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In this article the idea of Caputo time fractional derivatives is applied to MHD mixed convection Poiseuille flow
of nanofluids with graphene nanoparticles in a vertical channel. The applications of nanofluids in solar energy
are argued for various solar thermal systems. It is argued in the article that using nanofluids is an alternate
source to produce solar energy in thermal engineering and solar energy devices in industries. The problem is
modelled in terms of PDE’s with initial and boundary conditions and solved analytically via Laplace transform
method. The obtained solutions for velocity, temperature and concentration are expressed in terms of Wright’s
function. These solutions are significantly controlled by the variations of parameters including thermal Grashof
number, Solutal Grashof number and nanoparticles volume fraction. Expressions for skin-friction, Nusselt and
Sherwood numbers are also determined on left and right walls of the vertical channel with important numerical
results in tabular form. It is found that rate of heat transfer increases with increasing nanoparticles volume

Heat and mass transfer
Nusselt number

Solar energy

Exact solution

fraction and Caputo time fractional parameters.

Introduction

Mixed convection flow in a channel has gained much attention such
as in thermal and nuclear power engineering. Mixed convection to-
gether with pulsatile Poiseuille flow (PPF) or simply mixed convection
PPF is of great importance. In channel flow mixed convection arises due
to cooling/ heating the walls of the channel. Makinde and Mhone [1]
analyzed mixed convection flow with combined effect of a transverse
magnetic field and radiative heat transfer of optically thin fluid passing
through a channel filled with saturated porous medium and with heated
bounding walls. Salem et al. [2] depicted the influence of moving lid
direction on MHD mixed convection in a linearly heated cavity. They
concluded that in case of mixed convection, the direction of lid is more
effective than in case of forced convection. Salleh et al. [3] studied
numerically mixed convection flow of a solid sphere. Aaiza et al. [4]
studied mixed convection flow of nanofluid for different shapes of na-
noparticles in a channel. They found that Grashof number leads to an
increase in buoyancy force and hence fluid flow increases. Some other
fascinating references related to this area are [5-8] and the references
therein.

Scientists have made several attempts to improve the heat transfer
efficiency of the conventional base fluids since these fluids have poor
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heat transfer capability. Solids have higher thermal conductivities than
those of fluids thus, various slurries have been produced by suspending
solid particles in base fluids. Maxwell [9] introduced the idea of na-
nofluids for the enhancement of thermal conductivity. Choi [10] pro-
posed experimentally the enhancement of heat transfer rate by using
nano-sized particles. A vast range of research has been done on dis-
persing nanoparticles in base fluids [11]. Turkyilmazoglu and Pop [12]
investigated closed form solutions for heat and mass transfer of natural
convection for free convection flow of nanofluid containing
Cu, Ag, CuO, AL O; and TiO,. They found that TiO, has the least heat
transfer while Cu has the greatest heat transfer. Hayat et al. [13] de-
veloped convergent series solution for flow of Casson nanofluids due to
a stretching cylinder. They concluded that rate of heat transfer in-
creases for higher values of Brownian motion parameters. Sheikho-
leslami and Ellahi [14] examined electro-hydrodynamic nanofluid in an
enclosure with sinusoidal upper wall. They found that isotherms be-
come denser and heat transfer rate increases with strength of electric
field. Sheikholeslami et al. [15] considered Koo-Kleinstreuer-Li (KKL)
correlation to investigate flow of nanofluids. Some captivating refer-
ences are [16-18].

A vast range of research has been done in this area by the re-
searchers. Some are performing experimental studies; some are using
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computational work, while few studies have been conducted on ana-
lytical side. Halelfadel et al. [19] worked on the efficiency of carbon
nanotubes water based nanofluids as coolants. They investigated the
effect of low nanoparticles volume fraction (ranging from 0.0055% to
0.278%) on density, thermal conductivity and viscosity of nanofluids.
Magyari [20] presented a note on homogenous nanofluid models ap-
plied to convective heat transfer problems. They used Blasius and Sa-
kiadis forced convection heat transfer problems. Khan [21] studied
nanofluids with MoS, nanoparticles and found that blade/platelet
shapes have the highest heat transfer rate compared to cylinder and
brick shapes. The scarcity of fossil fuels induced the researchers to
apply a substitute. They found the need to improve the efficiency and
performance of solar thermal devices. A comprehensive work has been
done to utilize nanoparticles in solar energy applications. Solar col-
lectors are heat exchangers that absorb solar radiation and transfer heat
to a fluid passing through it. Tyagi et al. [22] found that the efficiency
of collector increases by adding nanoparticles to it. His results show
that with variation of volume fraction from 0.1% to 2% and its size the
efficiency elevates remarkably. Yousefi et al. [23] experimentally ob-
served that the efficiency of nanofluid (with 0.2% wt.) is greater as
compared to water. When they used surfactant in their experiments,
they got 15.63% enhancement. The implementations of nanoparticles
in solar energy can be found in [24-26] and the references therein.

It is obvious from the above literature that none of them have
considered fractional derivates for nanofluids and its applications in
solar energy. Since many researchers have worked on fractional deri-
vatives for viscous fluid which are discussed here. The viscoelastic be-
havior of material is explained by using fractional calculus. Vieru et al.
[27] investigated time fractional free convection flow with Newtonian
heating and mass diffusion. They concluded that temperature and ve-
locity are increasing functions of fractional parameter a. The idea of
fractional derivatives has importance not only in mathematics but also
in fluid dynamics, applied mathematics electrochemistry, bioengi-
neering, finance and physics (Kulish et al. [28]). Ali et al. [29] applied
Caputo-Fabrizio derivatives to MHD free convection flow of generalized
Walter’-B fluid model. They found thicker momentum boundary layer
for larger values of Pr. Azhar et al. [30] concluded that fractional na-
nofluids have higher heat transfer rate compared to ordinary nano-
fluids. Imran et al. [31] non-integer order derivative for the flow of
Maxwell fluid over oscillating vertical plate. They obtained semi ana-
lytical solution using Laplace transform and then used numerical in-
version technique Stehfest’s and Tzou’s algorithm.

With the reference of above literature, no study is reported on
fractional derivatives nanofluid area. To best of Authors knowledge,
there is very limited work reported in this area very recently by Cao
et al. [32] on fractional Maxwell viscoelastic nanofluid over a moving
plate. Another study is by Fetecau et al. [33]. They considered Ag and
CuO with water as a base fluid. Some recent research work on fractional
nanofluids are [34-36] and the references therein. This latest area ap-
pealed us to investigate a problem on nanofluids by using fractional
derivative model. Our aim here is to find an exact solution of con-
centration, temperature and velocity field for mixed convection flow of
graphene nanofluid past a vertical plate using fractional derivatives.
Moreover, to evaluate the heat transfer rate enhancement and examine
the physical insight of the problem via graphs.

Formulation and solution of the problem

Consider Poiseuille flow of water based-nanofluid with graphene
nanoparticles in a vertical channel. A uniform magnetic field of strength
By is applied in a perpendicular direction to the flow (along x -axis).
External pressure gradient generates mixed convection together with
the buoyancy force. The viscous dissipation effect is neglected in the
energy equation. In vertical channel, Ty and T; show left and right plate
temperatures while C, and C; shows concentration at left and right
plate. The governing equations of momentum, energy and mass are as
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under (as in Vieru et al. [27]):
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where u = u(y,t), T = T(,t), C = C(y,t), P> Mugs> Onfs BT: ﬁcs 8 (pcp)nf’
kns, ao, Dy, are respectively fluid velocity in the x direction, tempera-
ture, concentration, density, dynamic viscosity, electrical conductivity
of the base fluid, volumetric thermal expansion co-efficient, gravita-
tional acceleration, heat capacitance of nanofluids, thermal con-
ductivity of nanofluid, radiation absorption and thermal diffusion
coefficient. Following Makinde and Mhone [1] and Cogley et al. [37],
the fluid used is thin with a low density and radiative heat flux given by
Z—qy’ = 4a2(T-Ty). We consider —Z—Z = H(t)[Ao + dexp(iwt)], with
boundary conditions:

u(0,t) =0,
T(y’o) = ]E),

ud) =0, TOLH =T, Tt =T,

C0t) = Cypy C(dt) = Ca. )

The density p,,, thermal expansion coefficient (oB),y, heat capacitance
(ocp)ns, thermal conductivity ks, electrical conductivity oy, and dy-
namic viscosity Hnps r€ used as defined (as in Magyari [20]):

)
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where ¢ is the nanoparticles volume fraction, o, and p is the density of
the base fluid and graphene, g, ﬁf, (cp)s» (cp)fs ks, ky, are the volumetric
coefficient of thermal expansion, specific heat capacities and thermal
conductivities of graphene and base fluid respectively. Using the non-
dimensional variables:

2
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The following non-dimensional differential Eqs. are obtained:
ou . 0%u ol
¢1Re§ = H(t)[Ao + Aexp(iwt)] + ¢2§—(M + Ez)u + ¢,Gro
+$G6mC; y €[01]t >0, %)
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Se ===
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with dimensionless initial and boundary conditions:
u@,0)=0, u@©=0, ut=0,
6,0 =0, 60 =0, 6(11=1,
cpo=0 cOnH=0 CAan=1, (10)

Where
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Re=Ud ppo IHE boON2= s
v ) d kf
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Here we replace the time derivative with time-fractional derivatives to
obtain the following fractional differential equations:

¢ ReDFU.) = H(O[Ao + Aexp(iwt)] + ¢, az’gy(ﬁ’t) (M + —)u(y )
+ ¢,Gro(y,t) + ¢,GmC (y,t), 12)
“ _ 90’ t) )
PeDEO(y,t) = + N80, a3
Sc PC(.t)
(1-¢) FeOn =5 a4

where Dfu(y,t) represent the Caputo time-fractional derivative of
u(y,t), defined as:

1
T'dl-oa)

Ju.t).
o

augr)dr 0<a<l,

t 1
Dfu(y,t) = ‘/; -0
t H -

a=1. (15)

Solution of the problem

To obtain solutions of the Egs. (12)-(14) using Eq. (10), we use
Laplace transform w.r.t the variable .

Temperature field

Applying the Laplace transform to Eq. (13) and using Eq. (10), we
obtain the problem in transform domain

= 3% (n.9)
boq*—b3)0 (y,q) = ——222,
(bog*=b1)6 (v.q) ay? (16)
é(O,Q) = O,Q(l,fJ) =
q a7)
with solution:
) b7
sinh | y/bo \[q*~
60 = =
sinh | +/bg | g*——
q [\/—o = ] a8
To obtain the inverse Laplace, we rewrite Eq. (18) in the form
b2
sinh | y/bo g~
60 =
g%sinh -4
[# -1

Using (A2) from Appendix, the convolution theorem, and the for-

mula
1~
} —Jra-a’
8(0),

g

For 0 < a < 1, we obtain
-0

00) = J T2 h0bot =t by )de
0[ (1'[(11_)03 A C i (y bo,u—— Jbo) ¢ (0,—at,—ur~%)dudr

= -/éwf()’\/b—’”’_%’\/b—w fo[ (rla r—);) T

where h and f are defined in Appendix.
To express the temperature field in terms of Wright function, we

1
qlfct

0<a<l,

a = 1, (20)

14 (0,—a,—ut~*)drdu. 1)
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consider the function image V (q) = fe“’q ,a = 0,0 < o < 1with inverse

Laplace transform
v(t) = LV (N = ¢(1,—05—at™),

Since

v(0) = lim v(t) = lim qV (g) = lim qle‘“qg =0.
t—ot ) g q

LIV(D)} = gV (9)-V (0) = gV (g) = qée-aq”—o =

V/(t) = LYe %} = t71¢(0,—0,—at ™)
Therefore
_ B d®(1,—o,—at™)
1 —_ — —
t7'¢(0,—0,—at™%) = pn 22)
Using Eq. (20), we have
t(t=t) ¢
‘/; ﬁr*q&(o,—a,—ur’“)dr = Df®(1,—a,—ut™%),
and Eq. (21), becomes
Oy,t) = ‘/Owo f /b ,u,—%,\/b—o)Df‘<I>(1,—oc,—ut“")du; 0<a<l.
0
(23)
Fora=1
B(y,t) = bg,u,——,/b
.0 = f O\/bou, \/—0 ). o4

Concentration field

Using Egs. (10) and (14), we obtain the following problem in
transform domain C (y,q):

3%C(y,t)
b;g*C(n,t) = ,
3q“C (.t 3 25)
_ Sc
Where b; = T
C@,qg) =0 CQ,9 =~
0.9 (€4)) (26)
The solution of the problem is
_ sinh[y./bs/q%]
Cg) = i
gsinh[/bs /%] 27)

To obtain the inverse Laplace of Eq. (27), we rewrite this function in
the form

1 sinh[yb; Jg%]
¢ sinh[ JBs g |

After applying inverse Laplace transform, using the formula (20),
(A2) from the Appendix and convolution theorem:

Co.q) =

(28)

_ (t—7)™@
CWyb) = [o e h(y\/_,ro Jb3)de 29
It can be written as:
COD = [ 42 [T 0By 7.0,4/B3 ) (0,—at,—ur =) dude
= ,/;wf()’\/b_a,f,o,\/b—g) j: (rt(lf);; 771 (0,—at,—ur %) drdu. 30)

In the form of Caputo fractional derivative of the Wright function, it
becomes:

CQ,t) = ./:o f(y\/b_3,u,0,\/b—g)Dt“CIJ(l,—oc,—ut“")du;O <a<l 31)
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Velocity field

Using Egs. (10) and (28), we obtain the following problem in
transform domain for the velocity & (y,q):

3% (y,q)
a 2

.G sinh[y/bo/q% + b;]
? gsinh[ JbTMq + by ]
smh[y\/—\/—]

(pReqg™ + M +

200 = 4,

/10 A
+ ¢ G + . 2
* qsmh[ff] q q—iw
(32)
(0, =0, u(lq) =0. (33)
We introduce notations:
¢2 b?
M+ =), by=——.
4= Re( K) 77 b
Particular solution of Eq. (32), is
5 rg) = @ sinh[yy/bo/g* + b5 ]
P (@—bo)(q* + ¢o) gsinh[{/by/q* + b, ]
@ sinh [yy/bs /q%]
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+ da (@ + /1, )
a(@*+ad\qg g-iw 34

Complementary solution of the homogeneous equation associated
with Eq. (32), is

. (y,q) = Cisinh(y /ar \/q* + a) + Cycosh(y /a; \/q* + ao).
The general solution of Eq. (32) is

Z(y,q) = Cisinh(y/a; \/g* + ao) + Cyeosh(y/ar /g% + ao)
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a smh[y\/— \/— ]
(al b3)(g* + do) qSInh[\/—\/—]
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+ — + -
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Using Eq. (33), we obtain the solution of & (y,q) as

S
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A Yascosh[yar g% + aolsinh[yya /g% + ao]
q—iw) g%sinh[/a; /g% + ao]
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q(a—by) (q* + o) g*sinh[/by/q% + b, ]
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q(a1 b3)(q* + do) q%sinh[|/b;/¢%]
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(35)

(36)

37
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Taking Inverse Laplace transform of Eq. (37) and using (A1) from
the Appendix:

) = (o + Aeiwo[%zp[(y + 1]+ %Lb[(y—l),t]]

o B L) en ()|,
-2

00MU=1Q (0, —ct,—a ut 2 )
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a
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)g(u,t)du

[ bo
(a1—bo)

g(u t)du ] 1

(38)

Nusselt number, Sherwood’s number and skin friction

The entity of physical interest and applications Nusselt number,
Sherwood’s Number and Skin friction are evaluated. Nusselt number
gives the information about heat transfer rate of the fractional nano-
fluid at the walls. First, we find Nusselt number Nu,(t) at wall y = 0:

d q, d_ ky 3TO.0) kny 36 (v.)
Nu, (t) = — == - ,
G (TeT) - kT |,k oy |,
(39)
_ kg [ \Boya¥+ba 1
Nul(t) - ka { q sinh(v“b_o\j‘q"‘-#bz)}
—,?fL‘l{"’bT”Zhrbz i eXP(—\be)(22+11))xq°‘+bz)}’
! n=0 v (40)
Let @) = B3, SPEBETI) p g) = 5,72
Y
Their inverse Laplace transform are:
00 _ 2
Ca(®) = f; %exp(w—boz)t’% (0,—a;—zt™*)dz,
D,(t) = \/—[r(1 5t bz] o0<a<l,
Thus, the Nusselt number is:
kg - knf o
Nu(5) = =5 Da@®* 3} Cu) = =2 3, [ Dut=0)Cu(@)dr.
kf n=0 kf n=0
(41)

Now we find Nusselt number Nu,(t) at wall y = 0, which is given by
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knf —
Nuy(t) = — L { e T

|
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The Nusselt number is:

Nuy (1) = ——(D OF Z Gu(1)) = —k—f Z S D06 (.

(43)
For ordinary nanofluid a =1, the property of Wright function

t71¢(0,—1,—zt™ 1) = §(t—z), Egs. (41) and (43) become:
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Now we find Sherwood’s number which is given by:

(46)

—n2Jby
t

dg,,

Sh(t) = ———,
® Dy (Cq—Co)

(47)

where: q,, = —Dyy (‘;—S) ‘ is the mass flux.
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-
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Let
Q(Q) 1

have

R(q) = we

—a’
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Table 1

Thermophysical properties of base fluid and graphene nanoparticles.
Physical properties Water Graphene
olkgm=3 997 2250
cpl kg K1 4197 2100
k/Wm—1K1 0.613 2500
o/Sm™1 0.005 107

¢=0.03,N=15

T(y.t)

=

(=

Fig. 1. Temperature profile for different values of fractional parameter a.

4 =02. J\":lﬁ
1_
K}‘0' ¢=0,0.02, 0.03, 0.04
B ] s |
0 ¢ A
" 03 1
1.'

Fig. 2. Temperature profile for different values of volume fraction ¢ for frac-
tional nanofluid.

e ™
e RO =/,

Thus Eq. (48) becomes:

1

Q) =

_ 2
Xp(b3(2+z+l))t’l¢ (0,—a;—zt™%)dz,

D RO

n=0

Shy(t) = Jbs [Q(t)* ] = b Y fow Q(t—7)R(r)dr,
n=0

(49
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a=1, N=

16

¢=0,0.02, 0.03, 0.04

0 0.5 1
y

Fig. 3. Temperature profile for different values of volume fraction ¢ for or-
dinary nanofluid.

| a=02. $=0.03,Pe=0.5
Bost -
20
N=0,115,2
0 l |
0 0.3 1
Vv

Fig. 4. Temperature profile for different values of radiation parameter N for
ordinary nanofluid.

) s<r>]

n=0

Shy(t) = —<1—¢>L-1{(§) \y} = Jbs [Q(t)*

=-(-¢)Jbs ), [7QU-1)S()dr,
n=0

(50)
where
[se] — 2 p—
S(t) = f Lexp( n b3) + exp( (n+ 1)b3)t‘1¢ (0,—a;—zt™)dz.
0 y(v4 Z Z
Now Skin friction on the walls is evaluated as:
HnfTw ( Gu(y,f)
cf.(t) = - ( )
T
d
/‘nf(ﬁu(y )) lim {aﬁ@,q)}
=0 T a- ¢)25yqo+ o J (51)
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=0.2,¢4=003,N=1.5

Pe=05,1,15, 2

1_
s
D ok
B 03
0
0

v

o

Fig. 5. Temperature profile for different values of Peclet number Pe.

=0.2,¢=0.03,N=1.5

Pe=05,1,15, 2

1+
Py
-
[ 03
0
0

Fig. 6. Concentration profile for different values of Schmidt number Sc.

1
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S
Where
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Graphical results and discussion

A brief analysis is made on the effect of MHD mixed convection
Poiseuille flow of graphene nanofluid inside a vertical channel in a
porous medium. Solutions of temperature, concentration, velocity field
and Nusselt number of practical interest are acquired. Keeping some of
the embedded parameters fixed while varying others show the behavior

1358

Results in Physics 9 (2018) 1352-1362

0.08

0.06

u(y.t)

Gm=10,0511.5

Se=0.3, ¢=0.03, =05, Gr=0.5,
Re=20, N=0.6, Pe=0.2, k=7, M=0.5

02 0.4 0.6 0.8 1
Vv

o

Fig. 9. Velocity profile for different values of Solutal Grashof number Gm.
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Fig. 11. Velocity profile for different values of Permeability parameter k.
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Fig. 13. Velocity profile for different values of Radiation parameter N.

of nanofluid under change in physical process. Thermophysical prop-
erties of base fluid and nanoparticles are given in Table 1. The effect of
different parameters on the flow, temperature and concentration of the
fractional nanofluid a € (0,1), and ordinary nanofluid (¢ = 1) is ob-
served through Figs. 1-17.

Fig. 1 shows the effect of fractional parameter on fluid temperature.
Temperature of nanofluid is a decreasing function of fractional para-
meter a. The ordinary nanofluids have less temperature than those of
fractional nanofluids. In Figs. 2 and 3, temperature is an increasing
function of volume fraction ¢ for both fractional and ordinary nanofluid
while taking all other parameters constant. Physically, by increasing the
volume fraction of nanoparticles to the base fluid enhance its thermal
conductivity which makes the fluid hot. Fig. 4 shows that temperature
of the nanofluid increases with the Radiation parameter N due to an
increase in heat energy transfer to the fluid. Temperature of nanofluid is
a decreasing function of Peclet number for fractional nanofluid shown
in Fig. 5.

Figs. 6 and 7 shows concentration profile. It is depicted that Con-
centration of the nanofluid is shown to be decreasing with increasing
values of Schmidt number and fractional parameter . Concentration
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Fig. 14. Velocity profile for different values of Peclet number Pe.
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Fig. 15. Velocity profile for different values of Schmidt number Sc.

decreases for both ordinary and fractional nanofluid. Fig. 8 elaborates
the impact of fractional parameter « on fluid flow. It is obvious from the
graph that velocity of the fluid decreases with increasing the fractional
parameter « .The fractional nanofluids have greater flow than the or-
dinary nanofluid (a = 1). The influence of Solutal Grashof number on
fluid flow is shown in Fig. 9, velocity increases with elevation in values
of Gm. The increasing values of Gm leads to augment the velocity of
both fractional and ordinary nanofluid. An increase in Gm enhances
concentration gradient which increases buoyancy forces. Thus, the fluid
flow increases. In mass transfer, buoyancy forces are dependent on
concentration gradient rather that temperature gradient. Fig. 10, il-
lustrates the impact of Gr on fluid flow. We can see that fluid velocity
increases with increase in Gr. Grashof number is the ratio of buoyancy
and viscous force. An increase in Gr enhances temperature gradient
which increases buoyancy forces and fluid flow rises. Fig. 11 shows the
influence of permeability parameter k on velocity of fractional nano-
fluid. It is since increasing reduces friction of the nanofluid with
channel wall hence increases the flow. Fig. 12 depicted influence of
magnetic parameter M on the velocity profile. Flow of fractional na-
nofluid decreases with increasing M. It is due to the Lorentz forces
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Fig. 16. Velocity profile for different values of Volume fraction ¢.

which reduces the flow. The Lorentz forces are maximum near the
channel walls and minimum in the middle. Thus, velocity is minimum
(Zero) at the boundaries and maximum in the center of the channel.
Fig. 13 illustrates the effect of N on velocity profile. Increase in values
of N increases amount of heat transfer to the fluid which increases the
temperature of the fluid and in turn the flow of fractional nanofluid
enhances. The velocity profile is a decreasing function of Peclet number
N as shown in Fig. 14. The fluid flow is minimum at the boundaries and
maximum in the middle. Fig. 15 shows that velocity of the fractional
nanofluid increases with increasing Schmidt number Sc. Fig. 16 shows
the impact of nanoparticles ¢ on the flow of fractional nanofluid. The
velocity of nanofluid slows down with increase in ¢. By adding more
amounts of nanoparticles ¢ to the fluid makes it more viscous which
reduces their flow. Fig. 17 (a) and (b) shows the Nusselt number evo-
lution with time ¢t by varying the fractional parameter a. The heat
transfer rate is increasing at plate y = 0, but after some time while
leading towards the plate y = 1 it becomes constant. It is observed that
for a smaller fractional parameter the rate of heat transfer is higher, it
increases with decreasing values of a. It means fractional nanofluids
have high rate of heat transfer than ordinary nanofluid « = 1. For
Nusselt number at the other wall, y = 1 is shown in Fig. 17 (b). A nu-
merical estimation is made in Table 2 for Nusselt numbers Nu; and Nu,

15 T T T T
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I _
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&
o
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Table 2
Heat transfer rate variation with different values of fractional parameter and
volume fraction.

Fractional parameter a ¢=0 ¢ =0.01 ¢ =0.02 ¢ =0.04
Nusselt number Nuy

0.01 1.128 1.162 1.196 1.265
0.2 1.154 1.188 1.222 1.291
0.4 1.184 1.217 1.251 1.322
0.6 1.211 1.245 1.279 1.35
1 1.217 1.249 1.283 1.351
Nusselt number Nu;

0.01 0.753 0.777 0.802 0.853
0.2 0.704 0.728 0.753 0.805
0.4 0.645 0.669 0.694 0.745
0.6 0.573 0.579 0.621 0.671
1 0.573 0.579 0.621 0.671

of fractional nanofluid « € (0,1) and ordinary nanofluid (a« = 1) for
different values of @ and volume fraction of graphene nanoparticles. It
is detected that the rate of heat transfer Nu; and Nu, enhances with
increasing the volume fraction of nanoparticles. The thermal con-
ductivity of the nanofluid increases by adding more amounts of gra-
phene nanoparticles which enhances heat transfer rate. By coming
down the rows in the Table 2 with the increasing values of a heat
transfer rate decreases and fractional nanofluid have higher rate of heat
transfer than that of ordinary nanofluid. Fig. 18 (a) and (b) shows the
skin friction at the two walls of the channel y = 0 and y = 1. At wall
y = 0 shear stress decreases with increasing fractional parameter but
after some time at t = 0.5, it takes a turn and shows an opposite be-
havior, here the graph starts increasing with increasing values of « and
the ordinary nanofluids curve is higher as compared to the fractional
nanofluids’ skin friction. At wall y = 0 the skin friction increases with
increasing fractional parameter and the ordinary nanofluid have the
highest skin friction. At wall y = 1 the skin friction is decreasing with
fractional parameters. The same behavior is observed in numerical
values in Table 3. Table 3 shows the numerical values of skin friction
(Cf,,Cf,) variation with @ and ¢. It’s obvious that skin frictions Cf; of the
nanofluid increases by increasing the values of ¢ and a. From the table
we observed that fractional nanofluid have less shear stress Cf; than that
of ordinary nanofluid. While Cf, decreases with increase in «. The
fractional nanofluids have higher skin friction than ordinary nanofluid.
For each value of ¢ fractional nanofluids have less shear stress com-
pared to ordinary nanofluid identical to Table 3. Numerical evaluation
for Sherwood’s number is shown in Table 4 for (Shy,Shy). It is obvious
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Fig. 17. Nusselt number variation for different values of Volume fraction a.
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Fig. 18. Skin friction variation for different values of volume fraction a.

Table 3
Skin friction variation with different values of fractional parameter and volume
fraction.

Fractional parameter a ¢=0 ¢ = 0.01 ¢ = 0.02 ¢ = 0.04

Skin friction Cf;

0.1 0.448 0.499 0.45 0.453

0.3 0.466 0.467 0.468 0.47

0.6 0.494 0.495 0.469 0.497

1 0.552 0.552 0.552 0.552

Skin friction Cf,

0.1 3.652 3.59 3.528 3.402

0.3 1.386 1.418 1.448 1.502

0.6 —379.838 —358.714 —338.235 —299.333

1 —334600 —310200 —286900 —243900
Table 4

Variation of Sherwood’s number with different values of fractional parameter
and volume fraction.

Fractional parameter a ¢=0 ¢ =0.01 ¢ =0.02 ¢ =0.04
Sherwood’s number Shy

0.1 0.618 0.615 0.613 0.607
0.3 0.589 0.586 0.582 0.576
0.6 0.531 0.527 0.523 0.515
1 0.293 0.287 0.281 0.269
Sherwood’s number Sh,

0.1 1.88 1.887 1.895 1.911
0.3 1.907 1.914 1.923 1.939
0.6 1.744 1.752 1.76 1.776
1 0.52 0.523 0.525 0.531

that Sh; decreases with increase in ¢ and a . Sh, increases with

Appendix A
F(a,q,b,c) = % ‘q+b] = z [le—[(2n+l)0—a] q+b_le—[(2n+1)c+a]\/q+_b:|
gsinh[e\/g +b] ;= L4 q

f(a,t,b,c) = L Y{F(a,q,b,c)} = Z [%,(a,t,b,c)—tp,(—a,t,b,c)]; where
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) + elC@n+De—al ‘Gelfc(
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2n + 1)c—a

increasing volume fraction ¢ and decreases with increasing a. Frac-
tional nanofluids have higher Sherwood’s number as compared to or-
dinary nanofluids.

Conclusions

In this attempt, the exact solutions for unsteady MHD mixed con-
vection problem of Maxwell fractional nanofluid are obtained using
Caputo-time fractional derivates. Expressions of velocity, concentration
and temperature are acquired using Laplace transform method and then
presented graphically for various embedded parameters. Some im-
portant outcomes are:

e Velocity increases with increase in Gr,Gm,Sc,N and k at time ¢.

o Velocity decreases with increasing values of M,Pe,¢ and a.

® Velocity of fractional nanofluid is greater than that of ordinary na-
nofluid.

e Fractional nanofluid have higher rate of heat transfer and
Sherwood’s number than that of ordinary nanofluid.

(A1)

NG ”E)]
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sinh[a./q* + b]
q“sinh[c./q* + b]

H(a,q,b,c) = = F(a,q%b,c)

=1 (a,x,b,c) (0, —at, —xt%)dx; 0<a <1
0 .

h(a,t,b,c) = L"Y{H(a,q,b,c)} = ;
1 f(a,t,b,c), a=1 (A2)

00 e . . .
where ¢(8,-0,2) = 2", PTG ) 1S the Wright function
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