POTENTIAL OF CELLULOSE TRI ACETATE (CTA) MEMBRANE FOR
SEAWATER TREATMENT BY FORWARD OSMOSIS

CHIANG XIN YI

BACHELOR OF CHEMICAL ENGINEERING
UNIVERSITI MALAYSIA PAHANG
POTENTIAL OF CELLULOSE TRI ACETATE (CTA) MEMBRANE FOR SEAWATER TREATMENT BY FORWARD OSMOSIS

CHIANG XIN YI

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

JANUARY 2017
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature:
Name of main supervisor: PM DR. MAZRUL NIZAM BIN ABU SEMAN
Position: LECTURER
Date: JANUARY 2017
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : CHIANG XIN YI
ID Number : KA13114
Date : JANUARY 2017
DEDICATION

I would like to dedicate this research work to my family and my research supervisor, PM Dr. Mazrul Nizam bin Abu Seman for their guidance and support. Besides that, I dedicate this research work to University Malaysia Pahang for providing me the opportunity in performing a research study as an undergraduate chemical engineering student.
ACKNOWLEDGEMENT

First of all, I would like to express my greatest gratitude and sincere appreciation to my supervisor PM Dr. Mazrul Nizam bin Abu Seman, for his invaluable guidance, empowering support and stimulating suggestions throughout the preparation and completion of this partial thesis. Besides that, I would also like to thank the laboratory technicians of University Malaysia Pahang for their generosity in guiding and providing a hazard-free research work place. I would also like to thank the relevant authorities of Faculty of Chemical Engineering and Natural Resources (FKKSA) in University Malaysia Pahang for providing me with this precious chance and experience in performing an undergraduate research study. Last but not least, I am grateful to my family members for their love and support.
TABLE OF CONTENTS

SUPERVISOR’S DECLARATION .. IV
STUDENT’S DECLARATION .. V
DEDICATION .. VI
ACKNOWLEDGEMENT .. VII
ABSTRACT .. VIII
ABSTRAK .. IX
TABLE OF CONTENTS .. X
LIST OF TABLES .. XIII
LIST OF FIGURES ... XIV
LIST OF SYMBOL ... XVI
LIST OF ABBREVIATIONS .. XVII

1. INTRODUCTION .. 1
 1.1 Background .. 1
 1.2 Motivation ... 1
 1.3 Problem statement .. 2
 1.4 Objective .. 2
 1.5 Scope of research .. 3
 1.6 Organisation of this thesis .. 3

2. LITERATURE REVIEW .. 5
 2.1 Introduction .. 5
 2.2 Reverse Osmosis (RO) ... 5
 2.2.1 Fundamental of reverse osmosis 5
 2.2.2 Advantages of reverse osmosis 7
 2.2.3 Applications of reverse osmosis 7
 2.3 Forward osmosis (FO) ... 8
2.3.1 Fundamental of forward osmosis .. 8
2.3.2 Advantages of forward osmosis .. 9
2.3.3 Applications of forward osmosis .. 9
2.4 Forward osmosis membrane .. 11
 2.4.1 Thin film composite (TFC) polyamide (PA) based membranes
 (Interfacial Polymerization) .. 12
 2.4.2 Cellulose Triacetate (CTA) membrane (Phase Inversion) 13
2.5 Draw solutions .. 14
2.6 Selection of sodium sulphate (Na\textsubscript{2}SO\textsubscript{4}) as draw solution 17
2.7 Challenges of forward osmosis ... 17
 2.7.1 Concentration polarization ... 17
 2.7.2 Membrane fouling ... 19
 2.7.3 Reverse solute diffusion .. 19
2.8 Summary ... 20

3. MATERIALS AND METHODS .. 21
 3.1 Overview ... 21
 3.2 Chemicals ... 21
 3.3 Preparation of draw solutions (Na\textsubscript{2}SO\textsubscript{4}) 22
 3.4 Preparation of synthetic sea water .. 22
 3.5 Permeation module ... 22
 3.6 Methodology ... 22
 3.6.1 Characterization of CTA membrane performance 22
 3.6.2 Characterization of CTA membrane morphology 24
 3.7 Treatment on real seawater .. 24
 3.8 Summary ... 25

4. RESULTS AND DISCUSSION .. 26
 4.1 Overview ... 26
LIST OF TABLES

Table 2-1: Comparison between RO and FO process (Liu et al, 2009)10
Table 2-2: Comparison between TFC and CTA membrane. ...14
Table 2-3: Overview of draw solutions used for FO process in the last two decades. (Linares et al. 2014) ..15
Table 4-1: Water flux for draw solution in different concentrations and pH 3, 7 and 9 at active layer face draw solution (AL-DS). ...28
Table 4-2: Water flux for draw solution in different concentrations and pH 3, 7 and 9 at active layer face feed solution (AL-FS). ...29
Table 4-3: Reverse salt diffusion for draw solution in different concentrations and pH 3, 7 and 9 at active layer face draw solution (AL-DS). ...33
Table 4-4: Reverse salt diffusion for draw solution in different concentrations and pH 3, 7 and 9 at active layer face draw solution (AL-FS). ...33
Table 4-5: Comparison between water flux and reverse salt flux for synthetic and real seawater ...36
Table A-1: Table of change in feed solution volume with pH 3 for different concentration of draw solution at active layer face draw solution ...46
Table A-2: Table of change in feed solution volume with pH 7 for different concentration of draw solutions at active layer face draw solution46
Table A-3: Table of change in feed solution volume with pH 9 for different concentration of draw solutions at active layer face draw solution ...47
Table A-4: Table of change in feed solution volume with pH 3 for different concentration of draw solutions at active layer face feed solution ...48
Table A-5: Table of change in feed solution volume with pH 7 for different concentration of draw solutions at active layer face feed solution ...48
Table A-6: Table of change in feed solution volume with pH 9 for different concentration of draw solutions at active layer face feed solution ...49
Table A-7: Table of change in feed solution volume with pH 7 for concentration of 1.75M draw solutions at active layer face feed solution ...49
LIST OF FIGURES

Figure 2-1: Schematic diagram of RO process. .. 7
Figure 2-2: Schematic diagram of FO process. .. 9
Figure 2-3: Comparison between forward osmosis and reverse osmosis- Adapted from (Cath et al. 2006) ... 11
Figure 2-4: Schematic diagram for thin film composite membrane. 13
Figure 2-5: Schematic diagram for asymmetric composite membrane. 14
Figure 2-6: Schematic diagram of membrane orientation in FO and PRO mode. 19
Figure 3-1: Overall research flow. ... 21
Figure 3-2: Schematic diagram for bench-scale of forward osmosis (Achilin et al., 2010). ... 22
Figure 3-3: Lab scale unit ... 23
Figure 4-1: FESEM images of CTA membrane (a) at active layer before the FO process, (b) at active layer after the FO process, (c) at support layer before the FO process, (d) at support layer after the FO process ... 27
Figure 4-2: Water flux for different concentrations in orientation AL-DS and AL-FS at pH 3 ... 29
Figure 4-3: Water flux for different concentrations in orientation AL-DS and AL-FS at pH 7 ... 29
Figure 4-4: Water flux for different concentrations in orientation AL-DS and AL-FS at pH 9 ... 30
Figure 4-5: Water flux at pH 3, 7 and 9 in different concentration of draw solution in AL-DS orientation ... 32
Figure 4-6: Reverse salt flux for different concentrations in orientation AL-DS and AL-FS at pH 3 ... 34
Figure 4-7: Reverse salt flux for different concentrations in orientation AL-DS and AL-FS at pH 7 ... 34
Figure 4-8: Reverse salt flux for different concentrations in orientation AL-DS and AL-FS at pH 9 ... 34
Figure 4-9: Reverse salt flux at pH 3, 7 and 9 in different concentration of draw solution ... 35
Figure 4-10: Comparison of water flux for synthetic and real seawater 36
Figure 4-11: Comparison of reverse salt flux for synthetic and real seawater 37
Figure A-1: Calibration curve of conductivity against concentration of NaCl solution.
LIST OF SYMBOL

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_w</td>
<td>Water flux</td>
</tr>
<tr>
<td>A</td>
<td>Water permeability</td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
</tr>
<tr>
<td>J_s</td>
<td>Reverse flux of the solute</td>
</tr>
<tr>
<td>C_f</td>
<td>Final feed solution concentration</td>
</tr>
<tr>
<td>C_i</td>
<td>Initial feed solution concentration</td>
</tr>
<tr>
<td>ΔV</td>
<td>Volume of water which permeates through the membrane</td>
</tr>
<tr>
<td>A</td>
<td>Effective area of the membrane</td>
</tr>
<tr>
<td>Δt</td>
<td>Time taken for water permeation in minutes</td>
</tr>
<tr>
<td>R</td>
<td>NaCl rejection</td>
</tr>
<tr>
<td>C_p</td>
<td>Concentration of NaCl in draw solution</td>
</tr>
<tr>
<td>C_F</td>
<td>Concentration of NaCl in feed solution</td>
</tr>
</tbody>
</table>

Greek

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Reflection coefficient</td>
</tr>
<tr>
<td>$\Delta \pi$</td>
<td>Osmotic pressure difference across the membrane</td>
</tr>
<tr>
<td>π</td>
<td>Osmotic pressure</td>
</tr>
<tr>
<td>π_D</td>
<td>Bulk osmotic pressure of the draw solution</td>
</tr>
<tr>
<td>π_F</td>
<td>Bulk osmotic pressure of the feed solution</td>
</tr>
<tr>
<td>η</td>
<td>Viscosity of the polyelectrolyte solution</td>
</tr>
<tr>
<td>η_r</td>
<td>Relative viscosity</td>
</tr>
<tr>
<td>η_0</td>
<td>Viscosity of the ionized water</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CTA</td>
<td>Cellulose Tri Acetate</td>
</tr>
<tr>
<td>DS</td>
<td>Draw solution</td>
</tr>
<tr>
<td>ECP</td>
<td>External concentration polarization</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>FO</td>
<td>Forward osmosis</td>
</tr>
<tr>
<td>FS</td>
<td>Feed solution</td>
</tr>
<tr>
<td>HTI</td>
<td>Hydration Technology Inc.</td>
</tr>
<tr>
<td>ICP</td>
<td>Internal concentration polarization</td>
</tr>
<tr>
<td>IP</td>
<td>Interfacial polymerization</td>
</tr>
<tr>
<td>MD</td>
<td>Membrane distillation</td>
</tr>
<tr>
<td>NF</td>
<td>Nanofiltration</td>
</tr>
<tr>
<td>OER</td>
<td>Osmotic energy recovery</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse osmosis</td>
</tr>
<tr>
<td>TFC</td>
<td>Thin film composite</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
</tbody>
</table>