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Abstract.  . A novel comparison study based on a radial basis function 

neural network (RBFNN) and Response Surface Methodology (RSM) is 

proposed to predict the conversion rate (yield) of the experimental data for 

PNVCL polymerization. A statistical and optimization model was 

performing to show the effect of each parameter and their interactions on the 

conversion rate. The influence of the time, polymerization temperature, 

initiator concentration and concentration of the monomer were studied. The 

results obtained in this study indicate that the RBFNN was an effective 

method for predicting the conversion rate. The time of the PNVCL 

polymerization as well as the concentration of the monomer show the 

maximum effect on the conversion rate. In addition, compared with the RSM 

method, the RBFNN showed better conversion rate comparing with the 

experimental data. 

1 Introduction  

The recognized thermosensitive polymer with LCST close to physical temperature is Poly 

(N-vinylcaprolactam) (PNVCL), which is around 32 ºC [1]-[3]. For biomedical applications, 

this type of physiological temperature considered promising especially in drug delivery 

systems and micro-encapsulation of enzymes or cells [4,5]. Since not long the poly (N-

isopropylacrylamide) (PNIPAM) was the most of the environmental thermoresponsive 

polymer as a homo- and copolymers, but PNVCL has an exceptional advantage make him 

better than PNIPAM. these remarkable advantage has been proven by cytotoxicity evaluation 

which proved produce toxic low-molecular-weight amines during hydrolysis [6]. Likewise, 

there are other features of PNVCL as high complexing ability with different therapeutic 

agents; low toxicity and biocompatibility make it substantially propose utilized as a 

hydrophobic core-forming segment with different kinds of hydrophilic moieties at 

temperatures above its LCST. These features together are widely used in many medical and 

industrial applications, in special in the biomedical field [7]-[9]. 
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In manufacturing stage, the two significant issues are process modelling and optimization. 

For the optimization of process parameters, it is not only excess the product quality but 

advantage of also the advantage of technologist. Through the manufacturing process to 

produce polymers a multi-type problem can appear, to identify and summarize these 

problems the response surface methodology (RSM) utilize to be a simple and effective 

method of enhancing, analyzing and optimizing the parameter settings [10], [11]. 

The radical polymerization is the method which is used to synthesise PNVCL starting 

from the monomer. Although this polymer has a considerable attention the data information 

on its radical polymerization are rare and significant quantitative characteristics of the 

reaction are unavailable [12]-[14]. Therefore, the goal of the present study is to investigate 

the factors which are the effect on synthesis process. 

2 Experimental 

2.1 Materials and polymerization procedure 

N-vinylcaprolactam (98%, provided by Aldrich) as a monomer, 2,20-azobisisobutyronitrile- 

AIBN (supplied by BASF, Guaratingueta ´, state of Sao Paulo, Brazil) as initiator, while 1,4-

dioxane (99.8%, Aldrich) as a solvent. The PNVCL polymer, was produced by free radical 

polymerization technique, in 1,4-dioxane at 70 ºC for 3 hours, the experimental results were 

obtained by [15]. The reaction was performed under nitrogen atmosphere, in a double walled 

glass reactor and heated to reach 70 °C temperatures. At First, the calculated amount of N-

vinylcaprolactam was poured in to the reactor, in addition to a suitable volume of internal 

standard (Trioxane). After the addition of 75% of the 1,4-dioxane, the solution was flushed 

with argon for almost 20 minutes. A mixed solution of AIBN and the solvent (remaining 

25%) was processed and flushed with argon for ~ 20 minutes. When the temperature reached 

70 °C, the polymerization was commenced by adding the prepared AIBN solution. The 

polymerization was carried out for 3 hours at 70 °C. 

2.2 Experimental design 

Response Surface Methodology (RSM) is a usual experimental design technique for 

optimization of the chemical engineering processes [16]-[18]. This method is also employed 

to find out conditions leading to a product with enhanced characteristics or quality [19]-[21]. 

The present study was aimed to develop the input-output relationships for prediction of the 

conversion % for PNVCL polymerization. In order to achieve at the most influential variables 

and its effects a phase parameters were proposed. Response surface methodology (RSM) 

based on central composite design (CCD) was utilized to develop a model for prediction of 

the conversion % for PNVCL polymerization from the experimental data. RSM are used to 

estimate the transfer functions at the optimal region. Hence, CCD approach was selected for 

the present study. The use of statistical design of experiment (DOE) techniques provides with 

valuable tools for forecasting the behavior of a system or process [22]-[25]. 

2.3 RBFNN Optimization Technique 

Lowe [26] were a first suggestion the Radial Basis Function neural network (RBFNN), and 

their interpolation and generalization properties are thoroughly investigated in [26]. RBFNN 

is an artificial neural network depends on radial basis functions as activation functions; the 

output of the network is a linear combination of radial basis functions of the inputs and neuron 

parameters a linear combination of radial basis functions. RBFNN applied on different fields 

like a mathematical modelling, pattern classification, approximation of a nonlinear function, 

control, and time-series prediction. RBFNN able to approximate any reasonable continuous 

function mapping and reaches a good degree of accuracy [27]-[29]. RBFNN formation from 

three various layers with feedforward architecture: the input layer, hidden layer (RBFNN), 

and the output layer.  Figure 1 illustrates RBFNN structure. 

 

 
Fig. 1. Radial basis function neural network (RBFNN) structure. 

The RBFNN, as a typical feed-forward network, has been found to be very beneficial to 

many engineering problems [30]. It consists of three layers: the input layer, hidden layer, and 

output layer. In this study, the activation function ([f(x)]), used as a Gaussian type, and was 

as follows [31]: 

 ∅ = exp ‖ −	 ‖2 		 (1) 

where, (c_i) and (σ_i) denote the center and spread width of the (i-th) node, respectively, thus 

(ǁx- c_i ǁ) is the Euclidean distance between input vector (x) and center (c_i) [32, 33]. 

In the current study used MATLAB computer software for optimization. Have been 

identified (time, Cm, Ci, Temperature) as the inputs of hidden layer (X), and the output 

conversion % as the output layer (Y) which requires optimizing. 

3 Results and Discussion 

This research aims to enhance the input and output relationships for prediction of the 

Conversion rate (yield), the inlet and outlet experimental data for PNVCL polymerization 

shown in table 1. The analysis of variance (ANOVA) results are presented in Table 2. It can 

be seen that the model F-value of 26.63 implies the model is significant.  There is only a 

0.0001% chance that a "Model F-Value" this large could occur due to noise. Values of "Prob 

> F" less than 0.0500 indicate model terms are significant. In this case Time, Temp. and 

Time2 are significant model terms. Values greater than 0.1000 indicate the model terms are 

insignificant.  Values greater than 0.1000 indicate the model terms are not significant.   
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Table 1. Experimental data for PNVCL polymerization [15]. 

Time (min) Cm(mol/L) Ci(mol/L) T(°C) Conversion % 

45 0.16 0.031 70 78 

150 0.16 0.023 60 73 

180 0.16 0.023 80 100 

150 0.16 0.0235 80 96 

20 0.16 0.016 60 21 

180 0.16 0.023 60 80 

15 0.16 0.031 70 31 

45 0.32 0.023 70 71 

120 0.32 0.023 70 90 

90 0.16 0.023 80 86 

45 0.16 0.023 80 69 

60 0.32 0.023 70 78 

30 0.16 0.023 70 48 

150 0.16 0.0235 70 94 

90 0.16 0.023 60 50 

180 0.32 0.023 70 100 

60 0.16 0.023 80 75 

30 0.16 0.023 60 27 

60 0.16 0.016 70 63 

20 0.32 0.023 70 42 

90 0.06 0.023 60 61 

90 0.16 0.023 70 73 

180 0.16 0.016 70 91 

90 0.32 0.031 70 87 

120 0.16 0.031 70 96 

15 0.16 0.016 70 19 

90 0.32 0.023 80 88 

30 0.06 0.023 70 47 

180 0.16 0.031 70 100 

120 0.16 0.023 80 93 

  

Table 2. Analysis of variance (ANOVA) results of the yield. 

Source Sum of Squares df Mean Square F value p-value Prob > F 

Model 25146.4 14 1796.17 26.63 < 0.0001 

significant 

A-Time 12341.9 1 12341.9 182.95 < 0.0001 

B-Cm 102.77 1 102.77 1.52 0.2374 

C-Ci 132.73 1 132.73 1.97 0.1825 

D-Temp 643.16 1 643.16 9.53 0.008 

AB 81.1 1 81.1 1.2 0.2914 

AC 2.73 1 2.73 0.04 0.8436 

AD 25.86 1 25.86 0.38 0.5458 

BC 112.3 1 112.3 1.66 0.2179 

BD 12.26 1 12.26 0.18 0.6763 

CD 102.01 1 102.01 1.51 0.2391 

A2 2550.31 1 2550.31 37.81 < 0.0001 

B2 20.02 1 20.02 0.3 0.5945 

C2 41.82 1 41.82 0.62 0.4442 

D2 96.67 1 96.67 1.43 0.2511 

Residual 944.43 14 67.46   

Cor Total 26090.8 28    

 

The mathematical model for the conversion rate (%) is developed based on the response 

surface method. The mathematical equation of the conversion rate (%) can be expressed as 

in Eq. (2).  

 
Conversion% = -123.28278 +1.36579*T1 +362.07716*X2 

                     -13759.21200*X3+5.45449*X4  

                     -0.27568*X1*X2-3.44569*X1*X3  

                     -4.79058*10^(-3)*X1*X4-7772.07490*X2*X3 

                     -4.66738*X2*X4+206.38658*X3*X4 

                     -2.75566*10^(-3)*X1^2+470.91392* X2^2 

                     +38677.86803*X3^2-0.054149* X4^2;            

(2) 

 

The R-Squared analysis result of the conversion rate t is tabulated in Table 3. The Predict 

R-Squared of 0.9638 is in reasonable agreement with the Adjusted R-Squared of 0.9276. 

Adequate Precision measures the signal to noise ratio. A ratio greater than 4 is desirable.  The 

ratio of 15.389 indicates an adequate signal.  This model can be used to navigate the design 

space of the meausre the conversion rate. The higher value of R2 indicates the better fit of the 

model with the real data. 

Table 3. R2 analysis results of the conversion. 

Std. Dev.  8.21 R-Squared 0.9638 

Mean    63.62 Adj R-Squared 0.9276 

C.V. %  12.91 Pred R-Squared N/A 

PRESS  N/A Adeq Precision 15.389 
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The result from RBFNN and DOE was shown in the Table 4. This table highlights the 

conversion rate for three cases as an experimental, RBFNN predicated and RSM predicated. 

It was very clear the results from the RBFNN predicated closed to the experimental compared 

with the RSM predicated data. These results also presented in the Figure 2 to show that the 

RBFNN predicated results were correspond with experimental data exactly. 

Table 4. Result from RBFNN and DOE. 

Time 

(min) 

Cm 

(mol/L) 

Ci 

(mol/L) 

T 

(°C) 

Conv. 

% 
RBFNN DOE E1 E2 

150 0.16 0.023 60 73 73 75.69 0 -2.69 

20 0.16 0.016 60 21 21 20.7 0 0.3 

15 0.16 0.031 70 31 31 43.4 0 -12.4 

120 0.32 0.023 70 90 90 95.69 0 -5.69 

45 0.16 0.023 80 69 69 65 0 4 

90 0.16 0.023 60 50 50 58.1 0 -8.1 

60 0.16 0.016 70 63 63 57.9 0 5.12 

180 0.16 0.016 70 91 91 90.25 0 0.74 

120 0.16 0.031 70 96 96 96.72 0 -0.72 

180 0.16 0.031 70 100 100 99.89 0 0.11 

 

 

 
Fig. 2. The best fit line plot of the yield.  

4 Conclusion 

The application of RSM utilizing a central composite design (CCD) was investigated to 

elevate the affecting of the polymer conversion by polymerization factor. On the other hand, 

this study focuses on the predicated data from RBFNN optimization technique.  All 

parameters showed a significant influence on the conversion rate, through ANOVA analysis. 

The predicted conversion rate show 0% error compared with the experimental results. 

Therefore, the RBFNN technique represents the more suitable optimization methods to 

manage the calculations of the conversion rate of the experimental data for the PNVCL 

polymerization. 

References 

1. Prabaharan, M., et al., Macromol. Biosci., 8(9): p. 843-851 (2008). 

2. Konefał, R., et al., Colloid. Polym. Sci., p. 1-10 (2016). 

3. Yang, Y., et al., J. Polym. Res., 21(9): p. 1-9 (2014). 

4. Loos, W., et al., Macromol. Chem. Phys., 204(1): p. 98-103 (2003). 

5. Verbrugghe, S., K. Bernaerts, and F.E. Du Prez, Macromol. Chem. Phys., 204(9): p. 

1217-1225 (2003). 

6. Sun, S. and P. Wu, J. Phys. Chem. B, 115(40): p. 11609-11618 (2011). 

7. Hurtgen, M., et al., J. Polym. Sci. Pol. Chem., 50(2): p. 400-408 (2012). 

8. Lequieu, W., N. Shtanko, and F. Du Prez, J. Membrane Sci., 256(1): p. 64-71 (2005). 

9. Dimitrov, I., et al., Prog. Polym. Sci., 32(11): p. 1275-1343 (2007). 

10. Toloza Porras, C., et al., Macromol. React. Eng., 7(7): p. 311-326 (2013). 

11. Wang, L. and L.J. Broadbelt, Macromolecules, 42(20): p. 7961-7968 (2009). 

12. Solomon, O.F., M. Corciovei, and C. Boghin˘, J. Appl. Polym. Sci., 12(8): p. 1843-1851 

(1968). 

13. Solomon, O., D. Vasilescu, and V. Tǎrǎrescu, J. Appl. Polym. Sci., 13(1): p. 1-7 (1969). 

14. Kalugin, D., Y.A. Talyzenkov, and M. Lachinov, Polym. Sci. Ser. B+, 50(11-12): p. 299-

304 (2008). 

15. Medeiros, S.F., et al., J. Appl. Polym. Sci., 118(1): p. 229-240 (2010). 

16. Jenkins, A.L., M.W. Ellzy, and L.C. Buettner, J. Mol. Recognit., 25(6): p. 330-335 

(2012). 

17. Asghari, A., M. Kamalabadi, and H. Farzinia, Chem. Biochem. Eng. Q., 26(2): p. 145-

154 (2012). 

18. Madaeni, S. and S. Koocheki, Chem. Eng. J., 119(1): p. 37-44 (2006). 

19. Kaladhar, M., et al., J. Eng. Sci. Technol. Rev., 4(1): p. 55-61 (2011). 

20. Mohamed, A.A., et al., J. Nucl. R. Technol., 9(1): p. 23-32 (2012). 

21. Mehdinia, A., et al., J. Chromatogr. A, 1283: p. 82-88 (2013). 

22. Cui, F., et al., Biotechnol. Bioproc. E., 15(2): p. 299-307 (2010). 

23. San, F.G.B., I. Isik-Gulsac, and O. Okur, Energy, 55: p. 1067-1075 (2013). 

24. Khamforoush, M., et al., Korean J. Chem. Eng., 31(9): p. 1695-1706 (2014). 

25. Mirmohseni, A., M. Shojaei, and R. Pourata, RSC Adv., 4(39): p. 20177-20184 (2014). 

26. Lowe, D., Compl. Syst., 2: p. 321-355 (1988). 

27. Wang, S., et al., Entropy, 17(8): p. 5711-5728 (2015). 

28. Jiao, G., T. Guo, and Y. Ding, Water, 8(9): p. 367 (2016). 

29. Wang, X., et al., RSC Adv., 5(81): p. 66168-66177 (2015). 

30. Rostamizadeh, K., H. Abdollahi, and C. Parsajoo, Int. Nano Lett., 3(1): p. 1-9 (2013). 

31. Erol, R., et al., J. Med. Syst., 32(3): p. 215-220 (2008). 

32. Evans, P., et al., Sensor. Actuat. B-Chem., 69(3): p. 348-358 (2000). 

33. Ghosh-Dastidar, S., H. Adeli, and N. Dadmehr, IEEE T Bio-Med. Eng., 55(2): p. 512-

518 (2008). 

6

MATEC Web of Conferences 225, 02023 (2018) https://doi.org/10.1051/matecconf/201822502023
UTP-UMP-VIT SES 2018



The result from RBFNN and DOE was shown in the Table 4. This table highlights the 

conversion rate for three cases as an experimental, RBFNN predicated and RSM predicated. 

It was very clear the results from the RBFNN predicated closed to the experimental compared 

with the RSM predicated data. These results also presented in the Figure 2 to show that the 

RBFNN predicated results were correspond with experimental data exactly. 

Table 4. Result from RBFNN and DOE. 

Time 

(min) 

Cm 

(mol/L) 

Ci 

(mol/L) 

T 

(°C) 

Conv. 

% 
RBFNN DOE E1 E2 

150 0.16 0.023 60 73 73 75.69 0 -2.69 

20 0.16 0.016 60 21 21 20.7 0 0.3 

15 0.16 0.031 70 31 31 43.4 0 -12.4 

120 0.32 0.023 70 90 90 95.69 0 -5.69 

45 0.16 0.023 80 69 69 65 0 4 

90 0.16 0.023 60 50 50 58.1 0 -8.1 

60 0.16 0.016 70 63 63 57.9 0 5.12 

180 0.16 0.016 70 91 91 90.25 0 0.74 

120 0.16 0.031 70 96 96 96.72 0 -0.72 

180 0.16 0.031 70 100 100 99.89 0 0.11 

 

 

 
Fig. 2. The best fit line plot of the yield.  

4 Conclusion 

The application of RSM utilizing a central composite design (CCD) was investigated to 

elevate the affecting of the polymer conversion by polymerization factor. On the other hand, 

this study focuses on the predicated data from RBFNN optimization technique.  All 

parameters showed a significant influence on the conversion rate, through ANOVA analysis. 

The predicted conversion rate show 0% error compared with the experimental results. 

Therefore, the RBFNN technique represents the more suitable optimization methods to 

manage the calculations of the conversion rate of the experimental data for the PNVCL 

polymerization. 
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