PROPERTIES OF OIL PALM SHELL LIGHTWEIGHT AGGREGATE CONCRETE CONTAINING FLY ASH AS PARTIAL SAND REPLACEMENT

MUHAMMAD NAZRIN AKMAL BIN AHMAD ZAWAWI

Master of Science

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

__
(Supervisor’s Signature)
Full Name : ASSOC. PROF. DR. KHAIRUNISA BINTI MUTHUSAMY
Position : ASSOCIATE PROFESSOR
Date :

__
(Co-supervisor’s Signature)
Full Name : IR. DR. FADZIL BIN MAT YAHAYA
Position : SENIOR LECTURER
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__
(Student’s Signature)

Full Name : MUHAMMAD NAZRIN AKMAL BIN AHMAD ZAWAWI
ID Number : MAC15009
Date : 03 August 2018
PROPERTIES OF OIL PALM SHELL
LIGHTWEIGHT AGGREGATE CONCRETE
CONTAINING FLY ASH AS
PARTIAL SAND REPLACEMENT

MUHAMMAD NAZRIN AKMAL BIN AHMAD ZAWAWI

Thesis submitted in fulfillment of the requirements
for the award of the degree of
Master of Science

Faculty of Civil Engineering & Earth Resources
UNIVERSITI MALAYSIA PAHANG

AUGUST 2018
ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Khairunisa Muthusamy and co-supervisor Dr. Fadzil Bin Mat Yahaya for the continuous support of my Master study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Master study.

I would also like to express my sincere thanks to all the laboratory staffs at the Structural and Material Laboratory of Civil Engineering and Earth Resources of Universiti Malaysia Pahang (UMP) for their guidance, help, encouragement, support and gave access to the laboratory and research facilities throughout my research programme. I would like to extend my gratitude to the entire management team of palm oil mill in Pahang for the cooperation and contribution in providing the oil palm shell.

I am highly indebted to my parents, Ahmad Zawawi Bin Zamin and Halimaton Binti Abdul Rahim also my wife and daughter, Nur Azzimah Binti Zamri and Nur Aisyah Amani Akmal Binti Muhammad Nazrin Akmal for their continuous support that made every opportunity available to me throughout my life.

I would like to thank my fellow Civil Engineering UMP teammates Mohd Hanafi Bin Hashim, Mohd Hafizuddin Bin Rasid and Muhammad Hariz Bin Mohamed Idris for the stimulating discussions, useful knowledge, afford while working together and for all the fun we had in the last three years.

Lastly, I would also like to acknowledge the financial support from Ministry of Higher Education Malaysia and thank you all to those people who have been involved in taking care of me during my Master studies in Universiti Malaysia Pahang (UMP).
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF FIGURES x

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 1

1.3 Objectives of Research 3

1.4 Scope of Study 3

1.5 Significance of Study 4

1.6 Thesis Outline 4

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Green Technology in Malaysia 6

2.2.1 Pillars of National Green Technology 7

2.2.2 Malaysia’s Construction Industry and Environment 8

2.3 Lightweight Aggregate Concrete (LWAC) 13
2.3.1 Mixing Ingredients 13
2.3.2 Mechanical Strength Properties 16
2.3.3 Application of Lightweight Aggregate Concrete 17
2.3.4 Contribution of Lightweight Aggregate Concrete 18
2.3.5 LWAC Durability Properties 18

2.4 Malaysia Palm Oil Industry and Environment 21
2.4.1 Oil Palm Shell (OPS) 23
2.4.2 Properties of Oil Palm Shell 24
2.4.3 Utilization of OPS in Concrete Research 25

2.5 Malaysia Coal Industry and Environment 29
2.5.1 Fly Ash (FA) 30
2.5.2 Properties of Fly Ash 31
2.5.3 Fly Ash in Concrete Research 34

2.6 Summary of Research Gap 36

CHAPTER 3 METHODOLOGY 37

3.1 Introduction 37
3.2 Mixing Ingredients 37
3.2.1 Cement 37
3.2.2 Oil Palm Shell 38
3.2.3 Sand 40
3.2.4 Fly Ash 41
3.2.5 Water 43
3.2.6 Superplasticizer 43

3.3 Experimental Programme Flowchart 44
3.4 Trial Mix for Optimum Oil Palm Shell LWAC Production 46
CHAPTER 4 RESULT & DISCUSSION: OIL PALM SHELL LIGHTWEIGHT AGGREGATE CONCRETE MIX DESIGN

4.1 Introduction

4.2 First Stage of Trial Mixes for Control Specimens
 4.2.1 Effect of Sand Content
 4.2.2 Effect of Cement Content

4.3 Second Stage of Trial Mix

4.4 Selected Mixture Proportion

4.5 Effect of Fly Ash Content
 4.5.1 Effect on Workability
 4.5.2 Effect on Density
 4.5.3 Effect on Compressive Strength
4.6 Summary 76

CHAPTER 5 MECHANICAL AND DURABILITY PROPERTIES 77
5.1 Introduction 77
5.2 Mechanical Properties 77
 5.2.1 Compressive Strength 77
 5.2.2 Flexural Strength 81
 5.2.3 Modulus of Elasticity 85
 5.2.4 Splitting Tensile Strength 88
5.3 Durability Properties 91
 5.3.1 Sulphate Resistance 91
 5.3.2 Carbonation 96
 5.3.3 Water Absorption 99
5.4 Summary 101

CHAPTER 6 CONCLUSION AND RECOMMENDATION 102
6.1 Introduction 102
6.2 Conclusion 102
 6.2.1 Effect of FA Content as Partial Sand Replacement on
 Compressive Strength of OPS LWAC 102
 6.2.2 Effect of Different Curing Regimes towards Mechanical
 Properties 103
 6.2.3 Durability Properties of OPS LWAC with FA 103
6.3 Recommendation for Further Research 104
REFERENCES 105
APPENDIX A List of publication 123
LIST OF TABLES

Table 2.1 Malaysia aggregate production by state (include limestone) 11
Table 2.2 Malaysia imports of aggregates by country 11
Table 2.3 Land use of selected plantation tree crops in Malaysia 23
Table 2.4 Properties of oil palm shell 25
Table 2.5 Properties of fly ash 33
Table 2.6 Classification of fly ash 33
Table 2.7 Chemical properties of fly ash 34
Table 3.1 Chemical composition of ordinary Portland cement 38
Table 3.2 Properties of oil palm shell 40
Table 3.3 Chemical composition of fly ash 43
Table 3.4 Concrete curing description 49
Table 3.5 Details of concrete specimen 49
Table 4.1 Specification requirement 63
Table 4.2 Mix design for control mix proportion 63
Table 4.3 Result of control mixes 64
Table 4.4 Compressive strength, density and slump loss of OPS LWAC with FA concrete mix incorporating 650 kg/m3 of sand, 450 kg/m3 of cement and 1% of superplasticizer at 28 days 67
Table 4.5 Selected OPS LWAC mix design with FA 69
LIST OF FIGURES

Figure 2.1	Construction growth from 2014 to 2016	9
Figure 2.2	Malaysia production of sand and gravel from 2008 until 2016	10
Figure 2.3	Value of sand imported for construction in the United Kingdom (UK) from 2009 to 2015 in thousand British pounds	13
Figure 2.4	Global palm oil demand	22
Figure 2.5	Oil palm shell dumped in a large dumping site	24
Figure 2.6	Oil palm shell taken from Sg. Jernih Palm Oil Mill Factory	25
Figure 2.7	Effect of curing duration on compressive strength	29
Figure 2.8	Malaysia coal production	30
Figure 2.9	Fly ash waste	31
Figure 2.10	SEM picture of fly ash	33
Figure 3.1	Ordinary Portland cement (OPC)	38
Figure 3.2	Oil palm shell collection and processing stage	39
Figure 3.3	Oil palm shell before and after wash	39
Figure 3.4	River sand	41
Figure 3.5	SEM of sand under 1000x magnification	41
Figure 3.6	Fly ash	42
Figure 3.7	SEM of fly ash under 1000x magnification	42
Figure 3.8	SIKA ViscoCrete®-2199	44
Figure 3.9	Flowchart of the experimental programme	45
Figure 3.10	Concrete mixing process	47
Figure 3.11	Concrete compaction using vibration table	47
Figure 3.12	Moulded samples covered by wet gunny sack	48
Figure 3.13	Concrete cube samples after demoulding and marked	48
Figure 3.14	Apparatus in used for slump test	50
Figure 3.15	Concrete slump	51
Figure 3.16	The weight of concrete cube is measured before testing	52
Figure 3.17	Compressive strength test in progress	53
Figure 3.18	Flexural strength testing	54
Figure 3.19	Splitting tensile strength testing	55
Figure 3.20	Modulus of elasticity testing	56
Figure 3.21	Sulphate resistance testing in progress	58
Figure 3.22	Carbonation testing	59
Figure 3.23 Scanning Electron Microscope (SEM) testing
Figure 4.1 Compressive strength of mix with various sand content at 28 days
Figure 4.2 Compressive strength of mix with various cement content at 28 days
Figure 4.3 Compressive strength of OPS LWAC with FA mix with various water to cement ratio
Figure 4.4 Workability of OPS LWAC with percentage of FA
Figure 4.5 OPS LWAC slump with different percentage of FA replacement
Figure 4.6 Sieve analysis of sand and mixture of sand + 10% FA
Figure 4.7 Dry density of OPS LWAC with various percentage of fly ash
Figure 4.8 Compressive strength of OPS LWAC with various percentage of FA
Figure 5.1 Compressive strength of OPS LWAC for water curing
Figure 5.2 Compressive strength of OPS LWAC for initial water curing
Figure 5.3 Compressive strength of OPS LWAC for air curing
Figure 5.4 Compressive strength of FA-10 subjected to various curing regimes
Figure 5.5 Flexural strength of OPS LWAC in water curing
Figure 5.6 Flexural strength of OPS LWAC in initial water curing
Figure 5.7 Flexural strength of OPS LWAC in air curing
Figure 5.8 Flexural strength of FA-10 subjected to various curing regimes
Figure 5.9 Modulus of elasticity of OPS LWAC in water curing
Figure 5.10 Modulus of elasticity of OPS LWAC in initial water curing
Figure 5.11 Modulus of elasticity of OPS LWAC in air curing
Figure 5.12 Modulus of elasticity of FA-10 subjected to various curing regimes
Figure 5.13 Splitting tensile strength of OPS LWAC in water curing
Figure 5.14 Splitting tensile strength of OPS LWAC in initial water curing
Figure 5.15 Splitting tensile strength of OPS LWAC in air curing
Figure 5.16 Splitting tensile strength of FA-10 subjected to various curing regimes
Figure 5.17 Deterioration effect of air cured of plain OPS LWAC and OPS LWAC with various FA content after immersed sodium SO₄ sulphate solution for 9 month
Figure 5.18 Mass change of water cured OPS LWAC with FA immersed in sulphate solution
Figure 5.19 Mass change of initial water cured OPS LWAC immersed in sulphate solution
Figure 5.20 Mass change of air cured OPS LWAC with FA immersed in sulphate solution
Figure 5.21 Strength deterioration of OPS LWAC with FA cured using different types of curing at 9 months
Figure 5.22 Carbonation of air cured OPS LWAC containing various FA content 98
Figure 5.23 Carbonation depth of OPS LWAC in air curing 99
Figure 5.24 Water absorption of OPS LWAC 100
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/m³</td>
<td>Kilogram per cubic metre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>MPa</td>
<td>Megapascal</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>&</td>
<td>And</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>f_c</td>
<td>Compressive Strength</td>
</tr>
<tr>
<td>P</td>
<td>Maximum load applied to the specimen</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>A_c</td>
<td>Cross-sectional area of the specimen</td>
</tr>
<tr>
<td>mm²</td>
<td>Square millimetre</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>f_cf</td>
<td>Breaking load</td>
</tr>
<tr>
<td>Ø</td>
<td>Diameter</td>
</tr>
<tr>
<td>N/mm²</td>
<td>Newton per square millimetre</td>
</tr>
<tr>
<td>σ_a</td>
<td>Upper loading stress</td>
</tr>
<tr>
<td>σ_b</td>
<td>Basic stress</td>
</tr>
<tr>
<td>ϵ_a</td>
<td>Mean strain under the upper loading stress</td>
</tr>
<tr>
<td>ϵ_b</td>
<td>Mean strain under basic stress</td>
</tr>
<tr>
<td>σ_m</td>
<td>Average compressive strength of concrete cured in water</td>
</tr>
<tr>
<td>σ_s</td>
<td>Average compressive strength of concrete cured in Na₂SO₄</td>
</tr>
<tr>
<td>E_c</td>
<td>Elasticity in compression</td>
</tr>
<tr>
<td>m₁</td>
<td>Mass of specimens before immersion</td>
</tr>
<tr>
<td>m₂</td>
<td>Mass of specimens after immersion</td>
</tr>
<tr>
<td>±</td>
<td>Plus-minus</td>
</tr>
<tr>
<td>T</td>
<td>Splitting tensile strength</td>
</tr>
<tr>
<td>d</td>
<td>Diameter</td>
</tr>
<tr>
<td>l</td>
<td>Length</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>W/mK</td>
<td>Watts per meter-Kelvin</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminium oxide</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmett and Teller</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>BS EN</td>
<td>British Standard European Norm</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium oxide</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>Calcium hydroxide</td>
</tr>
<tr>
<td>CIDB</td>
<td>Construction Industry Development Board</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>C-S-H</td>
<td>Calcium silicate hydrate</td>
</tr>
<tr>
<td>CSR</td>
<td>Compressive strength reduction</td>
</tr>
<tr>
<td>CuO</td>
<td>Copper</td>
</tr>
<tr>
<td>C₃A</td>
<td>Tricalcium aluminate</td>
</tr>
<tr>
<td>DDIs</td>
<td>Domestic direct investments</td>
</tr>
<tr>
<td>EE</td>
<td>Energy efficiency</td>
</tr>
<tr>
<td>EFP</td>
<td>Empty fruit bunch</td>
</tr>
<tr>
<td>FA</td>
<td>Fly ash</td>
</tr>
<tr>
<td>FDI</td>
<td>Domestic direct investments</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>FELCRA</td>
<td>Federal Land Consolidation and Rehabilitation Authority</td>
</tr>
<tr>
<td>FELDA</td>
<td>Federal Land Development Authority</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Iron oxide</td>
</tr>
<tr>
<td>FM</td>
<td>Fineness modulus</td>
</tr>
<tr>
<td>GBI</td>
<td>Green Building Index</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>GTFS</td>
<td>Green Technology Financing Scheme</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>IOI</td>
<td>Industrial Oxygen Incorporated</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>KeTTHA</td>
<td>Kementerian Tenaga Teknologi Hijau Dan Air</td>
</tr>
<tr>
<td>K₂O</td>
<td>Potassium oxide</td>
</tr>
<tr>
<td>LOI</td>
<td>Loss of ignition</td>
</tr>
<tr>
<td>LWA</td>
<td>Lightweight aggregate</td>
</tr>
<tr>
<td>LWAC</td>
<td>Lightweight aggregate concrete</td>
</tr>
<tr>
<td>LWC</td>
<td>Lightweight concrete</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium oxide</td>
</tr>
<tr>
<td>MnO</td>
<td>Manganese</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Board</td>
</tr>
<tr>
<td>MS</td>
<td>Malaysian Standard</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NRMCA</td>
<td>National Ready Mix Concrete Association</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
</tr>
<tr>
<td>OPS</td>
<td>Oil palm shell</td>
</tr>
<tr>
<td>PAIP</td>
<td>Pengurusan Air Pahang Berhad</td>
</tr>
<tr>
<td>PKC</td>
<td>Palm kernel cake</td>
</tr>
<tr>
<td>POC</td>
<td>Palm oil clinker</td>
</tr>
<tr>
<td>POFA</td>
<td>Palm oil fuel ash</td>
</tr>
<tr>
<td>POME</td>
<td>Palm oil mill effluent</td>
</tr>
<tr>
<td>PV</td>
<td>Solar photovoltaic</td>
</tr>
<tr>
<td>RE</td>
<td>Renewable energy</td>
</tr>
<tr>
<td>RILEM</td>
<td>International Union of Laboratories and Experts in Construction Materials, Systems, and Structures</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>Sdn Bhd</td>
<td>Sendirian Berhad</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>SMEs</td>
<td>Small and medium enterprises</td>
</tr>
<tr>
<td>SMIs</td>
<td>Small- and medium-sized industries</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>SO$_3$</td>
<td>Sulphur trioxide</td>
</tr>
<tr>
<td>SP</td>
<td>Superplasticizer</td>
</tr>
<tr>
<td>SSD</td>
<td>Saturated surface dry</td>
</tr>
<tr>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>w/c</td>
<td>Water to cement ratio</td>
</tr>
</tbody>
</table>
Industri minyak kelapa sawit yang berkembang telah meningkatkan bahan buangan kelapa sawit yang dikenali sebagai tempurung kelapa sawit (OPS) dan lebih daripada 4 juta tan dibuang di tapak pelupusan setiap tahun. Pada masa yang sama, kira-kira 350 juta tan abu terbang (FA) yang merupakan bahan buangan loji arang batu dihasilkan setiap tahun. Disebabkan pengeluaran sisa yang besar, ia memberi kesan yang buruk kepada persekitaran. Pada masa yang sama, kemajuan industri pembinaan telah meningkatan aktiviti perlombongan pasir sungai. Perlombongan yang tidak terkawal menimbulkan kesan buruk terhadap alam sekitar seperti pendalaman sungai dan hakisan tebing sungai. Keperluan bahan pembinaan dan isu masalah alam sekitar yang semakin meningkat disebabkan bahan buangan industri minyak sawit telah mencetuskan penyelidikan ke arah menghasilkan teknologi baru hijau seperti konkrit ringan. Kajian sebelum ini pernah mengintegrasikan OPS bersama abu terbang kelapa sawit (POFA) serta abu terbang (FA) sebagai bahan gentian separa simen. Walaubagaimanapun, penggantian abu terbang (FA) sebagai pengganti pasir dalam penghasilan konkrit agregat ringan tempurung kelapa sawit (OPS LWAC) sepertinya belum diikuti. Justeru, penyelidikan ini memberi tumpuan kepada penggunaan FA sebagai bahan pengganti pasir sungai dalam penghasilan OPS LWAC. Abu terbang (FA) digunakan sebagai pengganti pasir separa dalam pengeluaran konkrit agregat ringan (LWAC) bagi mengurangkan penggunaan pasir dalam pembinaan, mengurangkan pencemaran dan jumlah sisa yang dilupuskan. Sementara itu, penggunaan OPS dalam konkrit agregat ringan (LWAC) sebagai pengganti agregat kasar akan membantu mengekalkan sumber semula jadi seperti granit dan batu kapur. OPS LWAC dengan 100% pasir sungai digunakan sebagai spesimen kawalan. Kemudian, satu siri campuran OPS LWAC yang dicampur dengan FA dengan peratusan seperti 10%, 20%, 30% dan 40% telah disediakan. OPS pula digunakan sebagai aggregat kasar yang menggantikan 100% batu granit. Campuran terbaik telah dipilih dan digunakan untuk memuaskan sifat mekanik dan ketahanan OPS LWAC. Keset pengawetan iaitu pengawetan air, udara dan pengawetan air awal terhadap sifat mekanik OPS LWAC yang mengandungi FA ditutup dikaji. Selain itu, ujian lain yang dijalankan ialah rintangan sulfa, penyerapan air dan karbonasi. Semua spesimen diuji sehingga 9 bulan. OPS LWAC yang mengandungi 10% FA menunjukkan prestasi terbaik antara semua peratusan dari segi mekanikal dan ketahanan. Penggunaan abu terbang (FA) yang sesuai meningkatkan jumlah C-S-H yang terhasil daripada proses penghidratan dan pozzolanik dan mengisi kekosongan struktur dalam konkrit menjadikannya padat dan kuat. Penggantian 40% FA memberi kesan terburuk kepada OPS LWAC dari segi sifat mekanikal dan ketahanan. Penemuan menunjukkan bahawa pengawetan air adalah kaedah pengawetan yang terbaik untuk memastikan prestasi yang lebih baik terhadap kekuatan mampatan, lenturan, keanjaran dan kekuatan tangga OPS LWAC yang mengandungi FA diikuti dengan pengawetan air awal dan pengawetan udara. Juga, OPS LWAC dengan 10% FA memperbaiki ketahanan yang lebih tinggi berbanding spesimen kawalan serta lain-lain campuran apabila diserang sulfat. OPS LWAC dengan 10% FA mempunyai prestasi rintangan yang lebih baik dalam sulfat kerana tindak balas pozzolanik yang mengurangkan kuantiti kalsium hidroksida yang mudah diserang oleh persekitaran yang agresif. Tiada karbonasi dikesan pada spesimen yang diawet menggunakan air serta pengawetan air awal kecuali specimen yang diawet dalam udara persekitaran. Pengawetan air menggalakkan proses penghidratan dan reaksi pozzolanik yang meningkatkan struktur dalam OPS LWAC dengan FA menyebabkan ia memperbaiki kadar penyerapan yang lebih rendah berbanding kaedah pengawetan yang lain.
ABSTRACT

The steady growth of the palm oil industry has led to the generation of the palm oil mill by-product known as oil palm shell (OPS) amounting more than 4 million tonnes annually which are dumped in the landfill. At the same time, the annual world production of fly ash (FA) which is a by-product of coal-fired electric power plants is approximately 350 million tonnes. Due to large production, these waste are also dumped that in turn, significantly affects the surrounding environment. On the other hand, the growing construction industry has led towards the increase in river sand mining activities. However, unregulated mining by the authorities may pose adverse impact towards the environment as it lowers the stream bottom, which in turn may lead to bank erosion. The growing demand for construction material and environmental issues created from the by-products of palm oil industry as well as coal industry have initiated research towards producing a new lightweight concrete. OPS has been previously utilized with POFA and FA as partial cement replacement. However, it is non-trivial to mention that study on the integration of fly ash (FA) as sand replacement in OPS LWAC has yet been reported. Thus, this research focuses on investigating the properties of Oil Palm Shell Lightweight Aggregate Concrete (OPS LWAC) containing various percentage of FA as partial sand replacement. Fly Ash (FA) is utilized as partial sand replacement in the production of Lightweight Aggregate Concrete (LWAC) in order to reduce sand usage in construction, reduce pollutions as well as the amount of waste disposed. Meanwhile, the use of OPS in lightweight aggregate concrete (LWAC) as a coarse aggregate replacement will help to preserve natural resources such as granite and limestone. The plain OPS LWAC content with 100% sand was used as a control mix. Then, a series of OPS LWAC mixes with FA of various percentages such as 10%, 20%, 30% and 40% were prepared. The OPS was utilized as coarse aggregate with 100% replacement throughout the research. The best mix acquired from the trial mixes were used to investigate the mechanical and durability properties of OPS LWAC. The effect of curing namely water curing, air curing and initial water curing regimes on mechanical properties aspect of OPS LWAC containing FA has been determined. Furthermore, other durability properties tests have been carried out namely sulphate resistance test, water absorption and carbonation. All specimens were tested until 9 months. OPS LWAC containing 10% FA performs the best amongst all percentages in terms of mechanical and durability properties. The inclusion of a suitable amount of fly ash produces larger amount of C-S-H gel from both hydration and pozzolanic reaction which fills in the void of concrete internal structure making the concrete denser and stronger. It was demonstrated that 40% of FA replacement provided the worse effect to the OPS LWAC in term of mechanical and durability properties. The findings show that water curing is the best curing method to ensure better performance on compressive strength, flexural strength, modulus of elasticity and splitting tensile strength of OPS LWAC containing FA followed by initial water curing and air curing. Also, OPS LWAC with 10% FA exhibit higher durability compared to control specimens and others mixes when subjected to sulphate attack. OPS LWAC with 10% FA has better performance in sulphate solutions since the pozzolanic reactions reduce the quantity of calcium hydroxide which is vulnerable towards aggressive environment. No carbonation rate was detected for specimens subjected to water curing and initial water curing except for air curing. Water curing promotes better hydration process and pozzolanic reaction that improves the internal structure of OPS LWAC containing FA causing it to exhibit lower absorption value compared to other curing methods.
REFERENCES

ACI 318. (2008). *Building code requirements for structural concrete (ACI 318-08) and commentary*. American Concrete Institute.

https://www.researchgate.net/publication/255787523_Fly_ash_as_a_sand_replacement_material_in_concrete_-_A_study

