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Abstract—The research on two-wheels balancing robot has 
gained momentum due to their functionality and reliability 
when completing certain tasks. This paper presents 
investigations into the performance comparison of Fuzzy Logic 
Controller (FLC) and PID controller for a highly nonlinear 2–
wheels balancing robot. The mathematical model of 2-wheels 
balancing robot that is highly nonlinear is derived.  The  final 
model  suffers  from mismatched condition. Two system 
responses namely the robot position and robot angular position 
are obtained. The performances of the FLC and PID 
controllers are examined in terms of input tracking capability. 
Simulation results of the responses of the nonlinear 2–wheels 
balancing robot are presented in time domain. A comparative 
assessment of both control schemes to the system performance 
is presented and discussed.

Keywords-FLC; PID; Balancing Robot. 

I.  INTRODUCTION (HEADING 1) 

The research on two-wheeled balancing robot has gained 
momentum over the last decade due to the nonlinear and 
unstable dynamics system. Various control strategies had 
been proposed by numerous researchers to control the two-
wheeled balancing robot such that the robot able to balance 
itself. In addition, 2-wheels balancing  robot  is  a  good  
platform  for  researchers  to investigate  the  efficiency  of  
various  controllers  in  control system. Basically, the 
research on two wheels balancing robot is based on inverted 
pendulum model.  Thus,  a  two wheels balancing robot 
needs a good controller  to control itself  in  upright  position  
without  the  needs  from  outside. 

Motion of two wheels balancing robot is governed by 
under-actuated configuration, i.e., the number of control 
inputs is less than the number of degrees of freedom to be 
stabilized [1], which makes it difficult to apply the 
conventional robotics approach for controlling the systems. 
Due to these reasons, increasing effort has been made 
towards control designs that guarantee stability and 
robustness for mobile wheeled inverted pendulums. 
Although two wheels balancing robot are intrinsically 
nonlinear and their dynamics will be described by nonlinear 
differential equations, it is often possible to obtain a 
linearized model of the system. If the system operates around 
an operating point, and the signals involved are small 
signals, a linear model that approximates the nonlinear 

system in the region of operation can be obtained. Several 
techniques for the design of controllers and analysis 
techniques for linear systems were applied. In [2], motion 
control was proposed using linear state-space model. In [3], 
dynamics was derived using a Newtonian approach and the 
control was design by the equations linearized around an 
operating point. In [4], the dynamic equations were studied, 
with the balancing robot pitch and the rotation angles of the 
two wheels as the variables of interest, and a linear controller 
was designed for stabilization under the consider of its 
robustness in [5]. In [6], a linear stabilizing controller was 
derived by a planar model without considering vehicle yaw. 
The above control laws are designed on the linearized 
dynamics which only exhibits desirable behavior around the 
operating point, and do not have global applicability. In [7], 
the exact dynamics of two wheels inverted pendulum was 
investigated, and linear feedback control was developed on 
the dynamic model. In [8], a two-level velocity controller via 
partial feedback linearized and a stabilizing position 
controller were derived; however, the controller design is not 
robust with respect to parameter uncertainties. In [9], a 
controller using sliding mode approach was proposed to 
ensure robustness versus parameter uncertainties for 
controlling both the position and the orientation of the 
balancing robot. The mathematical model is established 
through a modeling process where the system is identified 
based on the conservation laws and property laws. This 
process is crucial since a controller is design solely based on 
this mathematical model. Thus, an accurate equation must be 
derived in order for the controller to response accordingly.  

This paper presents investigations of performance 
comparison between conventional (PID) and intelligent 
controller (FLC) schemes for a two wheels balancing robot. 
The mathematical model of the two wheels balancing robot 
system is presented in differential equation form with the 
existence of nonlinear terms. The dynamic model of the 
system with the permanent magnet DC motors dynamic 
included is derived based on [10] and [11]. Performances of 
both control strategy with respect to balancing robot outputs 
angular position θ and linear position x are examined. 
Comparative assessment of both control schemes to the two 
balancing robot system performance is presented and 
discussed. 

2011 First International Conference on Informatics and Computational Intelligence

978-0-7695-4618-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ICI.2011.37

176

2011 First International Conference on Informatics and Computational Intelligence

978-0-7695-4618-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ICI.2011.37

176



II. DYNAMICS MODEL 

Modeling  is  the  process  of  identifying  the principal  
physical  dynamic  effects  to  be considered  in  analyzing  a  
system,  writing  the differential  and  algebraic  equations  
from  the conservative  laws  and  property  laws  of  the 
relevant discipline, and reducing the equations to a 
convenient differential equation model. This section provides 
a description on the modeling of the two wheels balancing 
robot, as a basis of a simulation environment for 
development and assessment of both control schemes. The 
robot with its three degrees of freedom is able to linearly 
move which is characterized by position  x, able to rotate 
around the y-axis (yaw) with associated angle  δ and able to 
rotate around z-axis (pitch) where the movement is described 
by angle θ. List of parameters for the two wheels balancing 
robot are shown in Table I. These parameters are based on 
the project conducted by Ooi (2003) as stated by [11]. The 
inputs of the system are the voltages VaR and VaL which both 
are applied to the two motors which located on right side and 
left side of the robot as shown in Fig. 1. In order to obtain the 
dynamic model of the balancing robot some assumptions and 
limitations are introduced; 

� Motor inductance and friction on the motor armature 
is neglected.  

� The wheels of the robot will always stay in contact 
with the ground.  

� There is no slip at the wheels.  

� Cornering forces are also negligible.  
Fig. 2 shows a free body diagram of the balancing robot 

which contributed to the nonlinear dynamic equations of the 
system.  

 
 

Figure 1. A mobile balancing robot (Grasser et al., 2002) 

 

 
Figure 2. Free body diagram of balancing robot 

 
Equation (1) represents linear acceleration in x direction, 

equation (2) represents angular acceleration about y-axis and 
equation (3) represents angular acceleration about z-axis.  
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TABLE I 

LIST OF PARAMETERS OF TWO-WHEELS BALANCING ROBOT BASED ON [11] 

Symbol Parameter Value 

D distance between 

contact patches of  

the wheels 

            0.2 m 

g gravitational force             9.81 m.s-2 

Jp chassis’s inertia             0.0041 kg.m2 

Jpδ chassis’s inertia during 
rotation  

            0.00018  kg.m2 

 

Jw wheel’s inertia             0.000039 kg.m2 

ke back emf constant             0.006087 Vs/rad 

km motor torque constant             0.006123 Nm/A 

l distance between 

center of the wheels 

and the robot’s CG 

            0.07 m 

Mp body’s mass             1.13 kg 

Mw wheel’s mass             0.03 kg 

R nominal terminal 

resistance  

            3 Ω 

r wheel’s radius             0.051 m 
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The symbols of α, β, and γ in equations (1), (2), and (3) 

are defined as in equation (4), (5), and (6): 
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As can be seen from equations (1), (2), and (3), all 

nonlinear terms are remain in the equations. All these 
equations are used to design the proposed controllers which 
will be described in the section III. 

III. CONTROLLER DESIGN & SIMULATION 

In this section, two control schemes (FLC and PID) are 
proposed and described in detail. Furthermore, the following 
design requirements have been made to examine the 
performance of both control strategies; 

� The system overshoot (%OS) of robot position, x is 
to be at most 10%. 

� The Rise time (Tr) of robot position, x less than 5 s.  

� The settling time (Ts) of robot position, x and robot 
angle θ is to be less than 10 seconds. 

� Steady-state error is within 2% of the initial value.  

A. PID Controller 

PID stands for Proportional-Integral-Derivative. This is a 
type of feedback controller whose output, a control variable 
(CV), is generally based on the error (e) between defined set 
point (SP) and some measured process variable (PV). Each 
element of the PID controller refers to a particular action 
taken on the error. In order to demonstrate the performance 
of the PID controller in locating the balancing robot to its 
desired position and angle, the collocated sensor signal of the 
position of the robot about roll axis, x(s) and angular position 
of the robot about yaw axis θ(s) are fed back and compared 
to the reference position, xf(s) and angle θf(s) respectively. 
Initially, the angular position of the robot which is position 
about pitch axis is set 0.5 radians. In this study, two PID 
controllers are required to control the position on the roll axis 
and the angular position about the yaw axis. The position and 
angular position errors are regulated through the 
proportional, integral and derivative gain for each PID 
controller. Block diagram of the PID controller is shown in 
Fig. 3, where u1(s) and u2(s) represent the applied voltage at 
the right motor and left motor respectively. Both of the 
inputs of the balancing robot are limited to + 20 volts to 

 
 

Figure 3. Block diagram of PID controller 
 

-20volts. The control signal u1(s) and u2(s) in Fig. 3 can be 
represented as in equations (7) and (8) respectively  
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where s is the Laplace variable. Hence the closed-loop 

transfer function is obtained as in equation (9) and (10). 
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In this paper, the Ziegler-Nichols approach is utilized to 

design both PID controllers. Analyses the tuning process of 
the proportional, integral and derivative gains using Ziegler-
Nichols technique shows that the optimum response of PID 
controller for controlling linear position is achieved by 
setting KP1 = -8, KI1 = -0.921 and KD1 = -6, while for 
controlling angular position, KP2 = -63, KI2 = -60 and KD2 = 
-11. All the PID1 and PID2 controller parameters must be 
tuned simultaneously to achieve the best responses as 
desired. 

B. Fuzzy Logic Controller (FLC) 

In this part, fuzzy logic controller has been applied for 
stabilization of the balancing robot as it is a very good 

choice for control strategy aims because of non-linear and 

complex mathematical model. The fuzzy logic control 

(FLC) offers a complete different approach which does not 

require a precise mathematical modeling of the system nor 

complex computations in fact it relies on the human 

u2(s) 

u1(s) xf(s) 

θf(s) 

θ(s) 

x(s) 
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Figure 4. Block diagram of the system with Fuzzy Logic Controller 

capability to understand the systems behavior.  Besides, this 

control technique is based on qualitative control rules.  This 

kind of approach depends on the basic physical properties of 

the systems, and it is potentially able to extend control 

capability even to those operating conditions where linear 

control techniques fail. As a consequence, the application of 

nonlinear control laws to face the nonlinear nature of 
balancing robot is easy since fuzzy control is based on 

heuristic rules.  In fact, the FLC approach is general in the 

sense that almost the same control rules can be applied to a 

non-linear balancing robot system. It is possible to give two 

inputs to the FLC as shown in Figure 3. The proposed 

defuzzification methods for the FLC are sugeno or 

mamdani. This is because both of these techniques are 

commonly used in designing the FLC. In order to 

implement 6 inputs to the controllers, the FLC were divided 

into three. As illustrated in Figure 3, the ‘FLC 1’controls the 
linear position on x-axis, ‘FLC 2’ controls the angular 
position y-axis and ‘FLC 3’ controls rotational angle on z-
axis of the balancing robot. The ‘FLC 1’ received the 
difference (error signal) between position of cart and set 

point position, x and the rate at which the error of position 

changes, Δx as the inputs while the ‘FLC 2’ received the 
angle error and rate of error of pendulum pole as the inputs 

while ‘FLC 3’ received the error and rate of error of 

rotational angle about z-axis. The control variables of all 

FLCs were summed together before converted into voltage 

signal. This signal is then supplied to the dc motors on both 

left and right sides of the balancing robot.  

TABLE II. FUZZY RULE MATRIX FOR CONTROL POSITION FLC 

 POSITION / ANGLE

D
E

L
PO

SI
T

IO
N

/
D

E
L

A
N

G
L

E
 

 NB NM NS ZE PS PM PB 

NB NB NM NS NS PS PM PB 

NM  NM NS NS PS PM  

NS   NS NS PS   

ZE NB NM NS ZE PS PM PB 

PS   NS PS PS   

PM  NM NS PS PS   

PB NB NM NS PS PS  PM 

 

Fig. 5 shows the membership function of FLC’s. The 
triangular shape is used to design the FLC.  
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Figure 5. Membership Function of FLC 

Table II shows the fuzzy rule matrix for controlling the 
position and fuzzy rule matrix for controlling the angle 
respectively. The total rules that should be given are 49 rules. 
However, there are only 35 rules that are applied to the 
controllers. In addition, the membership functions were 
evenly distributed. It is done so that the tuning process of the 
controller can be easily done. Since the FLC receive six 
inputs, the difference of the membership function between 
all the inputs is the range or the universe of discourse. 
According to the complexity of this balancing robot system, 
seven fuzzy subsets are needed to quantize each fuzzy 
variable for three FLCs as shown in Fig. 5. The same 
quantization has been applied to the all six inputs of the FLC. 

IV. RESULTS AND ANALYSIS 

In this section, the simulation results of the proposed 

controller, which is performed on the model of a two wheels 

balancing robot are presented. Comparative assessment of 

both control strategies to the system performance are also 

discussed in details in this section. 
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Figure. 6 Two-Wheel Balancing Robot Linear Position Response 
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Two wheels balancing robot systems with FLC and PID 

controller block diagram produced two responses, angular 

position θ and linear position x. As stated earlier, the initial 

value of the angular position θ of the balancing robot was 

set to 0.5 radians. It means that the initial condition of the 

robot is very unstable. Fig. 6 shows the comparison of the 

balancing robot linear position response between FLC and 

PID controller graphically. In this figure, the response for 

the linear position of the robot with PID controller is 

represented by straight line or blue color line and the 

response for the linear position of the robot with FLC 

controller is represented by dotted line or red color line. Fig. 

6 shows that both of the controllers are capable to control 

the linear position of the nonlinear two wheels balancing 

robot. Table III shows the summary of the performance 

characteristics of the balancing robot linear position 

between FLC and PID controller quantitatively. Based on 

the data tabulated in Table III, FLC has better settling time 

of 2.03 seconds while PID has slower settling time of 2.68 

seconds. An extra of 0.63 seconds is required for the PID 

controller balancing robot to balance itself. Similarly, for 

the maximum overshoot, FLC controller has the best 

overshoot which is the lowest overshoot between two 
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 Figure 7. Two-Wheels Balancing Robot Angular Position Response 

controllers. The maximum displacement of the balancing 

robot when FLC control signal applied to the system is 

0.72.meters while maximum displacement of the balancing 

robot when PID control signal applied to the system is 0.77 

meters. A distance of minimum 0.05 meters is required for 

the PID controller balancing robot to balance itself. Despite 

the large initial values for the displacement, the proposed 

FLC controller is able to bring itself to the vertical position. 

In term of the rise time, balancing robot with PID controller 

has the fastest rise time 0.37 seconds while balancing robot 

with FLC controller needs an extra time of 0.03 seconds to 

rise from 10% to the 90% of the initial value. In term of 

steady state error, PID controller had shown very 

outstanding performance by giving zero error at time 6 

seconds and more while FLC has 0.02 errors. The responses 

of the balancing robot linear position have acceptable 

overshoot and undershoot.  

Fig. 7 shows the balancing robot with FLC and PID 

controller angular position responses. It shows that the 

result has got similar pattern and not much different. The 

initial value of the balancing robot angular position is 0.5 

radians. The robot needs to balance itself by eliminating the 

angular position so that the body of the robot remains 

vertically straight in upright position. Fig. 7 shows that both 
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Figure 8. Input voltage signal for the left wheel 

TABLE III 

SUMMARY OF PERFORMANCE CHARACTERISTICS OF THE BALANCING 

ROBOT LINEAR POSITION BETWEEN FLC AND PID 

Time Response 

Spesification 
FLC 

 

PID 

 

Rise Time 0.4 sec 0.37sec 

   

Settling Time 2.03 sec 2.68 sec 

   

Steady state error 0.02 0.00 

   

Maximum  overshoot 0.72meter 0.77 meter 

 

TABLE IV 

SUMMARY OF PERFORMANCE CHARACTERISTICS OF THE BALANCING 

ROBOT ANGULAR POSITION BETWEEN FLC AND PID 

Time Response 

Spesification 
FLC 

 

PID 

 

Rise Time 0.37 sec 0.26sec 

   

Settling Time 1.93 sec 2.45 sec 

   

Steady state error 0.00 0.00 

   

Maximum  undershoot 0.45radians 0.38 radians 
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Figure 9. Input voltage signal for the right wheel 

of the FLC and PID controllers are capable of controlling 

the nonlinear unstable balancing robot. Table IV shows the 

summary of the performance characteristics of the balancing 

robot angular position between FLC and PID controller 

quantitatively. Based on the data tabulated in Table IV, FLC 

has the fastest settling time of 1.93 seconds while PID has 

the slowest settling time of 2.45 seconds. An extra time of 

0.52 seconds is required for the PID controller balancing 

robot to balance itself. In contrast, for the maximum 

undershoot, PID controller has the best undershoot which is 

the lowest undershoot between two controllers. The 

maximum angular displacement of the balancing robot when 

FLC control signal applied to the system is -0.45 radians 

while maximum angular displacement of the balancing 

robot when PID control signal applied to the system is -0.38 

radians. An extra angle of minimum 0.07 meters is required 

for the FLC controller balancing robot to balance itself. 

Despite the large initial values for the displacement, the 

proposed FLC controller is able to bring itself to the vertical 

position. In term of the rise time, balancing robot with PID 

controller has the fastest rise time 0.26 seconds while 

balancing robot with FLC controller needs an extra time of 

0.11 seconds to rise from 10% to the 90% of the initial 

value.  In term of steady state error, both of the controllers 

had shown very outstanding performance by giving zero 

error at time 4 seconds and more.  
The responses of the balancing robot angular position 

have acceptable overshoot and undershoot. Finally, the input 
voltages for the left and right wheels are shown in Fig. 8 and 
Fig. 9 respectively. The input signals for the system were set 
not to exceed allowable voltage range +20volts to -20 volts. 

V. CONCLUSION 

In this paper, two controllers such as FLC and PID are 
successfully designed. Based on the results and the analysis, 
a conclusion has been made that both of the control method, 
intelligent controller (FLC) and conventional controller 
(PID) are capable of controlling the nonlinear two wheels 
balancing robot angular and linear position. All the 
successfully designed controllers were compared. The 
responses of each controller were plotted in one window and 
are summarized in Table III and Table IV. Simulation results 
show that FLC controller has better performance compared 
to PID controller in controlling the nonlinear balancing robot 
system. It is obviously seen that by applying FLC, input 
voltage signals for the left and right sides of the wheels did 
not exceed allowable voltage range. Further improvement 
need to be done for both of the controllers. PID controller 
should be improved so that the maximum overshoot for the 
linear positions do not have very high range as required by 
the design criteria. On the other side, FLC controller can be 
improved so that it’s maximum undershoot and rise time for 
angular position might be reduced as faster as PID controller.  
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