Challenges in improving the performance of eddy current testing: Review

Ahmed N AbdAlla¹, Moneer A Faraj², Fahmi Samsuri², Damhuji Rifai³, Kharudin Ali³ and Y. Al-Douri⁴

Abstract
Eddy current testing plays an important role in numerous industries, particularly in material coating, nuclear and oil and gas. However, the eddy current testing technique still needs to focus on the details of probe structure and its application. This paper presents an overview of eddy current testing technique and the probe structure design factors that affect the accuracy of crack detection. The first part focuses on the development of different types of eddy current testing probes and their advantages and disadvantages. A review of previous studies that examined testing samples, eddy current testing probe structures and a review of factors contributing to eddy current signals is also presented. The second part mainly comprised an in-depth discussion of the lift-off effect with particular consideration of ensuring that defects are correctly measured, and the eddy current testing probes are optimized. Finally, a comprehensive review of previous studies on the application of intelligent eddy current testing crack detection in non destructive eddy current testing is presented.

Keywords
Eddy current testing, non destructive testing, lift-off, defect detection

Introduction
Pipelines are regarded as a preferable way of transporting oil, refined oil products or natural gas in large quantities over land. The network of pipes has advantages over other means of transportation (such as train/truck) because of its high cost.¹,² Thus, it is essential to continuously check the conditions of the pipeline on a regular basis.

The eddy current testing (ECT) method has long been utilized for nondestructive testing (NDT)³ and widely applied to inspect conductive material structure in order to identify their structural integrity. Betta et al.⁴ suggested that coils be used to detect the magnetic field (MF) as the primary indicator of a crack in the pipeline. However, this method is limited due to poor sensitivity at low frequency for the inspection of the subsurface defect, and thickness of materials demands sensitivity at low frequency. To overcome the poor-sensitivity limitation of the traditional eddy current probe, NDT technology has the advantage of employing magnetometer (MR) sensors to obtain maximum information from the component being tested.⁵

Many types of research have introduced many structures of ECT for the purpose of material inspection. Lee et al.⁶ proposed that the bobbin coil is used to induce the eddy current in small piping, and the MF can be picked up by utilizing a Hall sensor array. This technique allows the distribution of the distorted electromagnetic (EM) field around outside diameter of the stress corrosion cracking so it can be imaged without the need for a rotating apparatus. In another study, Postolache et al.⁷ proposed two rectangular planar excitation coils and an array of five AA002 giant magneto resistive (GMR) sensors for defect detection of an aluminum plate. They found that the optimization of the ECT probe had enhanced the ability of inspection with rapid scanning time.

Ye et al.⁸ used a pair of orthogonal (axial and circumferential) coils to generate an eddy current in steam

¹Faculty of Electronic and Information Engineering, Huaiyin Institute of Technology, Huai'an, China
²Faculty of Electical & Electronics Engineering, University Malaysia Pahang, Pekan, Malaysia
³Faculty of Electrical & Automation Engineering Technology, TATI University College, Kemaman, Malaysia
⁴Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia

Corresponding author:
Ahmed N AbdAlla, Faculty of Electronic and Information Engineering, Huaiyin Institute of Technology, Huai'an 223002, China.
Email: dramaidecn@gmail.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
generator tube wall and a GMR array to detect the induced MF. The probe showed superior inspection accuracy and sensitivity to defects of the axial and circumferential directions. Zeng et al.\(^9\) suggested a multiline as an excitation coil, while a GMR sensor could be placed on the line of symmetry to detect any changes in the MF. The simulation result shows improvement in the detection sensitivity for multilayer subsurface flaws. Rifai et al.\(^10\) also discussed the application of GMR sensors in ECT. Also discussed in detail were the limitation of utilizing the coil as a sensor and compensation techniques that have been used in the ECT. In another study, Ali et al.\(^11\) discussed in detail the method of the ECT and the parameters that impacted the signal fundamental in relation to the hardware and software. García-Martín et al.\(^12\) deliberated an overview of the primary variables and the principles of ECT sensors.

Therefore, the structure of the ECT probe should be identified to provide and evaluate the tested materials without destroying them.\(^13\) This paper will review the eddy current probe structure and error compensation of the eddy current probes to obtain the ideal measuring depth of defect on carbon steel pipeline. The lift-off effect will be discussed in detail to ensure that the measuring defect is right. This study will also introduce different conventional and intelligently lift-off compensations.

The principle of ECT

The diagram illustrating the operation principle of the ECT is shown in Figure 1. According to Faraday’s law, the driving coil is excited to produce a MF, known as eddy currents.\(^14\)–\(^16\) The emf induced in the receiving coils are generated by the eddy currents.\(^17\) Four steps can demonstrate the MF connection between the primary and secondary coils:

- Alternating current through the coil produced by the principal MF.
- Alternating primary MF produces the EC in the conductive sample.
- EC produces a secondary MF in an opposing direction.
- Flaws in the sample perturb the EC and decrease the secondary MF, which results in the variation of impedance changes of the coil.

Figure 1. Principle for the eddy current testing operation.

The advantages of ECT include the fact that they are economical and environmentally friendly as a non-contact method with high detectability, inspection speeds and offers good discrimination. On the other hand, the main disadvantages are it is sensitive to defects near the surface and is only applicable to conductive materials.\(^12\),\(^17\)

Eddy current probe

Various configurations are presented for the excitation source and detection sensor. However, in many in-service applications, the inductive coils are utilized both as a field source and field sensors. As a result, the eddy current probes are commonly classified according to their configuration and mode of operation. The probe configuration is closely related to the way the coil or coils’ connection covers the testing area of interest. The probe operation mode is commonly classified into reflection, differential, absolute and hybrid modes, whereas some of the standard configurations include the outside diameter probes, inside diameter (bobbin) probes, bolt hole probes and surface probes.\(^18\)

An inductive probe can include one or more coils. In conventional eddy current probes, these coils typically comprise lengths of wire wound in a helical manner like a solenoid. The winding will commonly have more than one layer to increase the value of inductance. As mentioned above, there are many ways in which these coils can be constructed based on the specified application. Conventional ECTs are transmit–receive probes, multi-pancake and/or rotating pancake probes and bobbin probes. Each method has its respective strengths and weaknesses in consideration of their characteristics such as the test speed, flaw detection sensitivity and probe structure complexity.\(^19\)

Bobbin probes

Figure 2 shows the two types of the bobbin probes which are called the differential and absolute bobbin probes. Differential bobbin probe has two coils positioned at 180° out of phase. The probe has excellent sensitivity to detect abrupt anomalies and small defects such and relatively unaffected by lift-off, pitting corrosion, fretting wear and probe wobble. However, the probe is not sensitive to metallurgical and gradual changes.\(^20\),\(^21\)

Absolute bobbin consists of a single bobbin coil and a second identical reference coil. The second identical reference coil is used for EM shielding of the inspected tubing and electronic balancing. The probe has excellent sensitivity to detect axial cracks and is highly sensitive to material property variations and gradually varying wall thinning.\(^6\) The main disadvantage of the absolute coil is that the defect is typically superimposed over a lift-off as the large signal.
Rotating probes

The rotating eddy current probes are used for high-resolution imaging of the steam generator tubes as shown in Figure 3.22 The rotating probe is sensitive to defects of all orientations and has a high resolution and improved sensitivity to characterize and size defects. However, the mechanical rotation of the coils causes serious wear leading to frequent probe failure and affect the inspection time, and subsequently, the cost will increase significantly.23

Array probe

The array probe types include the smart, probe X-probe, C-probes and intelligent probe. The array probe works as a transceiver probe and can cover the direction of 360°. The transmitting coils are actively driven by the AC source with a different range of frequencies. The receiving coils generate an induced voltage equal to the change of magnetic flux through the coil. The array probe response for different orientation defects has a higher signal-to-noise ratio (SNR) and is 10 times faster than the rotating probe. Another disadvantage is that the hand array probe is very costly because of its complicated excitation and data acquisition parts24,25 as shown in Figure 4.

Rotating field probe with bobbin coil

Figure 5 shows the excitation part which consists of three coils with identical 120 axes degrees apart and balanced alternating currents with adjustable frequency, phase and amplitude. The rotating MF is generated without mechanical rotating support.21,26

Comparison of eddy current probes

The advantages and disadvantages of eddy current probes for the NDT as described in Table 1.30

EM NDT techniques

The EM methods of NDT comprise a full spectrum of techniques ranging from static (DC) methods to high-frequency (10 THz) methods. The next section presents the most comprehensive inspection technique that used in the EM NDT.31
Pulsed eddy current

Pulsed excitation produces transient signals with a wide range of frequency components. Hence, it contains more information compared to a single-frequency excitation.32,33 The pulsed eddy current (PEC) signals have common features in the transient characteristics such as the peak amplitude, time-to-peak amplitude and time-to-zero crossing. The peak amplitude will determine the defect size. The defect depth or material thickness will be identified by the peak amplitude.34–36 The earliest study of PEC for crack detection in layered structures with installed fasteners was conducted by Harrison.37,38 Giguere et al.39 also studied the detection of cracks beneath rivet heads using the transient EC techniques. Figure 6 shows some experimental results of PEC to test multilayer sample.33

ECT with MF measurement method

The most recent research introduced the GMR sensor. It is widely used in many applications because the sensitivity of these sensors is independent of the MF, it has a high bandwidth, only requires a low power supply, the dimensions of GMR are small and the output signal is high compared to the other MR sensors. Therefore, the GMR-based EC testing exhibits significant advantages in detecting complex geometry such as a layered component inspection.40 The directional property of the GMR sensor had been used to locate edge cracks in aluminum specimen.40,41 A needle-type GMR imaging technique named the SV-GMR system was designed for the inspection of a bare polychlorinated biphenyl structure to measure the magnetic fluid density in a living body.10,42 High-resolution GMR elements are fabricated in a small package of sensors arrays. An inspiring application of this array probe was found in the evaluation of metal medical implants for invisible cracks.43 A linear array of 20 GMR elements was packaged to image a hole defect in a steel plate using 1 Hz excitation. Designs of GMR array probes in identical elements had been studied to detect subsurface cracks.44 High-density GMR arrays were especially promising for rapid scanning of a large area as well as high-resolution imaging.7,45 Another type of GMR array sensors that use two-directional elements was investigated in the EC testing to detect surface cracks of unknown orientation. They measure both X-component and Y-component of the MF at the same point.5 A fast Fourier transformation to enhance the ECT probe based on the GMR array sensors for pipe inspection was utilized by Du et al.46

The transient excitation of the coil probes with two MR sensors or two Hall sensors in differential mode have been studied by Lebrun et al.47,48 and used for characterizing crack parameters. Kim et al.49 introduced a method for the assessment of aircraft structures. The system produced pulse excitation that energized a planar multi-line coil. The GMR field sensor was used to detect the transient field. Tai et al.50 studied similar transient features for an inversion scheme to qualify the conductivity and thickness of the samples. Table 2 shows the difference between the eddy

Table 1. ECT probes for tube or pipe assessment inspection.

<table>
<thead>
<tr>
<th>Types</th>
<th>Advantages</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobbin probe6,18</td>
<td>Rapidly inspects speed, determine defect depth and length, lower price, higher dependability and toughness and sensitive to axial flaws</td>
<td>one dimension scan data and insensitive to circumferential defect</td>
</tr>
<tr>
<td>Rotating probe21</td>
<td>Depth C-scan visualization for inner tube surface, sensitivity to the flow of all orientations and higher SNR</td>
<td>Low dependability and toughness, costly and inspection speed is slow</td>
</tr>
<tr>
<td>Array probe27,28</td>
<td>Sensitivity to flaws in all directions, inspection speed is fast and size defect with the depth and length of the C-scan visualization for inner tube surface</td>
<td>Very expensive with complex instrumentation</td>
</tr>
<tr>
<td>Rotating field probe8,29</td>
<td>Sensitive to defects of all directions, no need rotating probe mechanically, high inspection speed</td>
<td>Need field test approve</td>
</tr>
</tbody>
</table>

SNR: signal-to-noise ratio.

Figure 5. 3D model of rotating field probe with bobbin coil.

Figure 6. PEC to test multilayer sample.33.
<table>
<thead>
<tr>
<th>Author</th>
<th>Analysis tool/software simulation</th>
<th>Type of sample</th>
<th>Excitation coil</th>
<th>Sensing</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>D’Angelo et al.</td>
<td>Multilayer perceptron neural network (NN)</td>
<td>Aluminum alloy (2024 T3)</td>
<td>Coil with a parallelepiped shape</td>
<td>GMR sensor</td>
<td>Mechanical rotation of EC probes around wall tube is needed to inspect the inside pipe. The analytical results agree with FEM results and the forward model of quantitative detection for ECT of multilayer conductive structure.</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>Finite element method (FEM)</td>
<td>Conductive plate</td>
<td>Rectangular excitation coil</td>
<td>Cylindrical pickup coil</td>
<td></td>
</tr>
<tr>
<td>Postolache et al.</td>
<td>ANN/multilayer perceptron/finite element simulation</td>
<td>Aluminum plate</td>
<td>ECP1 has a pancake type (large diameter and small height) and ECP2 has a small diameter and long length</td>
<td>The GMR sensor in both cases</td>
<td>Implementation of the NN classification method improves the dependability of defect classification.</td>
</tr>
<tr>
<td>Zeng et al.</td>
<td>Three-dimensional finite element mesh</td>
<td>Aluminum and steel fasteners</td>
<td>A multi-line coil</td>
<td>GMR sensor located on the line of symmetry</td>
<td>Simulation results establish that the proposed method improved the sensitivity of the method in detection of multilayer subsurface flaws. Eliminate the difficulty of detecting cracks under steel fasteners by using the characteristics of tangential components. By and Bx of the induced magnetic field.</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>Finite element simulation/image fusion technique</td>
<td>Steel fastener</td>
<td>Planar multi-line coil</td>
<td>GMR sensor installed on the line of symmetry</td>
<td>The experimental and simulation outcomes indicate that the method can detect all orientations of a flaw under the fastener. The experimental results prove that the suggested probes are more sensitive to circumferential defects and sensitive to axial defects by employing both the new probes and the conventional bobbin.</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>FEM</td>
<td>Aluminum and steel rivets</td>
<td>Two unidirectional planar coils oriented in orthogonal directions</td>
<td>GMR sensor</td>
<td></td>
</tr>
<tr>
<td>Kim and Lee</td>
<td>Experimental</td>
<td>Inconel 690 tubes</td>
<td>Multiple coils with three different angle</td>
<td>Multiple coils with three different angle</td>
<td>The probe has high inspection speed and sensitivity to defects of the axial and circumferential directions. However, it has very complicated excitation and data acquisition system. The probe cannot detect the transverse defect.</td>
</tr>
<tr>
<td>Ye et al.</td>
<td>C-scan image/FEM</td>
<td>An Inconel 690 steam generator tube</td>
<td>Pair of orthogonal (axial and circumferential) coils</td>
<td>A circumferential array of 16 GMR sensors</td>
<td></td>
</tr>
<tr>
<td>Paw et al.</td>
<td>Design of experiment software</td>
<td>Carbon steel pipe</td>
<td>Encircling coil for a differential probe (ECDP) and encircling coil for an absolute probe (ECAP)</td>
<td>Encircling coil for a differential probe (ECDP) and encircling coil for an absolute probe (ECAP)</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Author</th>
<th>Analysis tool/software simulation</th>
<th>Type of sample</th>
<th>Excitation coil</th>
<th>Sensing</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shim et al.58</td>
<td>The primary simulated water of a pressurized water reactor</td>
<td>Alloy 690 steam generator tubes</td>
<td>A conventional bobbin coil probe and a conventional 3-coil motorized rotating probe</td>
<td>A conventional bobbin coil probe and 3-coil motorized rotating probe</td>
<td>The general corrosion rates of alloy with different 690TT tube noises can be predicted from the tube noise value measured by a rotating pancake coil probe.</td>
</tr>
<tr>
<td>Ribeiro et al.59</td>
<td>A conformal transformation</td>
<td>Aluminum plate</td>
<td>A rectangular cross coil</td>
<td>GMR sensor</td>
<td>The conformal transformation used to model the crack of an aluminum plate to preview the acquired voltage signals. The results show that the technique is highly immune to lift-off variations.</td>
</tr>
<tr>
<td>Yin and Xu60</td>
<td>Peak frequencies of the sensor signal have been utilized to calculate the thickness of the plate</td>
<td>Aluminum plates</td>
<td>Triple-coil sensor measurements are made by exciting the middle coil</td>
<td>Triple-coil sensor measurements are made by taking induced voltages from the bottom and the top coils</td>
<td>The results show that the technique is highly immune to lift-off variations.</td>
</tr>
<tr>
<td>Lee et al.6</td>
<td>Piping of titanium alloy</td>
<td>The bobbin coil</td>
<td>State Hall sensor array</td>
<td></td>
<td>This technique allows the distribution of the distorted EM field around outside diameter stress corrosion cracking to be imaged without the need of a rotating apparatus.</td>
</tr>
<tr>
<td>Joubert et al.61</td>
<td>C-scan images</td>
<td>Bore hole</td>
<td>Bobbin coil</td>
<td>The row of pickup coils of the sensing array</td>
<td>The acquired experimental results showed a great sensing capability of the designed probe in the 10–800 kHz frequency range. The magnetic flux density is closely correlated with the crack's depths where maximum amplitude disturbance depends on the crack depth.</td>
</tr>
<tr>
<td>Menezes et al.62</td>
<td>Numerical simulation FEM</td>
<td>Aluminum plate</td>
<td>Pancake coil</td>
<td>GMR sensor and a permanent magnet to put the sensor working in its linear range</td>
<td>The magnetic flux density is closely correlated with the crack's depths where maximum amplitude disturbance depends on the crack depth. All of the results show that the array is not just sensitive to micro cracks, however additionally able to crack length size.</td>
</tr>
<tr>
<td>Xie et al.63</td>
<td>FEM/the NCSF algorithm</td>
<td>A plate of 7075 aluminum alloy</td>
<td>A large uniform coil is designed on the bottom and top layers</td>
<td>64 sensing coil elements on two middle layers</td>
<td>All of the results show that the array is not just sensitive to micro cracks, however additionally able to crack length size. The efficiency of the suggested bobbin coil is effective to inspect the small diameter tube.</td>
</tr>
<tr>
<td>Suresh et al.64</td>
<td>ANSYS-based FEM</td>
<td>Ferro tube</td>
<td>Bobbin coil/core of iron</td>
<td>A hall sensor</td>
<td>The efficiency of the suggested bobbin coil is effective to inspect the small diameter tube. Experimental results present that the probe can detect flaws regardless of their orientation. The differential scheme reduces the effect of the background field and improves SNR.</td>
</tr>
<tr>
<td>Ye et al.65</td>
<td>FEM</td>
<td>Two-layer aluminum</td>
<td>Two orthogonal coils</td>
<td>Two linear arrays of GMR sensors are located above and below the orthogonal coils</td>
<td>Experimental results present that the probe can detect flaws regardless of their orientation. The differential scheme reduces the effect of the background field and improves SNR.</td>
</tr>
</tbody>
</table>
current methods which rely on the sensor element that utilities alternative current signal in ECT.

Multi-frequency techniques

NDT widely uses multi-frequency techniques (MFTs). The MFT expanded the capabilities of using single-frequency testing which allows simultaneous tests.

The multi-frequency process uses a composite signal and subtracts the undesirable signal.\(^\text{12}\) The main undesirable signal caused by changes in the temperature variation, material geometrical and probe lift-off.\(^\text{69}\) MFTs are usually accomplished by combining the results obtained at different frequencies in the spatial domain. Liu et al.\(^\text{69}\) presented integrate two- (multi) frequency injection with dimensional spatial domain named as a pyramid fusion method. The SNR improved due to reduction in noise sources which demonstrated the potential of signal enhancement via fusion method or raster scanning.\(^\text{70}\) A two-dimensional (2D) surface produced changes over of the impedance or impedance by raster scanning images.\(^\text{12}\) Image processing techniques can be applied to detect cracks using ECT. Bartels and Fisher\(^\text{71}\) proposed a multi-frequency eddy current image processing technique for the non destructive materials evaluation. SNR improvement up to 1100% over traditional two-frequency techniques a sequence of complex valued images generated from 2D ECT to maximize the SNR. The linear combination of the images by Bartels and Fisher\(^\text{71}\)

\[
d(x, y) = \sum_{i=1}^{N_f} c_i f_i(x, y)
\]

where \(N_f\) is the number of test frequencies and \(f_i\) are extracted from the 2D images. Results on experimental data demonstrate.

Factors contributing to eddy current signals

The signal from an eddy current probe includes a collection of responses from defects, sample geometry and probe lift-off.\(^\text{72,73}\) Therefore, it may be difficult to separate a single influence. Adequate assessment of flaws or any other surface properties is likely when other factors are understood.\(^\text{7}\) The primary factors influencing the response of an eddy current probe are explained in this section.

Frequency

Eddy current response is strongly affected by the frequency chosen for the investigation. This factor should be appropriately selected by the operator, based on the crack detection sample such as lower frequencies for bulk characterization and higher frequencies for surface characterization.

Many authors such as Ditchburn et al.\(^\text{74}\) and Thollon et al.\(^\text{75}\) utilize this range, and they suggested the range of 100 Hz–10 MHz as standard inspection frequencies in ECT.\(^\text{19}\) However, a few authors such as Owston\(^\text{76}\) characterized high frequency at 25 MHz for thin metallic coatings and detecting surface defects. In the inspection of ferromagnetic materials, low-frequency tests are applied to penetrate into the test specimen and compensate for their high permeability.

Table 2. (Continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Analysis tool/software simulation</th>
<th>Type of sample</th>
<th>Excitation coil</th>
<th>Sensing</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al.(^\text{66})</td>
<td>FEM</td>
<td>The steel (SS400) plate</td>
<td>The two probes measure the current and the voltage to determine the coil impedance</td>
<td>A coil winding and a ferromagnetic core are used as a sensing element</td>
<td>A low frequency has been applied for deep internal inspection of a ferromagnetic material</td>
</tr>
<tr>
<td>Rifai et al.(^\text{67})</td>
<td>FEM</td>
<td>Carbon steel pipe</td>
<td>Pair of orthogonal (axial and circumferential) coil</td>
<td>An array of GMR sensors</td>
<td>It has very complicated excitation and data acquisition system</td>
</tr>
<tr>
<td>Xin et al.(^\text{21})</td>
<td>3D FEM</td>
<td>Steam generator tubes</td>
<td>Three identical windings located on the same physical axes 1201 apart</td>
<td>The response signal can be picked up by bobbin coil in the center</td>
<td>The probe is sensitive to flaws of all orientations in the tube wall, and the line scan data enable rapid inspection rates</td>
</tr>
<tr>
<td>Abdalla et al.(^\text{68})</td>
<td>Fuzzy interference system</td>
<td>Carbon steel pipe</td>
<td>Pair of orthogonal (axial and circumferential) coil</td>
<td>Hybrid absolute and differential probe</td>
<td>The Mamdani-type fuzzy use to integrated absolute and differential probe</td>
</tr>
</tbody>
</table>

Ramos et al.77 have studied the detection of subsurface flaws relating to the characterization of depth profiles of the subsurface defects in aluminum plates.78 However, the high frequency applied for the inspection of small discontinuities occurred in the near-surface.79,80 Table 3 summarizes the impact of different frequency values on the depth of penetration of several materials.81

\begin{table}[h]
\centering
\caption{Typical depths of penetration.}
\begin{tabular}{l|ccccc}
\hline
Metal & 1 kHz & 4 kHz & 16 kHz & 64 kHz & 256 kHz \\
\hline
Copper & 0.082 & 0.041 & 0.021 & 0.010 & 0.005 \\
Uranium & 0.334 & 0.167 & 0.084 & 0.042 & 0.021 \\
Zirconium & 0.516 & 0.258 & 0.129 & 0.065 & 0.032 \\
7075 T-6 & 0.144 & 0.072 & 0.036 & 0.018 & 0.009 \\
Steel & 0.019 & 0.009 & 0.0048 & 0.0024 & 0.0012 \\
6061 T-6 & 0.126 & 0.063 & 0.032 & 0.016 & 0.008 \\
Magnesium & 0.134 & 0.067 & 0.034 & 0.017 & 0.008 \\
\hline
\end{tabular}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7}
\caption{Lift-off curves and crack displacement at impedance plane.82}
\end{figure}

Conductivity of test material

Electrical conductivity and the magnetic permeability of the test objects of the material depend on the microstructure, for example, grain structure, the presence of a second phase, work hardening and heat treatment. Greater conductivity of a material such as copper and aluminum will lead to greater flow of the eddy currents and hence the probe coil resistance.

In great conductive materials, defects or cracks produce a high signal as an impedance plane, as illustrated in Figure 8. Furthermore, the phase lag between the lift-off line and the defect is $\phi_1 > \phi_2$,82 which is significant, as indicated in Figure 7.

However, the penetration depth of highly conductive materials at a fixed frequency is lower than in lower conductive materials such as stainless steel and steel. The conductivity of the different materials can be measured using the International Annealed Copper Standard (IACS). Table 4 summarizes the conductivity of common elements.83

\begin{table}[h]
\centering
\caption{Conductivity and resistivity of conductive materials.}
\begin{tabular}{ll}
\hline
Material & Conductivity (\% IACS) \\
\hline
Copper & 100.00 \\
Gold & 70.00 \\
Aluminum 6061 & 42.00 \\
Brass & 28.00 \\
Copper-nickel 90–10 & 9.10 \\
Cast steel & 10.70 \\
Inconel 600 & 1.72 \\
Silver & 105.00 \\
Stainless steel 304 & 2.39 \\
Zircalloy-2 & 2.40 \\
\hline
\end{tabular}
\end{table}

Magnetic permeability

ECT signals are significantly affected by ferromagnetic materials due to the increase in flux produced by the significant relative permeability of certain materials such as stainless steel or carbon steel.84 The permeability of material changes the coupling of the coil with the conductive specimen and subsequently affects the reactivity of the coil. Permeability has a significant effect on the ECT compared to conductivity, where the crack detection has no potential when permeability changes randomly.85,86

Lift-off

ECT is strongly affected by the amount of lift-off which can be defined as the separation distance between the excitation coil surface and the conducting material surface. This distance changes the mutual inductance of the circuits as the lift-off increases; the amplitude of the eddy current induces emf as the secondary coil decreases, which can result in the misinterpretation of the signals as flaws. At a significant lift-off, no detectable emf will be induced in the secondary coil due to the sample chosen.81,87,88 This effect is particularly prominent when using sinusoidal excitations, which lose sensitivity beyond 5 mm.89 Although it is not required to have a zero lift-off, it is imperative to try and maintain a consistent lift-off, since the variation in coupling between probe and test piece will...
significantly affect the received signal. Table 5 lists previous studies that have considered the lift-off issue.

Figure 8 illustrates the offset position of the tube inside the bobbin coils. Lift-off is explained using a coil whose axis is normal to the test piece. However, lift-off also occur when the test is conducted using encircling or bobbin probes. The vibration of the rod or the tube inside the probe generates noise which presents difficulties when inspections are conducted.117

There are methods for lift-off compensation when the eddy currents are used in order to detect cracks, and lift-off becomes an undesired variable. For instance, Yin et al.100 researched dual excitation frequencies and coil design to minimize the lift-off effect. Research about processing the data was also conducted to minimize the lift-off effect. Lopez et al.118 proposed the use of wavelets to remove the eddy current probe wobble noise from the steam generator’s tubes. Reduction in the lift-off effect was also attempted by optimizing the coil design and sensor array.119

Tian et al.101 had researched the reduction of lift-off effects via normalization techniques. The technique can be applied to the measurement of metal thickness beneath the non-conductive coatings and to the measurement of microstructure and strain/stress, where the output is highly sensitive to the lift-off effect. Table 5 illustrates previous studies that considered the lift-off issue.

Optimization of ECT probes design

According to the state of the art, the probability of detection techniques of eddy current techniques can be improved by the optimizing the probe design. In recent years, several studies have focused on optimization of the ECT probe design for defect detection. Rocha et al.120 proposed an ECT probe design based on velocity-induced eddy currents to detect surface defects. Commercial simulation software was used for the optimization and design of the probe. Their experimental results confirmed that the proposed probe design was able to detect defects in the conductive materials where motion is involved.120 A biorthogonal rectangular probe was developed by Zhang et al.52 Simulation results showed the new biorthogonal rectangular probe has a lesser effect on the lift-off with higher sensitivity detection. Meanwhile, Cardoso et al.121 optimized the sensor configuration in the eddy current probe design. A finite element modeling simulation was used to measure the accuracy detection of the probe design. Comparison of experimental and simulation date proved the accuracy of the proposed probe. Research by Rosado et al.122 reported the influence of the geometrical parameters of an eddy currents planar probe in ECT. The findings showed that modifications of the studied parameters could substantially improve the probe performance. In a different study, Ghafari et al.123 proposed a methodology for determining the optimal sensor parameters for ECT probe design. Simulation results showed the proposed sensor geometry improved the probe sensitivity to depth changes in a crack.

Chen and Miya124 proposed ECT probes based on simplified detectability analysis method and a ring current model. The optimal probe designs are developed in view of the combinations of these excitation and pickup coils by comparing their detectabilities evaluated with the simplified analysis method. Aldrin et al.125 presented a comprehensive approach to perform model-based inversion of crack characteristics using bolt hole eddy current techniques. Signal processing algorithms were developed for wide range of crack sizes and shapes, including mid-bore, corner and through thickness crack types. Inversion results for select mid-bore, through and corner crack specimens are presented, where sizing performance was found to be satisfactory in general but also depend on the size and location of the flaw. Table 6 summarizes previous studies on the optimization of the ECT probe design.

Application of artificial intelligent in eddy current

GMR sensor is used in ECT to pick up the MF in the presence of the defect. As the mutual inductance
Table 5. Review of lift-off compensation techniques.

<table>
<thead>
<tr>
<th>Author</th>
<th>Technique software or hardware</th>
<th>Sensor type</th>
<th>Signal excitation</th>
<th>Sample type</th>
<th>Research Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan et al.⁹⁰</td>
<td>Model-based inversion algorithm</td>
<td>Air-core coil</td>
<td>Sinusoidal signal</td>
<td>Three plates of copper, aluminum and stainless steel</td>
<td>Lift-off elimination for model-based inversion method</td>
</tr>
<tr>
<td>Dziczkowski et al.⁹¹</td>
<td>Excremental/m mathematical model</td>
<td>Coil</td>
<td>Sine excitation at low frequencies is applied</td>
<td>Conductive material</td>
<td>To eliminate the lift-off between the coil and the specimen under test</td>
</tr>
<tr>
<td>Lu et al.⁹²</td>
<td>Dodd and Deeds method</td>
<td>Coaxially arranged coils</td>
<td>Frequency sweeping</td>
<td>The metal plate</td>
<td>Reducing the lift-off effect on permeability measurement for magnetic plates from multi-frequency induction data</td>
</tr>
<tr>
<td>Ribeiro et al.⁹³</td>
<td>Lift-off correction based on the spatial spectral behavior of eddy current</td>
<td>GMR</td>
<td>The probe excitation current was set to 100 mA at 5 kHz</td>
<td>A duralumin 2024 T3 plate</td>
<td>Increase the signal-to-noise ratio of measurements</td>
</tr>
<tr>
<td>Kral et al.²²</td>
<td>Linear transformer model to investigate the effect of the lift-off</td>
<td>GMR sensor</td>
<td>Pulse signal</td>
<td>Metallic plate</td>
<td>Investigate the origin and the characteristics associated with the lift-off point of intersection (LOI)</td>
</tr>
<tr>
<td>Wu et al.⁹⁴</td>
<td>Signal analysis base on multi-frequency phase signature</td>
<td>Coil</td>
<td>Sinusoidal signal with multi-frequency</td>
<td>Copper and aluminum plates</td>
<td>Presented a simple model for metal thickness measurement that is unaffected by lift-off effect to obtain the thickness</td>
</tr>
<tr>
<td>Yin and Xu⁶⁰</td>
<td>Using peak frequencies of the sensor signal to estimate the thickness (h)</td>
<td>Bottom and top coils</td>
<td>Swap frequency</td>
<td>Aluminum plates</td>
<td>Designed a triple-coil sensor operating as two coil pairs and in a multi-frequency mode to measure plate thickness Ferromagnetic object testing used to remove the lift-off effect without extra measurement of reference signals</td>
</tr>
<tr>
<td>Huang and Wu⁹⁵</td>
<td>Relative magnetic flux changing rate (s)</td>
<td>Coil</td>
<td>Pulse signal and the square wave used as excitation current</td>
<td>Four 16Mn steel plates</td>
<td>Reduce the lift-off noise for detection of defect depth or width</td>
</tr>
<tr>
<td>Yu et al.⁹⁶</td>
<td>Measure the defect dimension base on slope of the linear curve of the peak value</td>
<td>Hall sensor</td>
<td>Pulse signal</td>
<td>7075 and 2024 aluminum alloy plates</td>
<td></td>
</tr>
<tr>
<td>Zhu et al.⁹⁷</td>
<td>Hough transform was used</td>
<td>Coil</td>
<td>Sinusoidal signal</td>
<td>Annealing copper plate</td>
<td>Investigate the lift-off effect in the normalized impedance plane Measurement of the thickness of a metallic non-ferromagnetic plate Minimize lift-off impact. It could be utilized for metal thickness measurement and for microstructure analysis The phase signature of such a sensor is virtually lift-off independent Analyze LOI with respect to different PEC configurations and build</td>
</tr>
<tr>
<td>Lopes Ribeiro et al.⁹⁸</td>
<td>The theory of the linear transformer</td>
<td>GMR</td>
<td>Sinusoidal excitation</td>
<td>Aluminum plates of type AL2105-H12</td>
<td></td>
</tr>
<tr>
<td>Tian and Sophian⁹⁹</td>
<td>Normalization technique</td>
<td>Coil</td>
<td>Pulse signal</td>
<td>Two plates of aluminum</td>
<td></td>
</tr>
<tr>
<td>Yin et al.¹⁰⁰</td>
<td>Analytical model that describes the inductance</td>
<td>Air-cored coil</td>
<td>Multi-frequency</td>
<td>Conducting plate</td>
<td></td>
</tr>
<tr>
<td>Tian et al.¹⁰¹</td>
<td>Analytical model based on the extended truncated region eigenfunction expansion</td>
<td>Hall sensor</td>
<td>Pulse signal</td>
<td>Plate conductor with arbitrary number of layers</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Author</th>
<th>Technique software or hardware</th>
<th>Sensor type</th>
<th>Signal excitation</th>
<th>Sample type</th>
<th>Research Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei et al.</td>
<td>U-shaped ACFM system</td>
<td>Coils</td>
<td>The signal generator provides a 6 kHz sine voltage waveform signal</td>
<td>Mild steel sheet workpiece with a crack. The longitudinal</td>
<td>Determine an optimal lift-off value for a specific U-shaped ACFM system</td>
</tr>
<tr>
<td>Gotoh et al.</td>
<td>The 3D edge-based hexahedral nonlinear FEM</td>
<td>A transverse type Hall element</td>
<td>The exciting frequency is set to 1 kHz</td>
<td>Nickel-coated steel plate</td>
<td>To inspect the thickness of nickel-layer on steel plate without the impact of lift-off</td>
</tr>
<tr>
<td>Lopes Ribeiro et al.</td>
<td>A linear transformer model</td>
<td>GMR sensor</td>
<td>Sinusoidal signal</td>
<td>Aluminum plates</td>
<td>Measures the thickness of metallic</td>
</tr>
<tr>
<td>Gotoh et al.</td>
<td>Electromagnetic acoustic transducer</td>
<td>Transducer coil</td>
<td>A 250 kHz sinusoidal burst current drives the EMAT coil</td>
<td>Steel plate</td>
<td>Suitable lift-off value for this specific EMAT system should be around 2 mm</td>
</tr>
<tr>
<td>Li et al.</td>
<td>The relative variation of magnetic flux (s)</td>
<td>Coil</td>
<td>Pulse signal</td>
<td>Metal plate</td>
<td>Measurement of lift-off is extracted from the middle part of the PECT signal</td>
</tr>
<tr>
<td>Angani et al.</td>
<td>Transient eddy current oscillations</td>
<td>Hall sensor</td>
<td>Pulses of the 50% duty cycle with the repetition rate of 2 s</td>
<td>Stainless steel plate</td>
<td>Eliminate the false indications due to the lift-off variations in the thickness measurement of the test material</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>The slope of the lift-off curve (SLOC) feature of the eddy current sensor (ECS)</td>
<td>Sensor coil</td>
<td>The working frequency (1 MHz)</td>
<td>Copper film</td>
<td>Immunity to lift-off variation</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>Pulsed eddy current (PEC) responses</td>
<td>Hall sensor</td>
<td>Pulse signal</td>
<td>Nonmagnetic plate</td>
<td>Study behaviors of lift-off points of intersection points due to a plate with varying conductivity and thickness</td>
</tr>
<tr>
<td>He et al.</td>
<td>Principal component analysis and support vector machine</td>
<td>Coil</td>
<td>The excitation pulse used 19.6 V, 100 Hz</td>
<td>Two 3003VAl–Mn alloy plate</td>
<td>Defect-automated classification</td>
</tr>
<tr>
<td>Amineh et al.</td>
<td>Blind deconvolution algorithm and a wavelet network inversion method</td>
<td>A tiny induction coil sensor</td>
<td>Alternating current</td>
<td>Metal surface</td>
<td>Lift-off evaluation and surface crack signal restoration</td>
</tr>
<tr>
<td>Hoshikawa and Koyama</td>
<td>Improvements in probe design (h)</td>
<td>Tangential coil</td>
<td>Alternative current</td>
<td>Brass plate</td>
<td>To monitor the probe lift-off to avoid the probe not detecting flaws in the material</td>
</tr>
<tr>
<td>Lu et al.</td>
<td>Multi-frequency inductance spectral data</td>
<td>Air-core coil</td>
<td>Sinusoidal signal</td>
<td>Metallic plates</td>
<td>Proposed a new index to compensate lift-off variation linked to the thickness. At different lift-offs, the accuracy of the thickness measurements proved to be more than 98%</td>
</tr>
<tr>
<td>Lu et al.</td>
<td>Dodd and Deeds method</td>
<td>Air-core coil</td>
<td>Sinusoidal signal</td>
<td>Magnetic plates</td>
<td>Proposed a new modified permeability measurement technique for magnetic plates from multi-frequency induction data. The permeability error caused by lift-off can be reduced within 7.5%</td>
</tr>
</tbody>
</table>
between the coil and the specimen is sensitive to the lift-off, any changes in lift-off must be compensated for in order to achieve the accurate depth of defect measurements.

The fuzzy logic is instrumental for enhancing lift-off compensation. Artificial intelligent used in many types of research in ECT. There are two common fuzzy inference methods: Mamdani’s fuzzy inference method and Takagi–Sugeno–Kang, a method of fuzzy inference. The output from Mamdani fuzzy inference system (FIS) can be easily transformed into a linguistic form as the inference result before defuzzification. The main difference between Mamdani-type FIS and Sugeno-type FIS resides in the way the crisp output is generated from the fuzzy inputs. While Mamdani-type FIS uses the technique of defuzzification of a fuzzy output, Sugeno-type FIS uses weighted average to compute the crisp output, so the Sugeno’s output membership functions are either linear or constant, but Mamdani’s inference expects the output membership functions to be fuzzy sets which are appropriate for comparing the peak of sensors. Based on artificial intelligent technology, a lot of research has been done by many researchers about ECT, as shown in Table 7.

Conclusion

This paper introduces an overview of the eddy current probes structure and error compensation techniques to obtain an ideal measuring depth of defect for the material under test. There are two techniques to sense the change in MF air coil and magnetoresistance sensor. Air coil is less sensitive at low frequency which required to inspect the surface of pipe and plate. This particular paper also reviews the manufacturer in the industry to produce the commercial probes for practical tube

Table 5. (Continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Technique software or hardware</th>
<th>Sensor type</th>
<th>Signal excitation</th>
<th>Sample type</th>
<th>Research Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wen et al.</td>
<td>Lift-off point of intersection has been applied to determine thickness or evaluate defects</td>
<td>Air-core coil</td>
<td>PEC</td>
<td>Metallic plates</td>
<td>The effective signal feature indicates that the frequency and amplitude at the LOI are decreased with sample thickness increasing. In addition, the frequency LOI can be used to measure the sample thickness functioning similarly to time domain LOI by monitoring the frequency and amplitude</td>
</tr>
<tr>
<td>Kral et al.</td>
<td>Linear transformer model magnetization curves obtained for different gaps between the excitation coil and the plate was proposed</td>
<td>Magnetoresistive sensor probe</td>
<td>Pulsed excitation</td>
<td>Nonferromagnetic metallic plates</td>
<td>Present the model with two independent parameters for a range of thickness, conductivity, and lift-offs</td>
</tr>
<tr>
<td>Yin et al.</td>
<td>Simplified model related to thickness, conductivity and lift-offs</td>
<td>Air-core coil</td>
<td>Sinusoidal signal</td>
<td>Nonmagnetic metallic plate</td>
<td>Design alternating current field measurement (ACFM) system</td>
</tr>
<tr>
<td>Wei et al.</td>
<td>Design alternating current field measurement (ACFM) system</td>
<td>U-shaped probe</td>
<td>Sinusoidal signal</td>
<td>Nonmagnetic metallic plate</td>
<td>Determine the optimum-induced frequency based on the signal acquisition and the measurement accuracy of an ACFM system</td>
</tr>
<tr>
<td>Fan et al.</td>
<td>PEC spectral response to serve as robust features for thickness evaluation</td>
<td>Hall sensor</td>
<td>PEC</td>
<td>Nonmagnetic metallic plate</td>
<td>Propose to apply the phase of PEC spectral response from a Hall sensor rather than pickup coil-based probe to thickness measurement for the elimination of lift-off effect</td>
</tr>
</tbody>
</table>

GMR: giant magneto resistive; ACFM: alternating current filed measurement; FEM: finite element method; PECT: pulsed eddy current thermography.
Table 6. Summary previous studies on optimization of ECT probe design.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Research area</th>
<th>Optimization technique/software tool</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betta et al.126</td>
<td>Optimized complex signals for ECT</td>
<td>Signals analyzed in transformed domains</td>
<td>The effect of suitable signal optimizations carried out to retrieve excitation frequencies linearly spaced in the skin depth domain instead of usual signals with a harmonic content linearly spaced in the frequency domain</td>
</tr>
<tr>
<td>Xiangchao and Feilu127</td>
<td>Optimization of PECT system for defect detection on aircraft-riveted structures</td>
<td>Phase-shift and logic-operation</td>
<td>The experimental results testify the availability of the optimized system and the necessity to optimize the PECT probe design parameters</td>
</tr>
<tr>
<td>Pereira and Clarke128</td>
<td>Modeling and design optimization of an eddy current sensor for superficial and subsuperficial crack detection in inconel claddings</td>
<td>Finite-element models were used as a tool for eddy current sensor design to optimize their geometry and operating frequency for detection of the defect</td>
<td>A good agreement was found between simulated and experimental results, showing that this is a robust strategy for special sensor design</td>
</tr>
<tr>
<td>Cardoso et al.121</td>
<td>Improved magnetic tunnel junctions design for the detection of superficial defects by eddy currents testing</td>
<td>Optimize the sensor configuration</td>
<td>The experimental results obtained showed very good agreement with the simulations for micron size defect detection</td>
</tr>
<tr>
<td>Karthik et al.129</td>
<td>Coil positioning for defect reconstruction in a steel plate</td>
<td>Genetic algorithm optimization method</td>
<td>The pancake exciting coil can read maximum voltage generated by the defect</td>
</tr>
<tr>
<td>Deabes et al.130</td>
<td>Optimized fuzzy image reconstruction algorithm for ECT systems</td>
<td>Fuzzy inference system (FIS)</td>
<td>The results show that the proposed optimized algorithm has high accuracy and promising features</td>
</tr>
<tr>
<td>Li et al.131</td>
<td>Multi-parametric indicator design for ECT sensor optimization used in oil transmission</td>
<td>A L\textsubscript{4}(34) orthogonal design</td>
<td>The experimental results indicated that the sensor structure optimized with the CFIECT could derive a greater sensitivity distribution and a better imaging reconstruction results</td>
</tr>
<tr>
<td>Vacher et al.15</td>
<td>Eddy current nondestructive testing with the giant magneto-impedance sensor</td>
<td>Fast semi-analytical models.</td>
<td>Improved the probe sensitivity performances at low frequencies and small size of defect detection</td>
</tr>
<tr>
<td>Chen and Miya124</td>
<td>A new approach for optimal design of ECT probes</td>
<td>Simplified detectability analysis method and a ring current model</td>
<td>The high performance of the new probe designs is assured</td>
</tr>
<tr>
<td>Thollon and Burais132</td>
<td>Geometrical optimization of sensors for eddy currents. Nondestructive testing and evaluation</td>
<td>Genetic algorithm</td>
<td>The optimized probe design showed high performance for cladding thickness measurement</td>
</tr>
<tr>
<td>Qi et al.133</td>
<td>Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using the neural network and genetic algorithm</td>
<td>Combined an artificial neural network (ANN) and a genetic algorithm (GA) for the sensor parameters optimization</td>
<td>The calculated nonlinearity error is 0.25%. These results show that the proposed method performs well for the parameters optimization of the GECDS</td>
</tr>
<tr>
<td>Huang et al.27</td>
<td>Design of an eddy current array probe for crack sizing in steam generator tubes</td>
<td>Numerical simulations</td>
<td>Experiments show that the proposed probe provides both a high detectability and a remarkable capability of reconstructing the shallow cracks of a tube</td>
</tr>
<tr>
<td>Rao et al.134</td>
<td>Optimization of eddy current probes for detection of garter springs in pressurized heavy water reactors</td>
<td>Two-dimensional finite element method is used to optimize eddy current probe design parameters</td>
<td>The eddy current probe can detect the displacement of garter springs</td>
</tr>
</tbody>
</table>

CFIIECT: combination fuzzy index of the eddy current testing; GECDS: grating eddy current displacement sensor; ECT: eddy current testing.
inspection. In addition, compare the performance, detectability and the working principle of the bobbin probe, rotating probe and array probe for the pipe inspection was presented. The lift-off effects are the main factors affecting the ECT signal causing erroneous data interpretation. The lift-off effect is discussed in detail, ensuring that the measuring defect is right. Finally, briefly review different conventional and intelligent lift-off compensation.

<table>
<thead>
<tr>
<th>Table 7.</th>
<th>Intelligent technique in defect measuring.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Proposed technique</td>
</tr>
<tr>
<td>Buck et al.</td>
<td>ANN with statistical technique of PCA</td>
</tr>
<tr>
<td>D’Angelo and Rampone</td>
<td>Neural network</td>
</tr>
<tr>
<td>Preda and Hantila</td>
<td>FEM/polarization method/NN method</td>
</tr>
<tr>
<td>Rosado et al.</td>
<td>Digital signal processing (DSP) suggested in FPGA</td>
</tr>
<tr>
<td>Habibalahi et al.</td>
<td>Neural network data fusion</td>
</tr>
<tr>
<td>He et al.</td>
<td>PCA-based feature extraction methods (ANN)</td>
</tr>
<tr>
<td>Rosado et al.</td>
<td>An ANN using data obtained with FEM</td>
</tr>
<tr>
<td>Babaie et al.</td>
<td>FEM/ANN</td>
</tr>
<tr>
<td>Peng</td>
<td>Multilayer feed-forward error-back propagation neural network</td>
</tr>
<tr>
<td>Rosado</td>
<td>Artificial neural network and nonlinear regressions</td>
</tr>
<tr>
<td>Postolache et al.</td>
<td>ANN, including competitive neural network and multilayer perceptron/FEM</td>
</tr>
<tr>
<td>Zhang and Yang</td>
<td>PSO algorithm/ANN-based forward model</td>
</tr>
<tr>
<td>Morabito and Versaci</td>
<td>Fuzzy neural approach</td>
</tr>
<tr>
<td>Guohou et al.</td>
<td>Dempster–Shafer evidence theory/the fuzzy inference</td>
</tr>
<tr>
<td>Upadhyaya et al.</td>
<td>ANN and fuzzy logic technique</td>
</tr>
<tr>
<td>Fan et al.</td>
<td>Both kernel principal component analysis (KPCA) and a support vector machine (SVM)</td>
</tr>
</tbody>
</table>

ANN: artificial neural network; PCA: principal component analysis; FEM: finite element method; PEC: pulsed eddy current; FPGA: field-programmable gate array; ECT: eddy current testing; BPNN: back propagation neural network; PSO: particle swarm optimization.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding
This work was supported by Huaiyin institute of Technology and University Malaysia Pahang under grant number RDU170379.
References

70. Aliouane S, Hassam M, Badidi Bouda A et al. Electromagnetic acoustic transducers (EMATs) design

