TORREFACTION AND PELLETIZATION OF OIL PALM WASTE AND FORESTRY RESIDUE

NUR NABIHAH BINTI RAMLI

BACHELOR OF CHEMICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

TORREFACTION AND PELLETIZATION OF OIL PALM WASTE AND FORESTRY RESIDUE

NUR NABIHAH BINTI RAMLI

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

MAY 2017

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature	:
Name of main supervisor	: SURIYATI BINTI SALEH
Position	: SENIOR LECTURER
Date	: 25 MAY 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree

Signature:Name: NUR NABIHAH BINTI RAMLIID Number: KE13037Date: MAY 2017

Dedicated to my family, supervisor and friends.

ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my supervisor, Dr. Suriyati binti Saleh. You have been a brilliant mentor for me. I would like to thank you for your never ending support during my tenure as research student under your guidance, for giving insightful comments and suggestions of which without it, my research path would be a difficult one. Your advice on my research has been valuable. I would also like to thanks Miss Huda who is one of Dr Suriyati master students for all her guidance during my research.

A special thanks to my family. Words cannot express how grateful I am to my mother, father, sisters and brothers for the love and support throughout these years. Your prayer for me was what sustained me thus far.

I am also indebted to the Ministry of Higher Education and Universiti Malaysia Pahang for funding my study.

I would also like to thank all of my friends especially Mira, Rahsya and Izzma who supported me in writing, and motivate me to strive towards my goal. I am sincerely grateful to the staffs of Chemical Engineering and Natural Resources Faculty who helped me in many ways and made my stay in UMP pleasant and unforgettable.

TABLE OF CONTENTS

			Page
SUP	ERVISO	R'S DECLARATION	ii
STU	DENT'S	DECLARATION	iii
ACF	KNOWLI	EDGEMENT	v
ABS	TRACT		vi
ABS	TRAK		vii
TAB	BLE OF (CONTENTS	viii
LIST	Г ОГ ТА	BLES	X
LIST	Γ OF FIG	JURES	xi
LIST	Γ OF SY	MBOLS	xiii
LIST	Г OF AB	BREVIATIONS	xiv
CHA	APTER 1	INTRODUCTION	1
1.1	Backgr	ound of the Study	1
1.2	Motiva	tion	3
1.3	Problem	n Statement	3
1.4	Objecti	ves	4
1.5	Scopes	of this research	4
CHA	APTER 2	LITERATURE REVIEW	5
2.1	Overvie	ew	5
2.2	Biomas	s	5
2.3	Forestr	y biomass	7
2.4	Oil palı	n biomass	8
	2.4.1	Chemical composition of oil palm biomass	9
2.5	Torrefa	ction	13
	2.5.1	Torrefaction of oil palm wastes	14
2.6	Pelletiz	ation	15
CHA	APTER 3	METHODOLOGY	17
3.1	Overvie	ew	17
3.2	Materia	ls	17
	3.2.1 3.2.2 3.2.3	Raw material Gases Binding agent	17 18 18
3.3	Method		18
	3.3.1	Pre-treatment of PKS and Kulim wood	18

	3.3.2 3.3.3	Torrefaction process Pelletization process	19 20		
3.4	Measure	-	21		
	3.4.1 3.4.2 3.4.3 3.4.4	Calorific Value Determination Mass and energy yield Scannning Electron Microscopy (SEM) Strength of pellet	21 23 23 24		
CHA	PTER 4	RESULTS AND DISCUSSION	26		
4.1	Introduc	tion	26		
4.2	Effect of temperature on mass yield, energy yield and Higher Heating Value				
(HH	V)		26		
	4.2.1 4.2.2 4.2.3	Mass yield Energy yield Higher Heating Value (HHV)	26 29 31		
4.3	Effect of	f Particle Size Distribution on mass yield, energy yield and HHV	34		
	4.3.1 4.3.2 4.3.3	Mass yield Energy yield Higher Heating Value	35 37 39		
4.4	Characte	erization of Scanning Electron Microscopy (SEM analysis)	40		
4.5	Strength	of pellet	43		
	4.5.1 4.5.2	Effect of Temperature on Compression Strength of Pellet Effect of Size Distribution on Compression Strength of Pellet	43 44		
CHA	PTER 5	CONCLUSION AND RECOMMENDATION	46		
5.1	Conclus	ion	46		
1.	Tempera	ature effect gave the biggest impact to characterization of torrrefa	ction		
produ	uct compa	re to size particles.	46		
5.2 Recommendation 4					
REF	ERENCE	S	48		
Арр	endix		52		

LIST OF TABLES

Table No.T	FitlePage
Table 2-1 Chemical composition of EFB (Abd	lul Khalil et al., 2012) 11
Table 2-2 Chemical composition of PMF (Sak	ta et al., 2008) 12
Table 2-3 Chemical composition of OPF (Abc	lul Khalil et al., 2012) 12
Table 2-4 Percentage of mass and energy	yield for different samples at different
temperature	15
Table 2-5 Strength and density of pellet for di	fferent type of samples 16
Table 4-1 Effect of temperature on mass yield	of PKS 27
Table 4-2 Effect of temperature on mass yield	of Kulim sawdust 28
Table 4-3 Effect of temperature on energy yie	ld of PKS 30
Table 4-4 Effect of temperature on energy yie	ld of Kulim sawdust 31
Table 4-5 Effect of temperature on HHV of Pl	KS 32
Table 4-6 Effect of temperature on HHV of K	ulim sawdust 33
Table 4-7 Effect of particle size on mass yield	of PKS 35
Table 4-8 Effect of particle size on mass yield	of Kulim sawdust 36
Table 4-9 Effect of particle size on energy yie	ld of PKS 37
Table 4-10 Effect of particle size on energy yi	eld of Kulim sawdust 38
Table 4-11 Effect of particle size on HHV of I	PKS 39
Table 4-12 Effect of particle size on HHV of I	Kulim sawdust 40
Table 4-13 Effect of temperature on compress	ion strength of pellet for different biomass
	43
Table 4-14 Effect of different size distributi	on on compression strength of pellet for
different biomass	45

LIST OF FIGURES

Figure No.			Tit	le					Page
Figure 2-1: Availability	of dry	weight	oil	palm	biomass	in	Malaysia	in	2009
(Mn/T=Million tonnes) Av	valludin e	et al. (20	13)						9
Figure 2-2: Empty fruit but	nch (EFE	5)							10
Figure 2-3: Palm mesocarp	fibre (Pl	MF)							11
Figure 2-4 Oil palm frond	(OPF)								12
Figure 3-1 Oil palm was	te collec	ted fron	n pa	lm oil	plantatio	on ir	n Felda H	ilir	Lepar
Gambang, Pahang									18
Figure 3-4 Hot press mach	ine that u	sed in p	elleti	zation	process				21
Figure 3-5: Illustration of H	30mb cal	orimeter	•						22
Figure 3-6 Scanning electro	on micro	scope (L	EO	EVO 5	50 SEM, (Carl	Zeiss, Ger	man	y) 24
Figure 3-7 Universal tensil	e strengtl	n testing	mac	hine v	with comp	uter			25
Figure 4-1 Effect of temper	rature on	mass yi	eld o	f PKS					28
Figure 4-2 Effect of temper	rature on	mass yi	eld c	f Kuli	m sawdus	st			29
Figure 4-3 Effect of temper	rature on	energy	yield	of PK	S				30
Figure 4-4 Effect of temper	rature on	energy	yield	of Ku	lim sawd	ust			31
Figure 4-5 Effect of temper	rature on	HHV of	f PK	S					33
Figure 4-6 Effect of temper	rature on	HHV of	f Kul	im sav	vdust				34
Figure 4-7 Effect of particl	e size on	mass yi	eld c	f PKS					36
Figure 4-8 Effect of particl	e size on	mass yi	eld c	f Kuli	m sawdus	st			37
Figure 4-9 Effect of particle size on energy yield of PKS						38			
Figure 4-10 Effect of partic	ele size o	n energy	yiel	d of K	lulim saw	dust			38
Figure 4-11 Effect of partic	ele size o	n HHV (of PI	KS					39
Figure 4-12 Effect of partic	ele size o	n HHV (of K	ılim sa	awdust				40
Figure 4-13 200x, 500x, 1	000x ma	gnificati	on o	f a pel	llet fractu	re sı	urface for	PKS	(a-c)
and PKS torrefied at 270°C	2 (d-f).								42
Figure 4-14 200x, 500x,	1000x m	agnifica	tion	of a j	pellet fra	cture	e surface f	or I	Kulim
sawdust (a-c) and Kulim sa	wdust to	rrefied a	nt 270	0°C.					42
Figure 4-16 Effect of ter	nperatur	e on co	mpr	ession	strength	of	pellet for	dif	ferent
biomass									44

Figure 4-17 Effect of different size distribution on compression strength of pellet for different biomass 45

LIST OF SYMBOLS

mm	millimetre
cm	centimetre
°C	Celcius
L	Litre
min	minute
MPa	Mega pascal
g	gram
Hg	Heat of combustion
t	temperature rise
W	Watt
e ₃	correction in calories for heat of combustion of fuse wire
m	mass
$M_{\text{torrefied}}$	mass of torrefied sample at certain temperature
M _{raw}	mass of dry sample
$\mathrm{HHV}_{\mathrm{torrefied}}$	high heating value of torrefied sample
HHV _{raw}	high heating value of dry sample
%	percentage
wt	weight
μm	micrometre
kN	kiloNewton
kg	kilogram
MJ	megajoules
Mn/T	Million tonnes

LIST OF ABBREVIATIONS

CO_2	Carbon dioxide
EFB	Empty fruit bunch
ОН	Hydroxyl group
OPF	Oil palm frond
OPT	Oil palm trunk
PKS	Palm kernel shell
PMF	Palm mesocarp fibre
POME	Palm oil Mill effluent
SEM	Scanning Electron microscopy