’t tried this game 5

Noriha Abf Ghani Ewr Ewr 5

Mawar Izuan hai mawar hey mawar 1

https://doi.org/10.1371/journal.pone.0198884.t005
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ratings as the highest number of spam reviews belonged to review ratings of 5 followed by a

rating of 1. This relationship was further investigated and results showed that most of the opin-

ion spammers chose a rating of 1 or 5. It was done to ease their process in the spamming opin-

ions for a certain application, whether it was to popularise or de-popularise the application.

Besides that, a review rating of 4 explains that spammers tried to avoid detection by choosing 4

as their preferred ratings because the rating of 5 was too obvious since they faked other ele-

ments of the reviews such as author’s name, review titles and review texts.

Features extraction and selection. At the phase of the features extraction and selection, a

total number of 26 features were extracted from the datasets, combination from previously

used features along with newly proposed features. However, the number of features actually

matters in building a good and reliable predictive model. Besides that, an extra number of fea-

tures may contribute in overfitting and increase the complexity of the predictive model [52].

This study performed feature selection method by doing a features importance ranking using

XGBoost. The variable importance function in XGBoost calculated the gain score of all the fea-

tures in the dataset along and ranked them based on their importance for making a decision.

The gain score of the variable importance was calculated based on how a feature is important

in making a branch of decision tree to be purer. Fig 7 shows the ranked features based on their

gain score from highest to lowest gain score.

Even though there are 26 features extracted, only some of it are available in the public data-

set. This study uses only the features available on both datasets. The top 10 features were

selected out of the 26 features to be the final set of features for use in this study. Table 6 shows

the list of features used in this experiment.

Phase 4 (data classification)

This phase discussed the model creation process as well as the type of classifiers used to build

the prediction model. In the context of this study, separate models were created for each data-

set (Malay and English). The final preparation of data was explained together with the tools

used for building the predictive model. The model was further evaluated before the results

were presented.

Boosting algorithm for classification in experiment environment. Predictive models

ranged from a simple linear regression approach to a complex neural network approach.

Fig 6. Distribution of spam and normal reviews across review ratings in private dataset.

https://doi.org/10.1371/journal.pone.0198884.g006
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Building predictive models require specific tools that support the classifier used. Many tools

were available for building the predictive model- from a Graphical User Interface (GUI) soft-

ware to a library, by the writing scripts. This study used R as the main language in building the

predictive model. Since features extraction and generation were done in the RStudio, the

resulted private dataset were placed in the form of the data frame. In R, the best way to manip-

ulate, explore and analyse is by converting any table-like document into a data frame. In the

context of this study, the datasets were exported into the .csv file for storage and for ease of use

in the future by other tools. The English dataset had a total of 2526 opinions taken from Yelp’s

hotel reviews [19]. It consisted of 2136 normal and 389 spam opinions. Meanwhile, the Malay

dataset had 5000 opinions which consisted of 4048 normal and 952 spam opinions. Both data-

sets include 11 columns including the class column. Each row in the dataset was a combination

of between numerical features and categorical features. The numerical features column was in

the format of double-precision floating-point while the categorical features were formatted

with one-hot encoding technique which was a technique used to replace a nominal or ordinal

categorical value of a column by encoding it with different numbers.

All the features in the dataset were then placed into their respective types. The class column

which represented the type of opinions was factorised as level 0 for spam and level 1 for nor-

mal. Factorisation separates the categorical features column from the numerical features

Fig 7. Features ranking based on variable importance gain scores.

https://doi.org/10.1371/journal.pone.0198884.g007

Table 6. List of existing and proposed features.

Label Features Category Gain Score References

F6 Average cosine similarity between review bodies. Numerical 0.12102 [15, 20]

F26 Sentiment polarity of review text Categorical 0.09480 [17, 53]

F4 Position of the review in the reviews of a product sorted by date (ascending). Numerical 0.07711 [20]

F5 Position of the review in the reviews of a product sorted by date (descending). Numerical 0.07237 [20]

F2 Length of review body. Numerical 0.05983 [20]

F3 Rating of review. Numerical 0.05547 [20]

F15 Automated Readability Index (ARI) of review body. Numerical 0.05102 [54]

F14 Standard deviation between average review ratings with current review rating. Numerical 0.08079 Proposed

F7 Average levenshtein distance between review bodies. Numerical 0.06223 Proposed

F13 Average number of letters per word in review body. Numerical 0.05044 Proposed

https://doi.org/10.1371/journal.pone.0198884.t006
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column in the data frame as shown in Fig 8. Before the datasets were fed into the machine

learning classifier, the order of the data was randomised so as to avoid any bias-related ele-

ments being considered when building the predictive model. The datasets were randomised

multiple times for conformity of randomness.

Machine learning approaches have been widely used in various domains and machine

learning approaches tend to focus on making predictions based on a certain target [55]. Boost-

ing is one of the many elements used in machine learning for the creation of a predictive

model. In this regard, the XGBoost and GBM package in R were applied for boosting the clas-

sifier. The XGBoost was implemented together with different distribution flavours of the GBM

and they include Adaboost, Gaussian, Bernoulli, and Poisson. All these boosting machine

learning classifiers utilised the data frame prepared in R. Consequently, the data frame was fed

into the different machine learning classifiers that utilised the boosting approach to build the

predictive models. With that in mind, the 70/30 percent splitting technique of data was applied

in terms of the training and testing set. For the training set, the current study randomly allo-

cated 70 per cent of data which were used to train the predictive model. Meanwhile, the

remaining 30 per cent of the data were treated as the testing set. They were used to test the

detection performance of the predictive model on previously unseen data. The data were ran-

domly sampled and evenly divided based on its class to avoid any imbalanced data distribu-

tion. This process was achieved by using a createDataPartition () function that was been

adopted from the caret package which was available as an external package in R. Accordingly,

the training set was used in building all the boosting predictive model. Meanwhile, the test set

comprised a hidden testing set; it was applied only once to evaluate the performance of the pre-

dictive model.

Results and evaluations

The proposed features were then evaluated to detect the opinion spams existing in the multi-

lingual datasets. This was accomplished by using supervised boosting approaches. Following

this, a comparison was performed by conducting experiments using different sets of features

based on the current statistical based features and the newly proposed features. The dataset of

the English and Malay reviews were used in this analysis. All the performance metrics used to

measure the performance of the predictive model are further discussed.

Experimental setup

The experiments performed in this study were done on a Mid 2012 Macbook Pro with a 2.5

GHz Intel Core i5 and a 16GB 1600 MHz DDR3 RAM. The operating system used was macOS

Sierra 10.12.4 which runs on a 250GB Samsung 850 Evo Solid State Drive (SSD). A choice was

made for the different systems of boosting algorithm to be applied as the comparison so as to

evaluate the performance of the predictive model in detecting opinion spams in multilingual

datasets. The performance of the newly proposed statistical based features was then evaluated

Fig 8. Snippet of the type of features in R data frame for the private and public datasets.

https://doi.org/10.1371/journal.pone.0198884.g008
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using the selected boosting approach. The performance of the predictive model was also evalu-

ated using the multiple performance metrics. Table 7 shows the performance metrics used in

the predictive model evaluation for this study.

Experimental evaluation and discussions

This study had aimed to detect opinion spams on multilingual datasets by using various super-

vised boosting approaches. As a comparative study, it evaluated the existing statistical features

of different supervised boosting approaches in multilingual datasets. The most suitable

approach was selected for the second comparative study. Table 8 shows the comparative evalu-

ation done with different boosting classifiers using existing features on the English and Malay

datasets.

In comparing the results acquired from the different boosting approaches for the English

dataset, it was found that the GBM Gaussian achieved the highest accuracy of 85.71 per cent as

compared to other approaches. Nonetheless, the recall percentage of the model had deter-

mined the true positive rate which showed the rate of accurately detecting the opinion spams.

It was also noted that the XGBoost achieved the highest sensitivity with the percentage of 29.31

per cent while the GBM Poisson dominated the evaluation results with the highest value of

false positive rate, specificity and precision which are 0 per cent, 100 per cent and 100 per cent

respectively. It had successfully classified all the normal opinions without a single false detec-

tion. This shows that the model produced by the GBM Poisson has a very high overfitting rate

Table 7. Performance metrics used in model evaluation.

Evaluation measure Descriptions

Confusion matrix Shows the information about the actual and predicted classifications.

Accuracy Calculates the percentage of correctly predicted instances either normal or

spam.

Sensitivity/ True positive rate (TPR/

Recall

Calculates the correctly predicted instances as spam.

False Positive Rate (FPR) Calculates the incorrectly predicted instances as spam.

Specificity/ True Negative Rate (TNR) Measures of correctly predicted instances as normal.

Precision Measures whether the prediction is precise or not.

F-measure Calculates the weighted harmonic mean of precision and recall.

https://doi.org/10.1371/journal.pone.0198884.t007

Table 8. Evaluation of different boosting classifiers using existing features on multilingual datasets.

Dataset Evaluation measure (%) XGBoost GBM AdaBoost GBM Gaussian GBM Bernoulli GBM Poisson

English Accuracy 85.45 85.19 85.71 84.92 85.45

Recall 29.31 12.93 21.55 16.37 5.17

FPR 4.37 1.72 2.19 2.66 0.00

Specificity 95.62 98.28 97.34 97.34 100.00

Precision 54.84 57.69 59.52 52.78 100.00

F-measure 38.20 21.12 31.65 25.00 9.83

Malay Accuracy 85.20 85.07 85.27 84.87 84.87

Recall 36.53 48.23 56.38 36.52 29.43

FPR 3.53 6.40 8.04 3.94 2.30

Specificity 96.47 93.60 91.95 96.06 97.70

Precision 70.55 63.55 61.87 68.21 74.77

F-measure 48.13 54.84 59.00 47.58 42.24

https://doi.org/10.1371/journal.pone.0198884.t008
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since the recall was 5.17 per cent which is the lowest among all the models. In terms of the f-

measure, the XGBoost had achieved the highest percentage of 38.20 per cent as compared to

other approaches. The f-measure showed the balance of the results in terms of precision and

recall. Since the dataset also contained unbalanced class, the high f-score showed that the

model was able to balance the detection of spams and normal opinions. The analysis also

showed that the XGBoost was the suitable boosting approach to be used for detecting opinion

spams in the English language reviews. However, the results of detecting opinion spams in

Malay were different.

The comparison of the different boosting approaches for the Malay dataset showed that the

GBM Gaussian had achieved the highest accuracy and recall percentage, which is 85.27 per

cent and 56.38 per cent, respectively. The recall percentage implies that the GBM Gaussian

works well in detecting the opinion spams by achieving the highest true positive rate. However,

in terms of the false positive rate, specificity and precision, the GBM Poisson consistently leads

the evaluation result of 2.30 per cent, 97.70 per cent and 74.77 per cent, respectively. These

results imply that the model was suffering from overfitting, which is the same case as the

English dataset. This outcome shows that the GBM Poisson models were more inclined to

learn and fit the noises into the datasets. In terms of the f-measure, the GBM Gaussian also

projected an evaluation rate of 59.00 per cent. This indicates the ability of the model to balance

the positive rate and the false positive rate. The results and analysis showed that the GBM

Gaussian is suitable for detecting opinion spams in the English language dataset.

Based on the detection of the English and Malay opinion spams, it can be deduced that the

implementation of a multilingual model had allowed the model to detect both the English and

Malay opinion spams. Further, it can also be deduced that the GBM Gaussian has the highest

accuracy rate with the second highest being recall and the last being precision scores, as seen

in the case of the English dataset. This suggests that the GBM Gaussian is comparable with the

XGBoost in creating a multilingual detection model. In looking at the Malay dataset, the GBM

Gaussian is also noted to be the most suitable classifier for detecting opinion spams. With

some tradeoffs between the detection performance of the GBM Gaussian and the XGBoost in

the English dataset combined with the advantage of the opinion spam detection in the Malay

dataset, it seems undeniable that the BM Gaussian is the most suitable classifier to be used for

training a multilingual detection model. Besides that, the existing set of statistical features was

also able to detect the opinion spams in multilingual datasets. It appears that implementing a

new set of statistical features increases the performance of the detection model.

This study had adopted several new statistical based features to detect opinion spams in

multilingual datasets. The newly proposed features were tested on the multilingual datasets

with the most suitable boosting approaches. According to the analysis as shown in Table 8, the

XGBoost appears to be suitable for the English language dataset while the GBM Gaussian is

suitable for the Malay language dataset. A further evaluation of the implementation of the

newly proposed features was also conducted using the aforementioned boosting approaches.

Table 9 shows the evaluation results of the existing set of statistical features and the newly pro-

posed features combined together. Table 10 shows the confusion matrix for all the English and

Malay models.

In evaluating the English dataset through the two models (i.e. English-A and English-B),

the proposed features appear to increase the accuracy by 1.98 per cent, moving from 85.45 per

cent to 87.43 per cent. The increment of the accuracy also reflects the percentage of the recall

scores which was 43.97 per cent, showing a 14.66 per cent increment, when compared to the

existing set of features. As seen in Table 10, the number of opinion spams correctly detected

had increased from 34 to 51, suggesting that it is the works of the proposed features. This out-

come is consistent with the aim of the study. In this regard, the English-B model suffered a
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marginal difference in terms of false positive rates and specificity when compared to the

English-A model. Nonetheless, the English-B model led the comparison in terms of precision

and f-measure, with a percentage of 62.96 per cent and 51.78 per cent, respectively. Fig 9 visua-

lizes the percentage of score difference between both English predictive models. It is deduced

that the proposed features had increased the f-measure by 13.58 per cent, which is very signifi-

cant. This shows that it had reduced the overfitting of the model when detecting opinion

spams and normal opinions for the English dataset.

The evaluation of the Malay dataset through the Malay-A and Malay-B models showed that

the proposed features had also increased the accuracy rate of the detection by 0.86 per cent.

The Malay-B model achieved 86.13 per cent detection accuracy with 57.45 per cent recall per-

centage. This implies that it is better and more precise in detecting opinion spams. The Malay-

B had actually increased in percentage in terms of specificity, precision and f-measure—by

0.83 per cent, 2.93 per cent and 1.9 per cent respectively. The false positive rate also reduced in

the Malay-B model due to the increment of the recall. The f-measure percentage showed that

the model was more balanced in detecting the opinion spams and the normal opinions includ-

ing the false positive and false negative opinions. This implies that the Malay-B model had

increased in performance as a result of the implementation of the proposed features. Fig 10

shows the percentage of score difference between both Malay predictive models.

This study had aimed to detect opinion spams by using supervised boosting approaches on

multilingual datasets. The analysis showed that the XGBoost is suitable as a boosting approach

for detecting opinion spams in the English language dataset while the GBM Gaussian is suit-

able for detecting the opinion spam in the Malay language dataset. In looking at the multilin-

gual models, it is deduced that the GBM Gaussian is suitable for detecting both the English

and Malay opinion spams. Results had also highlighted that the proposed features used in the

model of this study had increased the performance of the model in detecting opinion spams in

multilingual datasets. Thus, the aim of this study is fulfilled.

Table 10. Confusion matrix for all English and Malay models.

Model Predicted Actual

Fake Normal

English-A Fake 34 28

Normal 82 612

English-B Fake 51 30

Normal 65 610

Malay-A Fake 159 98

Normal 123 1120

Malay-B Fake 162 88

Normal 120 1130

https://doi.org/10.1371/journal.pone.0198884.t010

Table 9. Comparative evaluation with existing and proposed features on English and Malay datasets.

Evaluation measure (%) Without proposed features

(English-A)

With proposed features

(English-B)

Without proposed features

(Malay-A)

With proposed features

(Malay-B)

Accuracy 85.45 87.43 85.27 86.13

Recall 29.31 43.97 56.38 57.45

FPR 4.37 4.69 8.04 7.22

Specificity 95.62 95.31 91.95 92.78

Precision 54.84 62.96 61.87 64.80

F-measure 38.20 51.78 59.00 60.90

https://doi.org/10.1371/journal.pone.0198884.t009
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Conclusion

In this study, we proposed using supervised boosting approached that use statistical based fea-

tures to detect opinion spams in multilingual datasets. In the comparative evaluation of the

existing features using different boosting approaches, it was noted that the XGBoost performed

best in detecting opinion spams in the English dataset due to its higher recall percentage. In

terms of the Malay dataset, it was found that the GBM Gaussian outperforms other classifiers

as it was able to balance the detection of normal and spam opinions, with a higher F-measure

percentage. This study also performed a comparative evaluation of new statistical based

Fig 9. Percentage of score difference between English-A and English-B models.

https://doi.org/10.1371/journal.pone.0198884.g009

Fig 10. Percentage of score difference between Malay-A and Malay-B models.

https://doi.org/10.1371/journal.pone.0198884.g010
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features using supervised boosting approach on multilingual datasets. The new statistical

based features along with the XGBoost achieved a detection accuracy rate of 87.43 per cent on

English. Meanwhile, the detection accuracy achieved on the Malay dataset had increased to

86.13 per cent. This study shows that the proposed features had increased the effectiveness of

the model in detecting opinion spams on multilingual datasets. This study also encourages

more studies to use the boosting approaches to solve opinion spam detection problems.

Limitations and future works

In the earlier part of this paper, it was noted that there is a lack of public dataset to be used for

opinion spam detection of Malay language reviews. It is very important to have a gold standard

dataset so that they are accessible and can be used publicly by other researchers. Besides that,

there are few known works about opinion spam detection that specifically focussed on Malay

language reviews and websites. Consequently, it restrains the conduct of any other research

due to the lack of resources. Most studies have been focussing on analysing the works of opin-

ions written in the English language thus it is high time that studies address this scarcity.

Another recommendation is to expand on the works of opinion spam detection in the Malay

language by using another approach for example, by incorporating Natural Language Process-

ing into the model used. With this, other linguistic-based features can be generated and used

to enhance the performance of the detection model. As a matter of reality, the Malay language

is not a consistent language to be examined either because it consists of many types of accents

derived from the various dialects of speakers or that the Malay used in reviews may also con-

tain short forms and distinguished word structures. Based on this, it may be a good idea to

consider the necessity of knowing the language and the meanings of the use of words and sen-

tences by speakers so as to be able to understand the reviews written in Malay more precisely.

In addition to that, the use of temporal and spatial based features may also need to be consid-

ered since it was found to be very reliable in detecting the English opinion spams as evidenced

by Li, Chen [56]. Finally, it is hoped that collaboration between companies and organisations

can be prolonged so as to provide mobile users and application users with a livelier and filtered

set of data for future experiments.
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