THE MECHANICAL PROPERTIES OF GRAPHENE REINFORCED POLYSTYRENE

NUR ZAKIRAH BINTI KASNAN

BACHELOR OF CHEMICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

THE MECHANICAL PROPERTIES OF GRAPHENE REINFORCED POLYSTYRENE

NUR ZAKIRAH BINTI KASNAN

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

MAY 2017

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature	:
Name of main supervisor	: Dr MOHD SHAIFUL ZAIDI BIN MAT DESA
Position	: SENIOR LECTURER
Date	: 22 MAY 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree

Signature:Name: NUR ZAKIRAH BINTI KASNANID Number: KA13084Date: MAY 2017

Dedicated to My Parents, Dr Shaiful Zaidi, And all of my friends, Without whom none of my success would be possible

ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my supervisor, Dr. Mohd Shaiful Zaidi bin Mat Desa. You have been a brilliant mentor for me. I would like to thank you for your never ending support during my tenure as research student under your guidance, for giving insightful comments and suggestions of which without it, my research path would be a difficult one. Your advice on my research has been valuable.

A special thanks to my family. Words cannot express how grateful I am to my mother, father and my siblings for the love and support throughout these years. Your prayer for me was what sustained me thus far. I also wish to express my appreciation to my beloved friends Siti Zulaikha who's giving me a lot of information and tips throughout finishing the thesis and experiment.

I am also indebted to the Ministry of Higher Education and Universiti Malaysia Pahang for funding my study.

I would also like to thank all of my friends who supported me in writing, and motivate me to strive towards my goal. A heartfelt line of appreciation to all the staffs of Chemical Engineering and Natural Resources Faculty who helped me in many ways and made my stay in UMP pleasant and unforgettable. Last but not least, I am also thankful to some of the staffs of FIST who helped me in my experimental process.

TABLE OF CONTENTS

			Page
SUP	ERVISO	R'S DECLARATION	ii
STU	DENT'S	DECLARATION	iii
ACH	KNOWLI	EDGEMENT	V
ABS	TRACT		vi
ABS	TRAK		vii
TAE	BLE OF (CONTENTS	viii
LIST	F OF TA	BLES	X
LIST	Г OF FIG	GURES	xi
LIST	Г OF SYI	MBOLS	xii
LIST	Г OF AB	BREVIATIONS	xiii
CHA	APTER 1	INTRODUCTION	1
1.1	Backgro	ound of the Study	1
1.2	Motivat	tion	2
1.3	Problen	n Statement	3
1.4	Objectiv	ves	3
1.5	Scopes	of Study	4
CHA	APTER 2	LITERATURE REVIEW	5
2.1	Grapher	ne	5
2.2	Grapher	ne family nanomaterials (GFNs)	7
2.3	Polysty	rene (PS)	7
2.4	Polyme	r Nanocomposites	9
2.5	Polyme	r Nanocomposites preparation method	10
	2.5.1 2.5.2 2.5.3	Solution mixing Melt blending In-situ polymerization	10 11 14
2.6	Interfac	ial interaction of Graphene/Polystyrene Nanocomposites	15
2.7	Mechan	ical properties of graphene polymer nanocomposite	16
	2.7.1 2.7.2	Tensile strength, Young's modulus and stiffness Flexural properties	17 20
2.8	Charact	erization of Nanocomposites	22
	2.8.1	X-ray diffraction (XRD)	23
CHA	APTER 3	METHODOLOGY	26
3.1	Materia	ls	26

	3.1.1	Graphene	26
	3.1.2	Polystyrene	26
	3.1.3	Composition and designation of materials	26
3.2	Melt ble	nding preparation of GPS nanocomposite	27
	3.2.1	Pre-mixing	27
	3.2.2	Extrusion	27
	3.2.3	e	27
	3.2.4	Powdering	28
3.3	Material	properties characterization	28
	3.3.1	Mechanical testing	28
	3.3.2	Morphological study	29
CHA	APTER 4	RESULTS AND DISCUSSION	30
4.1	Effect of	f Graphene content on GPS nanocomposite	30
	4.1.1	Mechanical Properties	30
	4.1.2	Characterization properties	34
CHA	APTER 5	CONCLUSION AND RECOMMENDATION	35
5.1	Conclus	ion	35
5.2	Recomm	nendation	35
REF	ERENCE	CS	37

ix

LIST OF TABLES

Table No.	Title	Page
Table 2-1: The structural ar	nd properties of the polystyrene.	8
Table 3-1: composition of r	naterial	27

LIST OF FIGURES

Figure No.	Title	Page
Figure 2:1: Graphene structure		6
Figure 2:2: Schematic overview of various	applications of graphene.	6
Figure 2:3: Schematic diagram of solution	mixing method	11
Figure 2:4: The melt blending process. Re	eproduced from Pavlidou et al.	. (2008) with
permission from Elsevier.		12
Figure 2:5: Schematic diagram for in-situ p	olymerization technique.	15
Figure 2:6: (A) Representative stress-strain	curves of the pristine PS and na	anocomposite
films with different contents of graphene	e sheets. (B) Young's modulus	s and tensile
strength changes with increasing graphene	content.	19
Figure 2:7: (a) Young's modulus and tensi	le strength (b) Tensile stress vs	tensile strain
curves of graphene oxide-epoxy nanocomp	osites.(Anandan, et al., 2014)	20
Figure 2:8: (a) Mode I fracture toughness	s (KIC) plotted as a function of	of the weight
fraction of graphene in the epoxy matrix;	(b) Crack growth rate (da/dN)) plotted as a
function of the stress intensity factor an	mplitude (ΔK) for the pristing	e epoxy and
nanocomposite with 0.125 wt% of TRC	GO Re- printed with the perr	nission from
reference. 2010 Wiley-VCH Verlag GmbH	& Co. KGaA, Weinheim	22
Figure 2:9: Typical XRD patterns for org	anically modified layered silication	ates (OMLS)
and various types of nanocomposites (Ray a	and Okamoto, 2003	24
Figure 4:1: Effect of graphene content to the	e energy	31
Figure 4:2: Effect of Graphene content on	the tensile strength and Young'	's modulus of
GPS nanocomposite		32
Figure 4:3: Effect of Graphene content on	flexural strength and elongatio	n to break of
GPS nanocomposite		33
Figure 4:4: Effect of Graphene content on	Flexural Modulus of GPS nanoc	composite 33
Figure 4:5: XRD of PS neat and GPS nanoc	composite at different Graphene	content 34

LIST OF SYMBOLS

2D	Two dimensional
D	Diameter
d	The spacing between diffraction lattice planes
EY	Elastic Modulus
Kic	Fracture toughness
L	Length
МРа	mega pascal
n	Positive integer
Rpm	Round per minute
λ	The wavelength of incident
π – π stacking	pi-pi bonding
θ	The measured diffraction angle

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
CNT	Carbon NanoTube
CVD	Chemical Vapour Deposition
FESEM	Field Emission Scanning Electron Microscopy
GFNs	Graphene Family Nanocomposites
GO	Graphene Oxide
GPS	Graphene Polystyrene Nanocomposite
IUPAC	International Union of Pure and Applied Chemistry
PAA	Polyacrylic acid
PAN	Polyacrylonitrile
PE	Polyethylene
PE PMMA	Polyethylene Polymethylmethacrylate
PMMA	Polymethylmethacrylate
PMMA PS	Polymethylmethacrylate Polystyrene
PMMA PS PVA	Polymethylmethacrylate Polystyrene Polyvinyl alcohol
PMMA PS PVA PVF	Polymethylmethacrylate Polystyrene Polyvinyl alcohol Polyvinyl fluoride
PMMA PS PVA PVF rGO	Polymethylmethacrylate Polystyrene Polyvinyl alcohol Polyvinyl fluoride Reduced Graphene Oxide
PMMA PS PVA PVF rGO SAN	Polymethylmethacrylate Polystyrene Polyvinyl alcohol Polyvinyl fluoride Reduced Graphene Oxide Styrene Acrylonitrile