SULFIDE ELIMINATION BY USING AN AEROBIC SEQUENCING BATCH REACTOR.

NISSA DAYANAH BINTI MOHD ANUAR

BACHELOR OF CHEMICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

SULFIDE ELIMINATION BY USING AN AEROBIC SEQUENCING BATCH REACTOR.

NISSA DAYANAH BINTI MOHD ANUAR

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

DISEMBER 2016

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature	:
Name of main supervisor	: DR. ZULKIFLY JEMAAT
Position	: SENIOR LECTURER
Date	: 10 DISEMBER 2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree

Signature	:
Name	: NISSA DAYANAH BINTI MOHD ANUAR
ID Number	: KA 13082
Date	: JANUARY 2016

DEDICATION

I dedicate this to my family and friends. Without their support and love, this work would not have been possible to be completed.

ACKNOWLEDGEMENT

In the name of God, the most gracious and the most merciful.

First and foremost, my most gratitude to Allah S.W.T, the Almighty for giving me the great opportunity to enhance my knowledge and to complete my research. May the peace and blessing be upon prophet Muhammad (SAW). I am grateful and would like to express my sincere gratitude to my supervisor, Dr Zulkifly bin Jemaat for his germinal ideas, invaluable guidance, continuous encouragement and constant support in making this research possible. He has always impressed me with his conviction for science.

I acknowledgment my sincere indebtedness and appreciation to my family and friends for their love, dream and support throughout my life. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals. I would like to acknowledge their comments and suggestions, which was crucial for the successful completion of this research.

TABLE OF CONTENTS

			Page
SUP	ERVISO	R'S DECLARATION	ii
STU	DENT'S	DECLARATION	iii
ACK	NOWLE	DGEMENT	v
ABS	TRACT		vi
ABS	TRAK		vii
TAB	LE OF C	ONTENTS	viii
LIST	OF TAE	BLES	X
LIST	r of fig	URES	xi
LIST	f OF ABI	BREVIATIONS	1
CHA	PTER 1	INTRODUCTION	2
1.1	Backgro	ound of the Study	2
1.2	Motivat	ion and Problem Statement	4
1.3	Objectiv	/es	5
1.4	Scopes of	of Study	5
CHA	PTER 2	LITERATURE REVIEW	6
2.1	Introduc	tion	6
2.2	Biologic	cal Treatment	6
	2.2.1 2.2.2 2.2.3	Aerobic digestion Anaerobic digestion Comparison of Aerobic and Anaerobic Treatment	7 8 9
2.3	Petroche	emical Industry	10
2.4	Sulfide		12
2.5	Sequenc	ing Batch Reactor (SBR)	16
2.6	Summar	ТУ	18
CHA	PTER 3	METHODOLOGY	19
3.1	Introduc	tion	19
3.2	Chemica	als and Synthetic Wastewater	19
3.3	Methode	ology	20
	3.3.1 3.3.2 3.3.3 3.3.4	Experiment Set-up Sulfide Concentration Analysis COD Analysis: Open Reflux Method Total Suspended Solid and Volatile Suspended Solid Analysis	20 22 23 24
CHA	PTER 4	RESULTS AND DISCUSSION	26
4.1	Introduc	tion	26

REFI	ERENCES	33
5.2	Recommendation	32
5.1	Conclusion	32
CHA	PTER 5 CONCLUSION AND RECOMMENDATION	32
4.4	Total Suspended Solid and Volatile Suspended Solid analysis.	30
4.3	COD Removal	29
4.2	Sulfide Removal	26

LIST OF TABLES

Table No.	Title	Page
		U

Table 1.1: The Acceptable Condition for Discharge of Industrial Effluent or MixedEffluent of Standard A and B; Environmental Quality (Industrial Effluent) Regulations20093

Table 2.1: Basic Term in Biological Treatment	6
Table 2.2: The Comparison between Aerobic and Anaerobic Digestion	9
Table 2.3: Wide Range of Petrochemical are Produced in Malaysia	10
Table 2.4: Pollution Characteristics of Petrochemical Waster	11
Table 2.5: The Advantages and Disadvantages of Different Method Used.	14
Table 2.6: The Advantages and Disadvantages of Sequencing Batch Reactor (SBR).	17
Table 3.1: Procedures of Sulfide Concentration Analysis	22
Table 3.2: Procedures of COD Analysis	23
Table 3.3: Procedures of Total Suspended Solid and Volatile Suspended Solid Analy	ysis
	24
Table 4.1: Comparison of Sulfide Removal from Previous Studies	28

LIST OF FIGURES

Figure No.	Title	Page
Figure 2.1: Typical Activate	d Sludge Process. (Department of Er	vironmental Quality
2011)		8
Figure 2.2: pH Effect on Sulf	ide Emitation	13
Figure 2.3: Sequencing Batch	Reactor (SBR) Systems	16
Figure 3.1: Sequencing Batch	Reactor (SBR).	20
Figure 3.2: The flow diagram	n of the experiment for the eliminatio	n of sulfide by using
aerobic activated sludge.		21
Figure 4.1: Sulfide profile du	ring experimental period.	27
Figure 4.2: COD profile durin	ng experimental period.	30
Figure 4.3: Total suspended	solid and volatile suspended slid pr	rofile in the effluent
during the study period.		31

LIST OF ABBREVIATIONS

BOD	Biological Oxygen Demand
COD	Chemical Oxygen Demand
CSTR	Continous Stirred Tank Reactor
EGSB	Expended Granular Sludge Bed
EQA	Effluent Quality Act
H_2S	Hydrogen Sulfide
HS⁻	anionic Sulfide
POME	Palm Oil Mill Effluent
pН	Power Of Hydrogen
S^0	Sulfur
S^{2-}	Sulfide Ion
SO_{3}^{-2}	Thiosulfate
SBR	Sequencing Batch Reactor
TSS	Total Suspended Solid
TVS	
	Total Volatile Solid
UASB	Total Volatile Solid Up-Flow Anaerobic Sludge Blanket Reactor
UASB VSS	