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ABSTRAK 

Bendalir tak Newtonan mempunyai karakter yang unik kerana tidak mematuhi hukum 

kelikatan Newtonan. Dengan sifat reologi, persamaan klasik Navier-Stokes tidak lagi 

sesuai untuk mentakrifkan keseluruhan bendalir tak Newtonan. Bendalir tak Newtonan 

boleh ditakrifkan mengikut beberapa kategori seperti elastik likat, kelikatan 

kebergantungan masa dan kelikatan tak Newtonan. Contoh bendalir adalah seperti 

minyak, sos, pasta makanan, cat dan larutan koloid. Bendalir tak Newtonan mendapat 

perhatian kerana prestasi yang cemerlang di dalam industri dan penggunaan teknologi 

jika dibandingkan dengan bendalir Newtonan. Dalam kajian ini, terdapat dua bendalir 

tak Newtonan iaitu bendalir nano Casson dan Williamson yang dipilih untuk diselidik. 

Sementara itu, beberapa syarat sempadan dikaji iaitu suhu dinding malar, pemanasan 

Newtonan dan syarat gelincir. Syarat lain yang dipertimbangkan adalah kesan radiasi 

terma, medan magnet dan keliangan media. Model yang dicadangkan untuk setiap 

permasalahan adalah bergantung kepada sistem persamaan menakluk yang tertakluk 

kepada syarat awal dan syarat sempadan. Kemudian, pembolehubah tak berdimensi 

diperkenalkan untuk menurunkan persamaan menakluk kepada bentuk tak berdimensi. 

Seterusnya, penyelesaian berangka persamaan pembezaan biasa diselesaikan dengan 

menggunakan kaedah Luruan. Penyesaian ini mestilah asimptot dan perlu memenuhi 

syarat awal dan syarat sempadan. Perbandingan kes kelikatan dijalankan untuk 

mengesah kajian yang dijalankan adalah tepat dan dipercayai. Penyelesaian berangka 

untuk profil halaju, suhu dan kepekatan diplot secara grafik dan dibincangkan dengan 

pelbagai parameter. Pekali geseran kulit, nombor Nusselt dan nombor Sherwood 

setempat juga diselidik dan diperiksa. Keputusan menunjukkan bahawa profil halaju 

menurun secara signifikan dengan peningkatan parameter Casson dan Williamson. 

Selain itu, dapat diperhatikan bahawa parameter tidak boleh melebihi nilai kritikal, di 

mana bendalir akan kehilangan karakter. Dalam kajian ini didapati bendalir tak 

Newtonan mempunyai konduktiviti pemindahan haba yang lebih baik daripada bendalir 

asas. Parameter pemanasan Newtonan juga meningkatkan suhu dinding di dalam aliran 

bendalir lembaran tegang. Penyelesaian fizikal parameter pemanasan Newtonan juga 

dianalisa. Penyelesain berangka yang diperoleh dalam kajian ini amat penting dalam 

mengesahkan asas aliran disebabkan piawanan ketepatan untuk kaedah anggaran, 

analitik dan eksperimen.  
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ABSTRACT 

The unique characteristic of non-Newtonian fluids is that they do not obey the 

Newtonian law of viscosity. With the rheological behaviour properties, the classical 

Navier Stokes equations are no longer appropriate to define all the non-Newtonian 

fluids. Non-Newtonian fluids can be defined in several categories like visco-elastic, 

time-dependent viscosity and non-Newtonian viscosity. Such fluids are oils, ketchup, 

food paste, paints and colloidal solutions. Non-Newtonian fluids have gained much 

attraction due to their better performance in industrial and technological applications 

compared to Newtonian fluids. In this study, there are two types of non-Newtonian 

fluids, namely, the Casson and Williamson nanofluids, were selected to be investigated. 

Meanwhile, several types of boundary conditions studied were constant wall 

temperature, Newtonian heating and slip conditions. Other conditions considered were 

thermal radiation effect, magnetic field and porosity of the medium. The proposed 

model for each problem would depend on the system of governing equations subject to 

the imposed initial and boundary conditions. Then, suitable non-dimensional variables 

were introduced to reduce the governing equations into the dimensionless form. Next, 

the numerical solutions of ordinary differential equations were solved using the 

Shooting method. These solutions must be asymptotic and must meet the imposed 

initial and boundary conditions. The comparison for viscous case was conducted to 

verify that the results of the present study would be reliable and accurate. The 

numerical solutions of velocity, temperature and concentration profiles were plotted 

graphically and discussed with different parameters. The skin friction coefficient, local 

Nusselt number and Sherwood number also have been studied and examined. Results 

showed that the velocity profile had decreased significantly with increase in Casson and 

Williamson parameters. The wall temperature increased when Casson and Williamson 

parameters increased. Besides, it is noticed that these parameter must not exceed the 

critical values respectively; otherwise, the fluid lost its characteristics. The non-

Newtonian fluids in the present study were found to have better conductivity in heat 

transfer compared with base fluids. Also, the Newtonian heating parameter leads 

increase the wall tempearature in the fluid fow over a stretching sheet. The physical 

solutions for Newtonian heating parameter were also analysed. The numerical solutions 

obtained in the present study would be important in the validations of fundamental flow 

because of the accuracy standards for approximate method, analytical and experimental 

method.   
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

In this chapter, two types of non-Newtonian fluids, namely Casson and 

Williamson nanofluids are studied. Section 1.2 discusses the background of this 

research while the problem statement is given in Section 1.3. Meanwhile, Section 1.4 

highlights the objectives and scope of the research. Section 1.5 which describes the 

methodology and the methods used to perform and solve the governing equations. Next, 

Section 1.6 presents the significance of the study. Lastly, Section 1.7 provides the 

outline of the thesis.  

1.2 Research Background 

The life of human lives never goes far from applying the flow of non-Newtonian 

fluid models. Non-Newtonian fluid models have play important roles in the basic daily 

needs of humans as the concept is applied in medical sciences, engineering and the 

industry. The outcome from such models can be observed everywhere and in many 

processes such as food ingredients their preparation, blood circulation, cosmetic 

products, and paper production (Taylor et al, 2013). In recent years, the issue of 

nanofluids has become popular and has been widely discussed and investigated due to 

the vast accredited to the potential properties and characteristics of the nanofluids such 

as thermal conductivity, viscosity, and heat transfer rate. Scientists and researchers have 

uncovered the application of nanofluids and believe that they would benefit the human 

lives and future development in science and research. The term ‘nanofluid’ was first 

coined by Choi (1995) in the thermal science community. Since then, this issue has 

attracted who have published numerous articles discussing nanofluids in publications on 

heat transfer and thermal science. For the past few years, articles on nanofluids have 
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rapidly increased. For example, based on Google Scholar search (2012 - 2016), the 

number of citations for nanofluids in journals dramatically increased from less than 100 

citations per year in 2012 to more than 170 in 2013 before dropping slightly to 

approximately 170 in the following year but continued to increase above 170 in 2015 

and finally soaring up almost two-fold and nearly reached 340 citations per year in 2016 

(see Figure 1.1). 

 

Figure 1.1 Citations for the term “nanofluids”. 

The applications of nanofluids used in medicine especially in cancer treatment and 

control of fluid motion. Nanofluids are also applied in both heating and cooling process 

systems ranging from the cooling of wrapped integrated circuits at a small scale to the 

transfer in nuclear reactors at a large scale. Nanofluids are also used in cooling the 

microchips in electrical devices (e.g., desktop computer) because of their high thermal 

conductivity properties.  Besides, nanofluids can also be used as detergent to clean up 

oil spills and stains. Nanofluids behave as different from base fluids in term of classical 

concepts of spreading and adhesion on solid surfaces (Wong & Leon, 2009). Because 

there is not a single constitutive equation that can describe all the properties or 

rheological behaviour of non-Newtonian fluids, some researchers have introduced new 

models of non-Newtonian fluids such as the Williamson fluid, Casson fluid, Jeffrey 

fluid in order to imitate their performance better. The relevant contributions of non-

Newtonian fluids flow have been explored by Akbar et al. (2011); Hayat and Ali 

(2008); Magyari and Keller (1999); Mustafa and Khan (2015); Krishnamurthy et al. 

(2016) and Nadeem and Hussain (2014). 
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The flow of non-Newtonian fluids involves the absorption or loss of heat since 

heat transfer exists when there is a difference in temperature between two objects and it. 

It is a physical act of thermal energy being exchanged and the dissipation of heat 

between two systems. The temperature is defined as the available amount of thermal 

energy while the movement of thermal energy is represented by the flow of heat 

transfer. The heat transfer problem has been concern in studies by many researchers 

(see Das et al. 2006; Cebeci & Bradshaw, 2012; Haq et al. 2014; Gorla & Gireesha 

2016; Bhatti and Rashidi, 2016). There are three ways to transfer heat: (1) conduction; 

(2) convection; and, (3) radiation. Conduction is the transfer of energy in the form of 

electricity or heat from an atom to another within an object through direct contact. 

Solids transfer energy is the most efficient compared to transfer of energy through 

liquids and gases since the arrangement of molecules in solids are tightly packed and 

closer together.  Convection is the transfer of energy by the actual movement of 

warmed matter in fluids or gases through the movement of currents. Radiation is the 

energy transferred directly by electromagnetic wave through space or any transparent 

medium. Radiation is different from the other two ways of heat transfer because 

radiation does not rely upon any contact between the heat sources. For example, the sun 

releases heat through radiation and the heat energy is subsequently transferred heat 

across the solar system. The random movement of molecules and atoms in a matter 

directly causes thermal radiation while the movement of charged protons and electrons 

results in the emission of electromagnetic radiation. All objects radiate thermal energy 

based on their temperature. The higher the temperature of materials, the more they will 

radiate thermal energy. As the nanofluid flows over a stretching sheet, the collision 

between nanoparticles and wall surface of a plate releases the thermal heat which 

affects its reaction. The flow of incompressible viscous fluid towards a stretching sheet 

is important in some technological applications such as polymer extrusion, fiber glass 

production, and paper manufacturing. Based on the study by Mahapatra and Gupta 

(2001), the final quality of these cases depends on the rate of heat transfer at stretching 

sheet. In fact, many journals have published the investigations on heat transfer flow 

over a stretching surface set with varying problem such as non-Newtonian of power law 

fluid, velocity varying linearly flow, boundary layer flow, stagnation point, and slip 

condition.   
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Magnetohydrodynamics (MHD) is also a subject of subjects’ interest in this 

study as due to the presence of electrically conducted fluids motion in magnetic field. 

The idea of implementing MHD had been introduced by Hannes Alfven who won the 

Nobel Prize in 1970. As noted by Shima et al. (2009), the magnetic nanofluids cause 

magneto dielectric effect (a mechanism of reversibly forming particle agglomerate 

chains) which affects the thermal conductivity. In addition, a reversible approach to 

dynamically control friction between the moving parts can be manipulated by a stable 

magnetic fluid. There are several electromagnetic nanofluid applications, for instance, 

in solar energy harvesting, medical treatment, and random lasers. Besides, fluid flow 

through porous media is a subject that receives much interest in the academia which 

concerns how fluids behave when passing through a porous medium. Normally, a 

porous medium is most often characterized by its porosity.  The concept of porous 

medium has been applied in many areas, especially applied sciences and engineering 

like filtration, bio-remediation, and biology, among others. This is due to its properties 

of electrical conductivity, permeability and tensile strength. Much of research on fluid 

flow through a porous medium can be found in Lapwood (1948), Saffman and Taylor 

(1958), Vafai (1984), and Ahmad and Pop (2010). Many researchers studied their 

problems with no-slip condition. However, no-slip condition is inadequate when the 

fluid is particulate such as suspensions, emulsions and polymer solutions. Due to its 

micro or even smaller size, the behaviour of the fluids flow is opposite of or deviates 

form that of no-slip condition. The nanofluidic flow is categorized as the so-called slip 

length because the slip length is exhibited when it goes part against the solid surface. 

Thus, the no-slip condition may not be appropriate for the nano scale instead, a certain 

degree of tangential slip must be allowed. The relevant works can be found in studies 

by Yoshimura and Prud'homme (1988), Majumder et al. (2005), Gad-el-Hak (1999) and 

Aly (2015). 

In mathematical modelling, a well-defined physical problem for convective 

boundary flow can be described by the governing equations which are then subjected to 

the boundary conditions. Generally, there are several types of boundary conditions used 

in heat transfer problem. Based on the literature study, it has been discovered that there 

are a few common boundary conditions such as ramped wall temperature, prescribed 

surface heat flux or convective boundary conditions. However, these assumptions may 

fail to work in some practical solutions where the heat transfer from the surface is taken 
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to be directly proportional to the local surface temperature. This is because some of the 

flows are defined as conjugate convective flow and proportional to the local surface 

temperature like Newtonian heating. This work had first been carried out by Merkin 

(1994) on free convection boundary flow over a vertical plat immersed in viscous fluid. 

Then, this boundary condition was evaluated by other researchers in their numerical or 

analytical study as in convective heat transfer problems. The development and 

application for Newtonian heating can be found in some engineering applications such 

as in heat exchanger, heat management appliances, and engine cooling. The problems 

considered as Newtonian heating under different conditions can be found in the works 

of Salleh et al. (2010), Lesnic et al. (1999), and Narahari and Ishak (2011).  

In this study, two types of non-Newtonian fluids were examined, namely, the 

Casson and the Williamson nanofluids. Their detailed description will be provided in 

the following subsections. 

1.2.1 Nanofluids 

In the past century, convective heat transfer fluids (e.g., water and kerosene) 

played a crucial role in several applications in the engineering field and industrial 

sectors (e.g., chemical production, power generation, and microelectronics). However, 

these fluids had been analysed with low thermal conductivities and thus, resulted in 

limited heat transfer capabilities. In order to meet demands, the idea of nanofluids was 

introduced and to replace fluids with lower thermal conductivity. Generally, a fluid that 

possesses the nanometer sized of particles is called a nanofluid. According to Taylor et 

al. (2013), nanofluids are the colloidal suspension of nanoparticles with sizes between 1 

and 100 nm which are available in conventional base fluids like water, glycols and oil. 

Normally, nanoparticles used in the fluids are typically made up of carbon nanotubes 

(CNTs), metals (e.g., Au, Cu, Al, Ag and Fe) or oxides (e.g., CuO, Al2O3, TiO2 and 

SiO2). Due to the unique properties of the nano-sized particles, nanofluids are found to 

have great potential in the application of heat transfer in many fields such as 

engineering, process system, biomedical and cooling system.  After the term nanofluid 

was introduced by Choi (1995) and Eastman et al. (1996), it has since then become 

famous and gained much interest from researchers. Consequently, the study of 

nanofluids has shown rapid growth in recent years.  



6 

Nanofluids have many advantages and show great potential. Compared to solid-

liquid convention of heat transfer, it has been evident that nanofluid performs better in 

high particular surface area and causes a rise in temperature gradient between 

nanoparticles and the fluid. Furthermore, nanofluids have greater dispersion stability 

within the presence of Brownian motion particles. Brownian motion or pedesis is the 

random manner in which particles are suspended in a fluid, whether in gas or liquid 

moves. This phenomenon is due to the collision between the particles and atoms in a 

gas or liquid moving at high speed. Jang and Choi (2004) have suggested that the 

smaller the size of particles, the higher the random motion would be. As a result, the 

convection effects become dominant which causes the conductivity of the nanofluid to 

increase. Hence, to achieve better conductivity, the size of the particle must be as small 

as possible. Furthermore, nanofluids save more energy in pumping power compared to 

base fluids to achieve equivalent temperature gradient intensification. Nanofluids are 

also well known for having adjustable properties such as thermal conductivity and 

surface wettability which depend on the particle concentration to suit the different 

applications. A study by Sivashanmugam (2012) has concluded that the nanofluid 

produces a large increase in the heat transfer coefficient as well as an increase in the 

number of nanoparticles concentration. An investigation of nanofluids by (Das et al.  

2006) higlighted four specific features as below: 

i. Unstandardized enhancement in thermal conductivity. The criterion of most 

concern in nanofluid would be the abnormal rise in thermal conductivity, 

exceeding the expectations and predictions by any theory.   

ii. Stability. Nanofluids could be used as a stabilizing agent because of their 

stability. 

iii. Less concentration with Newtonian behaviour. Eventhough in low concentration 

of nanoparticles, large enhancement in thermal conductivity would still be 

achievable and completely maintain Newtonian behaviour in nanofluids. Thus, 

the viscosity rise would be nominal and the resulting pressure drop would 

increase only marginally.  

iv. The dependence on nanoparticles size. In generally, the smaller the size of 

nanoparticles, the greater the surface area, and the higher enhancement of 

thermal conductivity observed.  
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Ever since the first work carried out by Choi (1995) regarding nanofluids, several 

researchers have adopted the concept and develop problems such as like introducing the 

new fluid models (e.g., Casson fluid, Williamson fluid, and Jeffrey fluid). 

Consequently, nanofluids are introduced into these fluid models. Nadeem and Hussain 

(2014) have concluded that nanoparticles have strong impact on wall temperature after 

they worked out the problem of heat analysis of Williamson nanofluid. Recently, the 

effect of chemical reaction and non-linear thermal radiation in Williamson nanofluid 

was investigated by Prasannakumara et al. (2016). Gorla and Gireesha (2016) noted that 

the heat transfer rate of Williamson nanofluid would be more efficient than that of the 

Newtonian fluids after studying the problem of dual solution for stagnation point of 

Williamson nanofluid. In addition, Haq et al. (2014) have also discovered that skin 

friction of Casson nanofluid is comparatively higher than Newtonian fluids. Meanwhile, 

Malik et al. (2014) have studied the behaviour on boundary layer flow of Casson 

nanofluid over a vertical exponentially stretching cylinder as cylindrical geometry plays 

an important role in human blood flow. The three dimensional flow of Casson nanofluid 

was presented by Nadeem et al. (2014) and they have found that the Newtonian 

nanofluids produce the lower friction and heat transfer rate compared to those of the 

non-Newtonian nanofluids.   

There are still many uncertainties about of nanofluids and yet nanofluids have 

been fully utilized in the medical treatment, industrial sector and engineering field. 

Therefore, an improvement in knowledge and technology in this field is vital for the 

future. Indeed, research in the development and investigation on nanofluids will 

continue to be conducted with different boundary conditions.  

1.2.2 Casson nanofluid 

The viscoplastic fluid had been discovered in the 19th century and was first 

modelled by Bingham in 1922. The model was then introduced into a general 

framework of continuum mechanics by Oldroyd. Later, the work has since been 

extended and continued by other researchers especially mathematicians working on 

different areas as well as experts on analytical and computational methodologies, 

theoretical development for new and existing applications on viscoplastic flow problem.  
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The viscoplastic materials are fluids that manifest or deliberately yield stress. 

The materials only flow like fluid when the yield value exceeds a certain critical value 

of shear stress. Otherwise, it behaves like a rigid solid and there is no deformation when 

the yield stress is smaller than the shear stress of a certain amount.  In fact, the 

viscoplastic fluid appears in many situations, including food pastes, some polymer 

solutions, clays and muds, cosmetic productions, crystallizing lavas, hair gel and others. 

Consequently, the theory of the fluid has been applied in a wide array of different 

fields, ranging from chemical industries to food processing and biological fluids. One of 

the extensions from the viscoplastic fluid model is a Casson fluid model. 

The Casson fluid model was pioneered by Casson (1959) who investigated and 

predicted the flow behaviour of pigment –oil suspensions. Casson fluid model is diluted 

to a Newtonian fluid if the yield stress is lower than the shear stress. Due to this 

characteristic, this fluid model has been introduced in modelling of biological fluid flow 

especially in food products and blood flow. Casson fluid model provides a good 

approximation to other viscoplastic fluid model like Bingham plastic model. Having 

investigated the problem of Casson fluid flow through the cardiovascular stenotic blood 

vessel, Srivastava and Saxena (1994) have concluded that Casson fluid shows better 

performance when applied to constrict of the small vessel for blood flow due to the 

non-Newtonian effects. Other than that, it has also been proven as a good 

approximation for other materials such as chocolate, yogurts, syrups and foams (Dash et 

al. 2000; Qasim & Noreen, 2014). Eventually, Casson fluid is extended with nanofluids 

under various conditions, including convective boundary layer, thermal heat transfer, 

magnetic force and porosity towards stretching surface (Nadeem et al., 2013; Hayat et 

al., 2012 and Haq et al. 2014). 

1.2.3 Williamson nanofluid 

At every point, the fluid flows, the viscous stress appears to be in linear 

proportion to the rate of change of its deformation over time, known as the local strain 

rate. Therefore, a Newtonian fluid does not depend on the flow’s velocity and stress 

state. In this thesis, pseudoplastic model was selected as the fluid medium in the 

problem studied. In rheology, it is also considered synonymous with thinning shear 

whose viscosity decreases under shear strain. More precisely, pseudoplastic fluids that 

show apparent viscosity or consistency decrease instantaneously with an increase in 
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shear rate. Normally, it is often seen in molten polymer, poly solutions, complex fluids 

and suspensions, including paint, blood, whipped cream, ketchup and many others 

(Cross, 1965). For example, like wall paint, it would not drip excessively when it is 

being applied to the surface and would readily flow off. Besides, blood also considered 

as thinning shear fluid since the blood viscosity decreases with increased shear strain 

rate. Williamson fluid was defined by Williamson (1929) in order to look for a medium 

with pseudoplastic materials flow. Thus, Williamson fluid can also refer to viscoelastic 

thinning shear fluid. Subsequently, it has been gained plenty of attention from other 

researchers who studied and investigated the problem utilizing different parameters 

such as porosity, Brownian motion, slip conditions and so forth. The other relevant 

works utilizing different conditions can be found through Nadeem and Akram (2010); 

Ellahi et al. (2013) and Kothandapani and Prakash (2015). 

1.2.4 Tiwari and Das Model   

According to Brinkman (1952), he had proposed a phase model which using 

Maxwell-Garnet thermal conductivity and viscosity. Due to the form of phase model, 

the nanoparticles and the base fluid are considered in the condition of thermal 

equilibrium and flowing in constant velocity with no slip condition between them. In 

fact, this model is corresponding to the effect of nanoparticle’s volume fraction. In 

other word, the effectiveness of thermal conductivity would be increase as the the result 

increase in volume fraction of nanoparticle. Based on the investigations of Jang and 

Choi (2007), only a little amount of solid volume fraction could enhance the 

effectiveness of thermal conductivity in the fluid. Thus, the rate of heat transfer which 

occurs on the wall also will be improved since due to the high thermal conductivity. 

The idea of Tiwari and Das model have been applied in this research work for 

better understanding of the characteristics of thermal conductivity in nanofluid flow.  

1.2.5 Shooting Method 

 In general, most of the study of fluid mechanic problems is modelled in terms 

of linear or non-linear differential equations. In order to overcome the problems, a 

shooting method was introduced and it is one of the common techniques for solving 

boundary value problem. This method is easier to apply and the result obtained is 

reliable compared to other methods, Morrison et al. (1962), Ha (2001) and Gireesha et 
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al. (2015). The Shooting method takes advantage of the speed and adaptivity of initial 

value problems. However, it is not as robust as collocation or finite difference methods. 

For example, even though the boundary value problem may look as quite well posed 

and stable, the growing modes of initial value problems may be inherently unstable and 

may be unnoticeable. Therefore, the comparison of work is necessary. According to the 

literature review, it can be seen that the Shooting method has been used frequently to 

determine the numerical solutions for Newtonian or non-Newtonian flow problems, 

especially in its application in the science and engineering field to solve differential 

equations. Thus, in this study, trajectories were ‘shot’ out in different directions until a 

trajectory with an appropriate boundary value would be obtained. Specifically, the 

Shooting method is a method to overcome a boundary value problem by reducing it to 

the initial value problem’s solution.  

In this thesis, the Shooting method is chosen as the method to determine the 

numerical solution which was discussed in Section 2.4. The solutions are written in the 

form of partial differential equation which is then transformed to ordinary differential 

equation. Besides, the solutions do not calculate the complicated integrals either 

analytically or numerically. Furthermore, these solutions are obtained by Shooting 

method that satisfies all the imposed boundary and initial conditions as well as 

governing equations. 

1.2.6 Boundary Layer Theory  

The concept of boundary layer was first coined by Ludwig Prandtl (Schlichting, 

1979) and it is important due to the effects of viscosity where the layer of the fluid in 

the immediate vicinity of a bounding surface, especially in the study of physics and 

fluid mechanics. Prandtl had showed that fluid flow past a body can be divided into two 

main parts after performing the experiments in combination with together the 

theoretical considerations. The major part is defined as inviscid since it concerns a free 

stream of fluid which is far from the surface of an object. On the other hand, the minor 

is called the boundary layer. Since this part is a thin layer adjacent to the object surface 

in which the effects of viscosity are felt, the friction effects is significant and cannot be 

ignored (Burmeister, 1993; Acheson, 1990).  
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Simultaneously, there are two types of layer which can be found in the boundary 

layer, namely the velocity boundary layer and thermal boundary layer (Ozisik, 1985). 

For better understanding, let us consider a fluid past over a plate sheet as shown in 

Figure 1.1. The interaction between the fluid and the surface of the plate sheet will 

produce a region which is known as velocity boundary layer. The y -component 

velocityu  rises from zero at the surface with no slip condition to an asymptotic value 

.U


 Additionally, the thickness of velocity boundary layer 
h

  is characterized by the 

velocity gradient and shear stress. Further, there is a formation of a region called the 

thermal boundary layer as a result of the changes of temperature between the fluid and 

the surface area. The thickness of the layer is represented as 
T
  and the temperature 

changes from the surface value 
s

T   to T


 at  0y   as the outer flow. Thermal boundary 

layer is characterized by the temperature gradient and the rate of heat transfer.  

 

Figure 1.2 Formation of the boundary layer. 

 (Incropera et al., 2006; Kreith et al., 2010). 

The application of the theory of boundary layer is common especially when it 

involves the problem of fluid flow and heat transfer. One of the reasons is that 

equations of boundary layer are parabolic and it is easier to solve compared to other 

forms like elliptic or hyperbolic Navier-Stokes equations. However, the boundary layer 

equations are valid only up to the separation point. The relevant work involving the 
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boundary layer theory is found in a study by Bejan, 2013; Cebeci and Bradshaw, 1988 

and Ahmad, 2009. 

1.3 Problem Statement 

 In general, there exist many published journals regarding non-Newtonian fluids.  

However, numerical solutions with Newtonian heating by the Shooting method are 

rarely available in literature. This is because treating numerically the mathematical 

models of Newtonian heating is more complicated and consumes much of time in 

shooting the acceptable or appropriate value in a certain range. Even though numerical 

solutions are as accurate as analytical solutions, numerical solutions are easier to 

perform prediction as comparing the finding results are more feasible. Furthermore, the 

accuracy standard for the Shooting method is reliable and believable. The major 

purpose of this thesis is to figure out the numerical solutions for the steady flow of 

different types of nanofluids under several conditions. Thus, this study will explain in 

detail the following problems. 

(i) How does the Casson nanofluid behave in the problem of several situations 

(involving thermal radiation, magnetohydrodynamics, porous medium) over 

a stretching sheet with Constant wall temperature (CWT) and Newtonian 

heating (NH)?  

(ii) How the Williamson nanofluid behaves in the problem of slip condition over 

a stretching sheet?  

(iii) How does the Williamson nanofluid behave in the problem of several 

situations (involving thermal radiation, magnetohydrodynamics, porous 

medium) past over a stretching sheet with Constant wall temperature (CWT) 

and Newtonian heating (NH)?  

1.4 Scope and Objective of Research 

In this study, the two dimensional of steady and incompressible fluids flow over 

a stretching sheet were studied. The objectives of the present study are to analyze 

mathematical model of non-Newtonian nanofluid with various effects and different 

boundary conditions. This study can be divided into three problems: 
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(i) Thermal radiation effect on MHD and heat transfer flow of Casson nanofluid 

model in the presence of porous medium by Constant wall temperature and 

Newtonian heating. 

(ii) Slip conditions effects on flow and heat transfer of Williamsom nanofluid 

over stretching sheet. 

(iii) Thermal radiation effect on MHD and heat transfer flow of Williamson 

nanofluid model by Constant wall temperature and Newtonian heating. 

1.5 Research Methodology 

The physical problems of the objectives are expressed in mathematical 

formulation and then they are modelled using the fundamental equations of fluid 

dynamics. The derived parameters of each problem in the governing equations include 

continuity, momentum, energy and concentrations equations, as well as imposed initial 

values and boundary conditions. Moreover, the Boussinesq and Rosseland 

approximations are used in the development of some parameters governing equations. 

A set of appropriate non-dimensional variables for every problem is then introduced 

and transformed into non-dimensional form. Then, the Shooting method is carried out 

with velocity, temperature and concentration stated as numerical solutions. Skin friction 

coefficient, local Nusselt number and Sherwood number are evaluated as well.  

For better understanding of each problem, the exact solutions are computed 

numerically and the result for all the parameters is shown graphically. The Maple-13 

software is used to plot the variable profiles and indicated in tabular form. All the 

numerical results through the Shooting method are compared with existing solutions 

available in the literature in order to verify the accuracy of the present analysis. The 

effects of the pertinent flow parameters are noted in the variable profiles in terms of 

velocity, temperature, nanoparticle fraction, temperature wall gradient, skin friction 

coefficient and Sherwood number.        

1.6 Significance of the Study 

 Nowadays, non-Newtonian fluid is part of important subjects in science and 

technology. With the enhancement of nano-technology, nanofluids improve the thermal 

conductivity in flow, which is extremely beneficial to the medical and engineering 

sectors. 
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In the engineering and technology sector, the convective heat transfer of 

nanofluids has great impact in the heating and cooling system, power generation and 

chemical processes. Due to the excellent thermal conductivity, heat energy can be 

effectively transferred in the nanofluid systems.  As a result, nanofluids can be 

potentially applied in various industries, including heavy industry, manufacturing 

industry, nuclear energy harvesting and others, for heating or cooling purposes. The 

studies of nanofluid application are reported by Riehl and dos Santos (2012), Verma 

and Tiwari (2015), Shama et al. (2015), Wu and Zhao (2013) and Gupta et al. (2012).  

Medically, nanofluids could improve the adsorption or transportation of drugs in 

a patient based on its advanced mass transfer property. In cancer therapeutics, nano-

sized iron particles can be transported to the tumour tissues without damaging nearby 

nerve tissues or organs in the patient’s body. The side effects from the drugs can be 

further reduced with the assistance of magnetic field. Hence, magnetic effect is also one 

of the studied parameters in the current study. 

To develop a better understanding of thermal radiation effect on MHD and heat 

transfer flow characteristics for Casson and Williamson nanofluids with Newtonian 

heating, this thesis explores the nanofluid flow behavior including the effects of the 

parameters such as radiation parameter, thermophoresis parameter, Lewis number, 

Prandtl number, etc. This helps in explaining and verifying the experimental results for 

future studies. 

1.7 Literature Review 

This topic provides a literature review on the problems outlined in the objectives 

respectively. Section 1.7.1 provides the literature regarding the effect of thermal 

radiation on MHD with heat and mass transfer flow in Casson nanofluid over a 

stretching sheet by Constant Wall Temperature (CWT) and Newtonian heating (NH). 

The literature for slip conditions on flow and heat transfer analysis of Williamson 

nanofluid past over a stretching sheet is presented in Section 1.7.2. Section 1.7.3 

discusses about the literature for thermal radiation effect on MHD flow and heat 

transfer of Williamson nanofluid over a stretching sheet with Constant Wall 

Temperature (CWT) and Newtonian heating (NH).  
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1.7.1 Thermal Radiation and MHD on Flow and Heat Transfer in Casson 

Nanofluid 

It is well known that convectional fluids such as water, ethylene glycol and 

engine oil used in many industrial processes are poor heat conductors due to their low 

thermal conductivities. To overcome this situation, Choi (1995) introduced the idea of 

nanofluids. Nanofluid is a new class of fluid created by scattering nano/micro-sized 

materials (nanoparticles, nanofibers, nanotubes, nanowires, nanorods and nanosheets) in 

conventional heat transfer fluids. The convective heat transfer flow over boundary layer 

of non-Newtonian fluids has been widely investigated in several applications of the 

engineering fields. Due to its higher complexity compared to Newtonian fluids, many of 

non-Newtonian fluid models were proposed to solve the problems. One of the models is 

Casson nanofluid.  Casson (1995) first introduced this model to investigate the 

behaviour flow of pigment oil suspensions. In fact, Casson fluid is a plastic fluid and 

requires a higher shear stress (as long as the value is bigger than the yield stress) so that 

it can start the flow in the system. Nanofluids are believed to be able to significantly 

enhance thermal conductivity greatly. Thus, the combination of this model with 

nanofluid has attracted the attention from some researchers due to its unique 

charaterictics and functions and has the potential in certain industry application, good 

approximation for biological fluids and other materials. Amongst them, Buongiorno 

(2006) published a survey article on the convective transport in nanofluids. Ahmed and 

Pop (2010) examined mixed convection flow of nanofluid past a vertical plate 

embedded in a porous medium. Bachok et al. (2010) presented numerical solutions for 

boundary layer flow past a moving surface when nanofluid is flowing. Yacob et al. 

(2011) studied the boundary layer flow of a nanofluid over a stretching/shrinking sheet 

with convective boundary condition. Chamkha and Aly (2011) used implicit finite 

difference method and analyzed the effect of heat generation or absorption on the 

steady free convection flow of a nanofluid over permeable vertical plate with suction or 

injection. Noghrehabadi et al. (2012) studied partial slip effects on the boundary layer 

flow of a nanofluid past a stretching sheet with constant wall temperature. Likewise, 

Rana and Bhargava (2012) studied the same problem by considering flow over a 

nonlinearly stretching sheet. Anwar et al. (2012) also investigated nanofluids flow over 

a nonlinearly stretching sheet. Meanwhile, Mahdy (2012) studied mixed convection 

flow together with heat transfer in nanofluids due to stretching sheet. Qasim et al. 
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(2013), studied heat and mass transfer phenomenon in nanofluids with convective 

boundary conditions whereas Matin and Pop (2013) investigated force convection flow 

of a nanofluid through a porous channel with chemical reaction. Later, Loganathan and 

Vimala (2014) obtained numerical solution of unsteady nanofluids flow that lies over 

vertical flat plate with accretion or ablation at the leading edge.  

Recently, Ganga et al. (2016) studied the thermal radiation effects on 

hydromagnetic flow of nanofluids and found the analytic solutions by using homotopy 

analysis and numerical method by the fourth order Runge-Kutta method. The physical 

properties of fluids could be controlled by varying the application of magnetic field in 

medical treatment like cancer therapy.  Hussain et al. (2015) had studied the problem on 

magnetohydrodynanmics (MHD) boundary layer flow of Casson nanofluid with 

convective and viscous dissipation conditions. He concluded that the greater the value 

of Casson parameter, the lower the temperature and concentration of nanoparticles. The 

result was in good agreement with Khalid el at. (2015) since they also had examined the 

problem of MHD effects and convective heat transfer flow on Casson nanofluid with 

the presence of porous medium. The MHD effect on three dimensional Casson fluid 

flow porously over a stretching sheet were investigated by Mahanta and Shaw (2015). 

By using the Spectral Relaxation Method, they concluded that Casson fluid parameter 

and porosity parameter reduce the velocity profiles. Meanwhile, Nadeem et al. (2014) 

investigated the combined effects of magnetic field and partial slip on an obliquely 

striking Casson fluid over a stretching plate. The magnetic parameter has opposite 

influence on skin friction components and causes the tangential velocity profiles to 

drop. The heat transfer rate is enhanced while the induced magnetic field increased as 

indicated by the investigation carried out by Raju et al. (2016) after they solved the 

problem on homogeneous–heterogeneous reactions and the effects of induced magnetic 

field on stagnation flow in Casson fluid.  Hayat et al. (2016) also conducted an 

investigation on magnetic field with mixed convection flow of Casson nanofluid. 

Another study was performed by Hamad et al. (2011) who investigated the effects of 

magnetic field on heat transfer flow of a nanofluids laid over a vertical semi-infinite flat 

plate. Likewise, the same problem extended by Chamkha and Aly (2011) by including 

heat absorption and generation effects. Meanwhile, Ellahi (2013) found analytical 

solution for MHD flow of non-Newtonian nanofluids inside a pipe with temperature 

dependent viscosity. Similarly, Qasim et al. (2014) used water as conventional base 
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fluid with magnetite (Fe3O4 ) nanoparticles and studied MHD heat transfer in ferrofluid 

over a stretched cylinder with given heat flux and slip condition. Sheikholeslami et al. 

(2014) studied MHD heat transfer with thermal radiation inside an enclosure of semi 

annulus. Sheikholeslami et al. (2015) and Sheikholeslami et al. (2016) considered the 

magnetic fields effects on nanofluids flow with and without considering the thermal 

radiation in a semi annulus. Hussanan et al. (2016) examined by unsteady MHD flow 

and heat transfer in some nanofluids over an accelerated vertical plate in a porous 

medium. Few other attempts made in this direction are contributed by Krishna et al. 

(2014); Haq et al. (2014); Ibrahim and Makinde (2015) and Ramzan (2015). 

There are many process involving heat and mass transfer as long as there is 

temperature difference between two objects. The study of heat and mass transfer is 

important because of its extensive application in engineering fields such as chemical, 

electrical, and mechanical, among others. One of the factors to enhance the rate of heat 

transfer is the amount of nanoparticles in fluids. Utilization of nanofluids as a coolant in 

radiator or cooling mechanism is more effective compared to using base fluids since the 

thermal conductivity of metal nanoparticles (Al2O3, TiO2) are higher than that of base 

fluids like water, engine oil, etc. (Hayat et al. 2016). Radiation is one of the methods to 

transfer heat energy. Unlike conduction and convection, radiation independently 

transfers heat energy and carries electromagnetic wave. Raju et al. (2016) analyzed the 

problem of MHD effect with thermal radiation on Casson fluid over a stretching sheet 

who then concluded that raising the value of heat source parameter also enhances heat 

transfer rate and Casson fluid performs better in transferring heat than Newtonian fluid.  

Hayat et al. (2015) who examined the effect of thermal radiation on mixed convection 

flow of Casson nanofluid over a stretching plate found that the thickness of boundary 

layer increases with the increase the thermal radiation parameter, internal heat 

generation and heat transfer Biot number. Ibrahim and Makinde (2015) had examined 

the effect of slip and convective boundary condition on MHD stagnation point flow and 

heat transfer in Casson nanofluid over a stretching sheet. Haq et al. (2014, a), Haq et al. 

(2014, b) studied the problem of MHD effects and heat transfer flow on Casson 

nanofluid and carbon nanotube (CNT) past over a permeable shrinking sheet 

respectively. All of them totally agreed that Casson fluid has higher heat transfer rate 

and skin friction compared to water based fluids.  
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An exponentially stretching sheet or cylinder have gained massive attention 

from many researchers due to its applications in flow meter design, piping, polymer 

extrusion, fibre technology, casting systems and many others. All the above research 

however, focus on Newtonian fluid (such as water, ethylene glycol and engine oil) 

containing nanoparticles. Keeping this view, Malik et al. (2014) studied the boundary 

layer flow of Casson nanofluids over a vertical exponentially stretching cylinder. Haq et 

al. (2014) examined the effects of convective heat transfer on two dimensional MHD 

flow of Casson nanofluid over an exponentially permeable shrinking sheet. Nadeem et 

al. (2014) extended the same problem for three dimensional flows by taking linearly 

stretching sheet instead of an exponentially shrinking sheet. Heat transfer analysis in a 

Williamson nanofluid over a stretching sheet was studied by Nadeem and Hussain 

(2014). Hayat et al. (2015) studied heat transfer in a Jeffrey fluid containing 

nanoparticles over a stretching cylinder. Recently, Nadeem et al. (2014) discussed the 

problem of MHD three-dimensional boundary layer flow of Casson nanofluid past a 

linearly stretching sheet with convective boundary condition. They mentioned that the 

stretching parameter reduces the velocity profile in both directions as well as decreases 

the behaviour for temperature and nanoparticle fraction profiles. Sarojamma and 

Vendabai (2015) conducted an analysis of magnetic field and heat transfer effects on 

the steady boundary layer flow on Casson nanofluid over an exponentially stretching 

vertical cylinder. In the meantime, Abolbashari et al. (2015) used the Optimal 

Homotopy Analysis Method (OHAM) to solve the problem of entrophy generation for 

Casson nanofluid over a stretching sheet. Likewise, Qing et al. (2016) studied similar 

problem with Casson nanofluid flow over a stretching/shrinking sheet by Successive 

linearization method (SLM). Other related problems with Casson nanofluid can be 

referred to Akbar and Khan (2015), Mustafa and Khan (2015), Raju and Sandeep 

(2016), Malik et al. (2016) and Kumaran and Sandeep (2017). 

Casson fluid model has been categorised as rheological model for many fluids 

like blood and chocolate. Casson fluid exhibits a yield stress and behaves as a solid if 

the shear stress is less than the yield stress. It deforms to liquid when shear stress is 

greater than yield stress and vice versa. As a continuous work, the aim of the present 

study is to determine the thermal radiation effects on MHD flow with heat and mass 

transfer in Casson nanofluid over a stretching sheet with Newtonian heating (NH). 
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1.7.2 Slip Conditions on Flow and Heat Transfer Analysis of Williamson 

Nanofluid  

Nanofluid has been discovered and discussed by many researchers due to its 

unique properties and well known as the suspended colloidal liquid with nano-size 

metallic or non-metallic particles. Generally, nanofluids enhance thermal conductivity 

whether in cooling down or heating up compared to other normal base fluids like water, 

kerosene and the like.  Some researchers like Xuan and Roetzel (2000), Turkyilmazoglu 

(2012), Kakac and  Pramuanjaroenkij (2009) and Roy et al. (2004) who studied the heat 

transfer flow with nanofluids, stated that even in the presence of  low concentration of 

nanoparticles, the suspensions can enhance thermal conductivity up to 20%. The 

enhancement of thermal conductivity mainly depends on some factors like the material 

of particles, shape/size of particles, temperature of the fluid material, and so on. The 

purpose of heat transfer coefficient is to determine the factor in forced convection 

cooling or heating application, like the heat exchange process involved in electrical 

engine systems. Moreover, heat transfer coefficient proposed in correlation with the 

stagnation point of some parameter such as Nusselt number, Reynolds number, Prandlt 

number and nozzle aspect ratio, and heat source spacing.  

There are many models of non-Newtonian fluids that are grouped property wise 

like polar fluids, visco-inelastic or elastic fluids and micro structure fluids. In the work 

of Krishnamurthy et al. (2016), Williamson nanofluid is categorized as visco-inelastic 

fluids.  Blasius (1950) initially studied the problem of velocity boundary layer on a flat 

plat followed by Sakiadis (1961) who investigated the theoretical aspect of approximate 

and exact method for performance of boundary layer flow through a flat surface. Next, 

Ramesh et al. (2015) had studied the convective boundary condition on Blasius and 

Sakiadis flows with Williamson fluid. Prior to that, Khan and Khan (2014) carried out 

the investigation on boundary layer flows of Williamson fluid by using homotopy 

analysis method (HAM). He found that the thickness of boundary layer decreases as 

Williamson parameter increases. Later, Nadeem and Hussain (2016) analyzed the 

problem on Williamson nanofluid with MHD flow over a heated surface and found out 

that the thermal conductivity of Williamson fluid is lower than the MHD Williamson 

nanofluid.  
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Thermal energy occurs when there is a temperature difference between objects. 

Heat transfers in non-Newtonian fluids have become common and important in some 

fields such as reactor cooling systems, electronic packing and so on. Kurtcebe and Erim 

(2002) studied the problem of turbine cooling application with heat transfer in non-

Newtonian visco-inelastic fluid and concluded that the upper limit of visco-inelastic 

parameter depends to the Reynolds number. The heat transfer analysis flow in 

nanofluids over a stretching sheet is important and crucial for the optimum quality of 

the final product especially in polymer extrusion production. Ibrahim and Shankar 

(2013) studied the heat transfer and MHD boundary layer flow in nanofluid past over a 

stretching sheet. Krishnamurthy et al. (2016) investigated the effect of chemical 

reaction on melting heat transfer and MHD boundary layer flow of Williamson 

nanofluid. Meanwhile, the flow features and convective heat transfer of Cu-water 

nanofluids were investigated by Xuan and Li (2003). According to their findings, the 

heat transfer feature increases as the volume fraction of nanoparticles increases. With 

the same Reynolds number, the suspended nanoparticles show higher heat transfer 

coefficient and remarkably enhance heat transfer process compared to the base fluid. 

Heris et al. (2006) carried out the experiment on convective heat transfer laminar flow 

over oxide nanofluid with boundary condition of constant wall temperature. They 

concluded that there are several factors to enhance the heat transfer for nanofluid, as 

well as increase the chaotic movements of nanoparticles, thermal conductivity, 

interactions and fluctuations. 

Slip condition is considered since the presence of nanoparticles causes the 

interface of slip velocity between fluid and solid boundary. Yang (2009) had presented 

the viscous flow over a solid surface with slip boundary condition. The interfacial 

interaction between fluid and solid is reflected by slip condition contributed by the 

interaction of intermolecular and roughness of wall surface. Noghrehabadi et al. (2012) 

studied the problem of the partial slip boundary condition effect on nanofluids with 

prescribed wall temperature over a stretching sheet. The Nusselt and Sherwood number 

decreases as the velocity slip parameter increases. Malvandi et al. (2014) conducted an 

examination on the slip effects of nanofluids in unsteady stagnation point over a 

stretching sheet. In their work, an increase in the values of slip parameter caused the 

values of skin coefficient to drop. The slip and no slip conditions on the laminar 

nanofluids by forced convection were numerically studied by Raisi et al. (2011). They 
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found out that only higher Reynolds number affects the rate of heat transfer as slip 

velocity coefficient increases. Amanulla et al. (2017) had studied on MHD Williamsom 

nanofluid from an isothermal sphere due to the thermal and momentum slip effects. 

1.7.3 MHD Flow and Heat Transfer Analysis of Williamson Nanofluid with 

Thermal Radiation  

Recently, the investigation on different model of nanofluids has attracted the 

attention of many researchers. The term nanofluid, refers to fluid with suspended 

nanoparticles. It is a type of fluid that consists of tiny particles, hence providing a very 

large surface area that favours the transferring of heat energy. The pioneer works of 

Choi attracted the attention of researchers, eventually leading to wide investigation in 

nanofluids with other factors like heat and mass transfer, passing a stretching sheet or 

vertical plate, radiation and thermal effect and magnetic field (Venkateswarlu and 

Narayana, 2015; Reddy, 2014; Sreenivasulu et al. 2015 ). Compared to particles of 

others sizes, nanoparticles have larger surface area and have great potential in heat 

enhancement due to the smaller particles suspended in the fluids (Xuan and Li, 2000). 

Some researchers had discovered that nanofluid has about 40% higher thermal 

conductivity compared to base fluid. This characteristic is very useful in some industry 

application such as in cooling and solidifications system (Nadeem & Hussain, 2014). 

Meanwhile, Burgiono (2006) presented the three models using different convective 

transport of nanofluid and with the boundary condition as the constant wall 

temperature. In many industry processes, heat transfer plays an important role as the 

transferred input energy or the removed output energy in the process. Yang et al. (2005) 

had uncovered the properties of convective heat transfer of nanoparticle in laminar 

flow. The results showed that the nanoparticle increases the heat transfer coefficient of 

the fluid system in laminar. Another researcher, Trisakri and Wongwises (2007) 

explained the reasons how suspended nanoparticles can enhance the heat transfer of 

conventional fluids and provided a guide line for future research. Wen et al. (2009) 

performed a research on heat transfer applications of nanofluids and identified the 

limiting factors for further development. 

Williamson nanofluid, one of the non-Newtonian heating fluids, is a viscoelastic 

shear thinning fluid. It is potentially applied in biological engineering to estimate the 

occurrence of mass and heat transfer in the vessels such as diffusion of nutrients in 
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blood, hemodialysis and others (Kothandapani and Prakash, 2015). It become famous 

after Williamson (1929) made an investigation on the medium for pseudoplastic 

materials flow.  Nadeem and Hussain (2014) analyzed the two-dimensional flow of heat 

transfer on Williamson nanofluids. They found that Lewis number only appears in 

volume fraction equation when the velocity transformation is dependent on thermal 

diffusivity; otherwise, Schmidt number will appear, and vice versa. The homotopy 

analysis method (HAM) was used in their research to obtain the solutions. 

Prasannakumara et al. (2016) presented the chemical reaction effects on Williamson 

nanofluids slipped over a stretching sheet in the presence of embedded porous medium. 

In their results, the skin coefficient is higher in the presence of velocity, thermal and 

solutal slip for Williamson parameter. The work is extended by Krishnamurthy et al. 

(2016) by considering the factor of boundary layer flow of MHD and melting heat 

transfer.  A study on the effect of thermal radiation parameter and magnetic field on the 

peristaltic motion of Williamson nanofluids in a tapered asymmetric channel was 

conducted by Kothandapani and Prakash (2015). Meanwhile, Bhatti and Rashidi (2016) 

studied the effect of the combined effects of thermo-diffusion and thermal radiation on 

Williamson nanofluid over a porous stretching sheet. Ramesh et al. (2015) studied the 

convective boundary condition on Sakiadis and Blasius flows of Williamson fluid while 

Akbar et al. (2015) investigated the peristaltic flow of a Williamson nanofluid in an 

asymmetric channel. 

As the fluid is conducted by fluid dynamics, the fluid motion induces currents, 

eventually producing Lorentz body force on the fluid. This phenomenon of electrically 

conducting fluids is called Magnetohydrodynamics (MHD). The effects of thermal 

radiation and magnetic field have given significant impact on nanofluids flow. And this 

issue has been discovered by Sheikholeslami et al. (2015) who presented the effect of 

thermal radiation on MHD nanofluid flow and heat transfer by means of two phase 

model. Recently, an analysis to inspect the numerical investigation of MHD flow of 

Williamson fluid model over a sheet with variable thickness was performed by 

Salahuddin et al. (2016). Prior to that, Narayana et al. (2015) had examined the effect of 

the nanoparticles on MHD boundary layer flow over a stretching surface with the effect 

of viscous dissipation. In the meantime, Hayat et al. (2015) conducted an investigation 

on MHD steady flow of viscous Copper water nanofluids caused by a rotating disk. The 

use of electrically conducting fluids under the influence of magnetic fields in various 
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industries has led to a renewed interest in investigating hydromagnetic flow and heat 

transfer in different geometries. Kumari et al. (2012) fully developed free convective 

flow of a Williamson fluid in a vertical channel under the effect of a magnetic field. 

Sparrow and Cess (1961) studied the effect of magnetic field on free convection heat 

transfer. In their study, there is a moderate effect (10-15%) on heat transfer compared to 

other results without MHD. Although the problem with correlations to MHD would be 

studied by many different researchers later, Hossain and Pop (1996) formulated the 

MHD boundary layer flow and heat transfer on a continuous moving wavy surface. The 

flow and heat transfer characteristics are substantially altered by some specific values of 

magnetic parameter. Azizian et al. (2014) investigated the flow of magnetite nanofluids 

with the presence of magnetic field on laminar convective heat transfer. In their 

research, the magnetite nanofluids can be increased significantly (up to 300%) when a 

magnetic field was applied. When larger magnetic flux gradient is applied, the larger 

local heat transfer coefficient enhancement occurs. There are many fluid engineering 

processes involving flow over a continuously stretching or shrinking surface and it is 

very important in such processes as polymer extrusion, plastic films and wires drawing, 

production of glass fiber and paper, liquid films in condensation process and many 

others (Turkyilmazoglu, 2012). He carried out the exact analytical solutions for heat 

and mass transfer of MHD slip flow in water-based nanofluids containing Cu, Ag, CuO, 

Al2O3 and TiO2 and he found the results in an excellent agreement with those available 

in the literature. Rashidi et al. (2014) investigated the buoyancy effect on MHD flow of 

nanofluid over a stretching sheet in the presence of thermal radiation while Khan et al. 

(2012) studied the unsteady free convection boundary-layer flow of a nanofluid along a 

stretching sheet with thermal radiation in the presence of magnetic field. Reddy et al. 

(2017) had studied the characteristics of MHD and heat transfer flow of Williamson 

nanofluid with variable thickness and variable conductivity. They have noticed that the 

rate of cooling is much faster for the coolant material having small thermal conductivity 

parameter. 

Thermal radiation still exists even though there is a small flow of convection 

heat transfer coefficient. Thermal radiation is significant in controlling heat transfer 

process like in polymer processing industry. Sheikholeslami et al. (2015) studied the 

effect of thermal radiation on MHD nanofluid flow and heat transfer between two 

horizontal rotating plates. The result showed that concentration of boundary layer 
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thickness decreases with the increase of radiation parameter. Further, a study by Bhatti 

and Rashidi (2016) examined the combined effects of thermo-diffusion and thermal 

radiation on Williamson nanofluid over a porous stretching sheet. They concluded that 

the large values of thermal radiation parameter and thermophoresis parameter enhance 

the temperature profile. Haq et al. (2015) considered the effects of velocity and thermal 

slip with thermal radiation on MHD stagnation point flow of nanofluid over a stretching 

sheet. In the present work, the constant wall temperature (CWT) was taken into 

account. There are many industrial heat exchanger applications that include the 

condition of CWT, such as the condensation or evaporation of fluid on the outer surface 

of conduits. The assumption of CWT can be justified if the heat transfer coefficient in 

the inner surface is lower than in the outer surface (Mohamad, 2003). Renksizbulut et 

al. (2006) also considered the condition of CWT in slip-flow and heat transfer in 

rectangular microchannels. The constant-wall-temperature convective heat-transfer 

characteristics of a gaseous flow model in two-dimensional micro and nano-channels 

were hydrodynamically and thermally investigated by Hadjiconstantinou and Simek 

(2002). 

Stretching sheet happens when the velocity at the boundary is far from a fixed 

point. Also, it is widely applied and important in some engineering processes such as 

polymer extrusion, glass fiber production, manufacturing of foods and paper. The rate 

of heat transfer for stretching sheet is crucial for the final quality of a product (Sarif et 

al. 2013).  Gorla and Gireesha (2016) studied the Dual solutions for stagnation point 

flow and convective heat transfer of a Williamson nanofluid past a stretching or 

shrinking sheet while Nadeem et al. (2013) examined the two dimensional flow of 

Williamson fluid model over a stretching sheet. Meanwhile, Salleh et al. (2010) studied 

the steady boundary layer flow and heat transfer over a stretching sheet with Newtonian 

heating. As a continuation, in the present study, the objective of studying the thermal 

radiation and magnetic effect on Williamson nanofluids flow and heat transfer analysis 

over a stretching sheet was proposed. The analysis for constant wall temperature 

(CWT) and Newtonian heating (NH) is included in this paper for comparison purposes. 

The governing nonlinear equations are reduced into ordinary differential equations 

using the similarity transformation and they are then solved numerically using the 

Shooting method. 
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1.8 Thesis Outline 

There are six chapters in this thesis. The outline of this thesis is as follows: 

Chapter 1 is preliminary with general introduction of the background, model of 

non-Newtonian nanofluids, boundary layer, problem statement, objective and scope of 

studies, significance of the research study and literature review of related published 

work and divided into three parts corresponding to each problem. 

   Meanwhile, Chapter 2 discusses the governing equations and methodology. 

The numerical method of the shooting technique is carried out to solve the governing 

ordinary differential equations.    

In Chapter 3 of this thesis, the problem of thermal radiation effect on MHD of 

Casson nanofluid and heat transfer over a stretching sheet is explained. Two boundary 

conditions examined, namely, constant wall temperature (CWT) and Newtonian heating 

(NH), are described. Firstly, the mathematical formulation of the governing equations in 

terms of continuity, momentum, energy and concentration is presented. Then, an 

explanation of how the mathematical formulation was subjected the equations to the 

corresponding initial and boundary conditions, is provided. The way that problem was 

written in dimensionless form and then solved by the Shooting method to obtain 

numerical results for the velocity, temperature and concentration profiles, is also shown 

in this chapter. These solutions were found to have satisfied all imposed initial and 

boundary conditions. Subsequently, a comparison was made with published works in 

the literature to determine the validity of the present solutions. In this chapter, 

numerical results for the velocity, temperature and concentration profiles for various 

parameters are graphically presented accordingly. In addition to that, the skin friction 

coefficient, local Nusselt number and Sherwood number are also presented in tabular 

forms and discussed. In the next chapter, the Williamson nanofluid is considered.  

Chapter 4 presents the slip conditions on flow and heat transfer analysis of 

Williamson nanofluid over a stretching sheet. Presentation of the results begins with a 

mathematical formulation including the derivation of momentum equation with velocity 

and thermal slip parameter, energy and concentration equations. Through similar 

transformations, this chapter illustrates how the governing equations were then 
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transformed into non-linear ordinary equations. Then, these solutions are presented 

graphically and the parameters are discussed.  

In chapter 5, the examination of the effect of thermal radiation on heat transfer 

in MHD flow of Williamson nanofluid over a plate embedded in a porous medium is 

discussed. There are two cases considered, CWT and NH. Numerical solutions for the 

velocity, temperature and concentration profiles obtained using the same method 

applied as described in the previous chapter and graphically. The solutions were found 

to have satisfied all imposed initial and boundary conditions as well as asymptotic at all 

times. The skin friction coefficient, local Nusselt number and Sherwood number are 

obtained are also given. 

Finally, Chapter 6 is the summary of this thesis with the conclusions and 

possible recommendations for future study included. References, appedices and 

publications are also provided.      

 



27 

CHAPTER 2 

 

 

PROBLEM FORMULATION AND NUMERICAL METHOD  

2.1 Introduction 

  This chapter and the following chapters will discuss how mathematical 

formulation model obtain the numerical solutions. Initially, the derivations of the 

problem in the form of partial differential equations (PDEs) are reduced to ordinary 

differential equations (ODEs). Then, the resulting system of ODEs is solved through the 

Shooting method and through the Maple software. 

In this work, there were two models of nanofluids considered, namely, the 

Casson and Williamson nanofluids. Some of the parameters such as radiation 

parameter, magnetic parameter, and Prandtl number were also included into the 

governing equations respectively. The physical quantities of skin friction coefficient, 

local Nusselt number and Sherwood number were also studied thoroughly. Besides that, 

three different boundary conditions were studied: constant wall temperature (CWT), 

Newtonian heating (NH) and slip conditions. In this chapter, only the mathematical 

formulation of Casson nanofluid will be described and explained. However, not all 

problem formulations are discussed in this chapter but will be highlighted in the 

following chapters.    

2.2 Governing Equations 

In this analysis, a steady two dimensional boundary layer flow of a non-

Newtonian Casson nanofluid over a stretching surface embedded in a porous medium 

was considered. The sheet stretched along x -axis with a velocity wU ax  at 0,y   

where 0a   was a constant. A constant magnetic field was applied normal to the sheet, 

whereas induced magnetic field was neglected by assuming low magnetic Reynolds 
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number (see Figure 3.1). Further, the temperature T constant wall temperature wT  near 

the sheet and ambient temperature T was considered. No gravity effect considered 

because it was assumed that the flow occur on horizontal stretching plate, thus  0.g   

The thermal diffusivity of nanofluid was given by m  where it was defined as 
 

.
P f

k

C
 

 

Figure 2.1 Physical configuration and coordinate system. 

According to Mustafa and Junaid (2015), the rheological equation of state for isotropic 

and incompressible flow of Casson nanofluid is given as follow: 
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 
   

 

 
  

 
 

                                           2.1 

where 
B

  is the plastic dynamic viscosity of the non-Newtonian fluid, yP is the yield 

stream of fluid,  is the product of the component of deformation rate and itself, 

namely, ,  
ij ij ij

e e e   is the  ,i j component of the deformation rate, and 
c

  is a critical 

value of  based on non-Newtonian model. Using the Boussineq approximation, the 

boundary layer flow of a Casson nanofluid was governed as follows: 
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Continuity equation: 

                             0
u v

x y
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 
                                                            2.2 

Momentum equation: 
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Energy equation: 
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Concentration equation:  
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subject to boundary conditions with Constant wall temperature (CWT) and Newtonian 

heating (NH), 

              
  ,  0,   (CWT) or  (NH),  at 0,

0,  0,  ,   as .

W w s

T
u U x ax v T T h T y

y
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
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   2.6 

2.3 Similarities Transformations 

Firstly, the PDEs must be reduced in terms of ODEs. The reason is that several 

independent variables such as  and x y  would be complicated to solve. However, 

through similarity transformation, the simplification of mathematical formulation would 

be easily achievable. For the sake of this purpose, the stream function  ,x y  is 

defined as  

                                                      ,  u v
y x

  
  
 

                                              2.7 

Accoring to Nadeem et al. (2014), the velocities of  and u v  for the linear problem 

along  and x y  directions, respectively, was given as  

                                         

1
1 2
2 ,  

a
av xf y

v
  

 
   

 
                                         2.8 
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Besides, Pohlhausen (1921) defined the dimensionless variable for the temperature 

   and concentration    as 

                                                    
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2.3.1 Continuity Equation 

 In solving the equation (2.1),  and 
u u

u v
x y

 

 
 had to be differentiated, 

respectively. 
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Hence, the equations (2.15) and (2.17) were substituted into equation (2.1): 
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From the above formulation, the continuity equation was proven.  

2.3.2 Momentum Equation 

To solve the equation (2.2), 

2
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 had to be differentiated, 

respectively. 
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Thus, the equations (2.18), (2.19) and (2.20) were substituted into equation (2.2),  
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By rearranging the position and substitute 
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2.3.3 Energy Equation 

For solving the equation (2.3), 
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 had to be 

differentiated, respectively. 
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According to Rosseland’s approximation [Hussanan et al. (2013); Hussanan et al. 

(2015)], the radiative heat flux is simplified as 
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where 
*  and 

*k  are the Stefan-Boltzmann and mean absorption coefficient, 

respectively. By expanding 4T  in a Taylor series about T  and ignoring the higher 

order terms, the following would be obtained: 

                                              
4 3 44 3 .T TT T                                                  2.26 

By differentiation of equation (2.26), we obtained the term as below 

                                                    

   

* 4

*

* 3 2

* 2

* 3

*

4

3

16
     

3

16
     .

3

r

W

q T

y y k y

T T

k y

T a
T T

k v






 






   
  

   


 



  

                          2.27 

Hence, the above equations (2.22), (2.23), (2.24), (2.25) and (2.28) were substituted 

into equation (2.3) to obtain this: 
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        

  
       

   

     
                     

 

Then, simplifying it to be: 

         
 

   

          

* 3

*

2 2

16

3
W m W W

p f

T
B W W W

Ta a
a T T f T T T T

v v k C

Da a
D T T C C T T

v T v


       



       


  

  



       

  
        

  
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By dividing   ,Wa T T  the following should be obtained: 

               

 
 

2

* 3

*

161

3

m B T
W W

p f

D D
f C C T T

v v vT

T

v k C

  
          


 



 





 
          

 



 

Because 
 

,m

P f

k

C



  then  P f

m

k
C


  and this could be substituted into following 

equation: 

             

   

* 3
2

*

44 1

3

0

m B T
W W

m

T D D
C C T T

kv v v vT
k

f

   
         



  


 



 
         

 

 

 

By rearrange the equation, the following should be obtained: 

             

   

* 3
2

*

44

3

0

m m B T
W W

T D D
C C T T

v v k k v vT

f

    
         

  


 



 
         

 

 

 

           

   

* 3
2

*

44
1

3

0

m B T
W W

T D D
C C T T

v k k v vT

f

   
       

  


 



   
          

  

 

 

Finally, by introducing these symbols,  
* 3

*

4
,  Pr ,   B

W

m

T D
R Nb C C

k v

 

 



    and 

  ,T

W

D
Nt T T

vT






   then the equation became: 

                       21 4
1 0

Pr 3
R Nb Nt f          

 
         

 
                     2.28 

2.3.4 Concentration Equation 

In order to solve the equation (2.4), 

2

2
 and 

C C

x y

 

 
 had to be differentiated, 

respectively. 
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                                               

     

1

2

 =

     

     . 0

     0

W

W

C C

x x

a
C C C y

x v

C C





 


 

 



  

  

 
            

 

 



                2.29 

                                        

   

   

   

2

2

1

2

.

       .

      .

      

W

W

W

C C

y y y

a a
C C y

v y v

a a
C C

v v

a
C C

v





 


 

 







    
  

    

                   

 

 

      2.30 

Hence, the above equations (2.30) and (2.31) were substituted into equation (2.4) to 

obtain this: 

                      

           

       

1

2   . 0 W

T
B W W

a
axf av f C C

v

Da a
D C C T T

v T v

   

   



 



  
        

   
       

   

 

             T

W B W W

Da a
a C C f D C C T T

v T v
        



   
          

   
 

By dividing  Wa C C  and ,BD

v
 the following should be obtained: 

                            
 

 
 WT

B B W

T TDv
f

D D T C C
      

 


    


 

                           
 

 
  0

WT

B B W

T TDv
f

D D T C C
      

 


    


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Lastly, by introducing the symbol, ,
B

v
Sc

D
  so that the equation would become: 

                                        0
Nt

Scf
Nb

                                                  2.31 

2.3.5 Formulation of Boundary Conditions 

As we mentioned in Section 2.2 to Section2.3, the equations (2.2), (2.3), (2.4) 

and (2.5) were subjected to equation (2.6), therefore the dimensionless equations (2.20), 

(2.28) and (2.31) would be bound by the following conditions: 

  ,  0,   (CWT) or  (NH),  at 0,

0,  0,  ,   as .

W w s

T
u U x ax v T T h T y

y

u v T T C C y 


      



    

 

 Firstly, the boundary conditions were considered 0,y   then 

1

2

0.
a

y
v


 

  
 

 When 

 Wu U x ax   and 0,   the new conditions would become: 

                                                     
 

 

               

 
         

     0

        0

                1

u ax

ax
y

axf ax

ax
f

ax










 

 



                                                     2.32 

Next, when 0v   and 0,   the condition would become: 

                                                  
   

 

1

2

                 0

         0

0 0

            0 0

v

x

av f

f






 


 



                                                       2.33 

Also, when 0,   the condition of temperature would become: 
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 

      (Constant Wall Temperature)

0

       

       1

W

W

W

W

T T

T T

T T

T T

T T

 





















                     2.34 

                          
    

    

    

             (Newtonian Heating)

0 0 1

        0 0 1

        0 0 1

s

s

s

T
h T

y

a
T h T

v

v
h

a

 

 

  

 


 



   

   

   

                                2.35 

Where s

v
h

a
   defined as non-Newtonian conjugate parameter. 

Besides, when 0,   the condition of temperature would become: 

                                           

 

     

0

       

       1

W

W

W

W

C C

C C

C C

C C

C C

 





















                                                            2.36 

Next, the boundary conditions were considered when .y   Hence, 

1

2

.
a

y
v


 

  
 

 When     and 0,u   the new condition as below would be 

obtained: 

                                                    

 

           0,

0,

    0.

u

axf

f



  

  

                                                            2.37 
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For    and 0,v   the new condition would become: 

                                              

 

1

2

                   0,

0,

             0.

v

av f

f



  

 

                                                            2.38 

Also, T T  when .   Thus, there would be a new condition for temperature: 

                               
  

  

 

                            ,

,

       0,

                     0.

W

W

T T

T T T T

T T









  





   

  

 

                                                      2.39 

Lastly, C C when .   Thus, there would be a new condition for concentration: 

                                    
  

  

 

                             ,

,

       0,

                       0.

W

W

C C

C C C C

C C









  





   

  

 

                                             2.40 

Thus, the boundary conditions would be obtained after the similarity transformations as 

follows: 

                

       

 0 1,  0 0,  0 1 CWT ,  0 0 1  NH ,  0 1,

                      0,  0,   0,  0

f f

f f

    

 

       

        
    2.41 

2.3.6 Derivations of Physical Quantities 

In the present work, it was interesting to find out the numerical values of skin 

friction coefficient ,fC  local Nusselt number Nu  and Sherwood number .Sh  The 

quantities of interest were given as: 

                                                              
2

,w
f

W

C
U




                                                     2.42 

                                                              ,wxq
Nu

kT

                                                       2.43 
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 

.m

B W

xq
Sh

D C C




                                       2.44 

Where w  was defined as shear stress along the direction of two-dimensions, wq  

represented heat flux from the surface of the stretching sheet and mq belonged to mass 

flux from the surface of the plate. When 0,y   all of them were: 

                                                          
1

,
1

w

u

y
 



  
  

  
                                             2.45 

                                                            ,w

T
q k

y


 


                                                     2.46 

                                                            .m B

C
q D

y


 


                                                  2.47 

By substituting the equations (2.45), (2.46) and (2.47) into equations (2.42), (2.43) and 

(2.44) respectively, the following results would be obtained: 

For equation (2.43): 

                                    

 

 

 

 

 

2

2

1

2

2

1

2

2

1

2

              ,

                  

1
1 0

                  

1
1 0

                  

1
1 0

                 

w
f

W

W

C
U

u

y

U

a
ax f

v

ax

a
ax f

v
v

ax

v
f

a

x
























   
   

  

   
   

  

  
   

     
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By multiplying with  
1

2Re ,x  then the following should be obtained: 

                                          

 

1

2
1 1

2 2
0

. .f

v
f

a aa
x C x

v x v

 
 

       
   

 

                                                
1

2
1

Re 1 0x fC f


 
  

 
                                                      2.48 

For equation (2.44): 

                                                  

   

 

,

    

    0

    0

wxq
Nu

kT

x T
k

kT y

x a
k T

kT v

a
x

v















 
  

 

 
   

 

 

 

By dividing with  
1

2Re ,x  then the following should be obtained: 

                                                     

 

 

1 1

2 2

0

Re

           0

x

a
x

Nu v

a
x

v







 

 
 
 

 

                                                      2.49 
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For equation (2.45): 

                                             

 

 

 
   

 

    

    0

    0

m

B W

B

B W

B W

B W

xq
Sh

D C C

x C
D

D C C y

x a
D C C

D C C v

a
x

v
















 
  

  

 
      

 

 

By dividing with  
1

2Re ,x  then the following should be obtained: 

                                         

 

 

1 1

2 2

0

Re

           0

x

a
x

Sh v

a
x

v







 

 
 
 

 

                                                                   2.50 

where 
 

Re
W

x

xU x

v
 was the local Reynolds number. Thus, our skin friction 

coefficient, heat transfer rate and mass flux transfer rate were given as  
1

2Re ,x fC  

 
1

2Rex

Nu
 and 

 
1

2

,

Rex

Sh
 respectively. 

2.4 Numerical Method: Shooting Method 

A two point boundary value problem (BVP) would be formed once there were 

attempts to solve these equations (2.21), (2.29) and (2.32) through numerical procedure. 

However, through the Shooting method, the BVP was converted into an initial value 

problem (IVP). The reason of using the Shooting method is because this method could 

diagnose the applicable initial conditions for a related IVP which would give accurate 

solution to the BVP. This method was applied in Maple programming language based 

on dissolve command and shoot implementation. In this method, the new variables for 

the velocity components, temperature and concentration profiles, would be introduced.  
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Firstly, the third-order system for the momentum equation was reduced to a 

first-order system to obtain the following: 

                                                                    

   ,

  ,

 ,

.

f f

f p

f p q

f p q



 

  

   

                                                       2.51 

Next, the second-order system was reduced to a first-order system for the energy 

equation and concentration equation, respectively: 

                                                                    

  ,

 ,

 .

r

r

 







 

 

                                                                2.52 

and 
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s

 







 

 
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where primes referred to the derivative with respect to .  Therefore, a new equation of 

momentum (2.54), energy (2.55), and concentration (2.56) would be formed and 

expressed as follows: 

                                       21
1 0q fq p M K p



 
      

 
                                       2.54 

                                  
21 4

1 0
Pr 3

R r Nb s r Nt r pr
 

     
 

                                  2.55 

                                                  0
Nt

s Sc f s r
Nb

                                                2.56 

And the new boundary conditions for the above three equations would be given as 

follows: 

                  
            

     

0 0,  0 1,  0 =1 (CWT),  0 1 0  (NH), 0 0,

0,  0,   0   as .

f p r

p y

   

 

     

      
             2.57 
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Based on ODEs (2.21), (2.29), and (2.32), the summation of the highest order for the 

three equations would be seven, which means that there must be seven initial values to 

run the Shooting method. Nevertheless, three out of seven values were missing and the 

values were: 

                                                             

 

 

 

 0 ,

 0 ,

 0 .

q f

r

s











 

Because the values of  0 ,q   0r  and  0s  representing ,f      and ,  respectively, 

had been missing, choose such values were chosen by using trial and error technique, 

the fourth order Runge-Kutta method was used to obtain the solution. From the solution 

obtained, it had to be determined whether the solution had satisfied the boundary 

condition at the endpoints by checking the velocity, temperature and concentration 

profiles. If the profiles had satisfied the boundary conditions at the endpoints 

asymptotically, it would mean that the solution obtained was valid and would 

significantly benefit the current study. The same procedure was repeated with other 

assumed values of  0 ,q   0r  and  0s  for the same values of parameters used. The 

programming works are shown in Appendix A of this thesis by using Maple 13 

software. Figure 2.2 below shows the general flow diagram for the computations of 

Shooting method for problems discussed in this thesis.  
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Figure 2.2 Flow diagram for the Shooting method. 
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CHAPTER 3 

 

 

 EFFECT OF THERMAL RADIATION ON MHD FLOW AND HEAT 

TRANSFER IN CASSON NANOFLUID OVER A STRETCHING SHEET  

3.1 Introduction 

Generally, problems involving thermal radiation and magnetohydrodynamic 

(MHD) flow with heat and mass transfer are very common in industry processes. The 

main reason is that a lot of engineering processes occur at higher temperature and the 

knowledge of radiation in heat transfer leads to significant contribution to equipment 

design such as nuclear power plants, gas turbine, transportation and communication 

devices like satellites, aircraft, space vehicles and even for war equipment like missiles. 

Sivaiah et al. (2010) has mentioned that the effects of thermal radiation play an 

important role in operations at high temperature. The related problem has been 

discussed by researchers in different fields as mentioned in the literature review section.  

This chapter will focus on the effect of thermal radiation on 

magnetohydrodynamic (MHD) heat and mass transfer flow in Casson nanofluid over a 

stretching sheet with the presence of porous medium. Two different boundary 

conditions, namely, Constant wall temperature (CWT) and Newtonian heating (NH), 

were examined. The results of viscous fluid was first carried out to compare to the 

findings by Khan and Pop (2010), Gorla and Sidawi (1994), Wang (1989). Besides that, 

the porous medium may be applied in petroleum refineries, movement of oil, water and 

gas for purification and filtration.  

  In the current work, the basic of boundary layer equations (momentum, energy 

and concentration) are transformed into the non-dimensional forms and then from 

partial differential equation to ordinary differential equation. Subsequently, the 

appropriate results are carried out via the Shooting method. The numerical solutions are 
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obtained for the velocity, temperature and concentration profiles, as well as the skin 

friction coefficient, local Nusselt number and local Sherwood number. The features of 

flow and heat characteristics for several parameters with various given values are 

analyzed and presented with graphical results. The parameters considered are Casson 

fluid, magnetic, porosity, radiation, Prandtl number, Brownian motion, thermophoresis 

and Lewis number. 

3.2 Mathematical Formulation 

In this chapter, the problem formulation of the Casson nanofluid over a 

stretching sheet and boundary conditions for constant wall temperature and Newtonian 

heating are presented and derived in Section 2.2 and 2.3, which in Chapter 2.  The non-

linear equations (2.2), (2.3) and (2.4) were subjected to boundary conditions (2.41) are 

solved numerically using shooting method.  The purpose of this study is to focus on the 

effects of thermal radiation and heat transfer flow MHD in the presence of porous 

medium for Casson nanofluid over a stretching sheet. 

3.2.1 Results and Discussion for Constant Wall Temperature (CWT) 

The non-linear ordinary differential equations were of third order in ,f  second 

order in   and ,  reduced into simultaneous ordinary equations.  With the initial 

conditions of ,   the value of ( ),f  ( )   and ( )   could be obtained. Thus, 

unknown initial conditions 0   were obtained by using the Shooting method and the 

initial values for boundary value problem were assumed. The calculated boundary 

values should be similar to the real boundary values; hence, the calculated boundary 

values should be as close as possible to the real boundary values. In this study, there 

was no consideration of variation in temperature, velocity and concentration where 

large infinity condition was employed but finite value for .  The value of max 12,   

which was sufficient to achieve asymptotic boundary conditions for all parameter 

values considered, was chosen. Table 3.1 shows the comparison values of (0)  with 

previous results. It concludes that this method worked efficiently and the results 

presented here are accurate. 
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Table 3.1 Comparison of results for the Nusselt number (0)  when  R K M  

0,Nb Nt  ,  1.Le    

 

Pr  Khan and Pop 

(2010) 

Gorla and 

Sidawi (1994) 

Wang (1989) Present study 

0.20 0.1691 0.1691 0.1691 0.1698 

0.70 0.4539 0.5349 0.4539 0.4539 

2.00 0.9113 0.9114 0.9114 0.9113 

7.00 

20.00 

1.8954 

3.3539 

1.8905 

3.3539 

1.8954 

3.3539 

1.8954 

3.3539 

 

This section includes the study of thermal radiation effect on MHD and heat 

transfer flow of Casson nanofluid with embedded porous medium. The parameters 

involved were Casson parameter ,  magnetic parameter ,M  porosity parameter ,K  

radiation parameter ,R  Prandlt number Pr,  Brownian motion parameter ,Nb  

thermophoresis parameter Nt  and Sc number. The effects of these parameters on the 

temperature ( ),   velocity ( ),f   and concentration ( )   profiles are shown graphically 

based on Figure 3.1 to 3.19 including the concentration wall temperature, Sherwood 

number and skin friction coefficient.  The numerical results for these parameters are 

given in Table 3.2.  

  The effects of Casson parameter   on velocity ( )f   and temperature ( )   are 

shown in Figures 3.1 and 3.2 respectively. It was found that an increase in Casson 

parameter   had led to decreasing velocity ( )f   field while increasing the 

temperature ( ).   To increase the Casson parameter ,  yield stress was reduced, 

which means that Casson fluid behaved like Newtonian fluid  .   Thus, it is 

concluded that Casson fluid’s velocity was greater than Newtonian fluid. Figures 3.3 

and 3.4 show the magnetic parameter M  effects on velocity ( )f   and temperature 

( ),   respectively. It was discovered that the velocity ( )f   field had decreased as the 

magnetic parameter M increased. The reason is that when magnetic parameter M

increased, it would also cause the Lorentz force to increase. This force would oppose 

the fluid motion due to the application of transverse magnetic field which would always 
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result in a resistive force that would tend to resist the fluid flow. Meanwhile, Figure 3.4 

shows that an increase in the magnetic parameter M  led to an increase in temperature 

( ).   Further, this enhancement would be very significant near the sheet; however this 

effect would be almost negligible away from the sheet. Figures 3.5 and 3.6 illustrate 

different values of the porous medium. From Figure 3.5, it can be seen that the variation 

in velocity profile decreased as porosity parameter K  increased. Figure 3.6 shows that 

increasing the porosity parameter K  led to an increase in thermal boundary layer. 

Figures 3.7 and 3.8 illustrate the temperature ( )   and concentration ( )   fields for 

different values of Brownian parameter .Nb  It was observed that increase in Nb  had 

caused then the temperature ( )   field to also increase but the concentration ( )   field 

to decrease. Because the Brownian motion referred to the movement of nanoparticles, 

the higher the motion of nanoparticles, the larger the enhancement of thermal 

conductivity would be. Figures 3.9 and 3.10 indicate the temperature and concentration 

profiles of thermophoresis parameter, respectively. It was observed that when Nt  had 

increased, the temperature and concentration profiles would also increase. According to 

Anwar et al. (2013), this phenomenon is due to the larger value of Nb  representing a 

large extent of fluid and thus, causes the thickness of the thermal boundary layer to 

increase. The same trend would also happen when Nt  increases. 

The variation of temperature profile by Prandlt number is shown in Figure 3.11. 

As Pr  increased, the temperature distribution would decrease. Figure 3.12 reveals the 

temperature profile affected by the radiation parameter. Based on the graph, the result 

shows that when R increased the temperature profile would also increase. Figure 3.13 

depicts the effect of Schmidt parameter on concentration profile. The result shows that 

as the Sc increased, the concentration profile would decrease at all time. This is 

because when Sc  increased, the momentum diffusivity effects would increase which 

would slow down the effects of mass transfer rate leading to lower concentration 

profile. Figures 3.14, 3.15 and 3.16 are plotted graphically to describe the effect of 

Casson nanofluid and magnetic parameter on local Nusselt number, Sherwood number 

and skin friction coefficient, respectively. Figure 3.14 shows that the skin friction 

coefficient decreased when the value of   and M had increased. Figures 3.15 and 3.16 

show the temperature and concentration gradient would increase with   but the local 
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Nusselt number and Sherwood number would gradually decrease. The influence of 

Brownian parameter and thermophoresis parameter on local Nusselt number and 

Sherwood number is illustrated in Figure 3.17.  It can be seen that the dimensionless 

temperature gradient decreased and remained stagnant when Nb and Nt  had increased. 

Even though concentration gradient would increase when Nb and Nt  increased, it was 

evident that there were was a slight change of heat transfer with the higher value of Nb

and .Nt  In fact, the larger value of  and Nb Nt  would enhance the convective mass 

transfer capability and vice versa, while the smaller value of  and Nb Nt  would 

enhance the convective heat transfer capability. 

Figure 3.18 indicates the effect of Schmidt number and Prandlt number on 

dimensionless temperature rate. As the Schmidt number increased, the wall temperature 

would decrease. However, the wall temperature would increase when Prandtl number 

was raised. The higher value of Pr  would cause the thickness of boundary layer to 

reduce while the heat transfer rate increased as the wall temperature was constant. 

Figure 3.19 shows the effect of Prandlt number and radiation parameter on temperature 

gradient. With increasing Pr  value, the local Nusselt number would also increase. 

However, the rate of heat transfer would decrease once R  increased. This is because 

the thermal diffusivity would cause the heat transfer ability of fluid to be physically 

reduced.  
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Figure 3.1 Velocity profile for various values of Casson parameter ,  when 

0.2, 2,M K  5, 0.5, 0.5, 2 and Pr 7.R Nb Nt Sc      

 

Figure 3.2 Temperature profile for various values of Casson parameter ,  when 

0.2,  2,  5,  0.5,  0.5,  2 and Pr 7.M K R Nb Nt Sc        

 



52 

 

Figure 3.3 Velocity profile for various values of magnetic parameter ,M  when

0.2,  2,  5,  0.5,  0.5,  2 and Pr 7.K R Nb Nt Sc         

 

 

Figure 3.4 Temperature profile for various values of magnetic parameter M , when

0.2,  2,  5,  0.5,  0.5,  2 and Pr 7.K R Nb Nt Sc         
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Figure 3.5 Velocity profile for various values of porosity parameter ,K  when

0.2,  2,  5,  0.5,  0.5,  2 and Pr 7.K R Nb Nt Sc         

 

 

Figure 3.6 Concentration profile for various values of porosity parameter ,K  when

0.2,  2,  5,  0.5,  0.5,  2 and Pr 7.K R Nb Nt Sc         



54 

 

Figure 3.7 Temperature profile for various values of Brownian motion parameter ,Nb  

when 0.2,  2,  0.2,  5,  0.5,  2 and Pr 7.K M R Nt Sc         

 

 

Figure 3.8 Concentration profile for various values of Brownian motion parameter ,Nb  

when 0.2,  2,  0.2,  5,  0.5,  2 and Pr 7.K M R Nt Sc         
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Figure 3.9 Temperature profile for various values of thermophoresis parameter ,Nt  

when 0.2,  2,  0.2,  5,  0.5,  2 and Pr 7.K M R Nb Sc         

 

 

Figure 3.10 Concentration profiles for various values of thermophoresis parameter ,Nt   

when 0.2,  2,  0.2,  5,  0.5,  2 and Pr 7.K M R Nb Sc         
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Figure 3.11 Temperature profile for various values of Prandlt number Pr,  when

0.2,  2,  0.2,  5,  0.5,  0.5 and 2.K M R Nb Nt Sc         

 

 

Figure 3.12 Temperature profile for various values of radiation parameter ,R  when

0.2,  2,  0.2,  0.5,  0.5,  2 and Pr 7.K M Nb Nt Sc         
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Figure 3.13 Concentration profile for various values of Schmidt number ,Sc  when

0.2,  2,  0.2,  5,  0.5,  0.5 and Pr 7.K M R Nb Nt         

 

 

 

Figure 3.14 The effect of   and M  on local Nusselt number. 
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Figure 3.15 The effect of   and M on local Sherwood number. 

 

 

 

Figure 3.16 The effect of   and M on skin friction coefficient. 
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Figure 3.17 The effect of Nb  and Nt on local Nusselt number. 

 

 

 

Figure 3.18 The effect of Sc  and Pr  on local Nusselt number. 
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Figure 3.19 The effect of Pr  and R on local Nusselt number. 

The variation of skin friction coefficient  0 ,f   temperature gradient  0  and 

concentration gradient  0  with respect to Casson nanofluid ,  magnetic parameter 

,M  porosity parameter ,K  Prandlt number Pr,  Brownian parameter ,Nb  

thermophoresis parameter ,Nt  radiation parameter R  and Schmidt number Sc are 

presented in Table 3.2. 

3.2.2 Summary 

Thermal radiation on MHD flow and heat mass transfer over stretching sheet in 

Casson nanofluid were studied numerically. The nonlinear ordinary differential 

equations were solved numerically using the Shooting method. The result of velocity, 

temperature and concentration profiles are then presented graphically for different 

values of the pertinent parameters. Also, the skin friction coefficient, local Nusselt 

number and Sherwood number were the examined with the influence of various 

parameters. The results are summarized as below: 

 For temperature and concentration profiles, the boundary layer thickness 

increased but the velocity distribution decreased when Casson nanofluid 

parameter, magnetic parameter and porosity parameter increased.  

 Temperature profile decreased when Prandlt parameter number increased. 
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 When Brownian motion parameter increased, the concentration profile dropped 

but the temperature profile increased. 

 Increase in the thermophoresis parameter resulted in an increase in the 

temperature and concentration profiles. 

 Temperature profile increased when  the radiation parameter increased. 

 Increasing the values of Schmidt number caused the concentration profile to 

decrease . 

 Skin friction coefficient as well as local Nusselt and Sherwood number 

decreased at all time as  and M in the fluid increased. 

 The increase of Nb  and Nt  in the fluid caused the local Nusselt number to 

decrease and Sherwood number to increase. 

 The higher the value of Sc and Pr,  the higher the  temperature gradient would 

be. 

 The higher the value of   and  the lower the local Nusselt number would be. 
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Table 3.2 Numerical values for      
1

1 0 ,  0  and 0f  


 
     

 
 for different 

parameters values. 

 

  M  K  R  Nb  Nt  Sc  Pr  
1

1 (0)f


 
 

 
 (0)  (0)  

0.01 0.2 2 5 0.5 0.5 2 7 -1.418408 0.290002  

0.10        -1.452270 0.286358  

1        -1.612451 0.269928  

10        -1.758098 0.256149  

0.2 2 2 5 0.5 0.5 2 7 -0.836668 0.360837  

 4       -1.01650 0.337775  

 6       -1.169045 0.319260  

 8       -1.303840 0.303874  

0.2 0.2 1 5 0.5 0.5 2 7 -1.095445 0.327579  

  2      -1.483240 0.283077  

  5      -1.788854 0.253379  

  7      -2.049390 0.231778  

0.2 0.2 2 1 0.5 0.5 2 7  0.349831 0.636292 

   3      0.327175 0.624007 

   5      0.283077 0.644833 

   7      0.247238 0.665772 

0.2 0.2 2 5 0.2 0.5 2 7  0.342778 0.282130 

    0.4     0.301929 0.585531 

    0.6     0.265226 0.683642 

    0.8     0.232376 0.730609 

0.2 0.2 2 5 0.5 0.75 2 7  0.261561 0.584359 

     1    0.242203 0.534969 

     1.25    0.224764 0.494762 

     1.50    0.209030 0.462188 

0.2 0.2 2 5 0.5 0.5 1.25 7  0.301766 0.372734 

      1.50   0.293983 0.471341 

      1.75   0.287925 0.561497 

      2.00   0.283077 0.644833 
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3.2.3 Results and Discussion for Newtonian Heating (NH) 

This section includes the graphical results for velocity  0f  , temperature  0

and concentration  0 profiles for the parameters involved such as Casson nanofluid 

parameter , Newtonian heating parameter , magnetic parameter ,M  porosity 

parameter ,K  Brownian motion parameter ,Nb  thermophoresis parameter ,Nt  Prandtl 

number Pr,  radiation parameter R  and Schmidt number ,Sc respectively, by using the 

boundary condition (2.41).  

Figures 3.20 and 3.21 illustrate Casson nanofluid effects on the velocity and 

temperature respectively. Velocity profile would decrease as the Casson nanofluid 

parameter increased. At the same time, the temperature profile would increase as 

Casson nanofluid parameter increased. Figure 3.21 and 3.22 present the Newtonian 

heating parameter effects on temperature and concentration profiles respectively. The 

profiles would increase when the Newtonian heating parameter increased. This would 

also lead to an increase in the thickness of boundary layer.  

Induced magnetic field would be affected by the velocity and temperature 

profiles as shown in Figures 3.24 and 3.25. The velocity profile would drop but the 

temperature profile would increase as the magnetic parameter increased. This is due to 

the resistive force produced by the magnetic field, reducing the flow motion 

significantly and causing the retardation in velocity.  Figures 3.26 and 3.27 depict the 

effects of porosity parameter on velocity and temperature profile. The velocity profile 

would decrease when the porosity parameter increased due the existance of magnetic 

field. The temperature profile would increase when the porosity parameter increased 

because the existence of a porous medium would lead to enhanced thermal conductivity 

and mass transfer rate in the fluid. 

The temperature profile would increase when the Brownian motion parameter 

increased but the concentration profile would decrease as shown in Figures 3.28 and 

3.39, respectively. The Brownian motion occured due to the movement of the small 

sized nanoparticles affecting the heat transfer charateristics. This phenomenon would be 

important because it could enhance the thermal conductivity of nanofluids. Figures 3.30 
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and 3.31 illustrate the thermophoresis parameter effects on temperature and 

concentration profiles. Both profiles would increase when thermophoresis parameter 

increased. In fact, thermophoresis parameter would be directly proportional to the heat 

transfer rate coefficient in relation to the  hot fluid. Increase in the value of Prandtl 

number would cause the temperature profile to drop, as shown in Figure 3.32. 

Meanwhile, Figure 3.33 presents the effect of radiation parameter on temperature and it 

can be seen that an increase in the value of radiation parameter would cause the 

temperature profile to increase. This is due to the enhancement of conduction effects in 

nanofluid as influenced by thermal radiation. From the Figure 3.34, it can also be seen 

that the concentration profile would decrease as Schmidt number increased.  

Figure 3.35 illustrates the effect of Newtonian heating parameter  and 

radiation parameter R  on temperature wall gradient. An increase in the value of   

would cause the local Nusselt number  0  to increase. This is because the radiation 

parameter would radiate actively at higher temperature; thus, the graph shows high 

value of R as it increased significantly. Figures 3.36 and 3.37 show the effect of the 

presence of Casson parameter, magnetic parameter and porosity parameter on local 

Nusselt number and skin friction coefficient, respectively. Figure 3.36 shows that the 

temperature wall gradient would increase as these three parameters increased. The 

thickness of boundary layer also would increase because more heat produce as the fluid 

motion was resisted by Lorentz force, thus causing a slow down in the fluid motion. 

Also, there was more friction produced when the magnetic parameter increased. The 

result can be seen in Figure 3.37. Figure 3.38 presents the critical value of Newtonian 

heating parameter c  and Prandtl number Pr on gradient of wall temperature. It was 

observed that when Pr 2,  then 0.136884.c   However, when the value of Pr  

increased to 7, then 0.071840.c   The critical value of Newtonian heating parameter 

on temperature wall gradient would become smaller when Prandtl number increased.  
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Figure 3.20 Velocity profile for various values of Casson nanofluid ,  when 

0.2,  2, 0.125,  5,  0.25, 0.5, 0.5 and Pr 2.M K Sc R Nb Nt         

 

Figure 3.21 Temperature profile for various values of Casson nanofluid ,  when 

0.2,  2, 0.125,  5,  0.25, 0.5, 0.5 and Pr 2.M K Sc R Nb Nt         
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Figure 3.22 Temperature profile for various values of Newtonian heating  parameter ,  

when 0.2,  2, 10,  5,  0.25, 0.5, 0.5 and Pr 2.M K Sc R Nb Nt         

 

Figure 3.23 Concentration profile for various values of conjugate parameter ,  when 

0.2,  2, 10,  5,  0.25, 0.5, 0.5 and Pr 2.M K Sc R Nb Nt         
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Figure 3.24 Velocity profile for various values of magnetic parameter ,M  when 

2, 10,  0.115, 5,  0.25, 0.5, 0.5 and Pr 2.K Sc R Nb Nt          

 

 

Figure 3.25 Temperature profile for various values of magnetic parameter ,M  when 

2, 10,  0.115, 5,  0.25, 0.5, 0.5 and Pr 2.K Sc R Nb Nt          
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Figure 3.26 Velocity profile for various values of porous medium ,K  when 

2, 10,  0.115, 5,  0.25, 0.5, 0.5 and Pr 2.M Sc R Nb Nt          

 

Figure 3.27 Temperature profile for various values of porous medium parameter ,K  

when 2, 10,  0.115, 5,  0.25, 0.5, 0.5 and Pr 2.M Sc R Nb Nt          
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Figure 3.28 Temperature profile for various values of Brownian parameter ,Nb  when 

2, 10,  2, 0.115, 5,  0.25, 0.5 and Pr 2.M K Sc R Nt          

 

Figure 3.29 Concentration profile for various values of Brownian parameter ,Nb  when 

2, 10,  2, 0.115, 5,  0.25, 0.5 and Pr 2.M K Sc R Nt          
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Figure 3.30 Temperature profile for various values of thermophoresis parameter ,Nt  

when 2, 10,  2, 0.115, 5,  0.25, 0.5 and Pr 2.M K Sc R Nb          

 

Figure 3.31 Concentration profile for various values of thermophoresis parameter ,Nt  

when 2, 10,  2, 0.115, 5,  0.25, 0.5 and Pr 2.M K Sc R Nb          
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Figure 3.32 Temperature profile for various values of Prandtl number Pr,  when 

2, 10,  2, 0.115, 5,  0.25, 0.5 and 0.5.M K Sc R Nb Nt          

 

Figure 3.33 Temperature profile for various values of radiation parameter ,R  when 

2, 10,  2, =0.115, 5,  0.5, 0.5 and Pr 2.M K Sc Nt Nb         
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Figure 3.34 Concentration profile for various values of Schmidt number ,Sc  when 

2, 10,  2, =0.115, 0.25, 0.5,  0.5 and Pr 2.M K R Nt Nb         

 

Figure 3.35 The effect of  and R on local Nusselt number. 
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Figure 3.36 The effect of ,  K and M on local Nusselt number. 

 

 

Figure 3.37 The effect of ,  K and M on skin friction coefficient. 
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Figure 3.38 Variation of local Nusselt number with critical value of Newtonian heating 

parameter c  when Pr 2 and 7, respectively. 

3.2.4 Summary 

Thermal radiation on MHD flow and heat mass transfer over stretching sheet in 

Casson nanofluid with Newtonian heating were studied numerically. The nonlinear 

ordinary differential equations were solved numerically using the Shooting method. The 

result of velocity, temperature and concentration profiles were then presented 

graphically for different values of the pertinent parameters. Also, the skin friction 

coefficient, local Nusselt number and Sherwood number were examined with influence 

of various parameters. The results are summarized as below: 

 When the Casson nanofluid parameter increased, magnetic parameter and 

porosity parameter, the thickness of boundary layer of temperature and 

concentration profile would also increase but the velocity distribution would 

decrease. 

 Temperature profile would decrease when Prandlt parameter number increased. 

 Increase of Brownian motion parameter resulted concentration profile decreases 

but temperature profile increases. 

 An increase in thermophoresis parameter would cause temperature and 

concentration profiles to decrease. 
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 Temperature profile would  increase when the radiation parameter increased. 

 Concentration profile would decrease when Schmidt number increased. 

 Skin friction coefficient as well as local Nusselt and Sherwood number would 

decreased at all time as  and M  in the fluid increased. 

 The thickness of boundary layer would increase as the Newtonian heating 

parameter and radiation parameter increased. 

 The skin friction coeffient would drop and local Nusselt number would rise 

when the Casson parameter, magnetic parameter and porosity parameter 

increased simultaneously. 

 To obtain a physically appropriate solution, the value of  must be less than c

and with an acceptable range of values of Pr.  
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Table 3.3 The computation results with all the parameters for local skin friction 

coefficient, local Nusselt number and local Sherwood number, respectively. 

 

  
M  K    R  Nt  Nb  Sc  Pr  

1
1 (0)f



 
 

 
 (0)  (0)  

0.5 0.2 2 0.115 0.25  0.5  0.5   5   2 -1.5491 0.2167  

 1         -1.6124 0.2218  

 5         -1.7320 0.2335  

10         -1.7580 0.2365  

10 0.25 2 0.115 0.25  0.5  0.5   5   2 -1.7709 0.1960  

 0.75        -1.8949 0.2048  

 1.25        -2.0113 0.2152  

   2        -2.1742 0.2365  

10 0.2 1  

0.115 

 

0.25 

 0.5  0.5   5   2 -1.4459 0.1793  

  2         -1.7580 0.1952  

  3       -2.0226 0.2163  

  4       -2.2563 0.2554  

10 0.2 2 .025 

0.05 

0.075 

0.1 

0.25  0.5  0.5   5   2  0.0270 

0.0590 

0.0986 

0.1511 

1.3918 

1.3794 

1.3644 

1.3455 

10 0.2 2 0.115  0.2 

 0.4 

 0.5  0.5   5   2  0.1942 

0.1996 

 

     0.6      0.2076  

     0.8      0.2176  

10 0.2 2 0.115 0.25 0.15  0.5   5   2  0.1769 1.3819 

      0.3     0.1827 1.3609 

     0.45     0.1909 1.3393 

      0.6     0.2048 1.3161 

10 0.2 2 0.115 0.25  0.5  0.1   5   2  0.1493 1.0164 

       0.2    0.1557 1.2134 

       0.3    0.1642 1.2792 

       0.4    0.1761 1.3122 
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CHAPTER 4 

 

 

SLIP CONDITIONS ON FLOW AND HEAT TRANSFER ANALYSIS OF 

WILLIAMSON NANOFLUID OVER A STRETCHING SHEET  

4.1 Introduction 

The existence of slip conditions on interface of nanofluids and the solid 

boundary is caused by the presence of nanoparticles as reported by Ibrahim and 

Shankar (2013). Thus, this topic mainly focuses on the slip conditions with heat transfer 

analysis in Williamson nanofluid flow over stretching sheet. Due to the appearance of 

dynamic viscosity, velocity and thermal slip factors, two types of slip conditions have 

been considered, namely velocity and thermal slip parameters. The mathematical 

formulation has been described well in relation to the slip parameters and through the 

similarity transformations, the governing equations are transformed into non-linear 

ordinary differential equations. In addition, the closed form numerical solutions for 

velocity, temperature and concentration are obtained as well as for skin friction, heat 

transfer rate and Sherwood number. These solutions have been plotted graphically and 

discussed for each parameter. The comparison of viscous case has been carried out and 

computational software Maple-13 has been used to solve the problems. 

4.2 Mathematical Formulation 

A two-dimensional viscous flow of Williamson nanofluid over a stretching plate 

where the flow was incompressible and in steady state has been considered. The 

velocity of surface has been linear and could be represented by  wU x bx  while b and 

x  represented the constant and the coordinate measured along the stretching plate, 

respectively. In addition, y would be the coordinate measured normal to the stretching 
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plate and flow of nanofluid at 0.y   It can be assumed that the wall temperature of 

2

wT ax T   and the fraction of nanoparticles wC  would be constant at the stretching 

surface. When y  would be approaching infinity, the ambient values of temperature and 

nanoparticle fraction would be denoted as  and ,T C    respectively. 

 

Figure 4.1 The physical model  

The constitutive equations of Williamson fluid model are given as: 

                                                                 p   S I                                                     4.1 

in which p  is the pressure, I  is the identity vector,   is the extra stress tensor and S  is 

Cauchy stress tensor and 

                                                              11    A                                                  4.2 

where   is the limiting velocities at zero,    is the time constant, 1A  is first Rivlin-Erickson 

tensor and   is defined as follows: 

                                                                       
1

2
                                                             4.3 

Based on the Figure 4.1, the two dimensional boundary layer governing equations of 

non-Newtonian Williamson nanofluid flow would be as follows:  
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2 2

2 2
2

u u T u T
u v

x y y y y
 

    
   

    
       4.4 

22

2

p p T
B

C DT T T C T T
u v D

x y y C y y T y




 

       
     

        

     4.5 

2 2

2 2

T
B

DC T C T
u v D

x y y T y

   
  

   
       2.5 

With the corresponding boundary conditions would be as below: 

* *,   0,  ,     at  0.

0,   ,     as  .

w w w

u T
u u v T T B C C y

y y

u T T C C y

 

 

  
       

  

   

     4.6 

By following Yasin et al. (2016), the similarity transformations would be as below: 

                                                               u bxf                                                        4.7 

                                                               v b f                                                    4.8 

                                                             
b

y


                                                             2.7 

                                                        
W

T T

T T
  







                                                      2.10 

                                                        
W

C C

C C
  







                                                    2.12 

The governing equations then could be reduced to ordinary differential equations by 

using the following similarity transformations: 

           2 0f f f f f f                                4.9 

                     
  

 2Pr 2Pr 0
Nc Nc

f f
Le Le Nbt

                               4.10 

          
1

0Scf
Nbt

                4.11 



80 

Where  
 

 

32
,   Pr ,  ,  ,

p p B W

W

T W

C T D C Cb
x Nc C C Nbt

C D T T




  

 






     


 

,  .
B B

v
Le Sc

D D


   The ,f  and  would be functions of  and prime denoting 

derivatives with respect to   the corresponding boundary conditions would take the 

following form: 

           

     

0 0,   0 1 0 ,   0 1 0 ,   0 1   as 0.

0,   0,   0   as 0.

f f f B y

f y

   

 

        

       
   4.12 

The physical quantities of interest were skin friction coefficient ,fC  local Nusselt 

number Nu  and local Sherwood number ,Sh  defined as  

2

0

,         and    w w
f

W W wy

xq T x C
C Nu Sh

U T T y C C y



  

 
    

   
               4.13 

where the shear stress 
2( ) .

2
w

u u

y y
 

   
  

  
Using the non-dimensional variables, 

the following was obtained 

   2. Re 0 (0),    (0)   and   0 .
2 Re Re

f

Nu Sh
C f f


                       4.14 

where
2Re

b
x


  is the local Reynold’s number. The detailed explanation of 

mathematical formulation for this chapter is providein Appendix C of this thesis. 

4.3 Results and Discussion  

The  non-linear  partial  differential  equations  were  solved  with  similarity  

transformations  and transformed  to  ordinary  differential  equations,  which were  

then  derived  manually  based  on  the  given boundary conditions. Next, the derived 

equations were solved by using the Shooting method. Thus, unknown initial conditions 

0   may be obtained by using Shooting method and the initial values for boundary 

value problem may be assumed.  The calculated boundary values should be similar to 

the real boundary values,  hence, the values should be as close to the boundary values 
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are appropriate to consider.  In this  study,  there were no considerations of variation  in  

temperature,  velocity  and  concentration  and  we  assume large  infinity  condition but 

finite value for .  the value of 6   was chosen because this value would be sufficient 

to achieve asymptotic boundary conditions for all parameters considered.  

Table 4.1 The comparison of local Nusselt number  0 for Prandlt number in 

viscous case.   

 

Pr  Ishak et al. (2009) by 

Keller Box method 

Hayat et al. (2008) by 

Homotophy Analysis method   

Present study by 

Shooting method 

0.72 0.8086 0.808631 0.808834 

1 1.0000 1.000000 1.000008 

3 

10 

1.9237 

 3.7207 

1.923591 

3.721596  

1.923678 

3.720671 

 

Based on the comparison with previous results undertaken by other researchers, 

it was discovered there had been good consensus in the results. Thus, this technique can 

be concluded to have worked efficiently and the results presented here are accurate and 

reliable. 

This section includes the graphical results for velocity, temperature and 

concentration profiles for the relevant variables such as velocity slip parameter ,  

thermal slip parameter ,B  non-Newtonian Williamson parameter ,  Prandtl number 

Pr,  heat capacities ratio parameter ,Nc  diffusivity ratio parameter ,Nbt  Lewis number 

Le  and Schmidt number ,Sc  respectively. Figures 4.2, 4.3 and 4.4 depict the various 

values of velocity slip factor parameter for velocity, temperature and concentration 

profile respectively. The graphical results show that the value of velocity profile would 

reduce as the velocity slip factor parameter increased. Meanwhile, the wall temperature 

would decrease as the velocity slip factor parameter increased. However, the volume 

fraction of nanoparticles would increase as the velocity slip factor parameter increased. 

Figures 4.5 and 4.6 illustrate the temperature and concentration profiles on thermal slip 

parameter. It was found that the wall temperature and volume fraction of nanoparticles 

had decreased due to an increase in thermal slip parameter. Figures 4.7, 4.8 and 4.9  



82 

present several values of non-Newtonian Williamson parameter on velocity, 

temperature and concentration profile, respectively. As the value of velocity profile 

decreased, the wall temperature and concentration profiles would increase 

simultaneously when the Williamson parameter increased. Furthermore, the skin 

friction coefficient for Williamson nanofluid would get lower as the non-Newtonian 

Williamson parameter increased. It would be suitable to be used as lubricant in cooling 

system because the suspended nanoparticles that could keep stay longer in the base 

fluids would enhance the flow characteristics of nanofluids.  

Figure 4.10 shows the Prandlt number on temperature profile. The increment of 

Prandlt number caused the slow rate in thermal diffusion; thus, the temperature profile 

was reducing at all times. Figure 4.11 depicts the heat capacities ratio effect on 

temperature profile. It can be seen that the wall temperature would increase when the 

heat capacities ratio parameter increased. Also, the boundary layer thickness would 

decrease in this case. Therefore, the greater the value of radiation parameter, the larger 

the superficial heat flux would be. Figure 4.12 illustrates the Lewis number on 

temperature profile. Lewis number would also refer to the thermal to species diffusivity 

ratio. Lewis number is considered for conditions where the temperature and mass 

fraction are larger by defining temperature and diffusivities, in which reduced the 

convective heat transfer. Thus, the wall temperature is decreasing function against 

Lewis number. Figures 4.13 and 4.14 depicted the different value of diffusivity ratio 

parameter on temperature and concentration profile respectively. The value of both the 

profile dropped as the value of diffusivity parameter increases. Figure 4.15 presented 

the Schmidt number on concentration profile. The value of the profile getting less and 

lesser as the value of Schmidt number increases. 

Figure 4.16 presents the effect of B  and Pr  on temperature gradient. When the 

value of Pr  was small, the temperature gradient would be high. However, increasing 

the Prandtl number would lead to a sharp drop in the heat transfer rate. The effect of 

Nb  and Nt on temperature gradient is shown in Figure 4.17. It is clear that the 

temperature gradient would rise as the value of Brownian motion parameter and 

thermophoretic parameter increased. Figure 4.18 depicts the effect of Le  and Pr on 

temperature gradient. Based on the diagram, the gradient of wall temperature would 



83 

increase when the Prandtl number and Lewis number increased. The skin friction 

coefficient, gradient temperature and concentration with all the parameters are shown in 

Table 4.2.   

 

Figure 4.2 Velocity profile for various values of slip parameter ,  when

0.5,  1,  2.5,  2,  10,  5 and Pr 7.B Nc Nbt Le Sc         
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Figure 4.3 Temperature profile for various values of velocity slip parameter ,  when

0.5,  1,  2.5,  2,  10,  5 and Pr 7.B Nc Nbt Le Sc         

 

 

Figure 4.4 Concentration profile for various values of velocity slip parameter ,  when

0.5,  1,  2.5,  2,  10,  5 and Pr 7.B Nc Nbt Le Sc         
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Figure 4.5 Temperature profile for various values of thermal slip parameter ,B  when

0.5,  0.5,  2.5,  2,  10,  5 and Pr 7.Nc Nbt Le Sc         
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Figure 4.6 Concentration profile for various values of thermal slip parameter ,B  when

0.5,  0.5,  2.5,  2,  10,  5 and Pr 7.Nc Nbt Le Sc         

 

Figure 4.7 Velocity profile for various values of Williamson parameter ,  when

0.5,  0.5,  2.5,  2,  10,  5 and Pr 7.B Nc Nbt Le Sc        
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Figure 4.8 Temperature profile for various values of Williamson parameter , when

0.5,  0.5,  2.5,  2,  10,  5 and Pr 7.B Nc Nbt Le Sc        

 

Figure 4.9 Concentration profile for various values of Williamson parameter , when

0.5,  0.5,  2.5,  2,  10,  5 and Pr 7.B Nc Nbt Le Sc        
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Figure 4.10 Temperature profile for various values of Prandlt number Pr,  when

0.5,  0.5,  0.5,  2.5,  2,  10 and 5.B Nc Nbt Le Sc         
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Figure 4.11 Temperature profile for various values of heat capacities ratio parameter 

,Nc  when 0.5,  0.5,  0.5,  2,  10,  5 and Pr 7.B Nbt Le Sc         

 

 

Figure 4.12 Temperature profile for various values of Lewis number ,Le  when

0.5,  0.5,  0.5,  2.5,  2,  5 and Pr 7.B Nc Nbt Sc         
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Figure 4.13 Temperature profile for various values of diffusivity ratio ,Nbt when

0.5,  0.5,  0.5,  2.5,  Le=10,  5 and Pr 7.B Nc Sc        
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Figure 4.14 Concentration profile for various values of diffusivity ratio ,Nbt  when

0.5,  0.5,  0.5,  2.5,  Le 10,  5 and Pr 7.B Nc Sc         

 

Figure 4.15 Temperature profile for various values of Schmidt number ,Sc  when

0.5,  0.5,  0.5,  2.5,  2,  10 and Pr 7.B Nc Nbt Le         
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Figure 4.16 The effect of B  and Pr  on temperature gradient. 

 

 

Figure 4.17 The effect of Nbt  and Nc on temperature gradient. 
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Figure 4.18 The effect of Le  and Pr on temperature gradient. 

4.4 Conclusion 

The problem of slip conditions on flow and heat transfer analysis of Williamson 

nanofluid past over a stretching sheet were studied and analysed numerically. The 

important findings are summarized as below: 

 Williamson nanofluid had lower skin friction coefficient when the non-

Newtonian Williamson parameter increased. 

 An increase in the velocity slip parameter would lead to an increase in the heat 

transfer rate.  

 An increase in the thermal slip parameter wouldcause a drop in the temperature 

gradient.  

 The higher the non-Newtonian Williamson parameter, the greater the thickness 

of boundary layer would be.  
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Table 4.2 The computation results for local skin friction coefficient, local Nusselt 

number and local Sherwood number respectively.  

 

  B    Pr  Nt  Nb  Le  Sc  (0)f   (0)  (0)  

0.25  1 0.5   7 2.5   2  10   5 -0.824627 0.560312 1.214397 

0.75        -0.521313 0.634114 0.995300 

1.25        -0.391317 0.653846 0.879335 

1.75        -0.316124 0.659675 0.801841 

0.5 0.2 0.5   7 2.5   2   10   5  1.531496 0.731268 

 0.4        1.111056 0.890411 

 0.6        0.871426 0.981179 

 0.8        0.716725 1.039801 

1  1   0   5 2.5   2   10   5 -0.430631 0.653863 0.952791 

   0.4      -0.442676 0.648285 0.935371 

   0.8      -0.457476 0.641978 0.914200 

   1.4      -0.489301 0.631466 0.869951 

0.5  1  0.5   4 2.5   2   10   5  0.593771  

     6      0.632611  

     8      0.656798  

    10      0.673705  

0.5  1  0.5   7  5   2   10   5  0.634617  

    10     0.611296  

    15     0.587304  

    20     0.563051  

0.5  1  0.5   7 2.5  0.3   10   5  0.479166 0.251699 

      0.4    0.494843 0.446998 

      0.6    0.512197 0.658669 

      0.9    0.524636 0.811730 

0.5  1  0.5   7 2.5   2    1   5  0.538971  

        1.5   0.579227  

         2   0.599359  

        2.5   0.611296  

0.5  1  0.5   7 2.5   2   10    2   0.409463 

          4   0.780050 

          6   1.062968 

          8   1.299821 
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CHAPTER 5 

 

 

MHD FLOW AND HEAT TRANSFER ANALYSIS OF WILLIAMSON 

NANOFLUID WITH THERMAL RADIATION EFFECT OVER A 

STRETCHING SHEET  

5.1 Introduction 

In this chapter, the results of investigation into the medium in pseudoplastics 

materials flow using Williamson fluid as the chosen model proposed by Williamson 

(1929), are presented. Tiwari and Das (2007) have suggested the nanofluid model 

because nanofluids have great potential in the advancement of thermal conductivity. 

Motivated by these studies, Williamson nanofluid was employed to study the present 

problem with thermal radiation effect on MHD flow and heat transfer analysis over a 

plate sheet. Studies on convective flow in porous medium with the influence of 

magnetic field have attracted the interests of many researchers. In this regard, thermal 

radiation and magnetic field, can be improved to produce great performance in 

engineering and industrial activities such as biological fluid flow, cancer treatment, 

chemical and agricultural engineering.  

Numerical solutions for the present problem were carried out using the Shooting 

method. As described in the previous chapter, the current study was divided into two 

parts, namely, CWT and NH. The resulting local Nusselt number for viscous fluid was 

then compared to the findings by other researchers such as Nadeem and Hussain (2014), 

Goyal and Bhargava (2014) and Prasannakumara et al. (2016). As explained in the 

preceding chapter, all the equations (momentum, energy and concentration) were first 

transformed from PDE to ODE, subject to boundary conditions, respectively. The new 

results were obtained for velocity, temperature and concentration profiles, as well as the 

skin friction coefficient, local Nusselt number and local Sherwood number. Graphs for 

the various embedded parameters were plotted and discussed in terms of velocity, 
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temperature and concentration profiles as well as gradient wall temperature and skin 

friction coefficient. 

5.2 Mathematical Formulation 

Assuming that a two-dimensional steady flow of an incompressible Williamson 

nanofluid flow over a stretching surface and the flow region would be defined as 0y  , 

and the plate was stretched along the x-axis with the velocity ,
W

U ax  where b was a 

positive constant. The two-dimensional boundary layer equations governing the flow 

would be given as 
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subjected to boundary conditions (2.5) in Section 2.2.  In order to solve equations (5.1), 

(5.2) and (2.4), we define stream function as equation (2.6) and similarity 

transformation in an equation (2.7). By applying equation (2.7) into equation (5.1), (5.2) 

and (2.4), the following equation have obtained  

              2 0f f f f f f Mf                   5.3 

            24
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R f
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         

 
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        
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kk


   We used the 

boundary conditions (2.42) as stated in Section 2.2. The physical quantities of interest 

are skin friction coefficient 
f

C  local Nusselt number Nu  and local Sherwood number 

Sh  would be defined as:  
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where the shear stress 
2

2
w

u u

y y
 

    
   

    

. Using the non-dimensional variables, the 

following was obtained: 

        2 Nu Sh
Re 0 0 , 0 and 0 .

2 Re Re
f

C f f


            4.14 

where 
2Re

a
x


  would be the local Reynold’s number. The detailed explanation for 

mathematical formulation in this chapter is shown in Appendix C of this thesis.  

5.2.1 Results and Discussion for Constant Wall Temperature (CWT) 

The calculated boundary values should be similar to the real boundary values, 

hence, the values should be as close to the boundary values as would be appropriate to 

consider. In this study, there was no consideration of variation in temperature, velocity 

and concentration where large infinity condition was adopted but a finite value for .  

The value at max 8,   was chosen, which would be sufficient to achieve asymptotic 

boundary conditions for all parameter values considered. Table 5.1 shows the 

comparison of values of (0) with previous results by using different methods. From 

our numerical solutions, it can be concluded that this method worked efficiently and the 

results presented here are accurate.  
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Table 5.1 Comparison of results for viscous case (0)  when , = 1, Le Nbt    

 Pr = 0.R M Nc    

 

 

Pr  

Nadeem and 

Hussain (2014) 

by HAM 

method 

Goyal and 

Bhargava (2014) 

by FEM method 

Prasannakumara  

et al. (2016) by 

RKF45 

Present study 

by Shooting 

method 

0.20 0.169 0.1691 0.1702 0.1698 

0.70 0.454 0.4539 0.4544 0.4539 

2.00 0.911 0.9113 0.9113 0.9113 

7.00 

20.00 

- 

- 

1.8954 

3.3539 

1.8954 

3.3539 

1.8954 

3.3539 

 

This section includes the graphical results for temperature   ,   velocity 

 f   and concentration     fields for different parameters involved such as 

Williamson parameter ,  magnetic parameter ,M  radiation parameter ,R  Prandtl 

number Pr,  heat capacities ratio parameter ,Nc  diffusivity ratio parameter Nbt  and 

Schmidt number .Sc  

 Figures 5.1, 5.2 and 5.3 show magnetic parameter M  effects on the velocity

 f  , temperature     and concentration     fields, respectively. It was found 

that velocity  f   field would decrease when the magnetic parameter M  increased. 

The reason is that an increase in magnetic parameter M would mean an increase in the 

Lorentz force opposing the fluid motion. Meanwhile, Figures 5.2 and 5.3 show that an 

increase in the magnetic parameter M  would lead to an increase in temperature     

and concentration     fields. Further, this enhancement would be very significant 

near the sheet, however this effect is almost negligible farther away from the sheet. 

Figure 5.4 reveals the temperature profile effect of radiation parameter. Based 

on the graph, the result shows that as R  increased, the temperature profile would also 

increase. The observation shows that temperature would increase when R  increased 

because the larger the value of radiation parameter, the more heat to fluid would be 

provided to the fluid, causing an enhancement in the temperature as well as the 
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thickness of thermal boundary layer. The variation of temperature profile of Prandtl 

number is shown in Figure 5.5. An increase in the Pr  would cause the temperature 

distribution to decrease. Prandtl number corresponding to the weaker thermal 

diffusivity as a result of the fluids having weaker thermal diffusivity, had lower 

temperature. This is the reason for Prandtl number depicting a decrement in the 

temperature profile. Figure 5.6 illustrates the heat capacities ratio parameter of 

temperature profiles. Increasing the value of Nc  would cause the temperature 

distribution to increase. This is because 0Nc   would correspond to the Williamson 

fluid in the absence of nanoparticles. Thus, the heat transfer rate of Williamson 

nanofluid would increase as nanofluid heat capacity Nc  increased. 

Figures 5.7 and 5.8 show the temperature and concentration profiles of 

diffusivity ratio parameter, respectively. It was observed that by increasing the value of 

,Nbt  the temperature and concentration profiles would decrease. Normally, Lewis 

number would rely upon Brownian diffusion coefficient and the larger values of Lewis 

number would tend to reduce the Brownian diffusion coefficient, depicting a weaker 

nanoparticle temperature profile as shown in Figure 5.9. Meanwhile Figure 5.10 

illustrates the effect of Schmidt parameter on the concentration profiles. Based on the 

graph, the result shows that an increase in the value of Sc  would cause the 

concentration profile to decrease. Figures 5.11, 5.12 and 5.13 were plotted to explain 

the effect of Williamson parameter and Magnetic parameter on skin friction coefficient, 

temperature gradient and concentration gradient, respectively. The results show that the 

skin friction coefficient, local Nusselt number and Sherwood number would decrease 

when the value of   and M  decreased. Thus, the heat transfer rate at the surface 

would also decreases because it was represented by a local Nusselt number. 

 Figures 5.14 and 5.15 show the effects of Prandtl number and radiation 

parameter on the temperature gradient. Based on Figure 5.14, the smaller values of Pr  

(0.72 & 1) and R  were considered. With increasing Pr value, the value of temperature 

gradient would also increase. However, the heat transfer rate would decrease as the 

value of radiation parameter was increased. Figure 5.16 reveals the effect of  and R on 

temperature gradient. The higher the   and R , the lower the rate of heat transfer and 

resulting in the thinning of the boundary layer thickness would be. The influence of 
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heat capacities ratio parameter and thermophoretic diffusivity parameter on local 

Nusselt number is illustrated in Figure 5.17. It can be seen that the dimensionless 

temperature would decrease as the value of Nc  increased. However, raising the value 

of Nbt  would decrease the heat transfer rate of the temperature gradient. Figure 5.18 

shows the effect of Lewis number and Prandtl number on temperature gradient. The 

heat transfer rate and wall temperature would increase in accordance with the increase 

in the value of both parameters. This is because when the Le  increased, the thermal 

diffusivity would also increase which in turn would enhance the heat transfer rate, 

leading to an increase in the temperature gradient. 

 

 

Figure 5.1 Velocity profile for various values of magnetic parameter M , when 

0.1,  5,  =0.3, 0.5, 1,  2.5 and Pr 2.Le R Nc Nbt Sc        
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Figure 5.2 Temperature profile for various values of magnetic parameter M , when 

0.1,  0.3,  5,  0.5, 1,  2.5 and Pr 2.R Le Nc Nbt Sc         

 

Figure 5.3 Concentration profile for various values of magnetic parameter M , when 

0.1,  0.3,  5,  0.5, 1,  2.5 and Pr 2.R Le Nc Nbt Sc         
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Figure 5.4 Temperature profile for various values of radiation parameter R , when 

0.1,  0.5,  5,  0.5, 1,  2.5 and Pr 2.M Le Nc Nbt Sc         

 

Figure 5.5 Temperature profile for various values of Prandtl parameter Pr , when 

0.1,  0.5,  0.3,  5,  0.5, 1 and 2.5.M R Le Nc Nbt Sc         
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Figure 5.6 Temperature profile for various values of heat capacities ratio parameter Nc , 

when 0.1,  0.5,  0.3,  5,  1,  2.5 and Pr 2.M R Le Nbt Sc         

 

Figure 5.7 Temperature profile for various values of diffusivity ratio parameter Nbt , 

when 0.1,  0.5,  0.3,  5,  0.5,  2.5 and Pr 2.M R Le Nc Sc         
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Figure 5.8 Concentration profile for various values of diffusivity ratio parameter Nbt , 

when 0.1,  0.5,  0.3,  5,  0.5,  2.5 and Pr 2.M R Le Nc Sc         

 

Figure 5.9 Temperature profile for various values of Lewis parameter Le , when 

0.1,  0.5,  5,  0.5, 1,  2.5 and Pr 2.M Le Nc Nbt Sc         
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Figure 5.10 Concentration profile for various values of Schmidt parameter Sc , when 

0.1,  0.5,  0.3,  5,  0.5, 1 and Pr 2.M R Le Nc Nbt         

 

Figure 5.11 The effect of  and M on skin friction coefficient.  
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Figure 5.12 The effect of   and M on temperature gradient. 

 

 

Figure 5.13 The effect of   and M on concentration gradient. 
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Figure 5.14 The effect of Pr and R on temperature gradient. 

 

 

Figure 5.15 The effect of  and R on temperature gradient. 
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Figure 5.16 The effect of Nc and Nbt on temperature gradient. 

 

 

Figure 5.17 The effect of Le  and Pr on temperature gradient. 
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Table 5.2 The computation results with all the parameters for local skin friction 

coefficient, local Nusselt number and local Sherwood number respectively. 

 

  M R Nbt Nc Sc Le Pr    20 0
2

f f


    0   0  

0 0.5 0.3 1 0.5 2.5 5 2 -1.224744 0.262878 0.861499 

0.05 
       

-1.250243 0.261291 0.858227 

0.1 
       

-1.278723 0.259629 0.854739 

0.15               -1.310949 0.257879 0.850998 

0.1 0.5 0.3 1 0.5 2.5 5 2 -1.278725 0.481279 0.737944 

 
1 

      
-1.488267 0.453568 0.690693 

 
2 

      
-1.847920 0.410392 0.619924 

  4             -2.441922  0.352091  0.530775 

0.1 0.5 0.1 1 0.5 2.5 5 2 
 

0.727322  

  
0.3 

      
0.637636  

  
0.5 

      
0.569746  

     0.7             0.516376  

0.1 0.5 0.3 0.5 0.5 2.5 5 2 
 

0.426029 0.562733 

  
 1 

     
0.481279 0.737944 

  
 2 

     
0.512394 0.852278 

      5           0.532288  0.931103 

0.1 0.5 0.3 1 2 2.5 5 2 
 

0.516700 0.711117 

   
 4 

    
0.388042 0.806982 

   
 6 

    
0.289930 0.876478 

        8         0.215816 0.925940 

0.1 0.5 0.3 1 0.5 1.5 5 2 
 

0.508351 0.387010 

    
 2 

   
0.492442 0.575847 

    
 2.5 

   
0.481279 0.737944 

          3       0.472987  0.881338 

0.1 0.5 0.3 1 0.5 2.5 1 2 
 

0.110079  

     
 1.5 

  
0.205395  

     
 3 

  
0.378796  

            5      0.481279  



110 

5.2.2 Summary 

The thermal radiation effect on MHD flow and heat transfer analysis of 

Williamson nanofluids were studied numerically with CWT. The governing non-linear 

equations were solved by using the Shooting method. Numerical outcome for velocity 

profiles, surface heat transfer rate and nanoparticle volume fraction were obtained with 

various range of boundary conditions and different acceptable values of pertinent flow 

parameters. The important findings in this research are summarized as follows: 

 Boundary layer thickness would increase for temperature and concentration 

profiles and velocity distribution would decrease with an increase in magnetic 

parameter.  

 Temperature profile would increase with the increasing values of radiation 

parameter but the rate of heat transfer would decrease. 

 Temperature profile would decrease as Prandtl number increased. 

 An increase in heat capacities ratio parameter would also cause an increase in 

temperature profile. 

 An increase in diffusivity ratio parameter would lead to a decrease in 

concentration and temperature profiles. 

 Temperature profile would decrease with the increasing value of Lewis 

number. 

 Concentration profile would decrease with the increasing value of Schmidt 

number. 

 Skin friction coefficient as well as local Nusselt and Sherwood number would 

decrease at all times as   and M  increased in the fluid. 

 The value of temperature gradient would decrease at all times as Pr and R  

increased. 

 The value of temperature gradient would decrease at all times as  and R  

increased. 

 The temperature gradient would increase as value of Nbt  increased. However, 

the higher the value of ,Nc  the lower the value of temperature gradient would 

be.  
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5.2.3 Results and Discussion of Newtonian Heating (NH)  

The nonlinear ordinary differential equations were derived manually together 

with the boundary conditions. Then, these equations were solved by using the Shooting 

method. The nonlinear ordinary differential equations were of third order in ,f  second 

order in   and , and were then reduced into simultaneous ordinary equations. With 

the initial conditions of ,   the following values could be obtained: ( ),f  ( )   

and ( ).   Thus, unknown initial conditions 0   were obtained by using the Shooting 

method and the initial values for boundary value problem were assumed. The calculated 

boundary values should be similar to the real boundary values; hence, the value should 

be as close to the boundary values would be as appropriate to consider. In this study, 

there were no considerations of variation in temperature, velocity and concentration 

where large infinity condition was adopted but finite value for .  The value at max 8, 

which would be sufficient to achieve asymptotic boundary conditions for all parameter 

values considered, was chosen. Table 4.3 shows the comparison of values of (0)

with previous results. It can be concluded that this method worked efficiently and the 

results presented here are accurate.  

Table 5.3 Comparison of results for viscous case (0)  when

,  = 1, Pr = 0.Le Nbt R M Nc       

 

 

Pr  

Nadeem and 

Hussain (2014) 

by HAM 

method 

Goyal and 

Bhargava (2014) 

by FEM method 

Prasannakumara et 

al. (2016) by 

RKF45 

Present study 

by Shooting 

method 

0.20 0.169 0.1691 0.1702 0.1698 

0.70 0.454 0.4539 0.4544 0.4539 

2.00 0.911 0.9113 0.9113 0.9113 

7.00 

20.00 

- 

- 

1.8954 

3.3539 

1.8954 

3.3539 

1.8954 

3.3539 

This section includes the graphical results for temperature ( ),   velocity ( )f   

and concentration ( )   fields for different parameters involved such as Williamson 
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parameter ,  magnetic parameter ,M  radiation parameter ,R  Prandtl number Pr,  heat 

capacities ratio parameter ,Nc  diffusivity ratio parameter Nbt  and Schmidt number 

.Sc  Figure 5.18 shows the Williamson parameter   effects on velocity ( ).f   It was 

found that velocity ( )f   field decrease with increase in the Williamson parameter .  

Figures 5.19 shows magnetic parameter M  effects on velocity ( )f  . It is found that 

velocity ( )f   field decreases with increases in the magnetic parameter .M  The reason 

is that an increase in magnetic parameter M  would mean increase in the Lorentz force 

opposing the fluid motion.  

Figure 5.20 reveals the temperature profile with the effect of radiation parameter. 

Based on the graph, the result shows that increasing the value of R  would cause an 

increase in temperature profile. The observation showed that temperature would 

increase with an increase in R  because increasing the value of radiation parameter 

would provide more heat to the fluid, causing enhancement in the temperature and the 

thickness of thermal boundary layer. The variation of temperature profile by Prandtl 

number is shown in Figure 5.21. Increasing the value of Pr would cause a decrease in 

temperature distribution. Prandtl number is whose corresponding to the weaker thermal 

diffusivity as a result of those fluids having weaker thermal diffusivity and, contained 

lower temperature. This is the reason for Prandtl number depicting a decrement in the 

temperature profile. Figure 5.22 illustrates the heat capacities ratio parameter of 

temperature profiles. An increase in Nc  would cause temperature profile to increase. 

This is because 0Nc  would correspond to that of the Williamson fluid in the absence 

of nanoparticles. Thus, the heat transfer rate of the Williamson nanofluid would 

increase as the nanofluid heat capacity Nc  increased. 

Normally, Lewis number would rely upon Brownian diffusion coefficient and 

the larger value of Lewis number would tend to reduce the Brownian diffusion 

coefficient, depicting a weaker nanoparticle temperature profile, as shown in Figure 

5.23. Figures 5.24 and 5.25 show the temperature and concentration profiles of 

diffusivity ratio parameter, respectively. It was observed that increasing the value of 

Nbt  would decrease the temperature and concentration profiles. Figures 5.26 and 5.27 

illustrate the temperature and concentration profiles of conjugate parameter ,  

respectively. The wall temperature and concentration profiles would increase as the 
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value of   increased.  Figure 5.28 depicts the effect of Schmidt parameter to the 

concentration profile. Based on the graph, the result shows that increasing the value of 

Sc  then decrease the concentration profile. 

In the case of Newtonian heating (NH), Figure 5.29 illustrates the variation of 

wall temperature (0) with Prandlt number when 0.1  . To obtain a physically 

appropriate solution, Pr must be greater than the critical values Prc (critical value of Pr ), 

which would be dependent on .  Based on the below diagram, it was found that the 

(0)  would become large as Pr approached the critical value Pr 0.276755c   when 

0.1.   Figure 5.30 has shown the variation of the wall temperature (0) for various 

values of   when Pr 1 and 7.  Also, in order to obtain the appropriate solution,   

must be less than a certain value called ,c  critical value of conjugate parameter, which 

would be dependent on Pr.  The surface temperature would become unbounded when

c   was found in our numerical solution and the value of wall temperature (0)  

would become larger as   approached the critical values, 0.221538 and 0.934912c   

when Pr 1 and 7, respectively. 

 

Figure 5.18 Velocity profile for various values of Williamson parameter ,  when 

1,  5,  0.5,  1,  2,  2.5,  Pr 1 and 0.1.M Le R Nc Nbt Sc          
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Figure 5.19 Velocity profile for various values of magnetic parameter ,M  when 

0.1,  5,  0.5,  1,  2,  2.5,  Pr 1 and 0.1.Le R Nc Nbt Sc          

 

 

Figure 5.20 Temperature profile for various values of radiation parameter ,R  when 

1,  0.1,  5,  1,  2,  2.5,  Pr 1 and 0.1.M Le Nc Nbt Sc          
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Figure 5.21 Temperature profile for various values of Prandlt number parameter Pr,  

when 1,  0.1,  5,  0.5,  1,  2,  2.5 and 0.1.M Le R Nc Nbt Sc          

 

 

Figure 5.22 Temperature profile for various values of heat capacities ratio parameter

,Nc when 1,  0.1,  5,  0.5,  2,  2.5,  Pr 1 and 0.1.M Le R Nbt Sc          
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Figure 5.23 Temperature profile for various values of Lewis number ,Le  when 

1,  0.1,  0.5,  1,  2,  2.5,  Pr 1 and 0.1.M R Nc Nbt Sc          

 

 

Figure 5.24 Temperature profile for various values of diffusivity ratio parameter ,Nbt  

when 1,  0.1,  5,  0.5,  1,  2.5,  Pr 1 and 0.1.M Le R Nc Sc          
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Figure 5.25 Concentration profile for various values of diffusivity ratio parameter ,Nbt  

when 1,  5,  0.5,  1,  2,  2.5,  Pr 1 and 0.1.M Le R Nc Nbt Sc          

 

Figure 5.26 Temperature profile for various values of Newtonian heating parameter ,  

when 1,  0.1,  5,  0.5,  1,  2,  2.5 and Pr 1.M Le R Nc Nbt Sc         
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Figure 5.27 Concentration profile for various values of Newtonian heating parameter ,  

when 1,  0.1, 5,  0.5, 1, 2,  2.5 and Pr 1.M Le R Nc Nbt Sc         

 

Figure 5.28 Concentration profile for various values of Schmidt number ,Sc  when 

1,  0.1, 5,   0.5, 1, 2,  Pr 1 and 0.1.M Le R Nc Nbt          
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Figure 5.29 Variation of the wall temperature  0 with Prandlt number Pr when 

Newtonian heating parameter 0.1.   

 

 

Figure 5.30 Variation of the wall temperature  0 with Newtonian heating parameter 

  when Pr 1 and 7.  
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5.2.4 Summary 

 The effect of thermal radiation on MHD boundary layer flow and heat transfer 

of Williamson nanofluid over a stretching sheet with Newtonian heating were studied 

numerically using the Shooting method. It was shown how each parameter affected the 

velocity, temperature and concentration profiles. It can therefore be concluded that: 

 The velocity profile would decreases as the Williamson parameter and 

magnetic parameter increased simultaneously. 

 The wall temperature would increase as the heat capacities ratio parameter 

increased. However, the temperature profile would decrease as Lewis number 

and diffusivity ratio parameter increased.  

 The concentration profile would drop as the Schmidt number increased.   

 The thickness of boundary layer would increase as the radiation parameter 

increased. Furthermore, an increase in Prandtl number result in a decrease the 

temperature profile.  

 The Newtonian heating parameter would cause the temperature profile to 

increase significantly. To obtain a physically appropriate solution, the value 

of Pr  must be greater than Prc
 and dependent on   at all times. Also, the 

value of   must be less than 
c  which would be dependent on Pr.  
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Table 5.4 The computation results with all the parameters for gradient temperature and 

concentration respectively. 

 

  M   R Nbt Nc Sc Le Pr  0   0  

0 1 0.1 0.5 2 1 2.5 5 7 
  

0.075 
          

0.125 
          

0.175                     

0.1 0.6 0.1 0.5 2 1 2.5 5 7 
  

 
0.9 

         

 
1.2 

         
  1.5                   

0.1 1 0.1 0.5 2 1 2.5 5 7 0.150153 0.903453 

  
0.15 

      
0.304649 0.860298 

  
0.175 

      
0.436449 0.823653 

    0.2             0.663559 0.76089 

0.1 1 0.1 0.25 2 1 2.5 5 7 0.13996 
 

   
0.5 

     
0.150153 

 

   
0.75 

     
0.161316 

 
      1           0.173432   

0.1 1 0.1 0.5 0.2 1 2.5 5 7 0.162293 0.501725 

    
0.4 

    
0.15451 0.730947 

    
0.6 

    
0.152551 0.803686 

        0.8         0.151653 0.839569 

0.1 1 0.1 0.5 2 0.5 2.5 5 7 0.140908 
 

     
1 

   
0.144079 

 

     
1.5 

   
0.147665 

 
          2       0.151761   

0.1 1 0.1 0.5 2 1 2 5 7 
 

0.778071 

      
4 

   
1.248462 

      
6 

   
1.610977 

            8       1.916295 

0.1 1 0.1 0.5 2 1 2.5 5 
 

0.15036 
 

       
10 

 
0.146055 

 

       
15 

 
0.144764 

 
              25   0.143777   

0.1 1 0.1 0.5 2 1 2.5 5 1 0.149409 
 

        
1.25 0.138362 

 

        
1.75 0.127014 

 
                2.25 0.121279   
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CHAPTER 6 

CONCLUSION 

6.1 Summary of Research 

The purpose of this study was to examine the numerical solutions for the 

problem of Casson and Williamson nanofluids with other variables such as thermal 

radiation, magnetic field, porous medium as well as heat transfer which has been 

explained in six chapters of this thesis. Three problems have been examined.  

Chapter 1 was an introductory topic which included the research background, 

the problem statement, the research objective and scope, the methodology, significance 

of this study, literature review and thesis outline.  

Chapter 2 presented the details of mathematical formulation work related to the 

thesis study problems. All of the problems were modelled in terms of partial differential 

equations with initial and boundary conditions. Appropriate non-dimensional variables 

were then introduced to transform the governing equations into the dimensionless 

forms. Numerical solutions for each problem were carried out by using the Shooting 

method.  

In Chapter 3, the effect of thermal radiation on MHD flow of Casson nanofluid 

over a stretching sheet was examined. Two types of boundary conditions in this topic, 

namely, constant wall temperature and Newtonian heating, were considered. The results 

showed that velocity profiles decreased significantly while the wall temperature and 

concentration profile increased when the Casson parameter increased, under the two 

different cases of boundary conditions. Also, Casson nanofluid had greater fluid 

velocity than Newtonian fluids. The increment of Prandtl number caused the wall 

temperature of nanofluids to drop. The magnetic effect had caused retardation in 

velocity profiles in the presence of porous medium due to the effect of Lorentz force. 



123 

The thermal radiation parameter had led to an increase in the wall temperature since the 

higher the radiation, the greater the radiate, especially in high temperature. For the case 

of Newtonian heating, the temperature and concentration profiles increased when the 

Newtonian heating parameter was increased. However, in order to obtain an appropriate 

value for Newtonian heating parameter, it must not exceed its critical value and must 

depend on the Prandtl number.   

Chapter 4 discussed the slip conditions on flow and heat transfer analysis of 

Williamson nanofluid over a stretching sheet. The velocity and thermal slip parameters 

were also introduced. After computing the mathematical formulation, it was found that 

Williamson nanofluid had lower skin friction coefficient when the non-Newtonian 

Williamson parameter increased. The thickness of thermal boundary layer increased as 

Williamson parameter increased. In addition, the rise of the velocity slip parameter led 

to an increase in the heat transfer rate. At the same time, an increase in thermal slip 

parameter caused the temperature wall as well as the temperature gradient to drop. The 

numerical solutions obtained in the present study would be significant because they 

would serve as the accuracy standards for approximate methods, especially asymptotic. 

In Chapter 5, Williamson nanofluid as the medium with the effects of thermal 

radiation and MHD flow over a stretching sheet was discussed. The two types of 

boundary conditions as in previous chapter was considered. For the case of constant 

wall temperature, the results showed that the skin friction coefficient, temperature 

gradient and concentration decreased when the value of non-Newtonian Williamson 

parameter increased. Besides that, the temperature gradient was reduced as the radiation 

parameter and Prandtl number increased. The temperature gradient increased as Lewis 

number and heat capacities ratio parameter increased. For the case of Newtonian 

heating, the temperature profile increased when the Newtonian heating parameter and 

radiation parameter increased. In order to obtain the physically appropriate solutions for 

this study, the Prandtl number must be greater than its critical value, known as Pr ;c  and 

must depend on the value of .  Also, the value of Newtonian heating parameter must 

be less than the critical point c  and dependent on the value of Pr.  

Overall, the consideration of boundary conditions by constant wall temperature 

and Newtonian heating of heat transfer flow of Casson and Williamson nanofluid due to 
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over the stretching plate with various effects have been investigated. Based on the 

finding results, it is noticed that Casson parameter and Williamson parameter with a 

similarities which if increase in these two parameters, the yield stress will be reduced 

and behave like Newtonian fluid.  Besides, the finding results of present study revealed 

that the solutions are noticed to exist when the Newtonian parameter must less than the 

critical values then only flow like normal. Meanwhile, there is no solution if the 

Newtonian heating exceeds the limits. Based on these problems, the values of wall 

temperature of nanofluid is larger than compared to the viscous fluid. This explains why 

the Newtonian fluids always have greater thermal conductivity and effective during the 

heat rate transfer. Other than that, increase the velocity field lead to an increase in the 

magnitude of skin frictions coefficient by considering the absolute value for stretching 

surface. The absolute value has been taken due to these quantities give the negative 

values. Nevertheless, the Nusselt number and Sherwood number increases at most of 

the time. 

In addition, the results were compared with studies published in journals to 

validate the efficiency of the method used. It should be noted that the problems 

discussed in this thesis are new and all the graphical results have been well illustrated in 

the form of tables and figures. Furthermore, these results could be used as the source of 

reference and comparison in future studies.  

6.2 Contribution of Study 

The main contribution of this study is the investigation and examination 

conducted on Casson and Williamson nanofluids in mathematical formulation such as 

momentum, energy and concentration. Furthermore, there were several parameters 

considered in the profiles like magnetic field, radiation parameter, porosity parameter, 

Newtonian heating parameter, Brownian parameter, Lewis number, Schmidt number 

and Prandtl number. The wall temperature, skin friction, Nusselt number and Sherwood 

number were also been studied and the findings were presented in graphical form. The 

solutions obtained and the explanantions could be used for validation purposes in the 

future.     
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6.3 Future Study 

Even though the problem of nanofluids has received favourable attention in this 

century, the numerical solutions for non-Newtonian fluids with Newtonian heating 

conditions are not widely discussed in the literature. This is because such problem is 

relatively difficult and complicated compared to other boundary conditions. Besides, 

the method used for numerical solutions is easier compared to the method of exact 

solutions. Although exact solutions serve as accuracy for approximate methods, 

whether for numerical, asymptotic or experimental, these solutions are complicated and 

seldom used to solve the problem. In this thesis, only two nanofluids with convective 

boundary conditions were considered. Thus, there is much are still to be investigated in 

other aspects of the area to be undertaken in future studies. It is recommended that 

future research should consider the following: 

 Other types of model fluids for internal flow like Jeffrey fluid and Maxwell 

fluid could be examined. 

 Other geometries such as elliptic circular cylinder and solid sphere. 

 Other effects such as chemical reaction, revised model rotating flow, etc should 

be studied. 
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APPENDIX B 

 

In this appendix, the transformation of PDEs to ODEs in Chapter 4 will be discussed in 

detail by using a similarity transformation in exponential form. The governing 

equations are shown as below: 

Continuity equation: 
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Concentration equation: 
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The following equations (B.1), (B.2), (B.3) and (B.4) are transformed to ODEs by using 

the similarity transformations in exponential form below 
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To solve the problem of continuity equation (B.1), find the first derivatives for 
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 by using equations (B.5), (B.6) and (B.7), respectively 
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After that, substitute equations (B.12) and (B.13) into the continuity equations (B.1) to 

obtain 
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It is proved that the continuity equation is satisfied by looking at the above equation. 

Furthermore, to reduce the momentum equation to a dimensionless form, the following 

terms of 

2
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 as shown below 
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                   B.19 
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   

  

   

2

2
.

         .

         .

         

W

W

W

T T

y y y

b b
T T T y y

y y

b b
T T

b
T T

 
 

 

  
   

  
  

  


 





     
  

     

       
                 

    
              

 

       B.20 

                      

  

   

22

2 2          

W

W

T b
T T

y

b
T T

 


 






   
           

 

                                                        B.21 

Then, substitute the following terms (B.15) (B.16) (B.17) (B.18) (B.19) (B.20)                   

and (B.21) into equation of momentum (B.2) transform  

       

              

 

2 2 2 2 2

2

0

2

                                                   

b
b xf b xf f b xf b x b x f f

B
bxf

      







 
           

 



 

by dividing with 
2 ,b x  then  the equation become 

                        
2

2 02
Bb

f f f f b x f f f
b


       

 

 
           

 

 

By rearrange the position and substitute 2
b

b x 


 
   

 

 and 
2

0
B

M
b




  

                         

             
2

2 02 0
Bb

f b x f f f f f f
b


       

 

 
            

 

 

                              2 0f f f f f f Mf                                   B.23 



146 

Next, to reduce the energy equation to a dimensionless form, the following terms of 

 and 
T C

u
x y

 

 
 as shown below 

                                     

      

       .

       . 0

       0

W

W

T T n
u u

x n x

b
bxf T T T y

n x

bxf T T

  


  

 



  


  

  
        

  



                   B.24 

                                    

   

     

     

W

W

C C

y y

b
C C C y

y

b
C C





 
 

 


 



  


  

  
        

 

                               B.25 

After that, substitute the following terms (B.19), (B.24) and (B.25) into energy equation 

(B.3) to obtain  

             

         

* 3

*

2

16
0

3
W W W

p p T

B W W W

Tb b
b T T f T T T T

k

C Db b b
D C C T T T T

C T


       

 


     

   



  

  



 
         

 

     
                     

 

Reposition the above equation 

             

         

* 3

*

22

16

3

0

W W W

p p T

B W W W

Tb b
T T b T T f T T

k

C Db b
D C C T T T T

C T


       
 


     

  



  

  



      

  
         

  

 

By dividing  W
b T T


 and multiply 

v


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               

 

2

* 3

*

44 1
0

3

p p p pB T

W W

C CD D
f C C T T

C C T

T

k

 
          

    


 



 





        

 
  

 

 

             

 

 
   

* 3

*

2

44 1

3

0

p p B

W

p pB W T

W

B W

C D T
f C C

C k

CD C C D
T T

D C C C T

 
          

   


 

 









 

 
         

 

  
   

  

 

             

 
 

 
 

* 3

*

2

44 1

3

. . 0

p p B

W

p p WB T

W

B W

C D T
f C C

C k

C T TD D
C C

C D T C C

 
          

   


 

 









 

 
         

 


  



 

Substitute that  
 

 

* 3

*

4 1
,  = ,   

p p WB

W

T W

C C CT D T
R Nc C C Nbt

k C D T T



 

 





 
   

 
 

and 
B

Le
D


  

           
             24

Pr 0
3 .

Nc Nc
f R

Le Le Nbt
                     

 

                        24
1 Pr 0

3 .

Nc Nc
R f

Le Le Nbt
          

 
         

 
        B.26 

Also, to reduce the concentration equation to a dimensionless form, the following terms 

of  
2

2
,   and 

C C C
u v

x y y

  

  
 have been carried. 

                                 

     

     .

     0

     0

W

W

C C
u u

x x

b
bxf C C C y

x

bxf C C





  
 

  

 



  


  

  
        

  



                       B.27 
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     

     

     

     .

     .

     

W

W

W

C C
v v

y y

b
b f C C C y

y

b
b f C C

b C C f





   
 

   


  

 





  


  

  
         

  

  

                    B.28 

                       

   

   

   

2

2
.

      .

      .

      

W

W

W

C C

y y y

b b
C C y

y

b b
C C

b
C C

 

 

 
  

 
 

 








     
  

     

    
           

 

 

                                       B.29 

Then, substitute the equations of (B.27), (B.28) and (B.29) into the dimensionless of 

concentration equation (B.4)                                          

                        0 T

W B W W

Db b
b C C f D C C T T

T
      

 
  



          

By dividing  W
b C C


 and multiply 

B
D


 then we obtain that 

                                
 

 
  0

WT

B B W

T TD
f

D D T C C


      

 


    


 

And substitute that 
B

Sc
D


  

                                             
1

0Scf
Nbt

                                             B.30 

The boundary conditions for the variables are carried out as follows when 0,y   
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 

 

          

0

   0

           1

u bx

bxf bx

bx
f

bx



 

 



 

                                               
 

 

               0

0 0

0
          0

                  = 0

v

b f

f
b







 




 

                                                  
 

      (Constant Wall Temperature)

0

       

       1

W

W

W

W

T T

T T

T T

T T

T T

 





















 

                                    
    

    

    

             (Newtonian Heating)

0 0 1

        0 0 1

        0 0 1

s

s

s

T
h T

y

a
T h T

v

v
h

a

 

 

  

 


 



   

   

   

 

                                                
 

     

0

       

       1

W

W

W

C C

C C

C C

C C

C C

 




















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Boundary conditions when ,y   

                                                   
 

 

          

0

0
   

            0

u

bxf

f
bx



  

  



 

                                                      

 

      

        

        0

W

W

T T

T T

T T

T T

T T









 






 










 

                                                     

 

     

       

       0

W

W

C C

C C

C C

C C

C C









 






 










 

The Reynold number 

                                                      

 

 

2

Re

      

      

W

x

xU x

v

x bx

v

x b

v







 

Thus, the boundary conditions are obtained after the similirarity transformations as 

shown below: 

                

       

 0 1,  0 0,  0 1 CWT ,  0 0 1  NH ,  0 1,

                      0,  0,   0,  0

f f

f f

    

 

       

        
     (B.31) 

The physical quantities for skin friction coeffiecient, local Nusselt number and local 

Sherwood number have been obtained respectively. 



151 

Local skin friction coefficient 
f

C  and shear stress 

2

2
w

u u

y y
 

    
   

    

 

                                 

 

 

     
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   

 
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2
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2
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2
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w

f
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C
U

u u

y y

U

b b b
xf xf xf

bx

b b b
xf x xf

bx

b b
xf xf

bx









 
  




  





 







    
  

    

  
     

   

  
    

   


  
    

   


   

 

   

3

2

2

2

0 0
2

  

0 0
2

   

b
x f f

bx

f f
b

x






 

 
  

 

 
  

 

 

                         
 

    

   

2

1

2

2

0 0
2

Re

               0 0
2

x f

f f
b b

C x
x

f f

 





 
        

 

  

                                 B.32 

 

 

 

 



152 

Local Nusselt number ,Nu  

                                           

 

0

    0

    0

yW

W

W

x T
Nu

T T y

x b
T T

T T

b
x













 


 

 
      

 

                                  

                                          

 

 

1

2

0

Re

           0

x

b
x

Nu

b
x












 

                                                        B.32 

Sherwood number ,Sh  

                                                

 

0

    0

    0

yW

W

W

x C
Sh

C C y

x b
C C

C C

b
x













 


 

 
      

 

 

                                            

 

 

1

2

0

Re

           0

x

b
x

Sh

b
x












 

                                                      B.33 
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APPENDIX C 

In this appendix, the transformation of PDEs to ODEs in Chapter 5 will be discussed in 

detail by using a similarity transformation in exponential form. The governing 

equations are shown as below: 

Continuity equation: 

                                                              0,
u v

x y

 
 

 
                                                    C.1 

Momentum equation: 

                                         
2 2

2 2
2 ,

u u u u u
u v

x y y y y
 

    
   

    
                                  C.2 

Energy equation: 

                          

2
2

2
,

p p T

B

C DT T T C T T
u v D

x y y C y y T y







       
     

        

                    C.3 

Concentration equation: 

                                            

2 2

2 2
.T

B

DC C C T
u v D

x y y T y


   
  

   
                                     C.4 

The following equations (C.1), (C.2), (C.3) and (C.4) are transformed to ODEs by using 

the similarity transformations in exponential form below 

                                                          u bxf                                                            C.5 

                                                       v b f                                                           C.6 

                                                          
b

y


                                                              C.7 

                                                     
W

T T

T T
  







                                                         C.8 
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                                                    
W

C C

C C
  







                                                         C.9 

To solve the problem of continuity equation (C.1), find the first derivatives for 
u

x




 and 

v

y




 by using equations (C.5), (C.6) and (C.7), respectively 

                                                      
  

     

u
bxf

x x

bf





 


 



                                                 C.10 

                                                     
  

  

 

.

    .

    

    

v v

y y

b
b f y

y

b
b f

bf





 
 

 




  


  

  
       

 
    

 

 

                         C.11 

After that, substitute equations (C.10) and (C.11) into the continuity equations (C.1) to 

obtain 

                                             
    

            0

u v
bf bf

x y
 

 
    

 



                                        C.12 

It is proved that the continuity equation is satisfied by looking at the equation (C.12) 

Furthermore, to reduce the momentum equation to a dimensionless form, the following 

terms of 
2 2

2 2
,  ,   and 

u u u u u
u v

x y y y y


    

    
 as shown below 

                                                   
   

 2 2

.

       

u
u bxf bf

x

b xf

 




 





                                             C.13 
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    

   

   2

.

       .

       . .

       

u u
v v

y y

b
b f bxf y

y

b
b f bxf

b xf f





  
 

  


 

  


  

  
       

 

 

                       C.14 

                                      
  

 

 

2

2

        .

        . .

        .

        .

        

u u
v

y y y

u
v

y y

b b
v bxf y y

y y

b b
v b xf

b b
v b xf



 

 


   


  


 

   
  

   

    
  

    

       
                

   
           

   
       

   

  2b xf 

           C.15 

                                   

    

     

2

2

2

2          

u u b
b xf b xf

y y

b
b x b x f f

 


 


  
       

 
    

 

                                      C.16 

Then, substitute the following terms (C.13) (C.14) (C.15) and (C.16) into equation of 

momentum (C.2) transform  

                       2 2 2 2 22 ,
b

b xf b xf f b xf b x b x f f      


 
           

 

 

by dividing with 
2 ,b x  then  the equation become 

                                 2 2 ,
b

f f f f b x f f      


 
         

 
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By rearrange the position and substitute 2
b

b x 


 
   

 

 

                            22 0
b

f b x f f f f f      


 
          

 

 

Then, we will obtain the final equation as below  

                                       2 0f f f f f f               (C.17) 

Next, to reduce the energy equation to a dimensionless form, the following terms of 

2
2

2
 ,  ,   and 

C T T T
v

y y y y


    
 

    
 as shown below 

                                        

   

     

     

W

W

C C

y y

b
C C C y

y

b
C C





 
 

 


 



  


  

  
        

 

                           C.18 

                               
     

     

     

       .

       .

       

W

W

W

T T
v v

y y

b
b f T T T y

n y

b
b f T T

b T T f





   


   


  

 





  


  

  
         

 
     

 

  

               C.19 

                        

   

  

   

2

2
.

         .

         .

         

W

W

W

T T

y y y

b b
T T T y y

y y

b b
T T

b
T T

 
 

 

  
   

  
  

  


 





     
  

     

       
                 

    
              

 

       C.20 
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  

   

22

2 2          

W

W

T b
T T

y

b
T T

 


 






   
           

 

                                         C.21 

Then, substitute the following terms (C.18) (C.19) (C.20) and (C.21) into equation of 

momentum (C.3) transform  

   

         

         

2

0
W W

p p T

B W W W

b
b T T f T T

C Db b b
D C C T T T T

C T

     



     

   

 

  



     

     
                     

                

Reposition the equation 

               

         

         
22 0

W W

p p T

B W W W

b
T T b T T f

C Db b
D C C T T T T

C T

     



     

  

 

  



    

  
        

  

 

By dividing   ,W
b T T


  we will obtain the equation as follows   

               2

0

p p p pB T

W W

C CD D
f C C T T

C C T

  
          

     
 



        



  

and multiply ,
v


 we will get the equation as follows 

                               

           

 

 
   2 0

p p B

W

p pB W T

W

B W

C D
f C C

C

CD C C D
T T

D C C C T


        

  


 

 







 

     

  
   

  
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Then, rearrage the position of the variables 

           

       
 

 
 

     

2. .

0

p p p p WB B T

W W

B W

C C T TD D D
C C C C

C C D T C C

f

 
     

   


    





 

 


    



   

 

Substitute that  
 

 
= ,   and 

p p WB

W

T W B

C C CD T
Nc C C Nbt Le

C D T T D

 










  


 

                                    2Pr 0
.

Nc Nc
f

Le Le Nbt
                   

Hence, the final term of energy equation is shown below 

                                 2Pr 0
.

Nc Nc
f

Le Le Nbt
                                C.22 

Also, to reduce the concentration equation to a dimensionless form, the following terms 

of  
2

2
,   and 

C C C
u v

x y y

  

  
 have been worked out. 

                                     

     

       .

       0

       0

W

W

C C
u u

x x

b
bxf C C C y

x

bxf C C





  
 

  

 



  


  

  
        

  



                C.23 

                              
     

     

     

     .

     .

     

W

W

W

C C
v v

y y

b
b f C C C y

y

b
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Then, substitute the equations of (B.23), (B.24) and (B.25) into the dimensionless of 

concentration equation (B.4)                                          

                         0 T

W B W W
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      

 
  



          

By dividing  W
b C C


 and multiply 

B
D


 then we obtain that 
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And substitute that ,
B

Sc
D


  the final concentration equation as shown below 

                                             
1

0Scf
Nbt

                                            C.26 

The boundary conditions for the variables are carried out as follows when 0,y   
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Boundary conditions when ,y   
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Thus, the boundary conditions obtained after the similirarity transformations are as 

follows: 

            
           

     

0 0,   0 1 0 ,   0 1 0 ,   0 1   as 0.

0,   0,   0   as 0.
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f y
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 

        

       
        C.27 

The physical quantities for skin friction coeffiecient, local Nusselt number and local 

Sherwood number have been obtained respectively.  
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Local Nusselt number ,Nu  
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Sherwood number ,Sh  
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