# SYNTHESIS AND CHARACTERIZATION OF SAMARIUM-COBALT-TRIOXIDE PEROVSKITE CATALYST FOR THE KINETIC AND LONGEVITY STUDIES OF METHANE DRY REFORMING

OSAZUWA OSARIEME UYI

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG



### SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy of Engineering in Chemical Engineering.

(Supervisor's Signature)

Full Name: CHENG CHIN KUIPosition: ASSOCIATE PROFESSORDate:



### **STUDENT'S DECLARATION**

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : OSAZUWA OSARIEME UYI ID Number : PKC 15017 Date :

### SYNTHESIS AND CHARACTERIZATION OF SAMARIUM-COBALT-TRIOXIDE PEROVSKITE CATALYST FOR THE KINETIC AND LONGEVITY STUDIES OF METHANE DRY REFORMING

#### OSAZUWA OSARIEME UYI

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy of Engineering

Faculty of Chemical and Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

OCTOBER 2017

#### ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my indefatigable supervisor and deputy dean, Associate Professor Dr. Cheng Chin Kui for the continuous support of my Ph.D. study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in my research and writing of this thesis. I could not have imagined having a better supervisor and mentor for my Ph.D. study.

Besides my advisor, I would like to thank the rest of my research group: Dr. Bamidele Victor Ayodele, Dr. Ng Kim Hoong, Dr. Nor Shahirah Mohd Nasir, Soh Jiah Chee, Chong Soo Ling, and Ashwin Charles Benedict, for their encouragement, stimulating discussions, insightful comments, and hard questions. I want to also appreciate the management of Centre of Excellence for Advanced Fluid Flow (CARIFF) for granting me permission to use the laboratory in the course of my experimental and analytical study. I want to record my appreciation to Universiti Malaysia Pahang (UMP) for the GRS scholarship and PGRS grant. I also want to thank the Institute of Postgraduate Studies (IPS), for their readiness to attend to issues and questions during my study.

My sincere gratitude also goes to my wife Mrs. Isoken Thelma Osazuwa, my parents Mr. & Mrs F.O Osazuwa (KSM), my parents-in-law Honorable & Mrs A.E Asemota, and my siblings Dr. Mrs Edoghogho Lawal, Dr. Nosakhare Osazuwa, Dr. Enoma Osazuwa for offering me the moral and spiritual support needed to complete the study.

Last but not the least; I would like to thank the Almighty God for his mercies, favour, protection and guidance, all through the duration of my study.

# TABLE OF CONTENT

| DEC  | LARATION                                                               |      |
|------|------------------------------------------------------------------------|------|
| TIT  | LE PAGE                                                                |      |
| ACF  | NOWLEDGEMENTS                                                          | ii   |
| ABS  | TRAK                                                                   | iii  |
| ABS  | TRACT                                                                  | iv   |
| TAB  | LE OF CONTENT                                                          | v    |
| LIST | Γ OF TABLES                                                            | X    |
| LIST | r of figures                                                           | xi   |
| LIST | <b>F OF SYMBOLS</b>                                                    | xvi  |
| LIST | <b>T OF ABBREVIATIONS</b>                                              | xvii |
| CHA  | <b>APTER 1 INTRODUCTION</b>                                            | 1    |
| 1.1  | Background of the Research                                             | 1    |
| 1.2  | Problem Statement                                                      | 4    |
| 1.3  | Objectives and Scope of research                                       | 5    |
| 1.4  | Thesis organization                                                    | 7    |
| CHA  | <b>APTER 2 LITERATURE REVIEW</b>                                       | 8    |
| 2.1  | Introduction                                                           | 8    |
| 2.2  | Methane reforming                                                      | 8    |
| 2.3  | Supported metal catalyst for dry (CO <sub>2</sub> ) reforming reaction | 11   |
| 2.4  | Perovskite for dry (CO <sub>2</sub> ) reforming of CH <sub>4</sub>     | 15   |
| 2.5  | Synthesis of Perovskite catalyst                                       | 23   |

| 2.6 | Catalyst deactivation and longevity in CO <sub>2</sub> reforming of CH <sub>4</sub> | 24 |
|-----|-------------------------------------------------------------------------------------|----|
| 2.7 | Kinetics of CO <sub>2</sub> reforming of CH <sub>4</sub>                            | 28 |
| 2.8 | Catalyst characterization                                                           | 34 |
|     | 2.8.1 Physical properties                                                           | 35 |
|     | 2.8.2 Chemical properties                                                           | 37 |
| 2.9 | Summary                                                                             | 41 |
| СНА | APTER 3 MATERIALS AND METHOD                                                        | 43 |
| 3.1 | Introduction                                                                        | 43 |
| 3.2 | Goldschmidt tolerance factor calculation                                            | 44 |
| 3.3 | Catalyst preparation                                                                | 47 |
|     | 3.3.1 Materials                                                                     | 47 |
| 3.4 | Catalytic test                                                                      | 51 |
|     | 3.4.1 Materials for catalytic reaction                                              | 51 |
|     | 3.4.2 Procedure for catalytic test                                                  | 51 |
| СНА | APTER 4 RESULTS AND DISCUSSION                                                      | 56 |
| 4.1 | Introduction                                                                        | 56 |
| 4.2 | Characterization of Catalyst                                                        | 56 |
|     | 4.2.1 Temperature Programmed Calcination (TPC)                                      | 56 |
|     | 4.2.2 N <sub>2</sub> Physisorption                                                  | 58 |
|     | 4.2.3 Scanning Electron Microscopy (SEM)                                            | 60 |
|     | 4.2.4 Field emission scanning electron microscopy (FESEM)                           | 60 |
|     | 4.2.5 Energy dispersive X-ray (EDX)                                                 | 61 |
|     | 4.2.6 Transmission electron microscopy (TEM)                                        | 62 |
|     | 4.2.7 X-ray diffraction (XRD)                                                       | 63 |

|     | 4.2.8    | X-ray photoelectron spectroscopy (XPS)                                                    | 65  |
|-----|----------|-------------------------------------------------------------------------------------------|-----|
|     | 4.2.9    | H <sub>2</sub> -Temperature programmed reduction (H <sub>2</sub> -TPR)                    | 68  |
|     | 4.2.10   | CO <sub>2</sub> -Temperature Programmed Desorption (CO <sub>2</sub> -TPD)                 | 70  |
|     | 4.2.11   | NH <sub>3</sub> -Temperature Programmed Desorption (NH <sub>3</sub> -TPD)                 | 70  |
|     | 4.2.12   | Fourier transform infrared spectroscopy (FTIR)                                            | 71  |
| 4.3 | Prelim   | inary reaction studies                                                                    | 72  |
|     | 4.3.1    | Mass and heat transfer effects                                                            | 72  |
|     | 4.3.2    | Effects of temperature on conversion and yield                                            | 74  |
|     | 4.3.3    | Performance assessments of Sm <sub>2</sub> O <sub>3</sub> , CoO and SmCoO <sub>3</sub>    |     |
|     |          | perovskite                                                                                | 79  |
| 4.4 | Reaction | on studies                                                                                | 82  |
|     | 4.4.1    | Effects of reactants feed ratio over SmCoO <sub>3</sub> perovskite                        | 82  |
|     | 4.4.2    | Effects of reactants partial pressure over SmCoO <sub>3</sub> perovskite                  |     |
|     |          | catalyst                                                                                  | 86  |
| 4.5 | Kineti   | cs studies                                                                                | 95  |
|     | 4.5.1    | Effects of reactants partial pressure over SmCoO <sub>3</sub> perovskite                  |     |
|     |          | catalyst                                                                                  | 95  |
| 4.6 | Charac   | cterization of SmCoO <sub>3</sub> perovskite post activity and kinetics study             | 101 |
|     | 4.6.1    | Temperature programmed oxidation (TPO)                                                    | 101 |
|     | 4.6.2    | Scanning Electron Microscopy (SEM)                                                        | 102 |
|     | 4.6.3    | Energy dispersive X-ray                                                                   | 103 |
|     | 4.6.4    | Transmission electron microscopy (TEM)                                                    | 104 |
|     | 4.6.5    | X-ray diffraction                                                                         | 105 |
| 4.7 | Kineti   | c modelling                                                                               | 106 |
|     | 4.7.1    | Power law model                                                                           | 106 |
|     | 4.7.2    | Mechanistic study of CO <sub>2</sub> reforming of CH <sub>4</sub> over SmCoO <sub>3</sub> |     |
|     |          | perovskite catalyst                                                                       | 108 |

|              | 4.7.3                                                                  | Langmuir - Hinshelwood modelling                            | 112 |
|--------------|------------------------------------------------------------------------|-------------------------------------------------------------|-----|
| 4.8          | Longe                                                                  | vity study of the SmCoO <sub>3</sub> perovskite catalyst    | 116 |
| 4.9          | Characterization of SmCoO <sub>3</sub> perovskite post longevity study |                                                             | 122 |
|              | 4.9.1                                                                  | Field emission scanning microscope (FESEM)                  | 122 |
|              | 4.9.2                                                                  | Energy Dispersive X-ray (EDX)                               | 125 |
|              | 4.9.3                                                                  | Transmission electron microscopy (TEM)                      | 128 |
|              | 4.9.4                                                                  | Textural properties                                         | 131 |
|              | 4.9.5                                                                  | X-ray diffraction (XRD)                                     | 132 |
|              | 4.9.6                                                                  | Fourier transform infra-red spectroscopy (FTIR)             | 134 |
|              | 4.9.7                                                                  | X-ray photoelectron spectroscopy (XPS)                      | 136 |
|              | 4.9.8                                                                  | Temperature programmed oxidation (TPO) and Kissinger        |     |
|              |                                                                        | modelling of the oxidation of carbon in the spent $SmCoO_3$ | 100 |
|              |                                                                        | catalyst.                                                   | 138 |
| CHAH         | PTER 5                                                                 | CONCLUSIONS AND RECOMMENDATIONS                             | 142 |
| 5.1          | Introdu                                                                | uction                                                      | 142 |
| 5.2          | Overal                                                                 | ll outcomes                                                 | 142 |
| 5.3          | Recon                                                                  | nmendations                                                 | 145 |
| REFE         | RENC                                                                   | ES                                                          | 147 |
| APPE<br>PROC | NDIX A                                                                 | A LIST OF PUBLICATIONS AND CONFERENCE<br>NGS                | 162 |
| APPE         | NDIX I                                                                 | B CALIBRATION OF THE GC- TCD                                | 164 |
| APPE<br>PREP | NDIX (<br>ARAT)                                                        | C CALCULATION INVOIVED IN PEROVSKITE<br>ION                 | 170 |
| APPE         | NDIX I                                                                 | D CALCULATION OF PERCENTAGE MOLE INPUT                      | 174 |
| APPE         | NDIX I                                                                 | E CALCULATION OF GAS HOURLY SPACE VELOCITY                  | 175 |

| APPENDIX F CALCULATION OF THE CRYSTALLINE PARTICLE                                   |     |
|--------------------------------------------------------------------------------------|-----|
| SIZE USING THE LINEARIZED WILLIAMSON – HALL MODEL                                    | 176 |
|                                                                                      |     |
| APPENDIX G CALCULATION OF THE GOLDSCHMIDT                                            |     |
| TOLERANCE FACTOR FOR SmCoO <sub>3</sub> PEROVSKITE                                   | 178 |
|                                                                                      |     |
| APPENDIX H REACTANT CONVERSION AND PRODUCT YIELD                                     |     |
| CALCULATION FOR CO <sub>2</sub> REFORMING OF CH <sub>4</sub> OVER SmCoO <sub>3</sub> |     |
| PEROVSKITE                                                                           | 179 |
|                                                                                      |     |
| APPENDIX I REACTION RATE CALCULATION FOR CO <sub>2</sub>                             |     |
| <b>REFORMING OF CH<sub>4</sub> OVER SmCoO<sub>3</sub> PEROVSKITE</b>                 | 181 |
|                                                                                      |     |

# LIST OF TABLES

| Table 2.1  | kinetic data for previous catalyst used in methane dry reforming.                                                | 34  |
|------------|------------------------------------------------------------------------------------------------------------------|-----|
| Table 3.1  | Tolerance factor computation using 'B' site ionic radius ( $R_B$ ) as cobalt.                                    | 46  |
| Table 3.2  | Material for SmCoO <sub>3</sub> perovskite catalyst.                                                             | 47  |
| Table 3.3  | Laboratory apparatus and equipment for SmCoO <sub>3</sub> perovskite catalyst.                                   | 48  |
| Table 4.1  | Textural properties of calcined SmCoO <sub>3</sub> perovskite catalyst.                                          | 60  |
| Table 4.2  | XPS binding energy parameters of SmCoO <sub>3</sub> perovskite.                                                  | 66  |
| Table 4.3  | Criteria confirming the non-existence of transport limiting resistance.                                          | 73  |
| Table 4.4  | Kinetics parameters obtained from the power law model.                                                           | 107 |
| Table 4.5  | Comparison of activation energy obtained from power law with previous studies.                                   | 108 |
| Table 4.6  | Kinetics parameters obtained from Langmuir-Hinshelwood model.                                                    | 113 |
| Table 4.7  | Comparison of $SmCoO_3$ perovskite catalyst kinetic parameters with similar catalyst reported for dry reforming. | 115 |
| Table 4.8  | Textural properties from the longevity study of spent $SmCoO_3$ peorvkite catalyst.                              | 132 |
| Table 4.9  | Chemical state and binding energy from the longevity study of spent SmCoO <sub>3</sub> peorvkite catalyst.       | 138 |
| Table 4.10 | Activation energy for the oxidation of carbon in the spent SmCoO <sub>3</sub> perovskite catalyst.               | 141 |
| Table B.1  | Operating conditions for GC-TCD-FID.                                                                             | 164 |
| Table B.2  | Quantitative standard gas (H <sub>2</sub> ) analysis                                                             | 167 |
| Table B.3  | Quantitative standard gas (CO <sub>2</sub> , CH <sub>4</sub> and CO) analysis                                    | 167 |
| Table C.4  | Molecular weight of compounds used.                                                                              | 170 |

# LIST OF FIGURES

| Figure 2.1 The | e structure of a perovskite showing its cubic nature (Chroneos,<br>Vovk, Goulatis, & Goulatis, 2010)               | 15 |
|----------------|--------------------------------------------------------------------------------------------------------------------|----|
| Figure 3.1     | A process flow diagram of the methodology                                                                          | 44 |
| Figure 3.2     | Schematic representation of the $SmCoO_3$ perovskite synthesis using the sol – gel citrate method.                 | 50 |
| Figure 3.3     | Schematic diagram of the experimental rig setup for $CO_2$ reforming of $CH_4$ over $SmCoO_3$ perovskite catalyst. | 52 |
| Figure 4.1     | Thermal profile (TPC) of the uncalcined powder catalyst.                                                           | 57 |
| Figure 4.2     | $N_2$ physisorption isotherm of SmCoO <sub>3</sub> perovskite.                                                     | 58 |
| Figure 4.3     | Pore size distributuion of SmCoO <sub>3</sub> perovskite.                                                          | 59 |
| Figure 4.4     | Scanning electron microscopy of the fresh $SmCoO_3$ perovskite. magnification (× 7000).                            | 60 |
| Figure 4.5     | Field Emission Scanning Electron Microscopy of the fresh<br>SmCoO <sub>3</sub> perovskite. Magnification (× 30000) | 61 |
| Figure 4.6     | EDX spectra showing the elemental composition of the fresh $SmCoO_3$ perovskite.                                   | 62 |
| Figure 4.7     | Transmission electron microscopy showing the fresh $SmCoO_3$ perovskite (magnification × 20000).                   | 63 |
| Figure 4.8     | XRD of the fresh SmCoO <sub>3</sub> perovskite.                                                                    | 64 |
| Figure 4.9     | Williamson – Hall plot of the fresh SmCoO <sub>3</sub> perovskite catalyst.                                        | 65 |
| Figure 4.10    | XPS wide scan spectra of the fresh SmCoO <sub>3</sub> perovskite.                                                  | 66 |
| Figure 4.11    | XPS narrow scan spectra of Sm 3d <sub>5</sub> peak.                                                                | 67 |
| Figure 4.12    | XPS narrow scan spectra of O 1s peaks.                                                                             | 67 |
| Figure 4.13    | XPS narrow scan spectra of Co 2p <sub>3</sub> peaks.                                                               | 68 |
| Figure 4.14    | H <sub>2</sub> - TPR of the fresh SmCoO <sub>3</sub> perovskite.                                                   | 69 |
| Figure 4.15    | CO <sub>2</sub> - TPD of the fresh SmCoO <sub>3</sub> perovskite                                                   | 70 |
| igure 4.16     | NH <sub>3</sub> - TPD of the fresh SmCoO <sub>3</sub> perovskite catalyst                                          | 71 |
| Figure 4.17    | FTIR spectroscopy of the fresh SmCoO <sub>3</sub> perovskite                                                       | 72 |
| Figure 4.18    | Effects of temperature on reactants conversion over SmCoO <sub>3</sub> perovskite catalyst.                        | 75 |
| Figure 4.19    | Effects of temperature on yield over SmCoO <sub>3</sub> perovskite catalyst.                                       | 76 |
| Figure 4.20    | Effects of temperature on syngas ratio over SmCoO <sub>3</sub> perovskite catalyst.                                | 77 |
| Figure 4.21    | Effects of temperature on consumption rates over SmCoO <sub>3</sub> perovskite catalyst.                           | 78 |

| Figure 4.22 | Effects of temperature on production rates over $SmCoO_3$ perovskite catalyst.                                                                                                                 | 78 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.23 | Reactant conversion performance test for $SmCoO_3$ perovskite catalyst (feed ratio 1:1, T = 1073 K, GHSV = 30,000 h <sup>-1</sup> ).                                                           | 80 |
| Figure 4.24 | Product yield performance test for SmCoO <sub>3</sub> perovskite catalyst (feed ratio 1:1, T = 1073 K, GHSV = $30,000 \text{ h}^{-1}$ ).                                                       | 80 |
| Figure 4.25 | Effects of reactants feed ratio on conversion of $CO_2$ (GHSV= 30,000 h <sup>-1</sup> , reaction time = 4 h)                                                                                   | 82 |
| Figure 4.26 | Effects of feed ratio on conversion of CH <sub>4</sub> (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4 h).                                                                                  | 83 |
| Figure 4.27 | Effects of reactants feed ratio on production of $H_2$ over SmCoO <sub>3</sub> perovskite catalyst (GHSV= 30,000 h <sup>-1</sup> , reaction time = 4 h).                                       | 84 |
| Figure 4.28 | Effects of reactants feed ratio on production of CO over $SmCoO_3$ perovskite catalyst (GHSV= 30,000 h <sup>-1</sup> , reaction time = 4 h).                                                   | 84 |
| Figure 4.29 | Effects of reactants feed ratio on syngas ratio over $SmCoO_3$ perovskite catalyst (GHSV= 30,000 h <sup>-1</sup> , reaction time = 4 h).                                                       | 85 |
| Figure 4.30 | Effects of CH <sub>4</sub> partial pressure on CO <sub>2</sub> conversion at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = $4\text{h}$ ) | 87 |
| Figure 4.31 | Effects of CO <sub>2</sub> partial pressure on CO <sub>2</sub> conversion at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = $4\text{h}$ ) | 88 |
| Figure 4.32 | Effects of CH <sub>4</sub> partial pressure on CH <sub>4</sub> conversion at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = $4\text{h}$ ) | 89 |
| Figure 4.33 | Effects of CO <sub>2</sub> partial pressure on CH <sub>4</sub> conversion at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = $4\text{h}$ ) | 90 |
| Figure 4.34 | Effects of CH <sub>4</sub> partial pressure on H <sub>2</sub> yield at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h)                 | 91 |
| Figure 4.35 | Effects of CO <sub>2</sub> partial pressure on H <sub>2</sub> yield at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 $h^{-1}$ , reaction time = 4h)                         | 92 |
| Figure 4.36 | Effects of CH <sub>4</sub> partial pressure on CO yield at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h)                             | 92 |
| Figure 4.37 | Effects of CO <sub>2</sub> partial pressure on CO yield at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h)                             | 93 |
| Figure 4.38 | Effects of CH <sub>4</sub> partial pressure on syngas ratio at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h)                         | 94 |
| Figure 4.39 | Effects of CO <sub>2</sub> partial pressure on syngas ratio at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h)                         | 94 |
|             | X11                                                                                                                                                                                            |    |

| Effects of CH <sub>4</sub> partial pressure on CH <sub>4</sub> consumption rates<br>at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h) | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effects of CH <sub>4</sub> partial pressure on CO <sub>2</sub> consumption rates at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h)    | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Effects of CO <sub>2</sub> partial pressure on CH <sub>4</sub> consumption rates at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h)    | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Effects of CO <sub>2</sub> partial pressure on CO <sub>2</sub> consumption rates at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = 4h)    | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Effects of CH <sub>4</sub> partial pressure on H <sub>2</sub> consumption rates at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> , reaction time = 4h)      | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Effects of CH <sub>4</sub> partial pressure on CO formation rates at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = $4\text{h}$ )         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Effects of CO <sub>2</sub> partial pressure on $H_2$ formation rates at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> , reaction time = 4h)                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Effects of CO <sub>2</sub> partial pressure on CO formation rates at fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= $30,000 \text{ h}^{-1}$ , reaction time = $4\text{h}$ )         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Temperature programmed oxidation of the spent $SmCoO_3$ perovskite catalyts post kinetics study at $P_{CO_2}$ and $P_{CH_4} = 20.3$ kPa at 973 – 1073 K.                                       | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SEM micrograph of spent SmCoO <sub>3</sub> perovskite post kinetics study at $P_{CO_2}$ and $P_{CH_4} = 20.3$ kPa at 1073 K.(magnification × 7000)                                             | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EDX spectra of the elemental composition of spent SmCoO <sub>3</sub> perovskite post kinetics study at $P_{CO_2}$ and $P_{CH_4} = 20.3$ kPa at 1073 K.                                         | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TEM micrograph of spent SmCoO <sub>3</sub> perovskite post kinetics study at $P_{CO_2}$ and $P_{CH_4} = 20.3$ kPa at 1073 K.(magnification $\times$ 20000)                                     | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| X-ray diffractogram of the (a) spent (b) fresh SmCoO <sub>3</sub> perovskite post kinetics study at $P_{CO_2}$ and $P_{CH_4} = 20.3$ kPa at 1073 K.                                            | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Linearized Arrhenius plot to determine the activation energy of CH <sub>4</sub> .                                                                                                              | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Linearized Arrhenius plot to determine the activation energy of CO <sub>2</sub> .                                                                                                              | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                | Effects of CH <sub>4</sub> partial pressure on CH <sub>4</sub> consumption rates<br>at fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV=<br>30,000 h <sup>-1</sup> , reaction time = 4h)<br>Effects of CH <sub>4</sub> partial pressure on CO <sub>2</sub> consumption rates at<br>fixed CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> ,<br>reaction time = 4h)<br>Effects of CO <sub>2</sub> partial pressure on CH <sub>4</sub> consumption rates at<br>fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> ,<br>reaction time = 4h)<br>Effects of CO <sub>2</sub> partial pressure on CO <sub>2</sub> consumption rates at<br>fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> ,<br>reaction time = 4h)<br>Effects of CH <sub>4</sub> partial pressure on H <sub>2</sub> consumption rates at<br>fixed CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> ,<br>reaction time = 4h)<br>Effects of CH <sub>4</sub> partial pressure on CO formation rates at fixed<br>CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> ,<br>reaction time = 4h)<br>Effects of CH <sub>4</sub> partial pressure on CO formation rates at fixed<br>CO <sub>2</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> , reaction<br>time = 4h)<br>Effects of CO <sub>2</sub> partial pressure on CO formation rates at fixed<br>CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> , reaction<br>time = 4h)<br>Effects of CO <sub>2</sub> partial pressure on CO formation rates at fixed<br>CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> , reaction<br>time = 4h)<br>Effects of CO <sub>2</sub> partial pressure on CO formation rates at fixed<br>CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> , reaction<br>time = 4h)<br>Effects of CO <sub>2</sub> partial pressure on CO formation rates at fixed<br>CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> , reaction<br>time = 4h)<br>Effects of CO <sub>2</sub> partial pressure on CO formation rates at fixed<br>CH <sub>4</sub> partial pressure of 20.3 kPa (GHSV= 30,000 h <sup>-1</sup> , reaction<br>time = 4h)<br>Effects of CO <sub>2</sub> partial pressure on CO formation rates at fixed<br>CH <sub>4</sub> partial pressure of 20.3 kPa at 1073 K.<br>SEM micrograph of spent SmCoO <sub>3</sub> perovskite post kinetics<br>study at Pco <sub>3</sub> and PcH <sub>4</sub> = 20.3 kPa at 1073 K.<br>Effects at 1073 K.<br>Effects at 1073 K.<br>Linearized Arrhenius plot to determine the activation energy<br>of CH <sub>4</sub> .<br>Li |

| Figure 4.55 | Longevity test of dry reforming of methane over $SmCoO_3$ perovskite catalyst showing conversion of $CH_4$ in 72 h TOS.                      | 117 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.56 | Longevity test of dry reforming of methane over $SmCoO_3$ perovskite catalyst showing conversion of $CO_2$ in 72 h TOS.                      | 118 |
| Figure 4.57 | Longevity test of dry reforming of methane over $SmCoO_3$ perovskite catalyst showing $H_2$ yield in 72 h TOS.                               | 118 |
| Figure 4.58 | Longevity test of dry reforming of methane over SmCoO <sub>3</sub> perovskite catalyst showing CO yield in 72 h TOS.                         | 119 |
| Figure 4.59 | Longevity test of dry reforming of methane over SmCoO <sub>3</sub> perovskite catalyst showing syngas ratio in 72 h TOS.                     | 119 |
| Figure 4.60 | Longevity test of dry reforming of methane over $SmCoO_3$ perovskite catalyst showing $CH_4$ consumption rate versus time.                   | 120 |
| Figure 4.61 | Longevity test of dry reforming of methane over SmCoO <sub>3</sub> perovskite catalyst showing CO <sub>2</sub> consumption rate versus time. | 120 |
| Figure 4.62 | Longevity test of dry reforming of methane over $SmCoO_3$ perovskite catalyst showing $H_2$ production rate versus time.                     | 121 |
| Figure 4.63 | Longevity test of dry reforming of methane over SmCoO <sub>3</sub> perovskite catalyst showing CO production rate versus time.               | 121 |
| Figure 4.64 | FESEM image of the spent $SmCoO_3$ perovskite post<br>longevity study at 0.5 reactant feed ratio ( $CO_2$ : $CH_4 = 0.5$ )<br>(×30000).      | 123 |
| Figure 4.65 | FESEM image of the spent $SmCoO_3$ perovskite post longevity study at 0.75 reactant feed ratio ( $CO_2$ : $CH_4 = 0.75$ ) (×30000).          | 123 |
| Figure 4.66 | FESEM image of the spent $SmCoO_3$ perovskite post longevity study at 1.0 reactant feed ratio ( $CO_2$ : $CH_4 = 1.0$ ) (×30000).            | 124 |
| Figure 4.67 | FESEM image of the spent $SmCoO_3$ perovskite post longevity study at 1.33 reactant feed ratio ( $CO_2$ : $CH_4 = 1.33$ ) (×30000).          | 124 |
| Figure 4.68 | FESEM image of the spent $SmCoO_3$ perovskite post<br>longevity study at 2.0 reactant feed ratio ( $CO_2$ : $CH_4 = 2.0$ )<br>(×30000).      | 125 |
| Figure 4.69 | EDX spectra of the spent $SmCoO_3$ perovskite post longevity study at 0.5 reactant feed ratio ( $CO_2$ : $CH_4 = 0.5$ ).                     | 126 |
| Figure 4.70 | EDX spectra of the spent $SmCoO_3$ perovskite post longevity study at 0.75 reactant feed ratio ( $CO_2$ : $CH_4 = 0.75$ ).                   | 126 |
| Figure 4.71 | EDX spectra of the spent $SmCoO_3$ perovskite post longevity study at 1.0 reactant feed ratio ( $CO_2$ : $CH_4 = 1.0$ ).                     | 127 |
| Figure 4.72 | EDX spectra of the spent $SmCoO_3$ perovskite post longevity study at 1.33 reactant feed ratio ( $CO_2$ : $CH_4$ = 1.33).                    | 127 |
| Figure 4.73 | EDX spectra of the spent $SmCoO_3$ perovskite post longevity study at 2.0 reactant feed ratio ( $CO_2$ : $CH_4 = 2.0$ ).                     | 128 |

| Figure 4.74 | TEM image of the spent $SmCoO_3$ perovskite post longevity<br>study at 0.5 reactant feed ratio ( $CO_2$ : $CH_4 = 0.5$ ).<br>(magnification ×20000)   | 129 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.75 | TEM image of the spent $SmCoO_3$ perovskite post longevity<br>study at 0.75 reactant feed ratio ( $CO_2$ : $CH_4 = 0.75$ ).<br>(magnification ×20000) | 129 |
| Figure 4.76 | TEM image of the spent $SmCoO_3$ perovskite post longevity<br>study at 1.0 reactant feed ratio ( $CO_2$ : $CH_4 = 1.0$ ).<br>(magnification ×20000)   | 130 |
| Figure 4.77 | TEM image of the spent $SmCoO_3$ perovskite post longevity<br>study at 1.33 reactant feed ratio ( $CO_2$ : $CH_4 = 1.33$ ).<br>(magnification ×20000) | 130 |
| Figure 4.78 | TEM image of the spent $SmCoO_3$ perovskite post longevity<br>study at 2.0 reactant feed ratio ( $CO_2$ : $CH_4 = 2.0$ ).<br>(magnification ×20000)   | 131 |
| Figure 4.79 | X-ray diffractogram of the spent SmCoO <sub>3</sub> perovskite post longevity study at 0.5, 0.75, 1.0, 1.33, 2.0 reactant feed ratio.                 | 133 |
| Figure 4.80 | FTIR of the spent $SmCoO_3$ perovskite post longevity study at 0.5, 0.75, 1.0, 1.33, 2.0 reactant feed ratio.                                         | 135 |
| Figure 4.81 | XPS of the spent $SmCoO_3$ perovskite post longevity study at 0.5, 0.75, 1.0, 1.33, 2.0 reactant feed ratio.                                          | 137 |
| Figure 4.82 | TPO of the spent $SmCoO_3$ perovskite post longevity study at 1.0 reactant feed ratio.                                                                | 140 |
| Figure 4.83 | Linearized Kissinger model to obtain the activation energy of carbon formation.                                                                       | 140 |
| Figure B.1  | Chromatographs showing the peak and retentions time of the standard gas for $H_2$ .                                                                   | 165 |
| Figure B.2  | Chromatographs showing the peak and retentions time of the standard gas for $CO_2$ , $CH_4$ and $CO$ .                                                | 166 |
| Figure B.3  | Chromatographs showing the peak of $H_2$ for $CO_2$ reforming of $CH_4$ over $SmCoO_3$ perovskite.                                                    | 168 |
| Figure B.4  | Chromatographs showing the peak of $CO_2 CH_4$ and $CO$ for $CO_2$ reforming of $CH_4$ over $SmCoO_3$ perovskite.                                     | 169 |
|             |                                                                                                                                                       |     |

# LIST OF SYMBOLS

| А                | Reaction order with respect to reactant $CH_4$ |
|------------------|------------------------------------------------|
| В                | Order of reaction with respect to $CO_2$       |
| Θ                | Diffraction angle                              |
| λ                | Wavelength (nm)                                |
| r <sub>i</sub>   | Reaction rate of species i                     |
| $\rho_s$         | Density of the catalyst particle               |
| Т                | Reaction temperature                           |
| R                | Universal gas constant                         |
| $\Delta H$       | Enthalpy changed (kJ mol <sup>-1</sup> )       |
| D                | Crystallite catalyst size                      |
| arphi            | Co metallic site                               |
| %                | Percentage                                     |
| F                | Molar flowrate                                 |
| X                | Conversion                                     |
| Y                | Yield                                          |
| W <sub>cat</sub> | Weight of catalyst                             |

# LIST OF ABBREVIATIONS

| BET   | Brunauer – Emmett – Teller                  |
|-------|---------------------------------------------|
| BJH   | Barrett, Joyner, Halenda                    |
| CRM   | Combine reforming of methane                |
| DRM   | Dry reforming of methane                    |
| DTG   | Differential thermogravimetric              |
| EDX   | Energy Dispersive X-ray                     |
| FESEM | Field Emission Scanning Electron Microscopy |
| FTIR  | Fourier Transform Infrared Spectroscopy     |
| FTS   | Fischer – Tropsch Synthesis                 |
| FWHM  | Full Width at Half Maximum                  |
| GC    | Gas Chromatography                          |
| GHSV  | Gas Hourly Space Velocity                   |
| LH    | Langmuir – Hinshelwood                      |
| POM   | Partial oxidation of methane                |
| $R^2$ | Coefficient of Determination                |
| RMSD  | Root Mean Square Deviation                  |
| TEM   | Transmission Electron Microscopy            |
| TCD   | Thermal Conductivity Detector               |
| TOS   | Time on stream                              |
| TPD   | Temperature Programmed Desorption           |
| TG    | Thermogravimetric                           |
| TGA   | Thermogravimetric Analysis                  |
| TPO   | Temperature Programmed Oxidation            |
| TPR   | Temperature Programmed Reduction            |
| XRD   | X- ray Powder Diffraction                   |

### SYNTHESIS AND CHARACTERIZATION OF SAMARIUM-COBALT-TRIOXIDE PEROVSKITE CATALYST FOR THE KINETIC AND LONGEVITY STUDIES OF METHANE DRY REFORMING

#### OSAZUWA OSARIEME UYI

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy of Engineering

Faculty of Chemical and Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

OCTOBER 2017

#### ABSTRAK

Kadar pemanasan global yang berada di tahap membimbangkan memerlukan penggunaan gas rumah hijau seperti metana (CH<sub>4</sub>) dan karbon dioksida (CO<sub>2</sub>). Salah satu daripada cadangan adalah tindak balas pembentukan semula kering metana. Tindak balas pembentukan semula kering metana memerlukan pemangkin heterogen kerana sifat endotermiknya yang kuat. Beberapa jenis pemangkin telah digunakan untuk tindak balas pembentukan semula kering metana dengan penyahaktifan pemangkin sebagai kelemahan utama.

Di dalam kajian ini, pemangkin perovskit SmCoO<sub>3</sub> telah digunakan untuk tindakbalas pembentukan semula kering metana. Pemilihan pemangkin Sm<sub>2</sub>O<sub>3</sub> ini adalah disebabkan mempunyai Co yang kurang cenderung terhadap karbon dan kapasiti simpanan oksida (O<sub>2</sub>) yang tinggi. Pemangkin perovskit SmCoO<sub>3</sub> telah disintesis dengan menggunakan kaedah sol-gel sitrat dengan samarium (Sm) menduduki lokasi 'A' dan kobalt (Co) yang menduduki lokasi 'B'. Model Toleransi Goldschmidt telah digunakan untuk memperolehi faktor toleransi 0.96 untuk struktur perovskit SmCoO<sub>3</sub>.

Teknik pembelauan X-ray mengesahkan struktur hablur monofasa untuk SmCoO<sub>3</sub>. Penyaherapan teraturcara suhu menunjukkan kekuatan bersih berasid untuk pemangkin. Kaedah sebaran tenaga X-ray dan spektroskopi fotoelektron X-ray mengesahkan unsur dan komposisi kimia bagi perovskit SmCoO<sub>3</sub> sintesis. Sebelum pemodelan kinetik, kesan suhu (antara 973 - 1073 K), nisbah suapan (0.5 - 2.0) dan tekanan separa (antara 6.8 -60.8 kPa) telah dikaji. Keputusan daripada kajian menunjukkan penukaran suapan melebihi 90% dan hasil produk melebihi 60%, pada 1073 K. Data kinetik yang diperoleh telah disuaikan ke dalam model hukum kuasa dan model Langmuir-Hinshelwood. Tenaga pengaktifan yang diperolehi daripada hokum kuasa adalah 41 kJ mol<sup>-1</sup> bagi CH<sub>4</sub> dan 25 kJ mol<sup>-1</sup> bagi CO<sub>2</sub>. Kajian selanjutnya dengan menggunakan model Langmuir-Hinshelwood telah mencatatkan tenaga pengaktifan sebanyak 44 kJ mol<sup>-1</sup> bagi CH<sub>4</sub> dan 22 kJ mol<sup>-1</sup> bagi CO<sub>2</sub>. Ujian kelanjutan untuk pemangkin telah diuji pada nisbah suapan antara 0.5 - 2.0 pada 1073 K, untuk 72 jam. Tindakbalas pada nisbah suapan 0.75, 1.0 dan 1.33 menunjukkan kestabilan yang sangat baik. Pemangkin perovskit SmCoO<sub>3</sub> yang terpakai, dicirikan dengan teknik mikroskop elektron pengimbasan pancaran medan, sebaran tenaga X-ray, pengoksidaan teraturcara suhu, spektroskopi inframerah transformasi Fourier, mikroskop elektron pancaran dan spektroskopi fotoelektron X-ray telah menunjukkan bukti wujudnya spesis karbon jenis bermisai yang mana tidak menyahaktifkan pemangkin. Karbon ini digegaskan oleh species dwi-oksida yang hadir di dalam perovskit SmCoO<sub>3</sub> seperti terbukti melalui analisa spektroskopi fotoelektron Xray. Penurunan species Co seperti yang dibuktikan melalui analisa TPR telah menambahkan prestasi pemangkin perovskit SmCoO<sub>3</sub>. Sifat-sifat ini bertanggungjawab kepada prestasi pemangkin perovskit SmCoO<sub>3</sub> yang menakjubkan dibandingkan dengan pelbagai pemangkin jenis logam lain yang telah dilaporkan sebelum ini.

#### ABSTRACT

The alarming rate of global warming necessitates the utilization of greenhouse gases such as methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>). One of such propositions is methane dry reforming. Methane dry reforming requires the use of heterogeneous catalyst due to its strong endothermicity. Several catalysts have been employed for methane dry reforming with catalyst deactivation as the major drawback.

In the present study, samarium cobalt trioxide (SmCoO<sub>3</sub>) perovskite catalyst has been applied for methane dry reforming. The reduced affinity of cobalt (Co) for carbon and the rich oxygen (O<sub>2</sub>) storage capacity of samarium oxide (Sm<sub>2</sub>O<sub>3</sub>) are responsible for the choice of this catalyst. The SmCoO<sub>3</sub> perovskite catalyst was synthesized using the sol-gel citrate method with samarium (Sm) occupying the 'A' site and Co occupying the 'B' site. The Goldschmidt tolerance model was employed to obtain a tolerance factor of 0.96 for the SmCoO<sub>3</sub> perovskite structure.

X-ray diffraction confirmed a monophasic crystalline structure for the synthesized SmCoO<sub>3</sub>. Temperature programmed desorption showed net-acidic catalytic site strength. Energy dispersive X-ray and X-ray photoelectron spectroscopy confirmed the elemental and chemical composition of the synthesized SmCoO<sub>3</sub> perovskite. Prior to the kinetic modelling, the effects of temperature (ranged 873 - 1173 K), feed ratio (0.5 - 2.0) and partial pressure (ranged 6.8 - 60.8 kPa) were studied. Results from the studies showed that conversion of reactants were above 90% and products yield were above 60%, at 1073 K. The kinetics data acquired were fitted into the power law and Langmuir-Hinshelwood model. Activation energy of 41 kJ mol<sup>-1</sup> and 25 kJ mol<sup>-1</sup> were obtained from the power law model for CH<sub>4</sub> and CO<sub>2</sub>, respectively. Further studies using the Langmuir-Hinshelwood model gave activation energy of 44 kJ mol<sup>-1</sup> and 22 kJ mol<sup>-1</sup> for CH<sub>4</sub> and  $CO_2$ , respectively. The longevity of the catalyst was tested in a feed ratio range of 0.5 -2.0 at 1073 K, for 72 h. Reactions at 0.75, 1.0 and 1.33 feed ratios had very good stability. The spent SmCoO<sub>3</sub> perovskite catalyst, characterized by field emission scanning electron microscope, energy dispersive X-ray, temperature programmed oxidation, Fourier transform infrared spectroscopy, transmission electron microscope and X-ray photoelectron spectroscopy techniques showed evidence of whisker carbon species which did not deactivate the catalyst. The carbon was gasified by the dual oxygen species present in the SmCoO<sub>3</sub> perovskite as evident in the X-ray photoelectron spectroscopy analysis. The reducibility of the Co species as evident in the TPR analysis enhanced the performance of the SmCoO<sub>3</sub> perovskite catalyst. These properties are responsible for the superior performance of SmCoO<sub>3</sub> perovskite catalyst over various metallic catalysts previously reported.

#### REFERENCES

- Alipour, Z., Rezaei, M., & Meshkani, F. (2014). Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al<sub>2</sub>O<sub>3</sub> in dry reforming of methane. *Journal of Industrial and Engineering Chemistry*, 20(5), 2858–2863.
- Antzara, A., Heracleous, E., Silvester, L., Bukur, D. B., & Lemonidou, A. A. (2016). Activity study of NiO-based oxygen carriers in chemical looping steam methane reforming. *Catalysis Today*, 272, 32–41.
- Arandiyan, H., Li, J., Ma, L., Hashemnejad, S. M., Mirzaei, M. Z., Chen, J., Chen, L. (2012). Methane reforming to syngas over  $\text{LaNi}_x\text{Fe}_{1-x}O_3$  ( $0 \le x \le 1$ ) mixed-oxide perovskites in the presence of CO<sub>2</sub> and O<sub>2</sub>. *Journal of Industrial and Engineering Chemistry*, 18(6), 2103–2114.
- Arkatova, L. A. (2010). The deposition of coke during carbon dioxide reforming of methane over intermetallides. *Catalysis Today*, 157(1), 170–176.
- Ashcroft, A. T., Cheetham, A. K., Green, M. L. H., & Vernon, P. D. F. (1991). Partial oxidation of methane to synthesis gas using carbon dioxide. *Nature*, 352(6332), 225–226.
- Ay, H., & Üner, D. (2015). Dry reforming of methane over CeO<sub>2</sub> supported Ni, Co and Ni–Co catalysts. *Applied Catalysis B: Environmental*, 179, 128–138.
- Ayodele, B. V., Hossain, S. S., Lam, S. S., Osazuwa, O. U., Khan, M. R., & Cheng, C. K. (2016). Syngas production from CO<sub>2</sub> reforming of methane over neodymium sesquioxide supported cobalt catalyst. *Journal of Natural Gas Science and Engineering*, 34, 873–885.
- Ayodele, B. V., Khan, M. R., & Cheng, C. K. (2015). Catalytic performance of ceriasupported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane. *International Journal of Hydrogen Energy*, 41(1), 198–207.

- Ayodele, B. V., Khan, M. R., Lam, S. S., & Cheng, C. K. (2016). Production of COrich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: Kinetic and mechanistic studies. *International Journal of Hydrogen Energy*, 41(8), 4603–4615.
- Bakandritsos, A., Steriotis, T., & Petridis, D. (2004). High Surface Area Montmorillonite - Carbon Composites and Derived Carbons. *Chem. Mater*, 143(10), 1551–1559.
- Barroso-Quiroga, M. M., & Castro-Luna, A.E. (2010). Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. *International Journal of Hydrogen Energy*, 35(11), 6052–6056.
- Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. *Applied Catalysis A: General*, 212(1), 17–60.
- Batiot-Dupeyrat, C., Gallego, G. A. S., Mondragon, F., Barrault, J., & Tatibouët, J.-M. (2005). CO<sub>2</sub> reforming of methane over LaNiO<sub>3</sub> as precursor material. *Catalysis Today*, 107–108, 474–480.
- Batiot-Dupeyrat, C., Valderrama, G., Meneses, A., Martinez, F., Barrault, J., & Tatibouët, J. . (2003). Pulse study of CO<sub>2</sub> reforming of methane over LaNiO<sub>3</sub>. *Applied Catalysis A: General*, 248(1), 143–151.
- Blaine, R. L., & Kissinger, H. E. (2012). Homer Kissinger and the Kissinger equation. *Thermochimica Acta*, 540, 1–6.
- Bobrova, L. N., Bobin, A. S., Mezentseva, N. V., Sadykov, V. A., Thybaut, J. W., & Marin, G. B. (2016). Kinetic assessment of dry reforming of methane on Pt+Ni containing composite of fluorite-like structure. *Applied Catalysis B: Environmental*, 182, 513–524.
- Bradford, M. C. J., & Vannice, M. A. (1999). CO<sub>2</sub> Reforming of CH<sub>4</sub>. Catalysis Reviews, 41(1), 1–42.
- Bradford, M. C. J., & Vannice, M. A. (1996). Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. *Applied Catalysis A: General*, 142(1), 97–122.

- Budiman, A. W., Song, S. H., Chang, T. S., Shin, C. H., & Choi, M. J. (2012). Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development. *Catalysis Surveys from Asia*, 16(4), 183–197.
- Chen, W., Zhao, G., Xue, Q., Chen, L., & Lu, Y. (2013). High carbon-resistance Ni/CeAlO<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst for CH<sub>4</sub>/CO<sub>2</sub> reforming. *Applied Catalysis B: Environmental*, 136–137, 260–268.
- Chesnokov, V. V., Zaikovskii, V. I., Buyanov, R. A., Molchanov, V. V., & Plyasova, L. M. (1995). Morphology of carbon from methane on nickel-containing catalysts. *Catalysis Today*, 24(3), 265–267.
- Choudhary, V. R., & Mondal, K. C. (2006). CO<sub>2</sub> reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO<sub>3</sub> perovskite-type mixed metal-oxide catalyst. *Applied Energy*, *83*(9), 1024–1032.
- Chroneos, A., Vovk, R. V., Goulatis, I. L., & Goulatis, L. I. (2010). Oxygen transport in perovskite and related oxides: A brief review. *Journal of Alloys and Compounds*, 494(1–2), 190–195.
- Claridge, J. B., York, A. P. E., Brungs, A. J., Marquez-Alvarez, C., Sloan, J., Tsang, S. C., & Green, M. L. H. (1998). New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide. *Journal of Catalysis*, 180(1), 85–100.
- Coates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach. *Encyclopedia of Analytical Chemistry*, 10815–10837.
- Dai, X., Cheng, J., Li, Z., Liu, M., Ma, Y., & Zhang, X. (2016). Reduction kinetics of lanthanum ferrite perovskite for the production of synthesis gas by chemical– looping methane reforming. *Chemical Engineering Science*.
- de Lima, S. M., Peña, M. a., Fierro, J. L. G., & Assaf, J. M. (2008). La<sub>1-x</sub>Ca<sub>x</sub>NiO<sub>3</sub> Perovskite Oxides: Characterization and Catalytic Reactivity in Dry Reforming of Methane. *Catalysis Letters*, 124(3–4), 195–203.

- Domínguez, A., Fernández, Y., Fidalgo, B., Pis, J. J., & Menéndez, J. A. (2007). Biogas to syngas by microwave-assisted dry reforming in the presence of char. *Energy* and Fuels, 21(4), 2066–2071.
- Erdohelyi, A., Cserenyi, J., & Solymosi, F. (1993). Activation of CH<sub>4</sub> and Its Reaction with CO<sub>2</sub> over Supported Rh Catalysts. *Journal of Catalysis*.
- Ferreira-Aparicio, P., Guerrero-Ruiz, A., & Rodríguez-Ramos, I. (1998). Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts. *Applied Catalysis A: General*, 170(1), 177–187.
- Ferri, D. (1998). Methane combustion on some perovskite-like mixed oxides. *Applied Catalysis B: Environmental*, *16*(2), 119–126.
- Foo, S. Y., Cheng, C. K., Nguyen, T.-H., & Adesina, A. A. (2011). Kinetic study of methane CO<sub>2</sub> reforming on Co–Ni/Al<sub>2</sub>O<sub>3</sub> and Ce–Co–Ni/Al<sub>2</sub>O<sub>3</sub> catalysts. *Catalysis Today*, 164(1), 221–226.
- Foo, S. Y., Cheng, C. K., Nguyen, T.-H., & Adesina, A. A. (2012). Syngas production from CH4 dry reforming over Co–Ni/Al<sub>2</sub>O<sub>3</sub> catalyst: Coupled reactiondeactivation kinetic analysis and the effect of O<sub>2</sub> co-feeding on H<sub>2</sub>:CO ratio. *International Journal of Hydrogen Energy*, 37(22), 17019–17026.
- Gallego, G. S., Batiot-Dupeyrat, C., Barrault, J., Florez, E., & Mondragón, F. (2008). Dry reforming of methane over  $\text{LaNi}_{1-y}B_yO_{3\pm\delta}$  (B=Mg, Co) perovskites used as catalyst precursor. *Applied Catalysis A: General*, 334(1–2), 251–258.
- Gallego, G. S., Marín, J. G., Batiot-Dupeyrat, C., Barrault, J., & Mondragón, F. (2009). Influence of Pr and Ce in dry methane reforming catalysts produced from La<sub>1-x</sub>A<sub>x</sub>NiO<sub>3-δ</sub> perovskites. *Applied Catalysis A: General*, 369(1–2), 97–103.
- Gallego, G. S., Mondragón, F., Barrault, J., Tatibouët, J.-M., & Batiot-Dupeyrat, C. (2006). CO<sub>2</sub> reforming of CH<sub>4</sub> over La–Ni based perovskite precursors. *Applied Catalysis A: General*, 311, 164–171.

- Gallego, S., Batiot-dupeyrat, C., & Mondrago, F. (2008). Dual Active-Site Mechanism for Dry Methane Reforming over Ni/La<sub>2</sub>O<sub>3</sub> Produced from LaNiO <sub>3</sub> Perovskite. *Industrial and Engineering Chemistry (Analytical Edition)*, 47(23), 9272–9278.
- Gnanamani, M. K., Jacobs, G., Shafer, W. D., & Davis, B. H. (2013). Fischer–Tropsch synthesis: Activity of metallic phases of cobalt supported on silica. *Catalysis Today*, 215, 13–17.
- Go, K. S., Son, S. R., & Kim, S. D. (2008). Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production. *International Journal of Hydrogen Energy*, 33(21), 5986–5995.
- Goldwasser, M., Rivas, M., Pietri, E., Pérez-Zurita, M. ., Cubeiro, M. ., Gingembre, L., Leclercq, G. (2003). Perovskites as catalysts precursors: CO<sub>2</sub> reforming of CH<sub>4</sub> on Ln<sub>1-x</sub>Ca<sub>x</sub>Ru<sub>0.8</sub>Ni<sub>0.2</sub>O<sub>3</sub> (Ln = La, Sm, Nd). *Applied Catalysis A: General*, 255(1), 45–57.
- Goldwasser, M. R., Rivas, M. E., Lugo, M. L., Pietri, E., Pérez-Zurita, J., Cubeiro, M. L., Leclercq, G. (2005). Combined methane reforming in presence of CO<sub>2</sub> and O<sub>2</sub> over LaFe<sub>1-x</sub>Co<sub>x</sub>O<sub>3</sub> mixed-oxide perovskites as catalysts precursors. *Catalysis Today*, 107–108, 106–113.
- Goldwasser, M. R., Rivas, M. E., Pietri, E., Pérez-Zurita, M. J., Cubeiro, M. L., Grivobal-Constant, A., & Leclercq, G. (2005). Perovskites as catalysts precursors: synthesis and characterization. *Journal of Molecular Catalysis A: Chemical*, 228(1), 325–331.
- González, O., Lujano, J., Pietri, E., & Goldwasser, M. R. (2005). New Co-Ni catalyst systems used for methane dry reforming based on supported catalysts over an INT-MM1 mesoporous material and a perovskite-like oxide precursor LaCo<sub>0.4</sub>Ni<sub>0.6</sub>O<sub>3</sub>. *Catalysis Today*, 107–108, 436–443.
- Goscianska, J., Pietrzak, R., & Matos, J. (2017). Catalytic performance of ordered mesoporous carbons modified with lanthanides in dry methane reforming. *Catalysis Today*.

- Hayakawa, T., Suzuki, S., Nakamura, J., Uchijima, T., Hamakawa, S., Suzuki, K., Takehira, K. (1999). CO<sub>2</sub> reforming of CH<sub>4</sub> over Ni/perovskite catalysts prepared by solid phase crystallization method. *Applied Catalysis A: General*, 183(2), 273– 285.
- Hirose, T., Ozawa, Y., & Nagai, M. (2011). Preparation of a Nickel Molybdenum Carbide Catalyst and Its Activity in the Dry Reforming of Methane. *Chinese Journal of Catalysis*, 32(5), 771–776.
- Hosseini, S. E., & Wahid, M. A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. *Renewable and Sustainable Energy Reviews*, 57, 850–866.
- Hou, Z., Chen, P., Fang, H., Zheng, X., & Yashima, T. (2006). Production of synthesis gas via methane reforming with CO<sub>2</sub> on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. *International Journal of Hydrogen Energy*, 31(5), 555–561.
- Hwang, C.-C., Wu, T.-Y., Wan, J., & Tsai, J.-S. (2004). Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. *Materials Science and Engineering: B*, 111(1), 49–56.
- Jahangiri, A., Aghabozorg, H., & Pahlavanzadeh, H. (2013). Effects of Fe substitutions by Ni in La–Ni–O perovskite-type oxides in reforming of methane with CO<sub>2</sub> and O<sub>2</sub>. *International Journal of Hydrogen Energy*, 38(25), 10407–10416.
- Jahangiri, A., Pahlavanzadeh, H., & Aghabozorg, H. (2012). Synthesis, characterization and catalytic study of Sm doped LaNiO3 nanoparticles in reforming of methane with CO<sub>2</sub> and O<sub>2</sub>. *International Journal of Hydrogen Energy*, 37(13), 9977–9984.
- Khajeh Talkhoncheh, S., & Haghighi, M. (2015). Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina. *Journal of Natural Gas Science and Engineering*, 23, 16–25.
- Khalesi, A., Arandiyan, H. R., & Parvari, M. (2008). Production of syngas by  $CO_2$  reforming on  $M_xLa_{1-x}Ni_{0.3}Al_{0.7}O_{3-d}$  (M = Li, Na, K) catalysts. *Khalesi*, A., 47(16), 5892–5898.

- Khalil, M. (2003). Synthesis, X-ray, infrared spectra and electrical conductivity of La/Ba–CoO<sub>3</sub> systems. *Materials Science and Engineering: A*, *352*(1–2), 64–70.
- Khorsand Zak, A., Abd. Majid, W. H., Abrishami, M. E., & Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. *Solid State Sciences*, 13(1), 251–256.
- Khoshbin, R., & Haghighi, M. (2015). Direct conversion of syngas to dimethyl ether as a green fuel over CuO-ZnO-Al<sub>2</sub>O<sub>3</sub>/HZSM-5 nanocatalyst: Effect of aging time on physicochemical and catalytic properties. *Journal of Renewable and Sustainable Energy*, 7(2).
- Krylov, O., Mamedov, A. K., & Mirzabekova, S. (1998). Interaction of carbon dioxide with methane on oxide catalysts. *Catalysis Today*, 42(3), 211–215.
- Kuhn, J. N., & Ozkan, U. S. (2008). Surface properties of Sr- and Co-doped LaFeO<sub>3</sub>. *Journal of Catalysis*, 253(1), 200–211.
- Kumar, E., Selvarajan, P., & Muthuraj, D. (2013). Synthesis and characterization of CeO<sub>2</sub> nanocrystals by solvothermal route. *Materials Research*, 16(2), 269–276.
- Labhasetwar, N., Saravanan, G., Kumar Megarajan, S., Manwar, N., Khobragade, R., Doggali, P., & Grasset, F. (2015). Perovskite-type catalytic materials for environmental applications. *Science and Technology of Advanced Materials*, 16(3), 36002.
- LaMont, D. C., & Thomson, W. J. (2005). Dry reforming kinetics over a bulk molybdenum carbide catalyst. *Chemical Engineering Science*, 60(13), 3553–3559.
- Lauder, A. R., Enting, I. G., Carter, J. O., Clisby, N., Cowie, A. L., Henry, B. K., & Raupach, M. R. (2013). Offsetting methane emissions — An alternative to emission equivalence metrics. *International Journal of Greenhouse Gas Control*, 12, 419–429.
- Lee, J.H., You, Y.W., Ahn, H.C., Hong, J.S., Kim, S.B., Chang, T.S., & Suh, J.K. (2014). The deactivation study of Co–Ru–Zr catalyst depending on supports in the dry reforming of carbon dioxide. *Journal of Industrial and Engineering Chemistry*, 20(1), 284–289.

- Lemonidou, A. A., & Vasalos, I. A. (2002). Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al<sub>2</sub>O<sub>3</sub> catalyst. *Applied Catalysis A: General*, 228(1–2), 227–235.
- Li, B., Su, W., Lin, X., & Wang, X. (2017). Catalytic performance and characterization of Neodymium-containing mesoporous silica supported nickel catalysts for methane reforming to syngas. *International Journal of Hydrogen Energy*, 42(17), 12197–12209.
- Li, C., Soh, K. C. K., & Wu, P. (2004). Formability of ABO<sub>3</sub> perovskites. *Journal of Alloys and Compounds*, *372*(1–2), 40–48.
- Lim, Y., Lee, C.-J., Song, I.-H., & Han, C. (2010). Process design for hybrid process combining steam reforming with dry methane reforming to reuse carbon dioxide as a raw material. *10AIChE - 2010 AIChE Annual Meeting, Conference Proceedings*, (February 2011), 1.
- Lombardo, E. a, & Ulla, M. a. (1998). Perovskite Oxides Present and Future in Catalysis: Past, Present, and Future. *Research on Chemical Intermediates*, 24(5), 581–592.
- Luo, J. Z., Yu, Z. L., Ng, C. F., & Au, C. T. (2000). CO<sub>2</sub>/CH<sub>4</sub> Reforming over Ni– La<sub>2</sub>O<sub>3</sub>/5A: An Investigation on Carbon Deposition and Reaction Steps. *Journal of Catalysis*, 194(2), 198–210.
- Maneerung, T., Hidajat, K., & Kawi, S. (2011). LaNiO<sub>3</sub> perovskite catalyst precursor for rapid decomposition of methane: Influence of temperature and presence of H<sub>2</sub> in feed stream. *Catalysis Today*, 171(1), 24–35.
- Mattos, L. V., Rodino, E., Resasco, D. E., Passos, F. B., & Noronha, F. B. (2003). Partial oxidation and CO<sub>2</sub> reforming of methane on Pt/Al<sub>2</sub>O<sub>3</sub>, Pt/ZrO<sub>2</sub>, and Pt/Ce– ZrO<sub>2</sub> catalysts. *Fuel Processing Technology*, 83(1–3), 147–161.
- Meshksar, M., Daneshmand-Jahromi, S., & Rahimpour, M. R. (2017). Synthesis and characterization of cerium promoted Ni/SBA-16 oxygen carrier in cyclic chemical looping steam methane reforming. *Journal of the Taiwan Institute of Chemical Engineers*, 76, 73–82.

- Mishra, A., & Prasad, R. (2014). Preparation and Application of Perovskite Catalysts for Diesel Soot Emissions Control: An Overview. *Catalysis Reviews*, 56(1), 57–81.
- Moradi, G. R., Khosravian, F., & Rahmanzadeh, M. (2012). Effects of Partial Substitution of Ni by Cu in LaNiO3 Perovskite Catalyst for Dry Methane Reforming. *Chinese Journal of Catalysis*, 33(4), 797–801.
- Moradi, G. R., Rahmanzadeh, M., & Khosravian, F. (2014). The effects of partial substitution of Ni by Zn in LaNiO<sub>3</sub> perovskite catalyst for methane dry reforming. *Journal of CO*<sub>2</sub> *Utilization*, 6, 7–11.
- Moradi, G. R., Rahmanzadeh, M., & Sharifnia, S. (2010). Kinetic investigation of CO<sub>2</sub> reforming of CH4 over La–Ni based perovskite. *Chemical Engineering Journal*, *162*(2), 787–791.
- Moreno-Castilla, C., López-Ramón, M. ., & Carrasco-Marín, F. (2000). Changes in surface chemistry of activated carbons by wet oxidation. *Carbon*, 38(14), 1995– 2001.
- Múnera, J. F., Irusta, S., Cornaglia, L. M., Lombardo, E. A., Vargas Cesar, D., & Schmal, M. (2007). Kinetics and reaction pathway of the CO<sub>2</sub> reforming of methane on Rh supported on lanthanum-based solid. *Journal of Catalysis*, 245(1), 25–34.
- Nabgan, W., Mat, R., Abdullah, T. A. T., Nabgan, B., Gambo, Y., & Zakaria, Z. Y. (2016). Development of a kinetic model for hydrogen production from phenol over Ni-Co/ZrO<sub>2</sub> catalyst. *Journal of Environmental Chemical Engineering*, 4(4), 4444–4452.
- Nandini, A., Pant, K. K., & Dhingra, S. C. (2006). Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst. *Applied Catalysis A: General*, 308, 119–127.
- Nguyen, T. H., Łamacz, A., Krztoń, A., Liszka, B., & Djéga-Mariadassou, G. (2016). Partial oxidation of methane over Ni0/La<sub>2</sub>O<sub>3</sub> bifunctional catalyst III. Steady state activity of methane total oxidation, dry reforming, steam reforming and partial oxidation. Sequences of elementary steps. *Applied Catalysis B: Environmental*, 182, 385–391.

- Ni, J., Chen, L., Lin, J., Schreyer, M. K., Wang, Z., & Kawi, S. (2013). High performance of Mg–La mixed oxides supported Ni catalysts for dry reforming of methane: The effect of crystal structure. *International Journal of Hydrogen Energy*, 38(31), 13631–13642.
- Pakhare, D., Schwartz, V., Abdelsayed, V., Haynes, D., Shekhawat, D., Poston, J., & Spivey, J. (2014). Kinetic and mechanistic study of dry (CO<sub>2</sub>) reforming of methane over Rh-substituted La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> pyrochlores. *Journal of Catalysis*, *316*, 78– 92.
- Peña, M. a., & Fierro, J. L. G. (2001). Chemical structures and performance of perovskite oxides. *Chemical Reviews*, 101(7), 1981–2017.
- Pérez-Camacho, M. N., Abu-Dahrieh, J., Goguet, A., Sun, K., & Rooney, D. (2014). Self-cleaning perovskite type catalysts for the dry reforming of methane. *Chinese Journal of Catalysis*, 35(8), 1337–1346.
- Pichas, C., Pomonis, P., Petrakis, D., & Ladavos, A. (2010). Kinetic study of the catalytic dry reforming of CH<sub>4</sub> with CO<sub>2</sub> over La<sub>2-x</sub>Sr<sub>x</sub>NiO<sub>4</sub> perovskite-type oxides. *Applied Catalysis A: General*, 386(1–2), 116–123.
- Pompeo, F., Gazzoli, D., & Nichio, N. N. (2009). Stability improvements of Ni/α-Al<sub>2</sub>O<sub>3</sub> catalysts to obtain hydrogen from methane reforming. *International Journal of Hydrogen Energy*, 34(5), 2260–2268.
- Richardson, J. T., & Paripatyadar, S. A. (1990). Carbon dioxide reforming of methane with supported rhodium. *Applied Catalysis*, 61(1), 293–309.
- Rivas, M. E., Fierro, J. L. G., Goldwasser, M. R., Pietri, E., Pérez-Zurita, M. J., Griboval-Constant, A., & Leclercq, G. (2008). Structural features and performance of LaNi<sub>1-x</sub>Rh<sub>x</sub>O<sub>3</sub> system for the dry reforming of methane. *Applied Catalysis A: General*, 344(1–2), 10–19.
- Ruckenstein, E., & Wang, H. . (2000). Carbon dioxide reforming of methane to synthesis gas over supported cobalt catalysts. *Applied Catalysis A: General*, 204(2), 257–263.

- Ruckenstein, E., & Wang, H. Y. (2002). Carbon Deposition and Catalytic Deactivation during CO<sub>2</sub> Reforming of CH<sub>4</sub> over Co/γ-Al<sub>2</sub>O<sub>3</sub> Catalysts. *Journal of Catalysis*, 205(2), 289–293.
- Sadykov, V., Muzykantov, V., Bobin, A., Mezentseva, N., Alikina, G., Sazonova, N., Mirodatos, C. (2010). Oxygen mobility of Pt-promoted doped CeO<sub>2</sub>–ZrO<sub>2</sub> solid solutions: Characterization and effect on catalytic performance in syngas generation by fuels oxidation/reforming. *Catalysis Today*, 157(1–4), 55–60.
- Sathyamoorthy, B., Md Gazzali, P. M., Murugesan, C., & Chandrasekaran, G. (2014). Electrical properties of samarium cobaltite nanoparticles synthesized using Sol– Gel autocombustion route. *Materials Research Bulletin*, 53, 169–176.
- Sato, S., Takahashi, R., Kobune, M., & Gotoh, H. (2009). Basic properties of rare earth oxides. *Applied Catalysis A: General*, *356*(1), 57–63.
- Sazonova, N. N., Sadykov, V. A., Bobin, A. S., Pokrovskaya, S. A., Gubanova, E. L., & Mirodatos, C. (2009). Dry reforming of methane over fluorite-like mixed oxides promoted by Pt. *Reaction Kinetics and Catalysis Letters*, 98(1), 35–41.
- Screen, T. (2007). Platinum Group Metal Perovskite Catalysts. Platinum Metals Review, 51(2), 87–92.
- Seo, J. G., Youn, M. H., Park, S., Chung, J. S., & Song, I. K. (2009). Hydrogen production by steam reforming of liquefied natural gas (LNG) over Ni/Al<sub>2</sub>O<sub>3</sub>–ZrO<sub>2</sub> xerogel catalysts: Effect of calcination temperature of Al<sub>2</sub>O<sub>3</sub>–ZrO<sub>2</sub> xerogel supports. *International Journal of Hydrogen Energy*, 34(9), 3755–3763.
- Shabbir, G., Qureshi, a. H., & Saeed, K. (2006). Nano-crystalline LaFeO<sub>3</sub> powders synthesized by the citrate-gel method. *Materials Letters*, *60*(3), 3706–3709.
- Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section* A, 32(5), 751–767.
- Son, I. H., Lee, S. J., Song, I. Y., Jeon, W. S., Jung, I., Yun, D. J., Roh, H.-S. (2014). Study on coke formation over Ni/γ-Al<sub>2</sub>O<sub>3</sub>, Co-Ni/γ-Al<sub>2</sub>O<sub>3</sub>, and Mg-Co-Ni/γ-Al<sub>2</sub>O<sub>3</sub> catalysts for carbon dioxide reforming of methane. *Fuel*, *136*, 194–200.

- Song, C. (2006). Global challenges and strategies for control, conversion and utilization of CO<sub>2</sub> for sustainable development involving energy, catalysis, adsorption and chemical processing. *Catalysis Today*, 115(1–4), 2–32. Su, Y.-J., Pan, K.-L., & Chang, M.-B. (2014). Modifying perovskite-type oxide catalyst LaNiO<sub>3</sub> with Ce for carbon dioxide reforming of methane. *International Journal of Hydrogen Energy*, 39(10), 4917–4925.
- Sutthiumporn, K., & Kawi, S. (2011). Promotional effect of alkaline earth over Ni– La<sub>2</sub>O<sub>3</sub> catalyst for CO<sub>2</sub> reforming of CH<sub>4</sub>: Role of surface oxygen species on H<sub>2</sub> production and carbon suppression. *International Journal of Hydrogen Energy*, *36*(22), 14435–14446.
- Sutthiumporn, K., Maneerung, T., Kathiraser, Y., & Kawi, S. (2012). CO<sub>2</sub> dry-reforming of methane over La<sub>0.8</sub>Sr<sub>0.2</sub>Ni<sub>0.8</sub>M<sub>0.2</sub>O<sub>3</sub> perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression. *International Journal of Hydrogen Energy*, *37*(15), 11195–11207.
- Tao, G., Mingxu, Z., & Fanfei, M. (2014). The XPS analysis of surface texture of different-density-level coking coal of Fenxi county, 2(4), 59–65.
- Tienthao, N., Hassanzahediniaki, M., Alamdari, H., & Kaliaguine, S. (2007). Effect of alkali additives over nanocrystalline Co–Cu-based perovskites as catalysts for higher-alcohol synthesis. *Journal of Catalysis*, 245(2), 348–357.
- Tomishige, K., Kanazawa, S., Suzuki, K., Asadullah, M., Sato, M., Ikushima, K., & Kunimori, K. (2002). Effective heat supply from combustion to reforming in methane reforming with CO<sub>2</sub> and O<sub>2</sub>: comparison between Ni and Pt catalysts. *Applied Catalysis A: General*, 233(1–2), 35–44.
- Topalidis, A., Petrakis, D. E., Ladavos, A., Loukatzikou, L., & Pomonis, P. J. (2007). A kinetic study of methane and carbon dioxide interconversion over 0.5% Pt/SrTiO<sub>3</sub> catalysts. *Catalysis Today*, *127*(1–4), 238–245.
- Touahra, F., Rabahi, A., Chebout, R., Boudjemaa, A., Lerari, D., Sehailia, M., Bachari, K. (2016). Enhanced catalytic behaviour of surface dispersed nickel on LaCuO<sub>3</sub> perovskite in the production of syngas: An expedient approach to carbon resistance during CO<sub>2</sub> reforming of methane. *International Journal of Hydrogen Energy*.

- Trimm, D. . (1999). Catalysts for the control of coking during steam reforming. *Catalysis Today*, 49(1–3), 3–10.
- Tsipouriari, V. A., & Verykios, X. E. (1999). Carbon and Oxygen Reaction Pathways of CO<sub>2</sub> Reforming of Methane over Ni/La<sub>2</sub>O<sub>3</sub> and Ni/Al<sub>2</sub>O<sub>3</sub> Catalysts Studied by Isotopic Tracing Techniques. *Journal of Catalysis*, 187(1), 85–94.
- Tsipouriari, V. A., & Verykios, X. E. (2001). Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La<sub>2</sub>O<sub>3</sub> catalyst. *Catalysis Today*, 64(1–2), 83–90.
- University of Oxford. (1998). Climate science of methane. Source, 14-23.
- Usman, M., Wan Daud, W. M. A., & Abbas, H. F. (2015). Dry reforming of methane: Influence of process parameters - A review. *Renewable and Sustainable Energy Reviews*, 45, 710–744.
- Valderrama, G., Goldwasser, M. R., Navarro, C. U. de, Tatibouët, J. M., Barrault, J., Batiot-Dupeyrat, C., & Martínez, F. (2005). Dry reforming of methane over Ni perovskite type oxides. *Catalysis Today*, 107–108, 785–791.
- Valderrama, G., Kiennemann, A., & Goldwasser, M. R. (2008). Dry reforming of CH<sub>4</sub> over solid solutions of LaNi<sub>1-x</sub>Co<sub>x</sub>O<sub>3</sub>. *Catalysis Today*, *133–135*, 142–148.
- Valderrama, G., Kiennemann, A., & Goldwasser, M. R. (2010). La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. *Journal of Power Sources*, 195(7), 1765–1771.
- Valderrama, G., Urbina de Navarro, C., & Goldwasser, M. R. (2013). CO<sub>2</sub> reforming of CH<sub>4</sub> over Co–La-based perovskite-type catalyst precursors. *Journal of Power Sources*, 234, 31–37.
- Verykios, X. E. (2003). Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. *International Journal of Hydrogen Energy*, 28(10), 1045–1063.
- Vu, B. K., Song, M. B., Ahn, I. Y., Suh, Y.-W., Suh, D. J., Kim, J. S., & Shin, E. W. (2011). Location and structure of coke generated over Pt–Sn/Al<sub>2</sub>O<sub>3</sub> in propane dehydrogenation. *Journal of Industrial and Engineering Chemistry*, 17(1), 71–76.

- Wang, N., Chu, W., Zhang, T., & Zhao, X. S. (2012). Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. *International Journal of Hydrogen Energy*, 37(1), 19–30.
- Wang, S., Lu, G. Q. (Max), & Millar, G. J. (1996). Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art. *Energy & Fuels*, 10(4), 896–904.
- Weckhuysen, B. M., Rosynek, M. P., & Lunsford, J. H. (1998). Characterization of surface carbon formed during the conversion of methane to benzene over Mo / H-ZSM-5 catalysts, 52, 31–36.
- Wisniewski, M., Boréave, A., & Gélin, P. (2005). Catalytic CO<sub>2</sub> reforming of methane over Ir/Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>2-x</sub>. *Catalysis Communications*, 6(9), 596–600.
- Yang, E., Noh, Y., Ramesh, S., Lim, S. S., & Moon, D. J. (2015). The effect of promoters in La<sub>0.9</sub>M<sub>0.1</sub>Ni<sub>0.5</sub>Fe<sub>0.5</sub>O<sub>3</sub> (M=Sr, Ca) perovskite catalysts on dry reforming of methane. *Fuel Processing Technology*, 134, 404–413.
- Yang, N.-T., Kathiraser, Y., & Kawi, S. (2013). La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.8</sub>Ni<sub>0.2</sub>O<sub>3-δ</sub> hollow fiber membrane reactor: Integrated oxygen separation – CO<sub>2</sub> reforming of methane reaction for hydrogen production. *International Journal of Hydrogen Energy*, 38(11), 4483–4491.
- Yaw, T. C., Aishah, N. O. R., & Amin, S. (2007). Analysis of carbon dioxide reforming of methane via thermodynamic equilibrium approach. *Jurnal Teknologi*, 43, 31–49.
- Yentekakis, I. V., Goula, G., Panagiotopoulou, P., Katsoni, A., Diamadopoulos, E., Mantzavinos, D., & Delimitis, A. (2015). Dry Reforming of Methane: Catalytic Performance and Stability of Ir Catalysts Supported on γ-Al<sub>2</sub>O<sub>3</sub>, Zr<sub>0.92</sub>Y<sub>0.08</sub>O<sub>2-δ</sub> (YSZ) or Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>2-δ</sub> (GDC) Supports. *Topics in Catalysis*, 58(18–20), 1228–1241.
- Zahedinezhad, M., Rowshanzamir, S., & Eikani, M. (2009). Autothermal reforming of methane to synthesis gas: Modeling and simulation. *International Journal of Hydrogen Energy*, 34(3), 1292–1300.

- Zavala-Araiza, D., Lyon, D., Alvarez, R. A., Palacios, V., Harriss, R., Lan, X., Hamburg, S. P. (2015). Toward a Functional Definition of Methane Super-Emitters: Application to Natural Gas Production Sites. *Environmental Science and Technology*, 49(13), 8167–8174.
- Zhang, D., Wang, R., Wang, L., & Yang, X. (2013). Coking and deactivation of boron modified Al-MCM-41 for vapor-phase Beckmann rearrangement reaction. *Journal* of Molecular Catalysis A: Chemical, 366, 179–185.
- Zhang, H. (1990). Oxygen sorption and catalytic properties of La<sub>1-x</sub>Sr<sub>x</sub>Co<sub>1-y</sub>Fe<sub>y</sub>O<sub>3</sub> Perovskite-type oxides. *Journal of Catalysis*, *121*(2), 432–440.
- Zhang, J., Wang, H., & Dalai, A. (2007). Development of stable bimetallic catalysts for carbon dioxide reforming of methane. *Journal of Catalysis*, 249(2), 300–310.
- Zhang, Z., & Verykios, X. E. (1996). Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts. *Applied Catalysis A: General*, *138*(1), 109–133.
- Zheng, X.-G., Tan, S.-Y., Dong, L.-C., Li, S.-B., Chen, H.-M., & Wei, S.-A. (2015). Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO<sub>3</sub> nanoparticles. *Fuel Processing Technology*, 137, 250–258.
- Zhong, Z., Chen, K., Ji, Y., & Yan, Q. (1997). Methane combustion over B-site partially substituted perovskite-type LaFeO<sub>3</sub> prepared by sol-gel method. *Applied Catalysis A: General*, 156(1), 29–41.
- Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., Li, J. (2014). Perovskite oxides: Preparation, Characterizations and applications in heterogeneous catalysis. ACS Catalysis, 4, 2917–2940.
- Zhu, Q., Cheng, H., Zou, X., Lu, X., Xu, Q., & Zhou, Z. (2015). Synthesis, characterization, and catalytic performance of La<sub>0.6</sub>Sr<sub>0.4</sub>Ni<sub>x</sub>Co<sub>1-x</sub>O<sub>3</sub> perovskite catalysts in dry reforming of coke oven gas. *Chinese Journal of Catalysis*, 36(7), 915–924.