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ABSTRAK 

Gentian kaca polimer (GFRP) adalah sejenis bahan komposit yang memiliki nisbah 

kekuatan yang tinggi terhadap keseluruhan berat berbanding dengan bahan logam 

konvensional. Namun begitu, bahan komposit ini mudah terdedah kepada kerosakan 

yang mana memerlukan pemantauan keadaan struktur objek tersebut. Penderiaan FBG 

mempunyai potensi yang tinggi untuk disatukan dengan bahan komposit dalam 

perlaksanaan permantauan berterusan kondisi struktur objek. Namun begitu, kajian 

mendapati sistem permantauan berdasarkan FBG dilihat mepunyai beberapa kelemahan 

dari segi statik dan juga dinamik. Variasi dari keluaran voltan menyebabkan bacaan 

yang tidak tepat. Kaedah ilustrasi spektrum dalam pentafsiran statik juga dikenalpasti 

sebagai kelemahan dalam pengukuran statik. Bagi kelemahan dalam pengukuran 

dinamik, kesukaran dalam perbezaan masa antara dua isyarat menyebabkan anggaran 

sumber isyarat yang tidak tepat. Justeru, tujuan utama kajian penyelidikan ini adalah 

untuk meningkatkan serta penambahbaikkan dalam sistem permatauan berdasarkan 

FBG dengan penggunaan fungsi dan algoritma tertentu seperti fungsi grid jaring, 

algoritma penormalan voltan, algoritma CC-LSL, dan fungsi FFT. Dua spesimen telah 

dibentuk iaitu plat komposit dan rasuk komposit yang berasaskan kaedah laminasi. 

Penderiaan FBG telah diintegrasikan ke dalam kedua-dua spesimen tersebut. Bagi 

penambahbaikkan dalam permantauan secara statik, kedua-dua specimen tersebut 

dikenakan beban. Secara hasilnya, fungsi grid jaring digunakan sebagai paparan 

interaktif yang mewakili struktur objek berkenaan dan akan memaparkan kondisi 

struktur semasa berlaku pesongan. Algoritma penormalan voltan pula berjaya 

mengurangkan variasi keluaran voltan dari 26 data/minit kepada 17 data/minit. Bagi 

penambahbaikkan dalam permantauan secara dinamik pula, kesan penyetempatan 

dijalankan ke atas rasuk pada tempat tertentu. Secara hasilnya, algoritma CC-LSL 

mampu membuat anggaran impak secara tepat dengan peratusan kesilapan pada 2.47% 

dari impak sebenar. Perbandingan spektrum frekuensi antara sensor FBG dan sensor AE 

pula menunjukkan profil yang sama dengan peratusan kesilapan keseluruhan kurang 

daripada 10%. Manakala perbandingan spektrum frekuensi antaran sensor FBG, sensor 

AE, dan simulasi dari Abaqus FEA menunjukkan sensor FBG lebih sensitif kepada 

gelombang perambatan normal mod berbanding dengan sensor AE. Sensitiviti statik 

dan dinamik kesuluruhan sensor FBG ini direkodkan pada 1.21 pm/µε dan mampu 

mentaksir frekuensi maksima pada nilai 5 kHz. Secara kesimpulan, dipercayai bahawa 

sistem bereputasi ini mampu mencapai konsep utama struktur pintar.                             
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ABSTRACT 

Glass-fibre reinforced polymer (GFRP) composite materials certainly have the 

undeniable favour over conventional metallic materials, notably in light weight to high 

strength ratio. However, these composite materials are prone to sudden catastrophic 

damage that requires the structural health monitoring (SHM). FBG sensor has shown a 

great potential in embedding and integrating with the composite materials, performing 

real-time monitoring of the structural condition. However, a critical review on the 

current FBG based real-time monitoring system initiates that many attempts and 

intentions are still needed to bring the present monitoring system to a fully matured 

readiness level. The main problems are the drawbacks in static and dynamic strain 

sensing monitoring assessment. Error in desired readings due to variations in output 

voltage and spectrum illustration for static strain interpretation are the drawbacks in 

static strain sensing. On the other hand, due to the presence of noise in the signal 

spectrum, the estimation of time of arrival (TOA) through peak detection is pin-pointed 

as the drawback in dynamic strain sensing. Thus, the designation of this research study 

is to improve the current FBG based real-time monitoring system with the use of certain 

functions and algorithms, that are the instant mesh-grid function, voltage normalization 

algorithm, CC-LSL algorithm, and FFT function. Two specimens have been fabricated 

namely composite plate and composite beam which are based on hand lay-up 

lamination method. FBG sensors are embedded in both the structures. For improvement 

in static strain measurement, both the specimens are being subjected to load induced. 

As a results, the mesh-grid function utilized is capable of meshing any sizes and shapes 

of a structure, and display the deflection of the structure in an interactive way of 

artificial representation. The voltage normalization algorithm has reduced the output 

voltage variations from 26 data/minute to 17 data/minute with the elimination of pre-

calibration each time before use. For the improvement in dynamic strain sensing, 

impact localization are being carried out on the beam at certain points. As a results, the 

merging of cross-correlation approach with linear source location technique (CC-LSL) 

has estimated the impact location close to the actual hit location with the largest relative 

error at only 2.47 %. The comparison of frequency spectrum between FBG sensor and 

AE sensor shows an identical profile with the percentage error of less than 10 %. The 

validation of frequency spectrums from FBG sensor and AE sensor with Abaqus FEA 

simulation shows that the frequency spectrums captured by FBG sensor are more 

sensitive to the normal mode wave propagation of the structure compared to AE sensor. 

Overall, the static and dynamic sensitivity of the FBG sensor was recorded at 1.21 

pm/µε with maximum capturing frequency of 5 kHz. From the conclusion of the study, 

it is truly believed that with this reputable sensing system, it is is one step closer to 

achieving the key concept of smart structure.                    
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