SYNTHESIS AND CHARACTERIZATION OF CURCUMINOIDS BY CLAISEN-SCHMIDT CONDENSATION AND THEIR CYTOTOXIC EFFECTS ON HELA AND K562 CANCER CELL LINES

SITI NOOR HAJAR BT ZAMRUS

Master of Science

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science in Industrial Chemistry.

(Supervisor’s Signature)
Full Name :
Position :
Date :

(Co-supervisor’s Signature)
Full Name :
Position :
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : SITI NOOR HAJAR BT ZAMRUS
ID Number : MKD15003
Date :
SYNTHESIS AND CHARACTERIZATION OF CURCUMINOIDS BY CLAISEN-SCHMIDT CONDENSATION AND THEIR CYTOTOXIC EFFECTS ON HELA AND K562 CANCER CELL LINES

SITI NOOR HAJAR BT ZAMRUS

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Industrial Sciences & Technology
UNIVERSITI MALAYSIA PAHANG

2018
ACKNOWLEDGEMENTS

First of all I am thankful to Allah S.W.T for giving me the opportunity to complete my Master’s degree. I would like also to thank to my supervisor, Associate Professor Dr. Muhammad Nadeem Akhtar for his support throughout my master’s studies. It was a real privilege and an honour for me to share of his exceptional scientific knowledge. He also allowed this thesis to be my own work but steered me in the right direction whenever he thought I needed it.

I would like to acknowledge the laboratory staff of Faculty of Industrial Sciences and Technology (FIST) Universiti Malaysia Pahang (UMP) for providing physical resources such as materials and chemistry equipment, essential to completing the project, internally or externally. Special thanks to my co-supervisor, Associate Professor. Dr. Saiful Nizam bin Tajuddin for support throughout of my master degree.

I would like to acknowledge Dr. Seema Zareen for her immense help in completing this thesis. Also, special thanks for Associate Professor Dr. Najihah bt Mohd Hashim and Noraniza bt Abd Kadir from University Malaya for helping me on bioassay part. Special thanks to my friend, Addila Bt Abu Bakar for helping and supporting me during the course of this research project.

My deepest gratitude to my parents for their unconditional love, understanding and sacrifices. It is a pleasure to thank my beloved family for their continuous encouragement and moral support whenever needed. I am sincerely grateful to my fellow colleagues for their willingness to stick together through ups and downs of this research journey. Lastly, I would like to extend my appreciation to everyone who has supported me in any respect during the course of completing this project.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS xvi

LIST OF ABBREVIATIONS xvii

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 3

1.3 Objectives 4

1.4 Scope of Study 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction of Curcuminoids 5

2.2 Human Cervical Cancer (HeLa Cell Lines) 6

2.3 Leukemia (K562 Cell Lines) 7

2.4 Biological Activities of Curcuminoids 8

2.4.1 Anti-cancer activity 8
2.4.2 Anti-bacterial activity 8
2.4.3 Anti-oxidant activity 9
2.4.4 Anti-diabetic activity 10
2.4.5 Anti-inflammatory activity 10

2.5 Synthesis of Curcuminoids 11
2.5.1 Claisen-Schmidt condensation reaction 11
2.5.2 Microwave irradiation techniques 13
2.5.3 Pabon method 14

CHAPTER 3 METHODOLOGY 17

3.1 Introduction 17
3.2 General Synthesis of Curcuminoids 17
3.2.1 Acid-catalyzed reaction 17
3.2.2 Base-catalyzed reaction 18
3.3 Purification of Curcuminoids by Column Chromatography 19
3.4 Thin Layer Chromatography 19
3.5 Crystallization of Curcuminoids 19
3.6 Percentage Yield 19
3.7 Characterization and Identification of Curcuminoids 20
3.7.1 Ultraviolet-visible spectrophotometry (UV-Vis) 20
3.7.2 Fourier transform-infrared spectroscopy (FT-IR) 20
3.7.3 Nuclear magnetic resonance (NMR) 21
3.7.4 Gas chromatography-mass spectra (GC-MS) 21
3.7.5 Electrothermal capillary melting point determination 21
3.8 Cytotoxicity Effects of Curcuminoids 22
3.8.1 Preparation of cell lines 22
3.8.2 Preparation of compounds
3.8.3 Detection of cell viability by MTT assay

3.9 General Flowchart

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Structure of Curcuminoids Synthesized by Acid-Catalyzed Reaction
4.2.1 $(2E,6E)$-2,6-bis(2,3-dimethoxybenzylidene)cyclohexanone (21)
4.2.2 $(2E,6E)$-2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone (22)
4.2.3 $(2E,6E)$-2,6-bis(2-methoxybenzylidene)cyclohexanone (23)
4.2.4 $(2E,6E)$-2,6-bis(4-methoxybenzylidene)cyclohexanone (24)
4.2.5 $(2E,6E)$-2,6-bis(3,4-dimethoxybenzylidene)cyclohexanone (25)
4.2.6 $(2E,6E)$-2,6-bis(4-chlorobenzylidene)cyclohexanone (26)
4.2.7 $(2E,6E)$-2,6-bis(4-fluorobenzylidene)cyclohexanone (27)
4.2.8 $(2E,6E)$-2,6-bis(4-bromobenzylidene)cyclohexanone (28)
4.2.9 $(2E,6E)$-2,6-bis(2-chlorobenzylidene)cyclohexanone (29)

4.3 Structure of Curcuminoids Synthesized by Base-Catalyzed Reaction
4.3.1 $(1E,4E)$-1,5-bis(2,3-dimethoxyphenyl)-penta-1,4-dien-3-one (30)
4.3.2 $(1E,4E)$-1,5-bis(2,5-dimethoxyphenyl)-penta-1,4-dien-3-one (31)
4.3.3 $(1E,4E)$-1,5-bis(2-methoxyphenyl)-penta-1,4-dien-3-one (32)
4.3.4 $(1E,4E)$-1,5-bis(4-chlorophenyl)-penta-1,4-dien-3-one (33)
4.3.5 $(1E,4E)$-1,5-bis(2,4,6-trimethoxyphenyl)-penta-1,4-dien-3-one (34)
4.3.6 $(2E,5E)$-2,5-bis(2,3-dimethoxybenzylidene)cyclopentanone (35)
4.3.7 $(2E,5E)$-2,5-bis(2,5-dimethoxybenzylidene)cyclopentanone (36)
4.3.8 $(2E,5E)$-2,5-bis(2-methoxybenzylidene)cyclopentanone (37)
4.3.9 (2E,5E)-2,5-bis(4-methoxybenzylidene)cyclopentanone (38) 81
4.3.10 (2E,5E)-2,5-bis(3,4-dimethoxybenzylidene)cyclopentanone (39) 84
4.3.11 (2E,5E)-2,5-bis(4-chlorobenzylidene)cyclopentanone (40) 87

4.4 Cytotoxic Effects of Curcuminoids on HeLa and K562 Cancer Cell Lines 92
4.4.1 Structure-Activity Relationship of Curcuminoids 92

CHAPTER 5 CONCLUSION 94

5.1 Introduction 94
5.2 Recommendations for Future Research 95

REFERENCES 96

APPENDIX A1 ¹H-NMR AND ¹³C-NMR SPECTRA OF COMPOUND 21 104
APPENDIX A2 ¹H-NMR AND ¹³C-NMR SPECTRA OF COMPOUND 22 105
APPENDIX A3 ¹H-NMR SPECTRA OF COMPOUND 23 AND 24 106
APPENDIX A4 ¹H-NMR SPECTRA OF COMPOUND 25 AND 26 107
APPENDIX A5 ¹H-NMR SPECTRA OF COMPOUND 27 AND 28 108
APPENDIX A6 ¹H-NMR SPECTRA OF COMPOUND 29 AND 30 109
APPENDIX A7 ¹H-NMR SPECTRA OF COMPOUND 31 AND 32 110
APPENDIX A8 ¹H-NMR AND ¹³C-NMR SPECTRA OF COMPOUND 33 111
APPENDIX A9 ¹H-NMR SPECTRA OF COMPOUND 34 112
APPENDIX A10 ¹H-NMR SPECTRA OF COMPOUND 35 AND 36 113
APPENDIX A11 ¹H-NMR SPECTRA OF COMPOUND 37 AND 38 114
APPENDIX A12 ¹H-NMR AND ¹³C-NMR SPECTRA OF COMPOUND 39 115
APPENDIX A13 ¹H-NMR AND ¹³C-NMR SPECTRA OF COMPOUND 40 116
LIST OF TABLES

Table 4.1 \(^1\text{H}\)-NMR and \(^{13}\text{C}\)-NMR assignments compound 21 26
Table 4.2 \(^1\text{H}\)-NMR and \(^{13}\text{C}\)-NMR assignments compound 22 30
Table 4.3 Crystal data and parameters for structure refinement compound 22 32
Table 4.4 \(^1\text{H}\)-NMR assignment compound 23 35
Table 4.5 \(^1\text{H}\)-NMR assignment compound 24 37
Table 4.6 \(^1\text{H}\)-NMR assignment compound 25 40
Table 4.7 \(^1\text{H}\)-NMR assignment compound 26 43
Table 4.8 \(^1\text{H}\)-NMR assignment compound 27 46
Table 4.9 \(^1\text{H}\)-NMR assignment compound 28 49
Table 4.10 \(^1\text{H}\)-NMR assignment compound 29 53
Table 4.11 \(^1\text{H}\)-NMR assignment compound 30 56
Table 4.12 \(^1\text{H}\)-NMR and \(^{13}\text{C}\)-NMR assignments compound 31 59
Table 4.13 \(^1\text{H}\)-NMR assignment compound 32 62
Table 4.14 \(^1\text{H}\)-NMR and \(^{13}\text{C}\)-NMR assignments compound 33 66
Table 4.15 \(^1\text{H}\)-NMR assignment compound 34 70
Table 4.16 \(^1\text{H}\)-NMR assignment compound 35 73
Table 4.17 \(^1\text{H}\)-NMR assignment compound 36 76
Table 4.18 \(^1\text{H}\)-NMR assignment compound 37 79
Table 4.19 \(^1\text{H}\)-NMR assignment compound 38 83
Table 4.20 \(^1\text{H}\)-NMR and \(^{13}\text{C}\)-NMR assignments compound 39 86
Table 4.21 \(^1\text{H}\)-NMR and \(^{13}\text{C}\)-NMR assignments compound 40 89
Table 4.22 Cytotoxic effect of curcuminoids 92
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of curcumin (1), demethoxycurcumin (2) and bis-demethoxycurcumin (3)</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Curcuminoids for anti-cancer activity</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Dimethylamino curcuminoids for anti-bacterial activity</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Antioxidant activity of curcuminoids</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Anti-diabetic activity of curcuminoids</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Anti-inflammatory activity of curcuminoids</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>General aldol condensation reaction</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Mechanism acid-catalyzed reaction</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>Mechanism base-catalyzed reaction</td>
<td>13</td>
</tr>
<tr>
<td>2.10</td>
<td>Synthesis of curcumin analogues by one pot MWI</td>
<td>14</td>
</tr>
<tr>
<td>2.11</td>
<td>Synthesis curcuminoids by Pabon method</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Synthesis of curcuminoids</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>UV spectrum of $(2E,6E)$-$2,6$-bis(2,3$-dimethoxybenzylidene) cyclohexanone (21)</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>IR spectrum of $(2E,6E)$-$2,6$-bis(2,3$-dimethoxybenzylidene) cyclohexanone (21)</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Structure of $(2E,6E)$-$2,6$-bis(2,3$-dimethoxybenzylidene) cyclohexanone (21)</td>
<td>27</td>
</tr>
<tr>
<td>4.4</td>
<td>GC-MS spectrum of $(2E,6E)$-$2,6$-bis(2,3$-dimethoxybenzylidene) cyclohexanone (21)</td>
<td>27</td>
</tr>
<tr>
<td>4.5</td>
<td>Mass fragmentation of $(2E,6E)$-$2,6$-bis(2,3$-dimethoxybenzylidene) cyclohexanone (21)</td>
<td>28</td>
</tr>
<tr>
<td>4.6</td>
<td>UV spectrum of $(2E,6E)$-$2,6$-bis(2,5$-dimethoxybenzylidene) cyclohexanone (22)</td>
<td>29</td>
</tr>
<tr>
<td>4.7</td>
<td>IR spectrum of $(2E,6E)$-$2,6$-bis(2,5$-dimethoxybenzylidene) cyclohexanone (22)</td>
<td>29</td>
</tr>
<tr>
<td>4.8</td>
<td>Structure of $(2E,6E)$-$2,6$-bis(2,5$-dimethoxybenzylidene) cyclohexanone (22)</td>
<td>31</td>
</tr>
<tr>
<td>4.9</td>
<td>Structure X-ray of $(2E,6E)$-$2,6$-bis(2,5$-dimethoxybenzylidene) cyclohexanone (22)</td>
<td>31</td>
</tr>
<tr>
<td>4.10</td>
<td>GC-MS spectrum of $(2E,6E)$-$2,6$-bis(2,5$-dimethoxybenzylidene) cyclohexanone (22)</td>
<td>33</td>
</tr>
<tr>
<td>4.11</td>
<td>UV spectrum of $(2E,6E)$-$2,6$-bis(2$-methoxybenzylidene) cyclohexanone (23)</td>
<td>34</td>
</tr>
<tr>
<td>4.12</td>
<td>IR spectrum of $(2E,6E)$-$2,6$-bis(2$-methoxybenzylidene) cyclohexanone (23)</td>
<td>34</td>
</tr>
</tbody>
</table>
Figure 4.13 Structure of $(2E,6E)$-$2,6$-bis(2$-methoxybenzylidene)$cyclohexanone (23)

Figure 4.14 UV spectrum of $(2E,6E)$-$2,6$-bis(4$-methoxybenzylidene)$cyclohexanone (24)

Figure 4.15 IR spectrum of $(2E,6E)$-$2,6$-bis(4$-methoxybenzylidene)$cyclohexanone (24)

Figure 4.16 Structure of $(2E,6E)$-$2,6$-bis(4$-methoxybenzylidene)$cyclohexanone (24)

Figure 4.17 GC-MS spectrum of $(2E,6E)$-$2,6$-bis(4$-methoxybenzylidene)$cyclohexanone (24)

Figure 4.18 UV spectrum of $(2E,6E)$-$2,6$-bis(3,4$-dimethoxybenzylidene)$cyclohexanone (25)

Figure 4.19 IR spectrum of $(2E,6E)$-$2,6$-bis(3,4$-dimethoxybenzylidene)$cyclohexanone (25)

Figure 4.20 Structure of $(2E,6E)$-$2,6$-bis(3,4$-dimethoxybenzylidene)$cyclohexanone (25)

Figure 4.21 GC-MS spectrum of $(2E,6E)$-$2,6$-bis(3,4$-dimethoxybenzylidene)$cyclohexanone (25)

Figure 4.22 UV spectrum of $(2E,6E)$-$2,6$-bis(4$-chlorobenzylidene)$cyclohexanone (26)

Figure 4.23 IR spectrum of $(2E,6E)$-$2,6$-bis(4$-chlorobenzylidene)$cyclohexanone (26)

Figure 4.24 Structure of $(2E,6E)$-$2,6$-bis(4$-chlorobenzylidene)$cyclohexanone (26)

Figure 4.25 GC-MS spectrum of $(2E,6E)$-$2,6$-bis(4$-chlorobenzylidene)$cyclohexanone (26)

Figure 4.26 UV spectrum of $(2E,6E)$-$2,6$-bis(4$-fluorobenzylidene)$cyclohexanone (27)

Figure 4.27 IR spectrum of $(2E,6E)$-$2,6$-bis(4$-fluorobenzylidene)$cyclohexanone (27)

Figure 4.28 Structure of $(2E,6E)$-$2,6$-bis(4$-fluorobenzylidene)$cyclohexanone (27)

Figure 4.29 GC-MS spectrum of $(2E,6E)$-$2,6$-bis(4$-fluorobenzylidene)$cyclohexanone (27)

Figure 4.30 UV spectrum of $(2E,6E)$-$2,6$-bis(4$-bromobenzylidene)$cyclohexanone (28)

Figure 4.31 IR spectrum of $(2E,6E)$-$2,6$-bis(4$-bromobenzylidene)$cyclohexanone (28)

Figure 4.32 Structure of $(2E,6E)$-$2,6$-bis(4$-bromobenzylidene)$cyclohexanone (28)
Figure 4.33 GC-MS spectrum of (2E,6E)-2,6-bis(4-bromobenzylidene) cyclohexanone (28)

Figure 4.34 Mass fragmentation of (2E,6E)-2,6-bis(4-bromobenzylidene) cyclohexanone (28)

Figure 4.35 UV spectrum of (2E,6E)-2,6-bis(2-chlorobenzylidene) cyclohexanone (29)

Figure 4.36 IR spectrum of (2E,6E)-2,6-bis(2-chlorobenzylidene) cyclohexanone (29)

Figure 4.37 Structure of (2E,6E)-2,6-bis(2-chlorobenzylidene)cyclohexanone (29)

Figure 4.38 GC-MS spectrum of (2E,6E)-2,6-bis(2-chlorobenzylidene) cyclohexanone (29)

Figure 4.39 UV spectrum of (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)-penta-1,4-dien-3-one (30)

Figure 4.40 IR spectrum of (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)-penta-1,4-dien-3-one (30)

Figure 4.41 Structure of (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)-penta-1,4-dien-3-one (30)

Figure 4.42 UV spectrum of (1E,4E)-1,5-bis(2,5-dimethoxyphenyl)-penta-1,4-dien-3-one (31)

Figure 4.43 IR spectrum of (1E,4E)-1,5-bis(2,5-dimethoxyphenyl)-penta-1,4-dien-3-one (31)

Figure 4.44 Structure of (1E,4E)-1,5-bis(2,5-dimethoxyphenyl)-penta-1,4-dien-3-one (31)

Figure 4.45 GC-MS spectrum of (1E,4E)-1,5-bis(2,5-dimethoxyphenyl)-penta-1,4-dien-3-one (31)

Figure 4.46 UV spectrum of (1E,4E)-1,5-bis(2-methoxyphenyl)-penta-1,4-dien-3-one (32)

Figure 4.47 IR spectrum of (1E,4E)-1,5-bis(2-methoxyphenyl)-penta-1,4-dien-3-one (32)

Figure 4.48 Structure of (1E,4E)-1,5-bis(2-methoxyphenyl)-penta-1,4-dien-3-one (32)

Figure 4.49 GC-MS spectrum of (1E,4E)-1,5-bis(2-methoxyphenyl)-penta-1,4-dien-3-one (32)

Figure 4.50 Mass fragmentation of (1E,4E)-1,5-bis(2-methoxyphenyl)-penta-1,4-dien-3-one (32)

Figure 4.51 UV spectrum of (1E,4E)-1,5-bis(4-chlorophenyl)-penta-1,4-dien-3-one (33)

Figure 4.52 IR spectrum of (1E,4E)-1,5-bis(4-chlorophenyl)-penta-1,4-dien-3-one (33)
Figure 4.53 Structure of (1E,4E)-1,5-bis(4-chlorophenyl)-penta-1,4-dien-3-one (33) 67
Figure 4.54 GC-MS spectrum of (1E,4E)-1,5-bis(4-chlorophenyl)-penta-1,4-dien-3-one (33) 67
Figure 4.55 Mass fragmentation of (1E,4E)-1,5-bis(4-chlorophenyl)-penta-1,4-dien-3-one (33) 68
Figure 4.56 UV spectrum of (1E,4E)-1,5-bis(2,4,6-trimethoxyphenyl)-penta-1,4-dien-3-one (34) 69
Figure 4.57 IR spectrum of (1E,4E)-1,5-bis(2,4,6-trimethoxyphenyl)-penta-1,4-dien-3-one (34) 69
Figure 4.58 Structure of (1E,4E)-1,5-bis(2,4,6-trimethoxyphenyl)-penta-1,4-dien-3-one (34) 70
Figure 4.59 GC-MS spectrum of (1E,4E)-1,5-bis(2,4,6-trimethoxyphenyl)-penta-1,4-dien-3-one (34) 71
Figure 4.60 UV spectrum of (2E,5E)-2,5-bis(2,3-dimethoxybenzylidene) cyclopentanone (35) 72
Figure 4.61 IR spectrum of (2E,5E)-2,5-bis(2,3-dimethoxybenzylidene) cyclopentanone (35) 72
Figure 4.62 Structure of (2E,5E)-2,5-bis(2,3-dimethoxybenzylidene) cyclopentanone (35) 73
Figure 4.63 GC-MS spectrum of (2E,5E)-2,5-bis(2,3-dimethoxybenzylidene) cyclopentanone (35) 74
Figure 4.64 UV spectrum of (2E,5E)-2,5-bis(2,5-dimethoxybenzylidene) cyclopentanone (36) 75
Figure 4.65 IR spectrum of (2E,5E)-2,5-bis(2,5-dimethoxybenzylidene) cyclopentanone (36) 75
Figure 4.66 Structure of (2E,5E)-2,5-bis(2,5-dimethoxybenzylidene) cyclopentanone (36) 76
Figure 4.67 GC-MS spectrum of (2E,5E)-2,5-bis(2,5-dimethoxybenzylidene) cyclopentanone (36) 77
Figure 4.68 UV spectrum of (2E,5E)-2,5-bis(2-methoxybenzylidene) cyclopentanone (37) 78
Figure 4.69 IR spectrum of (2E,5E)-2,5-bis(2-methoxybenzylidene) cyclopentanone (37) 78
Figure 4.70 Structure of (2E,5E)-2,5-bis(2-methoxybenzylidene) cyclopentanone (37) 79
Figure 4.71 GC-MS spectrum of (2E,5E)-2,5-bis(2-methoxybenzylidene) cyclopentanone (37) 80
Figure 4.72 Mass fragmentation of (2E,5E)-2,5-bis(2-methoxybenzylidene) cyclopentanone (37) 81
Figure 4.73 UV spectrum of (2E,5E)-2,5-bis(4-methoxybenzylidene) cyclopentanone (38)
Figure 4.74 IR spectrum of (2E,5E)-2,5-bis(4-methoxybenzylidene) cyclopentanone (38)
Figure 4.75 Structure of (2E,5E)-2,5-bis(4-methoxybenzylidene) cyclopentanone (38)
Figure 4.76 UV spectrum of (2E,5E)-2,5-bis(3,4-dimethoxybenzylidene) cyclopentanone (39)
Figure 4.77 IR spectrum of (2E,5E)-2,5-bis(3,4-dimethoxybenzylidene) cyclopentanone (39)
Figure 4.78 Structure of (2E,5E)-2,5-bis(3,4-dimethoxybenzylidene) cyclopentanone (39)
Figure 4.79 GC-MS spectrum of (2E,5E)-2,5-bis(3,4-dimethoxybenzylidene) cyclopentanone (39)
Figure 4.80 UV spectrum of (2E,5E)-2,5-bis(4-chlorobenzylidene) cyclopentanone (40)
Figure 4.81 IR spectrum of (2E,5E)-2,5-bis(4-chlorobenzylidene) cyclopentanone (40)
Figure 4.82 Structure of (2E,5E)-2,5-bis(4-chlorobenzylidene) cyclopentanone (40)
Figure 4.83 GC-MS spectrum of (2E,5E)-2,5-bis(4-chlorobenzylidene) cyclopentanone (40)
Figure 4.84 Mass fragmentation of (2E,5E)-2,5-bis(4-chlorobenzylidene) cyclopentanone (40)
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>δ</td>
<td>Chemical shift</td>
</tr>
<tr>
<td>$^\circ C$</td>
<td>Degree celcius</td>
</tr>
<tr>
<td>g/mol</td>
<td>Gram per mol</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>hr</td>
<td>Hours</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>$\mu g/ml$</td>
<td>Microgram per ml</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>N</td>
<td>Normality</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per milliom</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

MTT 3-(4,5-Dimethythiazol-2-yl)-2,5-Diphenyltetrazolium Bromide
ABL Abelson murine leukemia
CH₃COOH Acetic acid
AML Acute myeloid leukemia
NH₄Cl Ammonium chloride
BDMC Bis-demethoxycurcumin
B₂O₃ Boron oxide
Br Bromine
CO₂ Carbon dioxide
¹³C-NMR Carbon nuclear magnetic resonance
cm Centimetre
CHCl₃ Chloroform
Cl Chlorine
CC Column chromatography
DMC Demethoxycurcumin
CH₂Cl₂ Dichloromethane
DMSO Dimethyl sulfoxide
DMEM Dulbecco’s Modified Eagle’s Medium
EtOAc Ethyl acetate
FBS Fetal bovine serum
F Fluorine
FTIR Fourier transform infrared spectroscopy
GC-MS Gas chromatography-mass spectroscopy
g Gram
Hex Hexane
HPV Human papillomavirus
NH₂NH₂ Hydrazine
kg Kilogram
HCI Hydrogen chloride
MS Mass spectroscopy
MeOH Methanol
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCH₃</td>
<td>Methoxy</td>
</tr>
<tr>
<td>MWI</td>
<td>Microwave irradiation</td>
</tr>
<tr>
<td>MACs</td>
<td>Mono-carbonyl</td>
</tr>
<tr>
<td>n-BuNH₂</td>
<td>n-butylamine</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>Per centimetre</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium bromide</td>
</tr>
<tr>
<td>¹H NMR</td>
<td>Proton nuclear magnetic resonance</td>
</tr>
<tr>
<td>QSAR</td>
<td>Quantitative structure-activity relationship</td>
</tr>
<tr>
<td>rt</td>
<td>Room temperature</td>
</tr>
<tr>
<td>SARs</td>
<td>Structure-activity relationship</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>Sodium sulphate</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilane</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-visible spectroscopy</td>
</tr>
<tr>
<td>v-Scr</td>
<td>Rous sarcoma virus</td>
</tr>
</tbody>
</table>