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ABSTRAK 

Adaptive beamforming adalah teknik yang digunakan untuk mengarahkan pola sinaran 

ke arah isyarat yang diingini dan batalkan isyarat yang tidak diingini dengan mencari 

medan total (magnitud dan fasa) yang sesuai untuk setiap elemen dalam susunan antena, 

untuk mencapai nilai nisbah isyarat dikehendaki kepada isyarat tidak dikehendaki (SINR) 

yang tinggi. Terdapat banyak kaedah untuk melakukan adaptive beamforming dan salah 

satu cara ialah menggunakan algoritma metaheuristik, untuk menganggarkan medan total 

bagi elemen dalam susunan antena. Pelbagai jenis algoritma metaheuristik telah 

digunakan untuk adaptive beamforming. Ada algoritma metaheuristik yang telah 

diubahsuai dari algoritma asal untuk meningkatkan prestasi algoritma dalam aplikasi 

adaptive beamforming. Algoritma metaheuristik baru bernama Simulated Kalman Filter 

(SKF), diperkenalkan melalui inspirasi daripada keupayaan anggaran Kalman Filter, 

tidak pernah digunakan untuk aplikasi adaptive beamforming. Oleh itu, kajian ini 
membentangkan aplikasi pertama algoritma SKF untuk adaptive beamforming. Walau 

bagaimanapun, algoritma SKF sering menumpuk secara awal pada local optimum kerana 

kekurangan penerokaan untuk mencari penyelesaian yang lebih baik. Versi algoritma 

SKF lain, yang dinamakan Opposition-Based SKF, diperkenalkan oleh K. Zakwan, 

menggunakan kaedah Opposition-Based Learning (OBL) untuk meningkatkan 

keupayaan penerokaan algoritma SKF. Selain itu, Versi algoritma SKF lain, yang 

dinamakan SKF with Modified Measurement (SKFMM) diperkenalkan untuk 

meningkatkan keupayaan penerokaan algoritma SKF dengan mengubahsuai 

measurement-update dalam algoritma SKF. Algoritma SKF, OBSKF dan SKFMM 

diaplikasikan kepada susunan antena 10 elemen dengan jarak 0.5 𝜆 antara elemen. Sudut 

isyarat yang dikehendaki ditetapkan pada 30° dan sudut isyarat gangguan ditetapkan 

pada −70°,−40°,−30°, −10°, 0°, 10°, 50°, 70°. Eksperimen diulang sebanyak 100 kali 

untuk beberapa input nilai nisbah isyarat dikehendaki kepada isyarat hingar (SNR) untuk 

mendapat nilai statistic maksimum, minimum, min dan sisihan piawai bagi nilai nisbah 

isyarat dikehendaki kepada isyarat tidak dikehendaki (SINR). Hasil daripada kajian SKF, 

OBSKF dan SKFMM pada adaptive beamforming dibandingkan dengan kajian yang 

diterbitkan sebelumnya, iaitu, Adaptive Mutated Boolean Particle Swarm Optimization 

(AMBPSO). Hasil eksperimen menunjukkan bahawa ketiga-tiga algoritma SKF dapat 

menghasilkan min SINR yang lebih tinggi dan nilai sisihan piawai yang lebih rendah. 

Nilai min SINR yang tinggi dan nilai sisihan piawai yang rendah membuktikan bahawa 

ketiga-tiga algoritma SKF adalah konsisten dalam mencari penyelesaian yang bagus. 

Kesemua algoritma SKF menghasilkan kosistensi lebih daripada 70 %  berbanding 

dengan algoritma AMBPSO dalam aplikasi adaptive beamforming. Antara ketiga-tiga 

algoritma SKF, SKFMM dapat menghasilkan nilai min SINR yang tertinggi dan juga 

yang paling konsisten. Algoritma SKFMM lebih konsisten berbanding dengan algoritma 

SKF sebanyak 25.20 %  dan SKFMM lebih konsisten berbanding dengan algoritma 

OBSKF sebanyak 17.50 %.     
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ABSTRACT 

Adaptive beamforming is a technique used to steer the radiation pattern towards the 

desired signal and cancel out any interference signal by finding the appropriate weights 

for every element in an array antenna, to achieve maximum signal to interference plus 

noise ratio (SINR). There are many methods to perform adaptive beamforming and one 

of the method is to use metaheuristic algorithm, to estimate the weights for individual 

elements in an array. Over the years, various metaheuristic algorithms have been applied 

to adaptive beamforming. Some of the metaheuristic algorithms have been modified from 

the original algorithms to improve the algorithms performance in adaptive beamforming 

application. A new metaheuristic algorithm named Simulated Kalman Filter (SKF), is 

inspired by the estimation capabilities of Kalman filter, has not been applied to adaptive 

beamforming application. Therefore, this research presents the first-time application of 

SKF algorithm to adaptive beamforming. The SKF algorithm, however, often converge 
prematurely at local optimum due to lack of exploration, preventing it from finding better 

solution. A modified version of the SKF algorithm, named Opposition-Based SKF 

(OBSKF), introduced by K. Zakwan, applies Opposition-Based Learning method to 

improve the exploration capabilities of SKF algorithm. Moreover, a new modified 

version of the SKF algorithm named SKF with Modified Measurement (SKFMM) is 

introduced to further improve the exploration capabilities of SKF algorithm by modifying 

the measurement-update equation. The SKF, OBSKF and SKFMM is applied to an array 

antenna with 10 elements arranged linearly with 0.5 𝜆 distance between elements. The 

desired signal angle is set 30°  and the interference signal angle is set to 

−70°,−40°,−30°,−10°, 0°, 10°, 50°, 70°. The experiment is repeated for 100 times for 

various signal to noise ratio (SNR) values to obtain statistical results for best, worst, mean 

and standard deviation of the signal to interference plus noise ratio (SINR). The results 

obtained using SKF, OBSKF and SKFMM is compared to previously published work, 

Adaptive Mutated Boolean Particle Swarm Optimization (AMBPSO). The results show 

that all three SKF algorithms can produce higher mean SINR and lower standard 

deviation values compared to AMBPSO. The high mean SINR and low standard 

deviation value proves that the SKF algorithms are accurate and consistent in finding 

better solution. All the SKF algorithms produces consistency above 70% compared to 

existing AMBPSO for adaptive beamforming. Among the three SKF algorithms, the 

SKFMM produces the highest mean SINR values and is also the most consistent. The 

SKFMM is more consistent than the SKF algorithm by 25.20% and the SKFMM is more 

consistent than the OBSKF algorithm by 17.50%.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Overview 

Omnidirectional antennas radiate in all direction equally, therefore, making it less 

directive. An antenna system with low directivity often produce lower gain and is not 

suitable for long distance communications. To solve this problem, a group of elements is 

assembled in electrical and geometrical configuration to form an array antenna. Array 

antenna can produce much focused and narrow radiation pattern. This means array 

antennas are more directive, producing higher gain in one direction and is suitable for 

reducing transmission power in long distance communication.  

In an array antenna, each individual element has its own amplitude control and 

phase control. Figure 1.1 shows the model of an array antenna with amplitude control 

and phase control. The amplitude control and phase control of individual elements are 

known as weights. Another advantage of an array antenna is that it can adjust the direction 

of the radiation pattern by controlling the weights of individual elements in an array. The 

ability of an array antenna to adjust the weights makes the array antenna adaptive to the 

signal environment which is full of noise and interference signal. Therefore, adaptive 

array antenna is introduced. 
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Figure 1.1 Model of an Array Antenna 

An adaptive array antenna can steer the radiation pattern by directing the main 

beam towards the desired signal and placing null at the interference signal.  Figure 1.2 

shows the general idea of beamforming where the main beam point towards the desired 

signal and the null is placed at the interference. To change the direction of the radiation 

pattern, suitable weights for individual elements need to be determined.  

 

Figure 1.2 General Idea of Beamforming 

Source: Constantine A. Balanis (2012) 

Adaptive array antenna uses adaptive beamforming technique to find the suitable 

weights for individual elements. There are many methods in which beamforming can be 

performed. These beamforming methods are classified into three categories: statistical 
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optimum algorithms, adaptive algorithms and metaheuristic algorithms. These 

classifications will be further discussed in Chapter 2.  

Over the years, many metaheuristic algorithms have been applied to adaptive 

beamforming application. However, a new metaheuristic algorithm named Simulated 

Kalman Filter (SKF), has not been applied to adaptive beamforming. The SKF algorithm, 

introduced by Ibrahim et al., is inspired by the estimation capabilities of Kalman Filter. 

The SKF algorithm is a consistent algorithm and has a high convergence rate 

(Ibrahim et al., 2015). The SKF algorithm estimates the weights of individual elements 

in an array antenna to achieve maximum signal to interference plus noise ratio (SINR). 

1.2 Problem Statement 

The main aim for adaptive beamforming is to maximize the signal towards the 

desired signal and place deep null the signal at the interference direction, to achieve 

maximum signal to interference plus noise ratio (SINR). Metaheuristic algorithm applied 

to adaptive beamforming estimates the weights of individual elements to achieve 

maximum SINR. The problem with adaptive beamforming using metaheuristic algorithm 

is that sometimes the algorithm might converge prematurely, preventing from achieving 

maximum SINR. Furthermore, when the metaheuristic algorithm converges prematurely, 

the consistency of the beamformer in achieving maximum SINR is affected.  

Previously publish work, uses Adaptive Mutated Boolean Particle Swarm 

Optimization (AMBPSO), a modified version of the Particle Swarm Optimization (PSO), 

is used to increase the exploration of the particles in the search space (Zaharis & Yioultsis, 

2011). After 100 runs, the results show that AMBPSO can produce high mean SINR 

values compared to existing beamforming technique and low standard deviation of SINR 

values for various Signal to Noise Ratio (SNR). However, the AMBPSO algorithm 

results shows a huge difference between the best SINR values and the worst SINR values, 

showing that AMBPSO is less consistent. 

Simulated Kalman Filter (SKF) algorithm is a new algorithm, inspired by the 

estimation capabilities of Kalman Filter, is proven to be the most consistent algorithm 

using CEC2014 benchmark function (Ibrahim et al., 2015). However, SKF algorithm has 

not been applied to adaptive beamforming. With high consistency, the SKF algorithm 

can be suitable to improve the performance of adaptive beamforming. 
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The SKF algorithm is a good algorithm and there is always room to improve the 

algorithm’s performance. One known method to improve the optimization algorithm is 

the Opposition-based Learning (OBL) method. The OBL method helps increase the 

exploration capabilities of the metaheuristic algorithm, to find better solution in the 

search space (Tizhoosh, 2005). The OBL method has been applied to SKF and is named 

as Opposition-based SKF (OBSKF) (Mohd Azmi, 2017). The OBSKF algorithm has not 

applied to adaptive beamforming also. Other than the OBL technique, the SKF algorithm 

itself can be improved for better performance when applied to adaptive beamforming. 

1.3 Research Motivation 

The motivation of this research is to introduce a new metaheuristic algorithm 

named Simulated Kalman Filter (SKF) (Ibrahim et al., 2015) to adaptive beamforming 

application. SKF algorithms has not been applied to adaptive beamforming. SKF 

algorithm is inspired by the estimation capabilities of Kalman Filter (Kalman, 1960), 

where the Kalman Filter can find the optimal solution regardless of the precision of the 

measurement. The SKF algorithm has high convergence rate (Ibrahim et al., 2015), 

makes it suitable optimization algorithm for adaptive beamforming, which requires high 

precision and consistency. 

1.4 Research Objective 

1. To implement Simulated Kalman Filter (SKF) and Opposition-based SKF 

(OBSKF) in adaptive beamforming application. 

2. To improve measurement-update of the SKF algorithm for adaptive 

beamforming application. 

3. To compare the SKF algorithms and previously published work, Adaptive 

Mutated Boolean Particle Swarm Optimization (AMBPSO) for adaptive 

beamforming applications. 

1.5 Research Scope 

There are many types of array geometries such as rectangular array, circular array 

and more. This research focuses on the use of linear array geometry. 
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The number of elements used in an array can vary but for this research, the number 

of elements is set to 10. 

The spacing between elements and the operating frequency can vary but this 

research uses distance between elements is set 0.5 λ with operating frequency at 2.4 GHz. 

There are many types of elements that can be used such as dipole, patch, reflector 

and more. This research focuses on the isotropic element. 

The simulation assumes that the direction is known, therefore, direction of arrival 

(DOA) algorithm will not be used. Moreover, it is also assumed that the arriving angle of 

both desired and interference to be static and not dynamic. 

The number of desired and interference signal and the angle of arrival for each 

signal can vary. This research uses one desired signal fixed to 30° and 8 interference 

signals fixed to −70°,−40°, −30°,−10°, 0°, 10°, 50°, 70°. 

There are many optimization algorithms such as Particle Swarm Optimization 

(PSO), Gravitational Search Algorithm (GSA), Firefly Algorithm (FA) and more, but, in 

this research, Simulated Kalman Filter (SKF) is used for application in adaptive 

beamforming. 

In this research, various platforms such as Computer Simulation Technology 

(Roslee, Subari, & Shahdan, 2011) and Antenna Magus (K.V. Rop, 2012) can be used to 

perform simulations. However, MATLAB is chosen as the platform for performing the 

simulation and testing. 

1.6 Research Contributions 

This research presents the first application of SKF in adaptive beamforming on 

antenna arrays. The SKF algorithm is proven to have better consistency (Ibrahim et al., 

2015) and is suitable for application to adaptive beamforming. 

The SKF algorithm, however, lacks the exploration capabilities and sometimes 

converging prematurely. The Opposition-based Learning (OBL) technique improves the 

exploration capabilities of metaheuristic algorithm, to get better solutions. The 

Opposition-based SKF (OBSKF), introduce by K.Z.M. Azmi, is applied to increase the 
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exploration SKF (Mohd Azmi, 2017). The OBSKF algorithm is suitable for application 

to adaptive beamforming. With increased exploration, better weights that gives maximum 

SINR can be determined.  

In addition, SKF algorithm with modified measurement (SKFMM), is also 

introduced. The compromise between the exploration and exploitation of the SKF 

algorithm is dependent on the measurement-update. By modifying the measurement-

update, the exploration of SKF algorithm can be increased, thus, improving the chance 

to find better weights that gives maximum SINR.  

1.7 Thesis Organization 

This thesis is organized into five chapters. 

Chapter 2 presents the literature review on existing beamforming techniques for 

adaptive array antenna. 

Chapter 3 discusses on the array system model and its formulation of fitness 

function. In this chapter, SKF, OBSKF and SKFMM application in adaptive 

beamforming is also discussed. 

Chapter 4 shows the simulation results of SKF, OBSKF and SKFMM for adaptive 

beamforming application and comparison with algorithm from previously published 

work is presented. 

Chapter 5 concludes the thesis and the future implementations for SKF, OBSKF 

and SKFMM for adaptive beamforming application. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter briefly summarizes the classification of beamforming techniques 

that are currently available. 

2.2 Beamforming Techniques 

Beamforming in array antenna is a process where the main beam of the radiation 

pattern is directed towards the desired direction and the nulls are steered towards the 

interference signal. This is achieved by controlling the amplitude and phase of individual 

elements in an array. Beamforming technique is classified into three categories; 

Statistically Optimum Beamforming, Adaptive Algorithms for Beamforming and 

Beamforming using Metaheuristic Algorithm. Figure 2.1 shows the classification of 

beamforming technique. 

 

Figure 2.1 Classification of Beamforming Technique 

 

Beamforming 
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2.3 Statistically Optimum Beamforming 

Statistically optimum is where the weights of individual elements do not depend 

on the received array data and are chosen to present a specific response for all signal and 

interference scenarios. Matching randomly perturbed signal with arbitrary characteristics 

can be realized only in a statistical sense by using a matrix weights of input data that 

adapts to characteristics of received signal. Statistically optimum beamforming finds the 

weight vectors based on statistics of received data (Constantine A. Balanis, 2007). Some 

of the well-known Statistically optimum beamforming techniques are Maximize Signal 

to Interference Plus Noise Ratio (Maximum SINR) (Constantine A. Balanis, 2007; Frank 

B. Gross, 2015),  Minimum Mean Square Error (MMSE) (Constantine A. Balanis, 2007; 

Frank B. Gross, 2015; Noordin et al., 2011), Linearly Constrained Minimum Variance 

(LCMV) (Constantine A. Balanis, 2007) and Minimum Variance Distortionless 

Response (MVDR) (Balasem, Tiong, & Koh, 2011; Frank B. Gross, 2015; Souden, 

Benesty, & Affes, 2010). Figure 2.2 shows the classification of statistically optimum 

beamforming algorithm. 

 

Figure 2.2 Classification of Statistically Optimum Beamforming 

 

2.3.1 Maximum Signal to Interference Plus Noise Ratio 

Maximum signal to interference plus noise ratio (maximum SINR) techniques is 

used to maximize the signal to interference plus noise power ratio (Constantine A. 

Balanis, 2007). This method has been applied various times in adaptive beamforming 

application (Darzi et al., 2014; Darzi, Islam, Tiong, Kibria, & Singh, 2015; Darzi, Sieh 

Kiong, Tariqul Islam, Rezai Soleymanpour, & Kibria, 2016; Darzi, Tiong, Islam, Ismail, 

& Kibria, 2015; Darzi, Tiong, Tariqul Islam, Rezai Soleymanpour, & Kibria, 2016; 

Doroody, Tiong, & Darzi, 2015; Zaharis & Yioultsis, 2011). However, to determine the 
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optimal weight vectors that gives maximum SINR requires a good estimate of the second-

order statistics such as the desired signal correlation matrix and the undesired signal 

correlation matrix (Shiu, 1998).  

2.3.2 Minimum Mean Square Error 

Minimum mean square error (MMSE) is a method where the best weights of the 

array are determined by minimizing the mean square error between the reference signal 

and the output signal (Constantine A. Balanis, 2007). It is preferable that the reference 

signal be highly correlated with the desired signal and uncorrelated with the interference 

signal (Frank B. Gross, 2015). However, MMSE has a serious drawback because it relies 

on the reference signal. It is very difficult to produce an accurate reference signal with 

limited or no knowledge of the received signal (Constantine A. Balanis, 2007). Therefore, 

poor reference signal can degrade the performance of the array antenna. 

2.3.3 Linear Constrained Minimum Variance 

Linear constrained minimum variance (LCMV) constraints the beamformer 

response so that the desired signal passes with specified gain and phase (Constantine A. 

Balanis, 2007). The advantage of LCMV is that it does not require the knowledge of the 

desired signal correlation matrix, undesired signal correlation matrix and reference signal 

(Shiu, 1998). The disadvantages of this method is the computational complexity (Shiu, 

1998). 

2.3.4 Minimum Variance Distortionless Response 

Another well-known beamforming technique is the minimum variance 

distortionless response (MVDR). The term distortionless undistorted received signal. The 

main goal of MVDR is to minimize the array output noise variance (Frank B. Gross, 

2015). MVDR gives the optimum weights with minimized power of the undesired output 

signal while the desired output signal is maintained (Zaharis & Yioultsis, 2011). 

However, weights obtained using MVDR is not able to produce deep nulls at the direction 

interference signal (Darzi, Islam, et al., 2015; Darzi, Sieh Kiong, et al., 2016; Darzi, 

Tiong, et al., 2015, 2016). 
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2.4 Adaptive Algorithms for Beamforming 

Statistically optimum weight vectors can be made adaptive using the Wiener 

solution with the knowledge of asymptotic second-order statistics of the signal 

(Constantine A. Balanis, 2007). However, the knowledge of asymptotic second-order 

statistics of the signal and the interference plus noise was only assumed to be available. 

These statistics are usually not known except when assuming that the time average equals 

the ensemble average, the second-order statistics can be estimated from available data 

(Shiu, 1998). If the arriving signal changes with time, the statistics also changes with 

time. Therefore, it is important for the weights of individual elements in an array to be 

recalculated every time to find the optimum array weights. Therefore, an optimization 

scheme is used to continuously adapt to the changes of the arriving signal. Some of the 

well-known adaptive beamforming algorithms are Least Mean-Square (LMS), Recursive 

Least Squares (RLS) and Constant Modulus (CM) (Frank B. Gross, 2015). 

 

Figure 2.3 Classification of Adaptive Algorithms for Beamforming 

 

2.4.1 Least Mean-Square 

Least Mean-Square (LMS) is widely used in communication systems due to its 

low computational complexity and robustness (Frank B. Gross, 2015). LMS is a member 

of the stochastic gradient algorithms (Allen, 2005) where it iteratively minimizes the 

Mean Square Error (MSE). Since the error in MSE is squared, it gives a quadratic 

characteristic with one minimum. By using the negative steepest descent method, it 

updates the weight vectors with the direction of the estimated gradient which later 

converge to a one minimum. However, the convergence of LMS depends fully on the 

accuracy of the reference signal. Another drawback with LMS is the convergence 

characteristics where it depends on the eigen structure. Widely spread eigenvalues will 
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increase the convergence time (Allen, 2005; Constantine A. Balanis, 2007; Frank B. 

Gross, 2015; Saxena & Kothari, 2014). 

2.4.2 Recursive Least Squares 

Recursive Least Squares (RLS) approximates the solution directly using method 

of least squares to adjust the weight, without imposing additional burden of 

approximating an optimization procedure. In RLS, least-square method choses the 

weights that minimizes the fitness function which is the sum of error squares over a time 

window. RLS has a faster convergence speed compared to LMS. This is due to the ability 

of RLS algorithm to utilize information from input data and extend back to the point the 

algorithm begins to run. The improved performance of RLS does have its drawbacks 

because of increase of computational complexity (Allen, 2005; Constantine A. Balanis, 

2007; Frank B. Gross, 2015; Godara, 2004; Gross, 2005). 

2.4.3 Constant Modulus 

Both LMS and RLS adaptive beamforming algorithm are based on the minimizing 

the error between the reference signal and the array output. However, reference signal 

needs prior knowledge of the arriving signal. When the direction of arriving signal is not 

known, an optimization technique needs to blindly estimate the incoming signals. Many 

wireless signals are phase and frequency modulated signals such as frequency modulation 

(FM), frequency shift keying (FSK) and phase shift keying (PSK). These signals have 

constant complex envelope (Constantine A. Balanis, 2007) or constant amplitude (Frank 

B. Gross, 2015). This constant amplitude is referred to as constant modulus (Constantine 

A. Balanis, 2007; Frank B. Gross, 2015). Constant Modulus (CM) works similarly to 

LMS algorithm using gradient based approach. However, CM algorithm does not need 

reference signal to work unlike LMS and RLS. This makes CM algorithm a blind adaptive 

beamforming algorithm (Constantine A. Balanis, 2007; Frank B. Gross, 2015; Godara, 

2004). The only disadvantage of CM algorithm is that it has a slow convergence time 

(Frank B. Gross, 2015). 

2.5 Beamforming Using Metaheuristic Algorithm 

Previous sub-chapter explains the use of adaptive algorithms for beamforming. 

These adaptive beamforming algorithms are also known as optimization scheme used for 



 

12 

adaptive beamforming application (Frank B. Gross, 2015). Over the years, many 

metaheuristic algorithms have been applied for adaptive beamforming application. These 

metaheuristic algorithms stochastically estimate the weights of the elements in an array 

antenna. Figure 2.4 shows the summary of metaheuristic algorithms applied to adaptive 

beamforming application. 

 

Figure 2.4 Summary of Optimization Algorithm Applied to Beamforming 

 

Beamforming Using Metaheuristic 
Algorithm

Particle Swarm Optimization (PSO) 
(Darzi, Tiong, et al., 2015)

Adaptive Mutated Boolean PSO 
(AMBPSO)

(Zaharis & Yioultsis, 2011)

Gravitational Search Algorithm (GSA)
(Darzi et al., 2014)

Stochastic Leader GSA (SL-GSA)
(Darzi, Islam, et al., 2015)

Memory-Based GSA (MBGSA)
(Darzi, Sieh Kiong, et al., 2016)

Experience Oriented-Convergence 
Improved GSA (ECGSA)
(Darzi, Tiong, et al., 2016)

Firefly Algorithm (FA)
(Doroody, Tiong, & Darzi, 2015; Kaur 

& Banga, 2013; Zaman & Abdul 
Matin, 2012)

Grey Wolf Optimization (GWO)
(Saxena & Kothari, 2016)

Adaptive Social Behaviour 
Optimization (ASBO)

(Rathod, Singh, & Meera, 2016)

Backtracking Search Optimization 
(BSO)

(Kerim Guney & Durmus, 2015)

Mean Variance Mapping Method 
(MVMO)

(Kerim Guney & Basbug, 2014)

Differential Search (DS)
(Kerim Guney, Durmus, & Basbug, 

2014)

Cat Swarm Optimization (CSO)
(Pappula & Ghosh, 2014)

Taguchi’s Optimization Method (TM)
(Dib, Goudos, & Muhsen, 2010)

Modified Taguchi’s Optimization 
Method (MTO)
(Zaharis, 2012)

Modified Cuckoo Search Algorithm 
(CS) (Abdul Rani, Abd Malek, & Siew-

Chin, 2012)

Harmony Search Algorithm (HSA)
(K. Guney & Onay, 2011)

Self-Adaptive DE (SADE)
(Dib et al., 2010)

Bees Algorithm (BA)
(K. Guney & Onay, 2010)

Adaptive Dispersion IWO (ADIWO)
(Zaharis, Skeberis, & Xenos, 2012)

Dynamic Mutated AIS (DM-AIS)
(Darzi et al., 2014)
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2.5.1 Particle Swarm Optimization 

Darzi et al. (2014) proposed the use of Particle Swarm Optimization (PSO) 

(Kennedy & Eberhart, 1995) algorithm to incorporate with Linearly Constrained 

Minimum Variance (LCMV) (Darzi et al., 2014). The main disadvantage of LCMV 

beamforming technique is low convergence rate with weak radiation pattern and low 

signal to interference plus noise ratio (SINR) (Darzi et al., 2014). Therefore, the main 

goal is to introduce PSO to optimize the weights produced by LCMV technique to get a 

higher SINR value. PSO is also used to optimize the weights obtained using Minimum 

Variance Distortionless Response (MVDR) (Darzi, Tiong, et al., 2015). Weights obtained 

using MVDR beamforming technique is not able to produces deep nulls for multiple 

interference signal scenarios. Therefore, this problem is solved as an optimization 

problem using PSO algorithm to maximize the SINR (Darzi, Tiong, et al., 2015). PSO is 

inspired by the behaviours of a flock of birds. The particles in PSO are employed as 

objects that evaluate through their fitness function (Darzi, Tiong, et al., 2015). 

2.5.2 Gravitational Search Algorithm 

One of the well-known optimization algorithm is the Gravitational Search 

Algorithm (GSA) which is based the Newton’s law of universal gravitation (Rashedi, 

Nezamabadi-pour, & Saryazdi, 2009). Darzi et al. (2014) proposed the use of 

Gravitational Search Algorithm (GSA) to incorporate with Linearly Constrained 

Minimum Variance (LCMV) (Darzi et al., 2014). Due to LCMV’s low convergence rate 

with weak radiation pattern and low signal to interference plus noise ratio (SINR), GSA 

is used to optimize the LCMV weights in order to get satisfactory radiation pattern and 

higher SINR value (Darzi et al., 2014). GSA is also used to incorporate with Minimum 

Variance Distortionless Response (MVDR) to improve the null depth as conventional 

MVDR is not able to produce satisfactorily deep nulls at the interference signal.  

In GSA, the agents move towards the agent with higher mass due to its 

gravitational force. This makes agents in GSA highly dependent on the leading agent with 

maximum value. When the rest of the agents is dependent on the best agent, this cause 

GSA to have poor exploration of the search space might lead to stagnate at local optima. 

Therefore, Stochastic Leader GSA (SLGSA) is proposed as adaptive beamforming 

algorithm (Darzi, Islam, et al., 2015). SL-GSA is used to prevent the domination leading 
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agent with heavier mass at the beginning of the iteration. This is done by randomly 

ignoring the best agent and choosing different agent in search space as the lead agent. 

This method helps in increasing the exploration of search space at the beginning of the 

iteration. In later part of the iteration, the selection of agents other that the best agents 

will gradually reduce and this will lead to enhanced exploitation. The results show that 

SL-GSA can produce much deeper nulls and much higher SINR values compared to 

normal GSA. 

Another variant of GSA named Experienced Oriented-Convergence Improved 

GSA (ECGSA) is proposed as adaptive beamforming algorithm (Darzi, Tiong, et al., 

2016). ECGSA introduced two modifications to standard GSA. The first modification is 

that it saves the best fitness value of the agents during search process and treat these 

agents as best agents to apply force to other agents. This prevent the loss of discovered 

optimal trajectory during search process, unlike GSA, which have an unstable search 

trajectory. Furthermore, this helps the other agents to search in these optimal trajectories 

and avoid premature convergence. The second modification is it uses a special parameter 

known as dynamic gravitational damping coefficient, α, which controls the balance of 

exploration and exploitation. The α is set relatively low during the early stage of the 

search process which will give agents larger velocity for exploration and α is rapidly 

increased at the final stage for agent to converge to optimal solution. The difference 

between SLGSA with ECGSA is that ECGSA retains memory of results from previous 

iterations and SLGSA does not. This means SLGSA, like GSA, have no memory of 

optimal trajectory. ECGSA is less stochastic than SLGSA due to its more conventional 

approach by having high value of gravitational coefficient function, 𝐺(𝑡) and this makes 

ECGSA better than SLGSA in terms of convergence. 

The next variant of GSA which is Memory Based GSA (MBGSA) (Darzi, Sieh 

Kiong, et al., 2016). MBGSA introduces overall best solution of population in calculation 

of agent positions unlike GSA, which use the best solution from previous iteration. When 

agents cluster at local optima, the personal best of agent values recoded from earlier 

explorations determines the acceleration parameter. This prevents the agents to stagnate 

at local optima and prevents the loss of optimal search trajectory and thus, improving the 

convergence. MBGSA is tested with 3 different interference signal scenarios and is 

compared with PSO and GSA. For each signal scenarios, the simulation is repeated 30 
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times. After that, Wilcoxon Rank-Sum statistical analysis is performed. The MGSA 

algorithm is shown to have high performance of convergence compared with GSA and 

PSO for adaptive beamforming application  

2.5.3 Firefly Algorithm 

The weights obtained using LCMV does not produce favourable radiation pattern. 

Therefore, Firefly Algorithm (FA) (Yang, 2010) is introduced to optimize the weights 

obtained using LCMV beamforming technique (Doroody et al., 2015). FA optimization 

method is simple and requires few parameters and can efficiently detect the global optima 

(Doroody et al., 2015). FA optimization method can improve the SINR value at the 

desired direction and is also effective in nulling multiple interference signals. 

Firefly algorithm is also used to minimize the maximum side lobe level (SLL) 

and perform null steering by controlling phase of individual elements in an linear array 

antenna (Kaur & Banga, 2013). FA algorithm is inspired by the flashing behaviour of 

fireflies. The results show that FA outperforms Self-Adaptive Differential Evolution 

(SADE) and Taguchi’s Optimization Method (TM) for linear array antenna in terms of 

efficiency and success rate. FA is found to superior in finding optimum solution for 

desired radiation pattern and deeper nulls.  

FA is also used to determine the suitable distance between elements for a 

nonuniformly spaced linear array antenna with a predefined side lobe level (SLL) (Zaman 

& Abdul Matin, 2012). The simulation testing assumes that the amplitude excitation is 

constant. The performance of FA algorithm is compared to PSO in terms of best solution 

and the convergence rate. FA can satisfy the predefined SLL, beamwidth and null level. 

FA also outperforms PSO in convergence rate and the global best results. 

2.5.4 Grey Wolf Optimization 

The Grey Wolf Optimization (GWO) (Yang, 2010) algorithm which is inspired 

by the social hierarchy and hunting behaviour of grey wolves has been introduced to the 

electromagnetics and antenna community (Saxena & Kothari, 2016). GWO has only few 

parameters to tune which helps it to have faster convergence rate. The parameters in 

GWO can be controlled to prevent stagnation at local optimum. GWO is applied to linear 

array antenna in two ways which is by optimizing the position by assuming the weights 



 

16 

are uniform and by optimizing the amplitude of individual elements while assuming the 

position and phase of individual elements is constant. This paper presents the first 

application of GWO in pattern synthesis of linear array antenna to obtain optimal 

amplitude and position for individual elements. The result obtained using GWO is 

compared to other optimization algorithms such as Particle Swarm Optimization (PSO), 

Ant Colony Optimization (ACO), Cat Swarm Optimization (CSO) and Biogeography 

Based Optimization (BBO). GWO outperforms the optimization techniques in pattern 

synthesis of linear array antenna. 

2.5.5 Adaptive Social Behaviour Optimization 

Adaptive Social Behaviour Optimization (ASBO) (Singh, 2012) is applied to 

linear array antenna to synthesize the radiation pattern by controlling the phase parameter 

(Rathod, Singh, & Meera, 2016). ASBO, inspired by the human social structure, is a 

heuristic search method that is based on the direct or indirect influences in social life of 

human. ASBO is tested with three set of problem characteristics with varied desired 

signal direction, varied number of unsymmetrical interference signal and varied number 

of elements. The performance of ASBO is compared with PSO. The results show that 

ASBO outperforms PSO, producing satisfactory radiation pattern.  

2.5.6 Backtracking Search Algorithm 

Backtracking Search Algorithm (BSA) is classified under evolutionary 

algorithms. BSA has five evolutionary steps that is initialization, selection-I, mutation, 

crossover and selection-II. The mutation and crossover operators in BSA produces very 

efficient trial populations in each generation. The generation strategy for BSA can control 

the amplitude of the search direction. The crossover strategy in BSA has non-linear and 

complex structure which ensures the creation of new trial individuals in each generation. 

The boundary control mechanism in BSA can achieve population diversity and ensures 

efficient searches, even in advanced generations (Civicioglu, 2013). BSA is proposed for 

linear array antenna pattern synthesis with null at the interference signal. BSA is used to 

control the amplitude, phase and position of individual elements in an array. BSA is 

compared to results obtained using seventeen different algorithms. The simulation results 

show that BSA can produce much lower side lobe level and much deeper nulls. (Kerim 

Guney & Durmus, 2015). 
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2.5.7 Mean Variance Mapping Optimization 

Mean Variance Mapping Optimization (MVMO) (Erlich, Venayagamoorthy, & 

Worawat, 2010) is stochastic algorithm which is based on the strategic transformation 

used for mutating the offspring built on mean variance of certain dynamic population. 

MVMO is applied to three sets of antenna array synthesis examples (Kerim Guney & 

Basbug, 2014). The first example is the sidelobe level (SLL) control by using MVMO to 

determine the suitable distance between elements. The second example is estimate the 

amplitude and phase using MVMO to get a desirable radiation pattern. The third is to use 

MVMO to recalculate the amplitude in an event of failure of elements. MVMO is also 

modified to allow a good balance between exploitation and exploration, to improve the 

accuracy and stability of MVMO algorithm and reduce premature convergence risk. The 

modification done to MVMO is to increase the dimensions at the beginning of the 

iteration to promote good exploration and reduce the number of dimensions with the 

increase of iteration numbers to promote exploitation. Simulation results showed that the 

proposed MVMO algorithm is effective on array antenna problems and can produce a 

good balance between exploration and exploitation. 

2.5.8 Differential Search Algorithm 

Differential Search Algorithm (DS) (Civicioglu, 2012) is a stochastic search 

algorithm that follows the migration behaviour of organisms which use the Brownian-

like random-walk movement. Population in DS is represented by artificial organisms. 

The artificial organisms change its position in solution space by migration movement. 

The population will decide whether to stay or to migrate to a more better position in the 

search space. The migration movement will go on iteratively until the stopping criteria is 

satisfied. DS is applied to three group of examples: sidelobe level (SLL) and wide nulls 

using amplitude control only, produce individual nulls by controlling amplitude-only, 

phase-only and position-only and array antenna failure correction by recalculating the 

amplitude. DS is very capable in solving different types of array antenna synthesis 

problems (Kerim Guney, Durmus, & Basbug, 2014). 

2.5.9 Cat Swarm Optimization 

Cat Swarm Optimization (CSO) (Chu, Tsai, & Pan, 2006) is modelled according 

to the features of cat’s behaviour. The features are known as seeking mode and tracing 
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mode. Cats rest most of the time and are always alert by observing the environment. This 

behaviour is known as seeking mode. Tracing mode is inspired by the cat’s behaviour 

while tracing targets and cats spend a lot of energy and move quickly while chasing a 

target. CSO is not difficult to implement and can easily be applied to synthesize linear 

array antenna by controlling the element position to suppress the sidelobe level (SLL) 

and produce nulls at the interference direction. The results show that CSO can find 

suitable position for individual element that gives low SLL and placing strong nulls at 

the interference directions. The CSO algorithm is compared to PSO algorithm and is 

found out that CSO is more computational than PSO. However, CSO can produce same 

computational run time as to PSO algorithm. The results also show that CSO also produce 

better accuracy and high convergence speed compared to PSO algorithm (Pappula & 

Ghosh, 2014).  

2.5.10 Taguchi’s Optimization Method 

Taguchi’s Optimization Method (TM) (Genichi Taguchi Yuin Wu, 2005) was 

applied to linear array antenna to minimize the sidelobe level (SLL) and place nulls at the 

interference signal (Dib, Goudos, & Muhsen, 2010). TM is used to control the amplitude, 

phase and position of individual elements in an array. TM can solve complex problems 

and is also easy to be implemented. The simulation results show that TM can find 

optimum values within 100 iterations.  

Taguchi’s Optimization (TO) method is an attractive choice for adaptive 

beamforming application due to its high convergence speed. The convergence speed of 

TO is controlled by a reduced rate parameter. The reduced rate parameter is the only 

parameter to adjust in the algorithm, thus, makes it simple and attractive for many 

applications. Increasing the reduced rate value will give better solution but it will also 

increase the convergence time. Modified TO is proposed to further decrease the 

computational time for adaptive beamforming application (Zaharis, 2012). The problem 

with TO is that it only allows positive fitness value for later logarithmic conversion to 

negative value in dB. Modified TO will not convert the values to dB, to allow positive 

and negative fitness values. Since there is no conversion to dB, there will be no average 

fitness value in dB and is replaced by sum of fitness. Since the conversion to dB and 

average fitness calculation is removed, the computational time is further reduced which 

makes it good for adaptive beamforming application. 
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2.5.11 Modified Cuckoo Search Algorithm 

Modified Cuckoo Search Algorithm (MCS) is modified from the original Cuckoo 

Search (CS) (Genichi Taguchi Yuin Wu, 2005) algorithm. The CS is based on the brood 

parasitic behaviour of some cuckoo species with the Levy flight behaviour of some birds 

and fruit flies. The standard CS algorithm is modified to improve its performance. MCS 

is used to determine a suitable amplitude and phase excitation which suppress the SLL 

and place nulls at the intended interference direction. The results show MCS can 

outperform CS due to the Roulette wheel selection operator to obtain the best host nests 

and the dynamic inertia weight coefficient to control the global search. MCS is also 

compared with PSO and GA is found to be slightly better (Abdul Rani, Abd Malek, & 

Siew-Chin, 2012).  

2.5.12 Harmony Search Algorithm 

Harmony Search Algorithm (HSA) (Genichi Taguchi Yuin Wu, 2005) is 

stochastic algorithm that is based on the musician behaviour in the improvisation process 

whereby each musician tries to get the best tune in order to produce a better state of 

harmony. HSA is applied to linear array antenna to steer the nulls towards the interference 

signal direction by controlling amplitude-only, phase-only and position-only. The results 

show that HSA can synthesize array patterns with single, multiple and broad nulls at the 

direction of interference angle. HSA is also compared with 13 different optimization 

algorithms in literature and HSA performs better (K. Guney & Onay, 2011).  

2.5.13 Self-Adaptive Differential Evolution 

Self-Adaptive Differential Evolution (SADE) is modified version of the original 

Differential Evolution (DE) (Genichi Taguchi Yuin Wu, 2005). DE is a stochastic 

algorithm that consists of three operators: mutation, crossover and selection in which the 

population evolves in each generation. SADE add extra control parameters that self-

adjust in every generation for each particle. SADE is applied linear array antenna to 

minimize the sidelobe level (SLL) and place nulls at the interference signal by controlling 

the amplitude-only, phase-only and position-only of each individual element (Dib et al., 

2010). 
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2.5.14 Bees Algorithm 

Bees Algorithm (BA) (Pham et al., 2006) is a parameter optimization algorithm 

inspired by the foraging behaviour of honey bees. The bee colony attempts to use the 

colony members in an optimal manner by recruiting more bees for visiting flowers. Food 

search process starts by scout bees from the colony go to look for and evaluate potential 

flower patches near the hive. If the scout bees more food, it will communicate back to 

other bees in the hive. Waggle dance is form of essential bee communication which gives 

information on the direction of the flower patch, distance from hive and quality of the 

food. This information allows the bees in the colony to accurately find the patch of 

flowers. After the waggle dance, the scout bee along with some other bees will fly back 

to the patch of flowers. The bees accompanying the scout bee determines quality of the 

flower patch. This process allows the bees to food fast and efficiently. BA is applied to 

array antenna to steer the nulls in the direction of the interference signal by controlling 

phase-only and controlling both amplitude and phase. The simulation results show that 

BA can accurately determine the element excitation to place nulls at the interference 

angle (K. Guney & Onay, 2010). 

2.5.15 Adaptive Invasive Weed Optimization 

Adaptive Dispersion Invasive Weed Optimization (ADIWO) is an improved 

version of Invasive Weed Optimization (IWO) (Pham et al., 2006), used for adaptive 

beamforming application (Zaharis, Skeberis, & Xenos, 2012). ADIWO the improved 

version of Invasive Weed Optimization (IWO). The exploration of IWO algorithm is 

based on the dispersion of seed by a weed in the search space. In IWO, the standard 

deviation of the seed dispersion decreases as a function of number of iteration. When 

iteration increases, the exploration reduces. At the end of the iteration, the exploration 

ends and the weed can only fine tune its position. Therefore, if optimal solution is not 

found, it will never be found. ADIWO prevents this by maintaining the seed dispersion. 

The best weed will disperse seed with lower standard deviation and worst weed will 

disperse seed with higher standard deviation. This adaptive seed dispersion helps in 

exploring the search space further and is maintained until the end of the iteration 

Moreover, ADIWO converges faster than IWO because of the adaptive seed dispersion. 
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2.5.16 Dynamic Mutated Artificial Immune System 

Dynamic Mutated Artificial Immune System (DM-AIS) is an improved variation 

of Artificial Immune System (AIS) (Farmer, Packard, & Perelson, 1986). AIS is based 

on the behaviour of human immune system reacting to foreign elements in host body. 

When antigens attack the body, human immune system make active antibodies. The 

antibodies are produced in great amounts through cloning process to fix powerfully to 

specific antigen. The rate of mutation of cloned antibodies is inversely proportional to 

the affinity of antigens. Lowest affinity antibodies have highest mutation rate. DM-AIS 

has a new dynamic mutation function where the population of antibodies is derived from 

the fitness value based on dynamic mutation rate. DM-AIS improves the convergence 

rate of the antibody solution. DM-AIS is used to optimize the weights obtained using 

LCMV beamformer to increase the SINR. The results show that DM-AIS can improve 

the SINR compared to the use of conventional LCMV method (Darzi et al., 2014). 

2.6 Simulated Kalman Filter 

Simulated Kalman Filter (SKF) (Ibrahim et al., 2015) is a new metaheuristics 

optimization algorithm proposed to solve unimodal optimization problems. The SKF 

algorithm is inspired by the estimation capabilities of Kalman Filter (Kalman, 1960), 

which is a well-known state estimation method. The SKF algorithm simulates the 

measurement process as an individual agent’s update mechanism, acting as a feedback in 

estimating the optimum. Figure 2.5 shows the principle of the SKF algorithm. SKF solves 

optimization problem by finding the estimate of the optimum. The method and concept 

of the SKF algorithm will be further explained in sub-chapter 3.3. 
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Figure 2.5 The Principle of SKF algorithm 

Source: Ibrahim et al. (2015) 

In modelling the optimization problem as an estimation process of the optimum, 

the static model of the Discrete Kalman Filter was employed because the estimated 

optimum solution is not time dependent. Since the optimum solution to be estimated is 

not time dependent, the state vector, which holds an agent’s estimated position in the 

search space, is reduced to scalar form. These estimated state is used in the calculation of 

the fitness based on the fitness function. The SKF algorithm begins with initialization of 

the population and the solution of the initial population are evaluated and a true value is 

updated. The SKF algorithm iteratively improves the estimation by using standard 

Kalman Filter framework which comprises of predict, measure and estimate. 

The SKF algorithm was tested using CEC2014’s benchmark functions 

(Suganthan et al., 2013). All the benchmark functions are minimization problem and 

rotated to the global minimum. The search space for all the benchmark functions is the 

same which is [−100,100]. The experiment was conducted using 100 agents, randomly 

distributed over the search space of 50 dimensions. The maximum number of iterations 

used for the benchmark testing was 2000 iterations. The SKF algorithm was compared 

with other metaheuristic algorithms such as Heuristic Kalman Filter (HKA), 

Gravitational Search Algorithm (GSA) and Black Hole algorithm (BH) with the same 

parameter setting. The experiment was run 50 times to get average performance.  
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The results show SKF algorithm produces the most consistent performance 

compared to HKA, GSA and BH algorithms for unimodal functions. The results also 

show that both SKF and HKA, which uses Kalman Filter approach, have high 

convergence rate than GSA and BH. After 50 runs, statistical analysis is performed using 

Friedman Rank Test. The performance of algorithm is ranked based on the mean value 

over the total number of runs for all 3 unimodal benchmark functions. Among the four 

algorithms, SKF is ranked the best for average Friedman rank. From the average 

Friedman rank, the Friedman statistical value was calculated and compared to the critical 

value according to the chi-square distribution with 3 degrees of freedom. The Friedman 

test shows there is no significant difference between the algorithms. 

2.7 Opposition-Based Simulated Kalman Filter 

The SKF algorithm has shown to produce good results in solving unimodal 

benchmark functions. The goal of a metaheuristic algorithm to find more accurate 

solution for optimization problems. Therefore, the Opposition-Based Simulated Kalman 

Filter (OBSKF) (Mohd Azmi, 2017) was introduced to improve the SKF algorithm using 

Opposition-Based Learning (OBL) technique. The OBL (Tizhoosh, 2005) technique has 

shown to improve many metaheuristic algorithms in literature (Xu, Wang, Wang, Hei, & 

Zhao, 2014). The OBL technique will be further explained in sub-chapter 3.4 and OBSKF 

algorithm will be further explained in sub-chapter 3.5. 

2.8 Adaptive Mutated Boolean Particle Swarm Optimization 

Adaptive Mutated Boolean PSO (AMBPSO) is one of the variant of PSO that is 

used for adaptive beamforming application (Zaharis & Yioultsis, 2011). Unlike 

conventional PSO, AMBPSO uses Boolean form and adaptive mutated as update 

mechanism. This makes AMBPSO a robust optimization algorithm for adaptive 

beamforming. Boolean PSO is a binary version of PSO. What make AMBPSO different 

than Binary PSO is that the update mechanism uses Boolean update, whereas, Binary 

PSO which uses only real number expression. AMBPSO can control the convergence 

speed by adjusting the maximum allowed velocity using negative selection (NS) which 

is a basic mechanism of Artificial Immune System (AIS). After completion of NS, 

exploitation begins through adaptive mutation process with mutation probability. 
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Mutation probability will decrease with the number of iteration until end of optimization 

process.  

AMBPSO is tested using 10 elements, arranged in linear geometry, with one 

desired signal and eight different interference signals. AMBPSO is compared to MVDR 

in terms of radiation pattern and statistical result. For radiation pattern comparison, four 

cases were studied with different distance between elements and with different Signal to 

Noise (SNR). For statistical result, the experiment is repeated for 100 times for various 

SNR inputs and the best, worst, mean and standard deviation for Signal to Interference 

plus Noise Ratio (SINR) is determined. The results show that AMBPSO can produce 

much deeper nulls and lower sidelobe level compared to MVDR for all the four cases. 

For the statistical results, AMBPSO produce much better mean SINR values compared 

to the SINR values obtained using MVDR beamforming technique regardless of the SNR 

input values. AMBPSO is also shown to have low standard deviation values which proves 

that AMBPSO is much efficient and stable algorithm for adaptive beamforming. 

Since AMBPSO is a stable and efficient algorithm for adaptive beamforming, it 

is a suitable algorithm to be compared with the SKF algorithm for adaptive beamforming. 

One of the most important variable for calculating the SINR is the noise power. Some 

publications (Darzi et al., 2014; Darzi, Islam, et al., 2015; Darzi, Sieh Kiong, et al., 2016; 

Darzi, Tiong, et al., 2015, 2016; Doroody et al., 2015) never uncover or record the noise 

power used during experimentation which makes it difficult to implement the same 

methodology to other algorithms for comparison. However, the methodology introduced 

by Zaharis and Yioultsis for testing AMBPSO does not have any hidden variables such 

as the noise power, therefore, makes the methodology suitable to implement other 

algorithms for comparison. 

2.9 Research Gap Analysis 

Previous sub-chapter explains some of the beamforming techniques available and 

one of the technique is to use metaheuristic algorithm. Over the years, many metaheuristic 

algorithms have been applied to adaptive beamforming. Some of the metaheuristic 

algorithms have been modified from the original algorithm to improve the performance 

for adaptive beamforming application (Darzi, Islam, et al., 2015; Darzi, Sieh Kiong, et 

al., 2016; Darzi, Tiong, et al., 2016; Zaharis, 2012; Zaharis & Yioultsis, 2011). However, 
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a new metaheuristic algorithm named Simulated Kalman Filter (SKF) (Ibrahim et al., 

2015) has not been applied to adaptive beamforming. Therefore, the purpose of this 

research is to introduce SKF into adaptive beamforming application and to apply 

improved versions of SKF algorithm for adaptive beamforming.  

Out of all the algorithms reviewed, none of the algorithms showed any statistical 

analysis (except for MBGSA (Darzi, Sieh Kiong, et al., 2016) and AMBPSO (Zaharis & 

Yioultsis, 2011)), to prove the consistency of the optimization algorithm is solving 

adaptive array antenna problems. Comparison is made only with AMBPSO because the 

method introduced for testing with MBGSA has hidden variable such the noise power, 

which makes it impossible for the experimental condition to be replicated with the SKF 

algorithms. 

2.10 Summary  

Several metaheuristic algorithms applied to adaptive beamforming has been 

reviewed. Each metaheuristic algorithm has different ways of solving adaptive 

beamforming problems. For most of the publication reviewed, the deeper nulls and lower 

sidelobe level were some of the problems focused where the metaheuristic algorithms are 

used to get deeper nulls and much lower sidelobe level  (Abdul Rani et al., 2012; Dib et 

al., 2010; K. Guney & Onay, 2010, 2011; Kerim Guney & Basbug, 2014; Kerim Guney 

& Durmus, 2015; Kerim Guney et al., 2014; Kaur & Banga, 2013; Pappula & Ghosh, 

2014; Rathod et al., 2016; Saxena & Kothari, 2016; Zaman & Abdul Matin, 2012). Some 

of the metaheuristic algorithms have been modified from the original algorithm to 

improve the performance for adaptive beamforming application (Darzi, Islam, et al., 

2015; Darzi, Sieh Kiong, et al., 2016; Darzi, Tiong, et al., 2016; Zaharis, 2012; Zaharis 

& Yioultsis, 2011).  

The Adaptive Mutated Boolean Particle Swarm Optimization (AMBPSO) 

algorithm, introduced by Z.D Zaharis and T.V. Yioultsis, is proven to be consistent for 

adaptive beamforming application (Zaharis & Yioultsis, 2011). AMBPSO has better 

consistency due to its low standard deviation and its mean value close to the best SINR 

values regardless of the Signal to Noise (SNR) values. Furthermore, the methodology 

used to test AMBPSO for adaptive beamforming is easy to implement and does not have 

any hidden variables such as the noise power. Comparison is made only with AMBPSO 
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because the method introduced for testing with MBGSA has hidden variable such the 

noise power, which makes it impossible for the experimental condition to be replicated 

with the SKF algorithm.  

Simulated Kalman Filter (SKF) is a new metaheuristic algorithm and has not been 

applied to adaptive beamforming. The performance SKF algorithm is proven to be 

consistent (Ibrahim et al., 2015). The consistency of the SKF algorithm makes it suitable 

for adaptive beamforming application.  Furthermore, there is also room to implement 

improved SKF algorithm such the Opposition-Based SKF (OBSKF) algorithm for 

adaptive beamforming. The OBSKF algorithm helps improve the exploration capabilities 

of the SKF algorithm (Mohd Azmi, 2017), to find better solution in the search space. It 

is proven that increased exploration in an optimization algorithm can help the 

optimization algorithm  to find better weights that gives higher SINR values and radiation 

pattern with deep nulls (Darzi, Islam, et al., 2015). Therefore, improved SKF algorithms 

may produce better results than original SKF algorithms itself for adaptive beamforming.
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

This chapter explains the Kalman Filter, Simulated Kalman Filter (SKF) 

algorithm, Opposition-based SKF (OBSKF) and the SKF with Modified Measurement 

(SKFMM). This chapter also presents the formulation of the fitness function from the 

array system model for adaptive beamforming. 

3.2 Kalman Filter 

Kalman Filter (Kalman, 1960) is an optimal recursive data processing algorithm 

that processes all measurements, regardless of the precision, to estimates the current 

value. Kalman Filter estimates with the help of (1) measurement device dynamics and 

with the knowledge of system, (2) statistical description of the system noises, 

measurement errors and uncertainty in the dynamics models and (3) initial condition of 

the variable of interest if available (Maybeck, 1979).  

The estimation process of Kalman Filter uses a form of feedback control where 

the filter estimates the process state and obtain feedback in the form of measurements. 

The equation in Kalman Filter is divided into two groups: the time-update equations and 

the measurement-update equations. Figure 3.1 illustrates the time-update and the 

measurement-update cycle Kalman Filter (Welch & Bishop, 2006).  
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(Predict)

Measurement Update

(Correct)

 

Figure 3.1 Ongoing Cycle of Time Update and Measurement Update in Kalman 

Filter 

Source: Welch & Bishop (2006) 

The time-update equations or also known as predictor equations use the current 

state and error covariance estimates to obtain a priori estimate for the next step. The 

specific equations for time-update is presented in equation 3.1 and 3.2 

𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘−1 3.1 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 3.2 

where 𝑥̂𝑘
− is the state covariance estimates and 𝑃𝑘

− represents the error covariance 

estimates forward from time step 𝑘 − 1 to 𝑘. 𝐴 is the state transition matrix which applies 

the effect of each system state parameter at time 𝑘 − 1 on the system state at time 𝑡 and 

𝐵 is the control input matrix which applies the effect of each control input parameter in 

the vector 𝑢𝑘  on the state vector. 𝑄  represents the process noise covariance matrix 

(Faragher, 2012; Welch & Bishop, 2006). 

The measurement-update equations or also known as corrector equations are used 

to incorporate new measurement into the a priori estimate to obtain the improved a 

posteriori estimate. In measurement-update, equations 3.3, 3.4 and 3.5 are used 

𝐾𝑘 =
𝑃𝑘

−𝐻𝑇

𝐻𝑃𝑘
−𝐻𝑇 + 𝑅

 3.3 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘

−) 3.4 
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𝑃𝑘 = (1 − 𝐾𝑘𝐻)P𝑘
− 3.5 

where 𝐾𝑘  is the Kalman gain, 𝑥̂𝑘  is the a posteriori state estimate which is 

computed from the sum of the a priori state estimate, 𝑥̂𝑘
−, and the difference between the 

measurement, 𝑧𝑘, and measurement prediction, 𝐻𝑥̂𝑘
−. The 𝐻 is the transformation matrix 

that maps the state vector parameters into the measurement domain (Faragher, 2012; 

Welch & Bishop, 2006). 

3.3 Simulated Kalman Filter 

Simulated Kalman Filter (SKF) is a new metaheuristic optimization technique  

inspired by the estimation capabilities of Kalman Filter (Ibrahim et al., 2015). Since then, 

SKF has been applied to solve various optimization problems (Md Yusof et al., 2016a, 

2016b; Md Yusof, Ibrahim, et al., 2015; Md Yusof, Satiman, et al., 2015; Muhammad et 

al., 2015). SKF finds optimum solution by prediction, measurement and estimation.  

Considering 𝑡  as the number of iteration and  𝑁  as the number of agents, the 

estimated solution of an optimization problem of the 𝑖𝑡ℎ  agent at a time 𝑡 , 𝑋𝑖(𝑡), is 

defines as: 

𝑋𝑖(𝑡) =  {𝑥𝑖
1(𝑡), 𝑥𝑖

2(𝑡), … , 𝑥𝑖
𝑑(𝑡), … , 𝑥𝑖

𝐷(𝑡)} 3.6 

where 𝑥𝑖
𝑑(𝑡) is the estimated state of the 𝑖𝑡ℎ agent in the 𝑑𝑡ℎ dimension with 𝐷 

representing the maximum number of dimensions. In an iteration 𝑡, several agents are 

involved in the calculation of fitness and an agent with the best fitness, 𝑋𝑏𝑒𝑠𝑡(𝑡), is 

identified. The SKF algorithm performs a simulated measurement process, which leads 

to a true value, 𝑋𝑡𝑟𝑢𝑒. The 𝑋𝑡𝑟𝑢𝑒 is the best-so-far solution and is updated when a better 

solution of 𝑋𝑡𝑟𝑢𝑒 is found. 

The illustration SKF algorithm is shown Figure 3.2. Similar to other optimization 

algorithms, SKF begins with random initialization of its agents’ estimated state, 𝑋(0), 

within the search space. The initial value of error covariance estimate, 𝑃(0), the process 

noise, 𝑄 , and the measurement noise, 𝑅 , are also defined during initialization. The 

maximum number iteration, 𝑡𝑀𝑎𝑥, is also initialized.  
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Figure 3.2 Flowchart of SKF algorithm 

Source: Ibrahim et al. (2015) 

The iteration starts with the fitness calculation of the 𝑖𝑡ℎ agent, 𝑓𝑖𝑡(𝑋(𝑡)). The 

agent with best fitness, 𝑋𝑏𝑒𝑠𝑡(𝑡), is identified. For minimization problem, 

𝑋𝑏𝑒𝑠𝑡(𝑡) =  𝑚𝑖𝑛𝑖∈1,2,…,N𝑓𝑖𝑡𝑖(𝑋(𝑡)) 3.7 

whereas, for maximization problem, 

𝑋𝑏𝑒𝑠𝑡(𝑡) =  𝑚𝑎𝑥𝑖∈1,2,…,𝑁𝑓𝑖𝑡𝑖(𝑋(𝑡)) 3.8 

SKF performs a simulated measurement process to get the true value, 𝑋𝑡𝑟𝑢𝑒. The 

𝑋𝑡𝑟𝑢𝑒 is the best-so-far solution that is updated iteratively when better solution than 𝑋𝑡𝑟𝑢𝑒 
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is found. For 𝑋𝑡𝑟𝑢𝑒  to be updated, 𝑋𝑏𝑒𝑠𝑡(𝑡) < 𝑋𝑡𝑟𝑢𝑒  for minimization problem, or 

𝑋𝑏𝑒𝑠𝑡(𝑡) > 𝑋𝑡𝑟𝑢𝑒 for maximization problem. 

SKF search strategy follows three simple steps that are predict, measure, and 

estimate. Therefore, two sets of Kalman equation are used in SKF; the time-update 

equation and the measurement-update equation. In prediction, the time-update equations 

are used to obtain the a priori estimates for the next time step. After the measurement 

process, estimation equations are used to obtain the improved a posteriori estimates. 

In prediction step, the time-update equations: 

𝑥𝑖(𝑡|𝑡 + 1) =  𝑥𝑖(𝑡) 3.9 

𝑃(𝑡|𝑡 + 1) = 𝑃(𝑡) + 𝑄 3.10 

are employed to make a prediction of the state and error covariance estimates 

given the prior estimates. These estimates are called the a priori estimates. 𝑥𝑖(𝑡|𝑡 + 1) 

represents the predicted state, 𝑥𝑖(𝑡) is the previous estimated state error,  𝑃(𝑡|𝑡 + 1) is 

the predicted error covariance due to estimation, 𝑃(𝑡) is the previous estimated error 

covariance, and 𝑄 is the process noise. 

The next step is measurement. Measurements act as feedback to estimation 

process. Measurement of each individual agent is simulated based on the following 

equation: 

𝑧𝑖(𝑡) = 𝑥𝑖(𝑡|𝑡 + 1) + 𝑠𝑖𝑛(𝑟a𝑛𝑑 × 2𝜋)  × |𝑥𝑖(𝑡|𝑡 + 1) − 𝑥𝑡𝑟𝑢𝑒| 3.11 

where 𝑧𝑖(𝑡) is the value of measured position for agents, and 𝑥𝑖(𝑡|𝑡 + 1) is the 

predicted state estimate. Measurement may take any random value from the predicted 

state, 𝑥𝑖(𝑡|𝑡 + 1), to the true value, 𝑋𝑡𝑟𝑢𝑒. The random element, 𝑟𝑎𝑛𝑑, in sin (𝑟𝑎𝑛𝑑 ×

2𝜋), is a uniformly distributed random number in the range of [0,1], is important to 

induce stochastic behaviour in SKF. 

The final step is the estimation. This step updates the error covariance estimate 

with the Kalman gain value. The Kalman gain, 𝐾(𝑡), is computed as follows: 
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𝐾(𝑡) =
𝑃(𝑡|𝑡 + 1)

𝑃(𝑡|𝑡 + 1) + 𝑅
 

3.12 

where 𝑅 represents the measurement noise. Then, the measured position with the 

influence of Kalman gain updates the position of each agents using equation 3.13. 

Equation 3.14 updates the error covariance estimate with the influence of Kalman gain.   

𝑥𝑖(𝑡 + 1) =  𝑥i(𝑡|𝑡 + 1) + 𝐾(𝑡) × (𝑧𝑖(𝑡) − 𝑥𝑖(𝑡|𝑡 + 1)) 3.13 

𝑃(𝑡 + 1) = (1 − K(𝑡)) × 𝑃(𝑡|𝑡 + 1) 3.14 

After this, the next iteration will be executed until the maximum number of 

iterations, 𝑡𝑀𝑎𝑥, is reached. 

3.4 Opposition-Based Learning 

Opposition-Based Learning (OBL) is one of the techniques used improve the 

optimization algorithms. The OBL technique is introduced by Tizhoosh (Tizhoosh, 

2005). Many of the optimization algorithms begins with the randomization of initial 

starting points. If the starting point is closer to the optimal solution, the speed of 

convergence is faster. However, if the starting point is far away from the optimal solution, 

the speed of convergence will be slower and sometimes the solution might not converge 

to the optimal solution. The main concept of OBL technique is to further explore the 

search space by continuously checking the current solution with the opposite solution 

within the search space (Xu et al., 2014). According to a survey done by Xu et al., OBL 

technique has been applied to improve various optimization algorithm such as 

Differential Evolution (DE), Particle Swarm Optimization (PSO), Reinforcement 

Learning (RL), Biogeography-Based Optimization (BBO), Artificial Neural Network 

(ANN), Harmony Search (HS), Ant Colony System (ACS) and Artificial Bee Colony 

(ABC) (Xu et al., 2014). Figure 3.3 shows the illustration of the opposition point, 𝑜𝑥, 

with current point, 𝑥 in domain [𝑎, 𝑏].  
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Figure 3.3 Current Point, 𝑥 and Opposite Point, 𝑜𝑥 in Domain [𝑎, 𝑏] 

Source: Xu et al. (2014) 

where equation 3.15 is used to determine the opposite position, 𝑜𝑥. 

𝑜𝑥 = 𝑎 + 𝑏 − 𝑥 3.15 

The opposite point in 𝐷-dimensional space can be defined by assuming 𝑃 =

(𝑥1, 𝑥2, … , 𝑥𝐷) is point in 𝐷-dimensional space where 𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖], the opposite point, 

𝑂𝑃 = (𝑜𝑥1, 𝑜𝑥2, … , 𝑜𝑥𝐷) is completely determined by its coordinates: 

𝑜𝑥𝑖 = 𝑎𝑖 + 𝑏𝑖 − 𝑥𝑖 3.16 

By using the definition of the opposite point, the opposition-based optimization 

can be defined by assuming 𝑃 = (𝑥1, 𝑥2, … , 𝑥𝐷) is point in 𝐷-dimensional space (i.e., 

candidate solution), 𝑓(. ) is a fitness function to measure the candidate’s fitness. Based 

on the opposite point definition earlier, 𝑂𝑃 = (𝑜𝑥1, 𝑜𝑥2, … , 𝑜𝑥𝐷) is the opposite for 𝑃 =

(𝑥1, 𝑥2, … , 𝑥𝐷). If the 𝑂𝑃 has better fitness than 𝑃, 𝑓(𝑂𝑃) ≥ 𝑓(𝑃), then point 𝑃 can be 

replaced with 𝑂𝑃; otherwise the point 𝑃 remains. The current point, 𝑃, and the opposite 

point, 𝑂𝑃, are evaluated simultaneously to find the best point that gives the best fitness 

value.  

3.5 Opposition Based Simulated Kalman Filter 

Like any other optimization algorithm, SKF also begins by randomly initializing 

the agents in the search space. To increase the exploration of SKF, Opposition-Based 

Simulated Kalman Filter (OBSKF) (Mohd Azmi, 2017) is introduced. Figure 3.4 shows 

the flowchart of OBSKF. 
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Figure 3.4 Flowchart of Opposition-Based SKF Algorithm 

Source: Mohd Azmi (2017) 

Similar to SKF, OBSKF begins by randomly initializing the population in the 

search space. Then, the calculation of fitness is performed and the best agent, 𝑋𝑏𝑒𝑠𝑡(𝑡), 

is identified. After that, the best-so-far solution, 𝑋𝑡𝑟𝑢𝑒, is determined and the three-simple 

process of SKF, predict-measure-estimate is performed. Opposition-based learning is 

performed after these steps.  

OBL is applied to generate the opposite solution, 𝑜𝑥 , and perform fitness 

evaluation on opposite solution, 𝑓𝑖𝑡(𝑜𝑥). The fitness obtained from opposite solution, 

𝑓𝑖𝑡(𝑜𝑥), will be compared with fitness of current solution, 𝑓𝑖𝑡(𝑥). If the opposite fitness, 
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𝑓𝑖𝑡(𝑜𝑥), is found to be better that the current fitness, 𝑓𝑖𝑡(𝑥), then the current solution, 𝑥, 

will be replaced with the opposite solution, 𝑜𝑥. If current fitness, 𝑓𝑖𝑡(𝑥), is better than 

the opposite fitness, 𝑓𝑖𝑡(𝑜𝑥), the current solution remains unchanged. 

The execution of OBL is controlled by a parameter known as jumping rate, 𝐽𝑟 ∈

[0,1]. The jumping rate, 𝐽𝑟, is a control parameter assigned by the user. The OBL process 

will only begin when the random values in the range of [0,1] are less than the value set 

for the jumping rate, 𝐽𝑟 .The random values is obtained from the MATLAB’s 𝑟𝑎𝑛𝑑 

function.  

The opposite population is calculated using dynamically updated interval 

boundaries [𝑎𝑗(𝑡), 𝑏𝑗(𝑡)] as follows (Wang, Wu, Rahnamayan, Liu, & Ventresca, 2011). 

𝑂𝑋𝑖,𝑗 = [𝑎𝑗(t) + 𝑏𝑗(t)] − 𝑋𝑖,𝑗 , 

 

𝑎𝑗(𝑡) = min(𝑋𝑖,𝑗(𝑡)),     𝑏𝑗 = max (𝑋𝑖,𝑗(𝑡)) 

 

𝑖 = 1,2,…𝑁;     𝑗 = 1,2,…𝐷 

3.17 

where 𝑋𝑖,𝑗  is the current population, and 𝑂𝑋𝑖,𝑗  is the opposite population. The 

𝑎𝑗(𝑡) and 𝑏𝑗(𝑡) are the lowest and the highest values of the 𝑗th dimension in current 

population, respectively. The 𝑁  represents the maximum number of agents and 𝐷 

represents the maximum number of dimensions. The 𝑡 represents the iteration number. 

Finally, by simultaneously checking the fitness of current population and the 

opposite population, OBSKF can explore the search space thoroughly. With better 

exploration of search space, stagnation at local optimum can be avoided. 

3.6 Simulated Kalman Filter with Modified Measurement 

The SKF algorithm has a limitation where it is converging prematurely at local 

optimum. The convergence of SKF algorithm is dependent on the measurement update 

of each agent, 𝑍𝑖(𝑡). At the beginning of the iterative process in SKF algorithm, during 

exploration, the difference between the best-so-far solution, 𝑋𝑡𝑟𝑢𝑒, and the predicted state 

estimate, 𝑥𝑖(𝑡|𝑡 + 1) is larger, thus, increasing the difference between the measured value 



 

36 

for each agent, 𝑍𝑖(𝑡) , and the predicted state estimate, 𝑥𝑖(𝑡|𝑡 + 1) . As the iteration 

progresses, the difference between the best-so-far value, 𝑋𝑡𝑟𝑢𝑒, and the predicted state 

estimate, 𝑥𝑖(𝑡|𝑡 + 1) becomes smaller, thus, decreasing the difference between measured 

value for each agent, 𝑍𝑖(𝑡) , and the predicted state estimate, 𝑥𝑖(𝑡|𝑡 + 1) , promoting 

exploitation. However, the reducing difference between measured value for each agent, 

𝑍𝑖(𝑡) , and the predicted state estimate, 𝑥𝑖(𝑡|𝑡 + 1) , causing SKF to converge 

prematurely, very early during the iterative process.  

To prevent SKF from converging prematurely, a modification to the measurement 

update equation, 𝑍𝑖(𝑡) , is proposed. The modification in the measurement update is 

prevent the SKF algorithm to converge at local optimum. The modified measurement 

update, 𝑍𝑚𝑚𝑖
(𝑡), is as shown below 

𝑍𝑚𝑚𝑖
(𝑡) = 𝑥𝑖(𝑡|𝑡 + 1) + sin(𝑟a𝑛𝑑 × 2𝜋)  ×  |𝑥𝑖(𝑡|𝑡 + 1) − 𝑋𝑡𝑟𝑢𝑒|

+ sin(𝑟𝑎𝑛𝑑 × 2𝜋) × |𝑋𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡|𝑡 + 1)| 3.18 

where 𝑋𝑝𝑏𝑒𝑠𝑡𝑖  represents the best-so-far value for every agent, unlike 𝑋𝑏𝑒𝑠𝑡(𝑡), 

which is a single best value for every agent. 

In SKF algorithm, the 𝑋𝑏𝑒𝑠𝑡(𝑡) retains only a single best value of an agent the 

gives the best fitness and the 𝑋𝑏𝑒𝑠𝑡(𝑡) changes with every iteration when agent with better 

fitness is determined. The 𝑋𝑡𝑟𝑢𝑒, on the other hand, is used to retain the value of agents 

with the best fitness for every iteration where 𝑋𝑡𝑟𝑢𝑒 is only updated when better 𝑋𝑏𝑒𝑠𝑡(𝑡) 

is found. Unlike the 𝑋𝑏𝑒𝑠𝑡(𝑡) and 𝑋𝑡𝑟𝑢𝑒 in the SKF algorithm, the 𝑋𝑝𝑏𝑒𝑠𝑡𝑖
 in SKFMM 

retains the best value for every agent, similar to the best position, 𝑃𝑏𝑒𝑠𝑡 in Particle Swarm 

Optimization (PSO) (Kennedy & Eberhart, 1995). The 𝑋𝑝𝑏𝑒𝑠𝑡𝑖 in SKFMM helps provides 

better diversity because of its best-so-far values for every agent compared to single best 

agent for every iteration, 𝑋𝑏𝑒𝑠𝑡(𝑡) and the single best agent overall during the iterative 

process, 𝑋𝑡𝑟𝑢𝑒. As iteration progresses, the values of 𝑋𝑝𝑏𝑒𝑠𝑡𝑖
 will converge towards the 

best-so-far value, 𝑋𝑡𝑟𝑢𝑒.  

The new estimation equation or also known as the a posteriori estimates is 

represented as 
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𝑥𝑖(𝑡 + 1) =  𝑥i(𝑡|𝑡 + 1) + 𝐾(𝑡) × (𝑍𝑚𝑚𝑖
(𝑡) − 𝑥𝑖(𝑡|𝑡 + 1)) 3.19 

where the new element, sin(𝑟𝑎𝑛𝑑 × 2𝜋) × |𝑋𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡|𝑡 + 1)| , helps to 

influence the differences between the modified measurement, 𝑍𝑚𝑚𝑖
(𝑡), and the predicted 

state estimates or the a priori estimates, 𝑥𝑖(𝑡|𝑡 + 1) in the estimation process. In an 

iteration, the difference of values between the modified measurement and the predicted 

state estimates for each agent can either be positively large or positively small, or 

negatively large or negatively small, stochastically dependent on both the sin(𝑟𝑎𝑛𝑑 ×

2𝜋) in equation 3.18. The flowchart of SKFMM is shown in Figure 3.5. 

Generate Initial Population

Evaluate Fitness of each agent

Update Xbest(t)

Update Xtrue

Predict

Modified Measurement

Estimate

Stopping 

Condition?

Return best solution (Xtrue)

Yes

No

Update Xpbest(t)

 

Figure 3.5 Flowchart of SKF with Modified Measurement (SKFMM) 
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3.7 Array System Model and Fitness Function Formulation 

For an antenna system to be adaptive, it must have more than one elements. A 

system with more than one elements are known as array antenna. Assuming an isotropic 

array antenna with 𝑁  number of elements with 𝑑  distance between each element as 

shown in Figure 3.6. 

d 2d



0 (N-1)d

z

x

d 2d



0 (N-1)d

z

x

 

Figure 3.6 𝑁-Element Linear Array  

 The following array factor, 𝐴𝐹 is derived  

𝐴𝐹 = 𝐴𝑛(1 + 𝑒𝑗(𝑘𝑑 𝑠𝑖𝑛𝜃+𝛿) + 𝑒𝑗2(𝑘𝑑 𝑠𝑖𝑛𝜃+𝛿) + ⋯+ 𝑒𝑗(𝑁−1)(𝑘𝑑 𝑠𝑖𝑛𝜃+𝛿)) 3.20 

where 𝑘 =
2𝜋

𝜆
, denoted the wavenumber, 𝐴𝑛 is the signal amplitudes, 𝛿 denotes 

the phase delay and 𝜃 denoted the theta angle measured from 𝑧 axis. By assuming the 

system is lossless, the amplitude can be assumed as follows: 

𝐴𝑛 = 1;    𝑛 = 1, 2,… ,𝑁 3.21 

Therefore, the array factor can be represented as 

𝐴𝐹 = ∑ 𝑒𝑗(𝑛−1)𝜓

𝑁

𝑛=1

 

3.22 

where 𝜓 = 𝑘𝑑 sin 𝜃 + 𝛿.  
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Assuming there are 𝑀 number of interfering signal with signal of interest (SOI) 

of 𝑘th time sample, 𝑠(𝑘), arriving at angle 𝜃0 and signal not of interest (SNOI), i1(k), 

i2(k), i3(k), …, iM-1(k), iM(k), arriving at angle θ1, θ2, θ3, …, θM-1, θM, as shown in Figure 

3.7. 

 

Figure 3.7 Array Model with Arriving Signal 

The output of the array model, 𝑦(𝑘) can be represented by  

𝑦(𝑘) =  𝑤̅𝐻  × 𝑥̅(𝑘) 3.23 

where 𝑤̅ stands for the weights of individual elements in an array, Hermitian 

transpose is represented by 𝐻 and the signal vector is represented by 𝑥̅(𝑘). The signal 

vector, 𝑥̅(𝑘) is further expanded as shown in equation 3.24 

𝑥̅(𝑘) =  𝑎̅0𝑠(𝑘) + [𝑎̅1 𝑎̅2  ⋯ 𝑎̅𝑀]  ×  [

𝑖1(𝑘)

𝑖2(𝑘)
⋮

𝑖𝑀(𝑘)

] + 𝑛(𝑘)

=  𝑥̅𝑠(𝑘) + 𝑥̅𝑖(𝑘) + 𝑛̅(𝑘) 

3.24 

where 𝑎̅𝑚 = [1  𝑒𝑗(𝑘𝑑 𝑠𝑖𝑛𝜃+𝛿)  𝑒𝑗2(𝑘𝑑 𝑠𝑖𝑛𝜃+𝛿) … 𝑒𝑗(𝑁−1)(𝑘𝑑 𝑠𝑖𝑛𝜃+𝛿)]𝑇  is the array 

steering vector for 𝜃𝑚 direction of arrival. 𝑥̅𝑠(𝑘) is the desired signal vector, 𝑥̅𝑖(𝑘) is the 

interference signal vector and 𝑛̅(𝑘) is the noise signal. The array factor, 𝐴𝐹 in equation 

3.20 can be expressed as the sum of the elements of the array vector 𝑎̅𝑚. 
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𝐴𝐹 = 𝑠𝑢𝑚(𝑎̅𝑚) 3.25 

The total array output, 𝑦(𝑘) is expanded as  

𝑦(𝑘) =  𝑤̅𝐻 ∙  [x̅𝑠(𝑘) + 𝑥̅𝑖(𝑘) + 𝑛̅(𝑘)] = 𝑤̅𝐻 ∙  [𝑥̅𝑠 + 𝑢̅(𝑘)] 3.26 

where the undesired signal, 𝑢̅(𝑘) is formulated as 

𝑢̅(𝑘) =  𝑥̅𝑖(𝑘) + 𝑛̅(𝑘) 3.27 

After that, the array correlation matrices for the desired signal, 𝑅̅𝑠𝑠 and the array 

correlation matrices for the undesired signal, 𝑅̅𝑢𝑢  is calculated. The weighted array 

output power for desired signal, 𝜎𝑠
2 is as follows 

𝜎𝑠
2 = 𝐸[|𝑤̅𝐻𝑥̅s|

2] = 𝐸[|𝑤̅𝐻 𝑎̅0 𝑠(𝑘)|2] = 𝑤̅H ∙ 𝑅̅𝑠𝑠 ∙ 𝑤̅ 3.28 

where 𝑅̅𝑠𝑠 is the desired signal correlation matrix and 𝐸 represents the expected 

value. The 𝑅̅𝑠𝑠 does not consider the desired signal, 𝑠(𝑘), and is formulated as shown in 

equation 3.29 

𝑅̅𝑠𝑠 =  𝑎̅0 × 𝑎̅0
𝐻 3.29 

where  𝑎̅0 is the array vector for desired signal and 𝐻 represents the Hermitian 

transpose. 

The weighted array output for undesired signal, 𝜎𝑢
2, formulated as follows 

𝜎𝑢
2 = 𝐸[|𝑤̅𝐻 ∙ 𝑢̅|2] = 𝐸[|𝑤̅𝐻[𝐴̅ 𝑖(𝑘) + 𝑛(𝑘)]|2] = 𝑤̅𝐻 ∙ 𝑅̅𝑢𝑢 ∙ 𝑤̅ 3.30 

where the undesired correlation matrix, 𝑅̅𝑢𝑢 is formulated as 

𝑅̅𝑢𝑢 = 𝑅̅𝑖𝑖 + 𝑅̅𝑛𝑛 3.31 

where 𝑅̅𝑖𝑖 denotes the interference correlation matrix. The 𝑅̅𝑖𝑖 does not consider 

the interference signal, 𝑖(𝑘), and is formulated as shown in equation 3.32   
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𝑅̅𝑖𝑖 = 𝐴̅  × 𝐴̅𝐻 3.32 

where 𝐴̅ = [𝑎̅𝑚];𝑚 = 1, 2,… ,𝑀;  𝑚 ≠ 0,  represents the array vector for 

interference signal and 𝐻 represents the Hermitian transpose. 𝑅̅𝑛𝑛 is the noise correlation 

matrix is formulated as 

𝑅̅𝑛𝑛 = 𝜎𝑛
2 = 10−

𝑆𝑁𝑅
10  

3.33 

where 𝑆𝑁𝑅 represents the signal to noise ratio in dB. 

Then, the signal to interference plus noise ratio is formulated as in equation 3.34 

(Frank B. Gross, 2015). SINR is the fitness function for the adaptive beamforming 

algorithm. 

𝑆𝐼𝑁𝑅 =
𝜎𝑠

2

𝜎𝑢
2

=
𝑤̅𝐻 𝑅̅𝑠𝑠 𝑤̅

𝑤̅𝐻 𝑅̅𝑢𝑢 𝑤̅
 

3.34 

The SINR formulation (Zaharis & Yioultsis, 2011) can further be expanded to  

𝑆𝐼𝑁𝑅 =
𝜎𝑠

2

𝜎𝑢
2

=
𝑤̅𝐻 𝑎̅0  𝑎̅0

𝐻 𝑤̅

𝑤̅𝐻 𝐴̅  𝐴̅𝐻 𝑤̅ + 𝑤̅𝐻 𝜎𝑛
2 𝑤̅

 
3.35 

 

3.8 Experimental Setup 

This experiment follows the design in previously published work (Zaharis & 

Yioultsis, 2011). Linear array with 10 elements was used in the work. The type of 

elements used are isotropic with 0.5𝜆  distance between elements. The operating 

frequency is set to 2.4  GHz. Figure 3.8 shows the linear array design used in the 

experiment. Since this experiment assumes that the arriving angle is already known and 

therefore, no direction of arrival (DOA) algorithms will be used. The arriving angle for 

desired signal, 𝜃0 = 30°  and the interference signal, 𝜃𝑚 ∈

{−70°,−40°,−30°, −10°, 0°, 10°, 50°, 70° }. 
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Figure 3.8 Isotropic Linear Array Model in MATLAB 

Based on Figure 3.8, the array factor, 𝐴𝐹 is formulated as  

𝐴𝐹 = 1 + 𝑒𝑗𝜓 + e𝑗2𝜓 + 𝑒𝑗3𝜓 + 𝑒𝑗4𝜓 + 𝑒𝑗5𝜓 + 𝑒𝑗6𝜓 + 𝑒𝑗7𝜓 + 𝑒𝑗8𝜓

+ 𝑒𝑗9𝜓 

3.36 

where 𝜓 = 𝑘𝑑 sin 𝜃𝑚 + 𝛿 , the 𝑘 =
2𝜋

𝜆
 is the wavenumber, 𝑑 = 0.5𝜆 , is the 

distance between elements, 𝛿 is the phase delay and 𝜃𝑚 is the theta angle between the 𝑧-

axis and the interference angle where 𝑚 = 1, 2,… ,𝑀 and 𝑀 is the maximum number of 

interference signal. The wavelength, 𝜆 =
𝑐

𝑓
, where the speed of light, 𝑐 = 3 × 108 𝑚/𝑠 

and the antenna operating frequency, 𝑓 = 2.4𝐺𝐻𝑧.  If there is no phase difference, 𝛿 

between elements, the array vector, 𝑎̅𝑚 is represented by 

a̅𝑚 =

[
 
 
 
 
 
 
 
 
 

1
𝑒𝑗𝑘𝑑 𝑠𝑖𝑛𝜃𝑚

𝑒𝑗2𝑘𝑑 𝑠𝑖𝑛𝜃m

𝑒𝑗3𝑘𝑑 𝑠𝑖𝑛𝜃𝑚

𝑒𝑗4𝑘𝑑 𝑠𝑖𝑛𝜃𝑚

𝑒𝑗5𝑘𝑑 𝑠𝑖𝑛𝜃𝑚

𝑒𝑗6𝑘𝑑 𝑠𝑖𝑛𝜃𝑚

𝑒𝑗7𝑘𝑑 𝑠𝑖𝑛𝜃𝑚

𝑒𝑗8𝑘𝑑 𝑠𝑖𝑛𝜃𝑚

𝑒𝑗9kd𝑠𝑖𝑛𝜃𝑚]
 
 
 
 
 
 
 
 
 

 3.37 

and the interference angle, 𝜃𝑚 ∈ {−70°, −40°, −30°,−10°, 0°, 10°, 50°, 70° } . 

The array vector, 𝑎̅𝑚 can also be represented as 
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𝑎̅𝑚 =

[
 
 
 
 
 
 
 
 
 
 

𝑐𝑜𝑠 0 + 𝑗 𝑠𝑖𝑛 0
c𝑜s 𝑗𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 𝑠𝑖𝑛 𝑗𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚

𝑐𝑜𝑠 𝑗2𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 𝑠𝑖𝑛 𝑗2𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚

𝑐𝑜𝑠 𝑗3𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 𝑠𝑖𝑛 𝑗3𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚

𝑐𝑜𝑠 𝑗4𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 s𝑖𝑛 𝑗4𝑘𝑑 𝑠i𝑛 𝜃𝑚

𝑐𝑜𝑠 𝑗5𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 𝑠𝑖𝑛 𝑗5𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚

𝑐𝑜𝑠 𝑗6𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 𝑠𝑖𝑛 𝑗6𝑘𝑑 𝑠𝑖𝑛 θ𝑚

𝑐𝑜𝑠 𝑗7𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 𝑠𝑖𝑛 𝑗7𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚

𝑐𝑜𝑠 𝑗8𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 𝑠𝑖𝑛 j8𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚

𝑐𝑜𝑠 𝑗9𝑘𝑑 𝑠𝑖𝑛 𝜃𝑚 + 𝑗 𝑠𝑖𝑛 𝑗9𝑘d 𝑠𝑖𝑛 𝜃𝑚 ]
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The array vector for the desired signal, 𝑎0 for desired angle, 𝜃0 is represented as 

𝑎̅0 =

[
 
 
 
 
 
 
 
 
 
 

𝑐𝑜𝑠 0 + 𝑗 𝑠𝑖𝑛 0
𝑐𝑜𝑠 𝑗𝑘𝑑 𝑠𝑖𝑛 𝜃0 + 𝑗 𝑠𝑖𝑛 𝑗𝑘𝑑 𝑠𝑖𝑛 𝜃0

𝑐𝑜𝑠 𝑗2𝑘𝑑 𝑠𝑖𝑛 𝜃0 + 𝑗 𝑠𝑖𝑛 𝑗2𝑘𝑑 𝑠𝑖𝑛 𝜃0

𝑐𝑜𝑠 𝑗3𝑘𝑑 𝑠𝑖𝑛 𝜃0 + 𝑗 𝑠𝑖𝑛 𝑗3𝑘𝑑 𝑠𝑖𝑛 𝜃0

𝑐𝑜𝑠 𝑗4𝑘𝑑 𝑠𝑖𝑛 θ0 + 𝑗 s𝑖𝑛 𝑗4𝑘𝑑 𝑠𝑖𝑛 𝜃0

𝑐𝑜𝑠 𝑗5𝑘𝑑 𝑠𝑖𝑛 𝜃0 + 𝑗 𝑠𝑖𝑛 𝑗5𝑘𝑑 𝑠𝑖𝑛 𝜃0

𝑐𝑜𝑠 𝑗6𝑘𝑑 𝑠𝑖𝑛 𝜃0 + 𝑗 𝑠𝑖𝑛 𝑗6𝑘𝑑 𝑠𝑖𝑛 𝜃0

𝑐𝑜𝑠 𝑗7𝑘𝑑 𝑠𝑖𝑛 𝜃0 + 𝑗 𝑠𝑖𝑛 𝑗7𝑘𝑑 𝑠𝑖𝑛 𝜃0

𝑐𝑜s 𝑗8𝑘𝑑 𝑠𝑖𝑛 𝜃0 + 𝑗 𝑠𝑖𝑛 𝑗8𝑘𝑑 𝑠𝑖𝑛 𝜃0

𝑐𝑜𝑠 𝑗9𝑘𝑑 𝑠𝑖𝑛 𝜃0 + 𝑗 𝑠𝑖𝑛 𝑗9𝑘𝑑 𝑠𝑖𝑛 𝜃0]
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After that the desired signal correlation matrix, 𝑅𝑠𝑠 can be formulated based on 

array vector for desired signal, 𝑎0 

𝑅̅𝑠𝑠 =  𝑎̅0 × 𝑎̅0
𝐻 3.40 

and the interference signal correlation matrix, 𝑅𝑖𝑖 is formulated from array vector 

for undesired signal, 𝐴̅ 

𝑅̅𝑖i = 𝐴̅  ×  𝐴̅𝐻 3.41 

where 𝐴̅ = [𝑎̅𝑚] = [𝑎1 𝑎2 … 𝑎8]  and 𝑚  represents the number of 

interference signal. The noise correlation matrix, 𝑅̅𝑛𝑛, is formulated as below 

𝑅̅𝑛𝑛 = 10−
𝑆𝑁𝑅
10  

3.42 
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where the 𝑆𝑁𝑅 is the signal to noise ratio. The noise signal, 𝜎𝑛
2 is represented in 

the form of identity matrix and the size if the identity matrix, 𝑁 × 𝑁 is determined by 

number of element, 𝑁 = 10. 

𝜎𝑛
2 = 𝑅̅𝑛𝑛

[
 
 
 
 
1 0
0 1

⋯
0 0
0 0

⋮ ⋱ ⋮
0
0

0
0

⋯
1
0

0
1]
 
 
 
 

 3.43 

Each element in an array has an amplitude control and the phase control. The 

amplitude and phase control are known as weights, 𝑤̅. The weights, 𝑤̅ is formulated as 

𝑤̅ =

[
 
 
 
 
𝑤1
𝑤2

𝑤3

⋮
𝑤10]
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Then the fitness function signal to interference noise ratio (SINR) can be 

formulated as 

𝑆𝐼𝑁𝑅 =
𝑤̅𝐻 𝑎̅0  𝑎̅0

𝐻 𝑤̅

𝑤̅𝐻 𝐴̅  𝐴̅𝐻 𝑤̅ + 𝑤̅𝐻 𝜎𝑛
2 𝑤̅

 3.45 

The SKF, OBSKF and SKFMM algorithms are used to determine the best 

combination of array antenna weights that gives the maximum signal to interference plus 

noise ratio (SINR). Table 3.1 shows the parameters used for SKF, OBSKF and SKFMM.  

The dimensions used is dependent on the number elements used in an array. Since the 

number of elements used is 10, therefore, the number of dimensions is twice the number 

of elements in an array, which is 20, due to each weight of an element consists of an 

amplitude and a phase.  

The simulation is executed 100 times in order to do comparison with previously 

publish work, Adaptive Mutated Boolean Particle Swarm Optimization (AMBPSO) 

(Zaharis & Yioultsis, 2011). The comparison performed is the best, worst, mean and 

standard deviation values of SINR after 100 runs. Statistical analysis is also performed 
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using Wilcoxon Signed Ranked Test to compare between AMBPSO, SKF, OBSKF and 

SKFMM. 

Table 3.1 Parameters of SKF, OBSKF and SKFMM 

Parameters SKF OBSKF SKFMM 

Iteration 10000 10000 10000 

Agents 100 100 20 

Dimensions 20 20 20 

𝑷(𝟎) 1000 1000 1000 

𝑸 0.5 0.5 0.5 

𝑹 0.5 0.5 0.5 

Jumping Rate, 𝑱𝒓 - 0.1 - 

 

3.8.1 Application of SKF to Adaptive Beamforming 

Figure 3.9 shows the flowchart of application of SKF in adaptive beamforming. 

For adaptive beamforming using SKF method, the array weights, 𝑤̅ , are randomly 

initialized in the range of [−1,1] at the initial stage. Since the direction of arrival of the 

desired signal, 𝜃0, and the interference signal, 𝜃𝑚, is known, the desired signal correlation 

matrix, 𝑅𝑠𝑠, and the undesired signal correlation matrix, 𝑅𝑢𝑢, can be determined. After 

that, the fitness function, 𝑆𝐼𝑁𝑅, in equation 3.45 can be evaluated. The array weights 

which provide the maximum SINR value is identified as 𝑋𝑏𝑒𝑠𝑡(𝑡). The 𝑋𝑡𝑟𝑢𝑒 represents 

the best overall array weights during the iterative process. In prediction, the following 

time-update equations 

𝑤𝑖(𝑡|𝑡 + 1) = 𝑤𝑖(𝑡) 3.46 

𝑃(𝑡|𝑡 + 1) = 𝑃(𝑡) + 𝑄 3.47 

are employed to make prediction of the array weights estimates, and the error 

covariance estimates. These estimates are known as a priori estimates. The 𝑤𝑖(𝑡|𝑡 + 1) 

represents the array weights estimate and 𝑤𝑖(𝑡) represents the previous array weights 

estimate. The 𝑃(𝑡|𝑡 + 1) represents the predicted error covariance due to estimate, 𝑃(𝑡) 

represents the previous error covariance estimate, and 𝑄 represents the process noise. 

For measurement, each individual agents of array weights are simulated based on 

equation 3.48 
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𝑧𝑖(𝑡) = 𝑤𝑖(𝑡|𝑡 + 1) + 𝑠𝑖𝑛(𝑟a𝑛𝑑 × 2𝜋)  ×  |𝑤𝑖(𝑡|𝑡 + 1) − 𝑋𝑡𝑟𝑢𝑒| 3.48 

where 𝑧𝑖(𝑡) represents the value of measure position for agents of array weights, 

and 𝑤𝑖(𝑡|𝑡 + 1) represents the array weights estimates. The measurement may take any 

random value from the predicted array weights, 𝑤𝑖(𝑡|𝑡 + 1), to the true array weights, 

𝑋𝑡𝑟𝑢𝑒.  

The next step is estimation. This step computes the Kalman gain, 𝐾(𝑡)  and 

updates the error covariance estimate with the computed Kalman gain. The measure 

position with the influence of the Kalman gain, updates the array weight of each agent 

using equation 3.49. 

𝑤𝑖(𝑡 + 1) =  𝑤i(𝑡|𝑡 + 1) + 𝐾(𝑡) × (𝑧𝑖(𝑡) − 𝑤𝑖(𝑡|𝑡 + 1)) 3.49 
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Figure 3.9 Flowchart of SKF for Adaptive Beamforming 

 

3.8.2 Application of OBSKF to Adaptive Beamforming 

Figure 3.10 shows the flowchart of application of SKF in adaptive beamforming. 

First, the array weights, 𝑤̅, are randomly initialized in the range of [−1,1] at the initial 

stage. Since the direction of arrival of the desired signal, 𝜃0, and the interference signal, 

𝜃𝑚 , is known, the desired signal correlation matrix, 𝑅𝑠𝑠 , and the undesired signal 

correlation matrix, 𝑅𝑢𝑢 , can be determined. After that, the fitness function, 𝑆𝐼𝑁𝑅, in 

equation 3.45 can be evaluated. Then, the best weight identified as 𝑋𝑏𝑒𝑠𝑡(𝑡) and 𝑋𝑡𝑟𝑢𝑒 is 

identified as best overall weight. Then, the predict-measure-estimate steps is performed. 
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The Opposition-Based Learning technique is then applied to generate opposite 

weight, 𝑤_𝑜𝑏, from current weight, 𝑤. The SINR fitness obtained from the opposite 

weight, 𝑆𝐼𝑁𝑅(𝑤_𝑜𝑏) , is compared with the SINR fitness of the current weight, 

𝑆𝐼𝑁𝑅(𝑤). If the SINR obtained using the opposite weight, 𝑆𝐼𝑁𝑅(𝑤_𝑜𝑏), is better than 

the SINR obtained using the current weight, 𝑆𝐼𝑁𝑅(𝑤), then the current weight, 𝑤, will 

be replaced by the opposite weight, 𝑤_𝑜𝑏. If the opposite weight, 𝑆𝐼𝑁𝑅(𝑤_𝑜𝑏), is worse 

than the SINR obtained using the current weight, 𝑆𝐼𝑁𝑅(𝑤), then the current weight, 𝑤, 

remains unchanged. 

The execution of the OBL technique is controlled by the jumping rate, 𝐽𝑟 ∈ [0,1]. 

The value of the jumping rate, 𝐽𝑟, is set to 0.1 as shown in Table 3.1. The opposite weight, 

𝑤_𝑜𝑏 , is calculated using dynamically updated interval boundaries [𝑎𝑗(𝑡), 𝑏𝑗(𝑡)]  as 

follows 

𝑤_𝑜𝑏𝑖,𝑗 = [𝑎𝑗(t) + 𝑏𝑗(t)] − 𝑤𝑖,𝑗 , 

 

𝑎𝑗(𝑡) = min(𝑤𝑖,𝑗(𝑡)),     𝑏𝑗 = max (𝑤𝑖,𝑗(𝑡)) 

 

𝑖 = 1,2,…𝑁;     𝑗 = 1,2,…𝐷 

3.50 

where 𝑤𝑖,𝑗  represents the current weight, and 𝑤_𝑜𝑏𝑖,𝑗  represents the opposite 

weight. The 𝑎𝑗(𝑡) and 𝑏𝑗(𝑡) are the lowest and the highest values of the 𝑗th dimension in 

the current population, respectively. The 𝑁 represents the maximum number of agents 

and the 𝐷 represents the maximum number of dimensions. The 𝑡 represents the iteration 

number. 
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Figure 3.10 Flowchart of OBSKF for Adaptive Beamforming 
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3.8.3 Application of SKFMM to Adaptive Beamforming 

Figure 3.11 shows the flowchart of application of Simulated Kalman Filter with 

Modified Measurement (SKFMM) in adaptive beamforming. First, the array weights, 𝑤̅, 

are randomly initialized in the range of [−1,1] at the initial stage. Since the direction of 

arrival of the desired signal, 𝜃0, and the interference signal, 𝜃𝑚, is known, the desired 

signal correlation matrix, 𝑅𝑠𝑠, and the undesired signal correlation matrix, 𝑅𝑢𝑢, can be 

determined. Then, the fitness function, 𝑆𝐼𝑁𝑅, in equation 3.45 can be evaluated. After 

that, the 𝑋𝑝𝑏𝑒𝑠𝑡(𝑡) is determined. The 𝑋𝑝𝑏𝑒𝑠𝑡(𝑡) represents the best-so-far weights for 

every agent. The best weight is identified as 𝑋𝑏𝑒𝑠𝑡(𝑡) and 𝑋𝑡𝑟𝑢𝑒  is identified as best 

overall weight.  

For SKFMM, the prediction step remains unchanged and follows exactly as in 

SKF and OBSKF. In SKFMM, only the measurement step is modified, to increase the 

exploration capabilities of Simulated Kalman Filter (SKF). The modified measurement 

update, 𝑍𝑚𝑚𝑖
(𝑡), is as shown below 

𝑍𝑚𝑚𝑖
(𝑡) = 𝑤𝑖(𝑡|𝑡 + 1) + sin(𝑟a𝑛𝑑 × 2𝜋)  ×  |𝑤𝑖(𝑡|𝑡 + 1) − 𝑋𝑡𝑟𝑢𝑒|

+ sin(𝑟𝑎𝑛𝑑 × 2𝜋) × |𝑋𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑤𝑖(𝑡|𝑡 + 1)| 3.51 

where 𝑤𝑖(𝑡|𝑡 + 1)  represents the array weights estimate. After measurement 

update, the weights of the array will be update in the estimation process. 
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Figure 3.11 Flowchart of SKFMM for Adaptive Beamforming 

 

3.9 Summary 

This chapter introduced the basic concept of the Kalman Filter. Three 

optimization algorithms named Simulated Kalman Filter (SKF), Opposition-Based 

Simulated Kalman Filter (OBSKF), and the Simulated Kalman Filter with Modified 

Measurement (SKFMM) are introduced. The array system model and the formulation of 

fitness function is also explained.   
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CHAPTER 4 

 

 

RESULT & DISCUSSION  

4.1 Introduction 

This chapter presents the results produced by Simulated Kalman Filter (SKF), 

Opposition-Based SKF (OBSKF) and SKF with Modified Measurement (SKFMM). The 

results are compared with previously published work, Adaptive Mutated Boolean Particle 

Swarm Optimization (AMBPSO) (Zaharis & Yioultsis, 2011). The work published by 

Zaharis and Yioultsis provides extensive analysis of statistical results and the 

experimental results show that AMBPSO have stable and good performance regardless 

of the signal to noise ratio (SNR) inputs, therefore, AMBPSO is a good algorithm for 

comparison with SKF algorithms for adaptive beamforming application. Furthermore, 

the experimental setup used by Zaharis and Yioultsis is easy to to replicate and is useful 

for comparison. 

4.2 Radiation Pattern 

This subsection will introduce to the comparison of radiation pattern for 

AMBPSO (Zaharis & Yioultsis, 2011), SKF, OBSKF and SKFMM. Three criteria of the 

radiation pattern are compared; the null depth, the main beam accuracy and the maximum 

sidelobe level. The comparison is made for three different values of signal to noise, SNR.  

For best performance, it is desirable have a much deeper null depth, minimal error 

between the main beam angle and the actual desired signal angle, and have a much lower 

maximum side lobe level. The results are chosen based on the best SINR value after 

several runs.  
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4.2.1 Signal to Noise Ratio, 𝑺𝑵𝑹 = 𝟏𝟓𝒅𝑩 

Figure 4.1 shows the radiation pattern for AMBPSO (red), SKF (pink), OBSKF 

(blue) and SKFMM (green) for signal to noise, SNR, input of 15 𝑑𝐵. 

 

Figure 4.1 Radiation Pattern for 𝑆𝑁𝑅 = 15𝑑𝐵 

From Figure 4.1, the null depth, main beam accuracy and the maximum side lobe 

level for AMBPSO, SKF, OBSKF and SKFMM for interference signal, 𝜃𝑚 ∈

{−70°,−40°,−30°, −10°, 0°, 10°, 50°, 70° }  at 𝑆𝑁𝑅 = 15𝑑𝐵 ,  are tabulated in Table 

4.1, Table 4.2 and Table 4.3 respectively.  

Table 4.1 Null Depth (dB) for 𝑆𝑁𝑅 = 15𝑑𝐵  

Null Depth (dB) 
Interference Signal Angle (°) 

−70° −40° −30° −10° 0° 10° 50° 70° 

AMBPSO -58.67 -41.82 -51.88 -54.56 -41.79 -42.41 -41.28 -41.12 

SKF -74.03 -74.76 -78.84 -63.9 -62.19 -60.39 -63.87 -74.77 

OBSKF -67.91 -75.95 -69.88 -63.58 -63.21 -62.04 -62.85 -75.61 

SKFMM -71.39 -80.1 -74.96 -65.14 -62.4 -60.38 -64.66 -80.06 

Table 4.1 shows comparison of null depth at the interference angle. The 

highlighted box represents the best null depth produced by the algorithms. All three SKF 

algorithms, SKF, OBSKF and SKFMM, can produce much deeper nulls compare to 

AMBPSO for adaptive beamforming application. SKFMM produce deeper nulls at 
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interference angle, 𝜃𝑚 = [−40°,−10°, 0°, 50°, 70°]  compared to SKF which produce 

deeper nulls at interference angle, 𝜃𝑚 = [− 70°, −30°, 10°]. SKFMM produce deeper 

nulls at interference angle, 𝜃𝑚 = [−70°,−40°,−30°,−10°, 50°, 70°]  compared to 

OBSKF which produce deeper nulls at interference angle, 𝜃𝑚 = [0°, 10°] . Overall, 

SKFMM mostly able to produce much deeper nulls compared to SKF and OBSKF.  

Table 4.2 Accuracy of the Main Beam for 𝑆𝑁𝑅 = 15𝑑𝐵 

Algorithm Main Beam Angle (°) 
AMBPSO 29° 

SKF 31° 
OBSKF 31° 
SKFMM 31° 

Table 4.2 shows the accuracy of the main beam radiating towards the desired 

signal angle, 𝜃0 = 30°, for 𝑆𝑁𝑅 = 15𝑑𝐵. AMBPSO, SKF, OBSKF, and SKFMM able 

to produce a radiation pattern with the main lobe very close to the desired signal angle. 

The main beam is only off by 1°. 

Table 4.3 Maximum Sidelobe Level for 𝑆𝑁𝑅 = 15𝑑𝐵 

Algorithm Maximum Sidelobe Level (dB) 

AMBPSO -21.66 

SKF -15.58 

OBSKF -13.42 

SKFMM -14.89 

Table 4.3 shows the maximum sidelobe level for AMBPSO, SKF, OBSKF, and 

SKFMM for 𝑆𝑁𝑅 = 15𝑑𝐵 . From Table 4.3, the previously published algorithm, 

AMBPSO, can produce much lower maximum side lobe level compared to SKF, OBSKF 

and SKFMM. SKF comes in second best, SKFMM comes in third and OBSKF is the 

worst among the 4 algorithms. 

4.2.2 Signal to Noise Ratio, 𝑺𝑵𝑹 = 𝟑𝟎𝒅𝑩 

Figure 4.2 shows the radiation pattern for AMBPSO (red), SKF (pink), OBSKF 

(blue) and SKFMM (green) for signal to noise, SNR, input of 30 𝑑𝐵. 
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Figure 4.2 Radiation Pattern for 𝑆𝑁𝑅 = 30𝑑𝐵 

From Figure 4.2, the null depth, main beam accuracy and the maximum side lobe 

level for AMBPSO, SKF, OBSKF and SKFMM for interference signal, 𝜃𝑚 ∈

{−70°,−40°,−30°, −10°, 0°, 10°, 50°, 70° }  at 𝑆𝑁𝑅 = 30𝑑𝐵 ,  are tabulated in Table 

4.4, Table 4.5 and Table 4.6 respectively. 

Table 4.4 Null Depth (dB) for 𝑆𝑁𝑅 = 30𝑑𝐵 

Null Depth (dB) 
Interference Angle (°) 

−70° −40° −30° −10° 0° 10° 50° 70° 

AMBPSO -75.22 -76.25 -79.14 -94.66 -69.09 -69.84 -75.13 -83.36 

SKF -87.57 -86.4 -90.57 -103.3 -89.27 -85.72 -86.67 -88.43 

OBSKF -92.78 -93.16 -92.03 -89.38 -88.67 -88.97 -85.24 -89.75 

SKFMM -97.67 -93.89 -96.33 -92.35 -89.57 -87.99 -86.2 -90.94 

Table 4.4 shows the comparison of null depth at the interference angle. The 

highlighted box represents the best null depth obtained by the algorithms. Again, all three 

SKF algorithms, SKF, OBSKF and SKFMM, can produce much deeper nulls compared 

to the previously published algorithm, AMBPSO for adaptive beamforming application. 

SKFMM produce deeper nulls at interference angle, 𝜃𝑚 = [−70°,−40°,−30°, 0°, 10°,

70°]  compared to SKF which produce deeper nulls at interference angle, 𝜃𝑚 =

[− 10°, 50°] . SKFMM produce deeper nulls at interference angle, 𝜃𝑚 =

[−70°,−40°,−30°,−10°, 0°, 50°, 70°]  compared to OBSKF which produce deeper 
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nulls at interference angle, 𝜃𝑚 = 10°. SKFMM is shown to produce the most deep nulls 

compared to SKF and OBSKF. 

Table 4.5 Accuracy of Main Beam for 𝑆𝑁𝑅 = 30𝑑𝐵 

Algorithm Main Beam Angle (°) 
AMBPSO 27° 

SKF 31° 
OBSKF 32° 
SKFMM 31° 

Table 4.5 shows the accuracy of the main beam radiating towards the desired 

signal angle, 𝜃0 = 30°, for 𝑆𝑁𝑅 = 30𝑑𝐵. AMBPSO performs the worse compared to 

SKF, OBSKF and SKFMM with the main beam angle off by 3°. OBSKF main beam 

angle is off by 2°. The main beam angle for both SKF and OBSKF is off by 1°. 

Table 4.6 Maximum Sidelobe Level for 𝑆𝑁𝑅 = 30𝑑𝐵 

Algorithm Maximum Sidelobe Level (dB) 

AMBPSO -22.25 

SKF -10.21 

OBSKF -11.05 

SKFMM -15.18 

Table 4.6 shows the maximum sidelobe level for AMBPSO, SKF, OBSKF, and 

SKFMM for 𝑆𝑁𝑅 = 30𝑑𝐵 . From Table 4.6, the previously published algorithm, 

AMBPSO, can produce much lower maximum side lobe level compared to SKF, OBSKF 

and SKFMM. SKFMM comes in second, followed by OBSKF and then SKF. 

4.2.3 Signal to Noise Ratio, 𝑺𝑵𝑹 = 𝟓𝟎𝒅𝑩 

Figure 4.3 shows the radiation pattern for AMBPSO (red), SKF (pink), OBSKF 

(blue) and SKFMM (green) for signal to noise, SNR, input of 50 𝑑𝐵. 
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Figure 4.3 Radiation Pattern for 𝑆𝑁𝑅 = 50𝑑𝐵 

From Figure 4.3, the null depth, main beam accuracy and the maximum side lobe 

level for AMBPSO, SKF, OBSKF and SKFMM for interference signal, 𝜃𝑚 ∈

{−70°,−40°,−30°, −10°, 0°, 10°, 50°, 70° }  at 𝑆𝑁𝑅 = 50𝑑𝐵 , are tabulated in Table 

4.7, Table 4.8 and Table 4.9 respectively. 

Table 4.7 Null Depth (dB) for 𝑆𝑁𝑅 = 50𝑑𝐵  

Null Depth (dB) 
Interference Angle (°) 

−70° −40° −30° −10° 0° 10° 50° 70° 

AMBPSO -86.55 -77.81 -73.37 -72.66 -85.97 -65.94 -84.05 -84.53 

SKF -95.75 -92.66 -96.09 -103.9 -92.52 -95.82 -86.6 -90.93 

OBSKF -94.72 -93.16 -95.45 -102.5 -92.54 -96.41 -86.37 -90.53 

SKFMM -97.09 -95.94 -99.68 -101.3 -92.49 -97.49 -88.05 -91.74 

Table 4.7 shows the comparison of null depth at the interference angle. The 

highlighted box represents the best null depth obtained by the algorithms. Again, all three 

SKF algorithms, SKF, OBSKF and SKFMM, can produce deeper nulls compared to 

AMBPSO for adaptive beamforming application. SKFMM produce deeper nulls at 

interference angle, 𝜃𝑚 = [−70°,−40°,−30°, 10°, 50°, 70°]  compared to SKF and 

OBSKF which produce deeper nulls at interference angle, 𝜃𝑚 = [− 10°, 0°]. Once again, 

SKFMM is shown to be superior in producing deeper nulls compared to SKF and 

OBSKF. 
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Table 4.8 Accuracy of Main Beam for 𝑆𝑁𝑅 = 50𝑑𝐵 

Algorithm Main Beam Angle (°) 
AMBPSO 28° 

SKF 31° 
OBSKF 31° 
SKFMM 30° 

Table 4.8 shows the accuracy of the main beam radiating towards the desired 

signal angle, 𝜃0 = 30°, for 𝑆𝑁𝑅 = 50𝑑𝐵. AMBPSO performs worse compared SKF, 

OBSKF and SKFMM with the main beam angle off by 2°. The main beam angle for both 

SKF and OBSKF is off by 1°. SKFMM, however, produces a main beam accurately 

towards the desired angle at 30°. 

Table 4.9 Maximum Sidelobe Level for 𝑆𝑁𝑅 = 50𝑑𝐵 

Algorithm Maximum Sidelobe Level (dB) 

AMBPSO -24.29 

SKF -14.40 

OBSKF -13.68 

SKFMM -18.27 

Table 4.9 shows the maximum sidelobe level for AMBPSO, SKF, OBSKF, and 

SKFMM for 𝑆𝑁𝑅 = 50𝑑𝐵. Yet again, AMBPSO, produce much lower maximum side 

lobe level SKF, OBSKF and SKFMM. SKFMM comes in second and followed by SKF 

and then OBSKF. 

4.3 Convergence Curve 

This subsection presents the convergence curve comparison between SKF, 

OBSKF and SKFMM for 𝑆𝑁𝑅(𝑑𝐵) = {15, 30, 50}. The convergence curve obtained is 

based on the radiation pattern shown in sub-chapter 4.2.  

4.3.1 Signal to Noise Ratio, 𝑺𝑵𝑹 = 𝟏𝟓𝒅𝑩 

Figure 4.4 shows the convergence curve for SKF, OBSKF and SKFMM for 

𝑆𝑁𝑅 = 15𝑑𝐵. 
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Figure 4.4 Convergence Curve for 𝑆𝑁𝑅 = 15𝑑𝐵 

From Figure 4.4, SKFMM is shown to produce much higher SINR value, 

followed by OBSKF and then SKF. OBSKF shows faster convergence for the first 800 

iterations compared to SKFMM and SKF. After 800 iterations, OBSKF begins to 

converge slowly to the maximum value but not enough to get a higher SINR value than 

SKFMM after 10000 iterations. SKFMM, however, can converge to the maximum value 

within 1000 iterations. SKF, on the other hand, showed slow convergence and can’t to 

reach its maximum value. The maximum SINR value after 10000 iterations for SKF, 

OBSKF and SKFMM at 𝑆𝑁𝑅 = 15𝑑𝐵 are recorded in Table 4.10. 

Table 4.10 Maximum SINR Value After 10000 Iteration for 𝑆𝑁𝑅 = 15𝑑𝐵 

Algorithm Maximum SINR Value (dB) 

SKF 24.04 

OBSKF 24.19 

SKFMM 24.33 

From Table 4.10, SKFMM produce much higher SINR value after 10000 

iterations compared to OBSKF and SKF. OBSKF produced the second highest SINR 

value and then followed by SKF. 
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4.3.2 Signal to Noise Ratio, 𝑺𝑵𝑹 = 𝟑𝟎𝒅𝑩 

Figure 4.5 shows the convergence curve for SKF, OBSKF and SKFMM for 

𝑆𝑁𝑅 = 30𝑑𝐵.  

 

Figure 4.5 Convergence Curve for 𝑆𝑁𝑅 = 30𝑑𝐵 

From Figure 4.5, SKFMM, again, is shown to produce much higher SINR value, 

followed by OBSKF and then, SKF. SKF and OBSKF is shown to converge faster and 

then, stagnate at local optimum. SKFMM takes more iteration before reaching its 

maximum SINR value. All these algorithms converge within 2000 iterations. Table 4.11 

shows the maximum SINR value reached after 10000 iterations for 𝑆𝑁𝑅 = 30𝑑𝐵. 

Table 4.11 Maximum SINR Value After 10000 Iteration for 𝑆𝑁𝑅 = 30𝑑𝐵 

Algorithm Maximum SINR Value (dB) 

SKF 39.00 

OBSKF 39.23 

SKFMM 39.35 

From Table 4.11, the SKFMM algorithm can produce much higher SINR values 

compared to OBSKF and SKF algorithms at 𝑆𝑁𝑅 = 30𝑑𝐵. OBSKF algorithm produces 

second highest SINR values and followed by SKF algorithm. 
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4.3.3 Signal to Noise Ratio, 𝑺𝑵𝑹 = 𝟓𝟎𝒅𝑩 

Figure 4.6 shows the convergence curve for SKF, OBSKF and SKFMM for 

𝑆𝑁𝑅 = 50𝑑𝐵. 

 

Figure 4.6 Convergence Curve for 𝑆𝑁𝑅 = 50𝑑𝐵 

From Figure 4.6, SKFMM algorithm is shown to converge faster than SKF and 

OBSKF. SKFMM converges within 2000 iterations, SKF converges after 2000 iterations 

and OBSKF converge to maximum after 3000 iterations. Both SKFMM and OBSKF 

produces a maximum value very close to each after 10000 iterations. Table 4.12 shows 

the maximum SINR value reached after 10000 iterations for 𝑆𝑁𝑅 = 50𝑑𝐵. 

Table 4.12 Maximum SINR Value After 10000 Iteration for 𝑆𝑁𝑅 = 50𝑑𝐵 

Algorithm Maximum SINR Value (dB) 

SKF 59.07 

OBSKF 59.30 

SKFMM 59.33 

From Table 4.12, SKFMM once again produce higher SINR value compared to 

SKF and OBSKF. However, the difference between the maximum SINR value for 

OBSKF and SKFMM is very small. 
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4.4 Statistical Results 

The experiment is repeated 100 times for 𝑆𝑁𝑅(𝑑𝐵)  =

 {−20°, −15°,−10°, −5°, 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°} . 

After 100 runs, the best SINR values, worst SINR values, mean SINR values and the 

standard deviation values are recorded. Then statistical analysis is performed using 

Wilcoxon Signed Ranked Test. 

4.4.1 AMBPSO vs SKF 

Table 4.13 shows the best, worst, mean and standard deviation (STD) of 

SINR(dB) values after the experiment is repeated 100 times. Comparison is made 

between AMBPSO and SKF for various SNR(dB) input values. 

Table 4.13 Best, Worst, Mean and Standard Deviation(STD) of SINR(dB) for 

AMBPSO vs SKF 

SNR 

(dB) 

AMBPSO SKF 

Best Worst Mean STD Best Worst Mean STD 

-20 -10.0522 -10.0548 -10.0523 0.0004 -10.0522 -10.0549 -10.0523 0.0004 

-15 -5.1395 -5.1512 -5.1399 0.0020 -5.1395 -5.1464 -5.1398 0.0011 

-10 -0.2975 -0.3692 -0.2998 0.0098 -0.2975 -0.3028 -0.2977 0.0007 

-5 4.5321 4.3422 4.5269 0.0218 4.5321 4.3828 4.5295 0.0175 

0 9.4241 8.5481 9.3749 0.1643 9.4241 9.3237 9.4208 0.0142 

5 14.3768 12.0647 14.2676 0.3628 14.3768 14.1437 14.3631 0.0306 

10 19.3598 15.1371 19.2810 0.4463 19.3590 18.8208 19.2736 0.0954 

15 24.3542 16.5370 24.1008 1.0643 24.3535 23.0034 24.1049 0.2935 

20 29.3509 17.2416 29.0332 1.2290 29.3469 28.0453 29.0012 0.3236 

25 34.3515 22.4314 33.6680 1.4163 34.3504 32.7718 33.9332 0.3790 

30 39.3341 30.2715 38.7648 0.8722 39.3477 37.5436 38.9249 0.3946 

35 44.3440 32.6393 43.1564 1.5287 44.3510 41.8109 43.9153 0.4384 

40 49.3461 36.6898 48.1781 1.2409 49.3456 46.3051 48.9181 0.4529 

45 54.3358 43.2386 52.5134 1.5788 54.3504 51.9201 53.8808 0.4746 

50 59.3317 47.6499 58.3221 1.7439 59.3355 55.8211 58.8351 0.6189 

55 64.3458 52.7630 63.0660 1.6119 64.3468 62.0234 63.8755 0.5364 

60 69.3468 56.3379 67.5858 1.8369 69.3396 67.7525 68.9202 0.4239 

                  

              Neutral   

              Good   

              Bad   

From Table 4.13, the best SINR values for both AMBPSO and SKF is the same 

for 𝑆𝑁𝑅(𝑑𝐵) = [−20,−15, −10,−5, 0, 5]. AMBPSO can get better maximum SINR 

values for input 𝑆𝑁𝑅(𝑑𝐵) = [10, 15, 20, 25, 40, 60] and SKF produce best SINR values 

at 𝑆𝑁𝑅(𝑑𝐵) = [30, 35, 45, 50, 55]. On the other hand, AMBPSO produces the lowest 
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worst SINR values compared to SKF’s worst SINR for almost all the SNR values except 

for 𝑆𝑁𝑅 = −20𝑑𝐵. Since the worst SINR values for SKF is higher than the worst SINR 

values of AMBPSO, SKF can produce much higher SINR mean values for almost all the 

SINR input except for 𝑆𝑁𝑅(𝑑𝐵) =  [10, 20] and for 𝑆𝑁𝑅(𝑑𝐵) = −20, the 𝑆𝐼𝑁𝑅(𝑑𝐵) 

value is the same for both AMBPSO and SKF. Based on the standard deviation (STD) 

values for both AMBPSO and SKF, SKF produces much lower STD values compared to 

AMBPSO. This proves that the SINR values produced by SKF is much more consistent 

and does not fluctuate a lot compared to AMBPSO. The consistency of SKF in producing 

high mean SINR values and high values for worst SINR can lead to higher mean SINR 

values. 

Based on the mean results for both AMBPSO and SKF from Table 4.13, 

Wilcoxon Signed Ranked Test statistical analysis is performed. Wilcoxon Signed Rank 

Test calculates the sum of ranks where the first algorithm outperforms the second, 𝑅+ 

and the sum of ranks where the second algorithm outperforms the second, 𝑅−. Table 4.14 

shows the sum of ranks where AMBPSO outperforms SKF, 𝑅+, and sum of ranks where 

SKF outperforms AMBPSO, 𝑅−. 

Table 4.14 Sum of Ranks for AMBPSO vs SKF 

AMBPSO vs SKF Sum of Ranks 

AMBPSO Outperforms SKF, 𝑅+ 14 

SKF Outperforms AMBPSO, 𝑅− 139 

After the sum of ranks are obtained, the test statistic, 𝑇 is chosen. The test statistic, 

𝑇 value is determined from the smallest value between 𝑅+ and 𝑅− as shown in equation 

4.1. 

𝑇 = 𝑚𝑖𝑛 (𝑅+, 𝑅−) 4.1 

The null hypothesis, 𝐻0 states that the algorithms compared are equals with no 

significant difference and 𝐻1 states that the algorithms compared are not equals and have 

significant difference. In Wilcoxon signed ranked test, the null hypothesis, 𝐻0, is rejected 

when the test statistic, 𝑇, is less than the critical value, 𝑇0. By referring Appendix A, at 

𝛼 = 0.05 and number of test inputs, 𝑛 = 17, the critical value, 𝑇0 = 35. Since, the test 

statistic, 𝑇 = 14 and is less than the critical value, 𝑇0, therefore, the null hypothesis can 

be rejected and there is significant difference between SKF and AMBPSO. 
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4.4.2 AMBPSO vs OBSKF 

Table 4.15 shows the best, worst, mean and standard deviation (STD) of 

SINR(dB) values after the experiment is repeated 100 times. Comparison is made 

between AMBPSO and OBSKF for various SNR(dB) input values. 

Table 4.15 Best, Worst, Mean and Standard Deviation(STD) of SINR(dB) for 

AMBPSO vs OBSKF 

SNR 

(dB) 
AMBPSO OBSKF 

Best Worst Mean STD Best Worst Mean STD 

-20 -10.0522 -10.0548 -10.0523 0.0004 -10.0522 -10.0522 -10.0522 1.39E-07 

-15 -5.1395 -5.1512 -5.1399 0.0020 -5.1395 -5.1397 -5.1395 2.29E-05 

-10 -0.2975 -0.3692 -0.2998 0.0098 -0.2975 -0.2975 -0.2975 2.20E-07 

-5 4.5321 4.3422 4.5269 0.0218 4.5321 4.5316 4.5321 4.33E-05 

0 9.4241 8.5481 9.3749 0.1643 9.4241 9.4177 9.4240 0.0007 

5 14.3768 12.0647 14.2676 0.3628 14.3768 14.2131 14.3677 0.0245 

10 19.3598 15.1371 19.2810 0.4463 19.3564 18.8957 19.2854 0.0823 

15 24.3542 16.5370 24.1008 1.0643 24.3538 23.5108 24.1784 0.1529 

20 29.3509 17.2416 29.0332 1.2290 29.3438 27.1338 28.9768 0.4337 

25 34.3515 22.4314 33.6680 1.4163 34.3491 31.5473 33.9442 0.3964 

30 39.3341 30.2715 38.7648 0.8722 39.3467 37.3418 38.9474 0.3955 

35 44.3440 32.6393 43.1564 1.5287 44.3499 41.7999 43.8989 0.4392 

40 49.3461 36.6898 48.1781 1.2409 49.3341 47.0214 48.9543 0.3544 

45 54.3358 43.2386 52.5134 1.5788 54.3425 52.6826 53.9350 0.3521 

50 59.3317 47.6499 58.3221 1.7439 59.3478 56.6860 58.8876 0.4814 

55 64.3458 52.7630 63.0660 1.6119 64.3424 61.9313 63.9258 0.4389 

60 69.3468 56.3379 67.5858 1.8369 69.3464 66.8448 68.8720 0.5243 

                  

              Neutral   

              Good   

              Bad   

Based on Table 4.15, the best SINR values for both AMBPSO and OBSKF is the 

same for 𝑆𝑁𝑅(𝑑𝐵) = [−20,−15,−10,−5, 0, 5]. AMBPSO has better maximum SINR 

values for input 𝑆𝑁𝑅(𝑑𝐵) = [10, 15, 20, 25, 40, 55, 60] and OBSKF produce maximum 

best SINR values at 𝑆𝑁𝑅(𝑑𝐵) = [30, 35, 45, 50]. This shows that AMBPSO can mostly 

get better maximum SINR values compared to OBSKF. On the other hand, AMBPSO 

produces the lowest worst SINR values compared to OBSKF’s worst SINR values for all 

the SNR input values. OBSKF produces higher mean SINR values for all the SNR input 

compared to AMBPSO. Based on the standard deviation (STD) values for both AMBPSO 

and OBSKF, OBSKF produces much lower STD values compared to AMBPSO. This 

proves that the SINR values produced by OBSKF is much more stable and does not 

fluctuate a lot compared to AMBPSO.  
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Based on the mean results for both AMBPSO and OBSKF from Table 4.15, 

Wilcoxon Signed Ranked test statistical analysis is performed. Wilcoxon Signed Rank 

test calculates the sum of ranks where the first algorithm outperforms the second, 𝑅+ and 

the sum of ranks where the second algorithm outperforms the second, 𝑅−. Table 4.16 

shows that the sum of ranks where AMBPSO outperforms OBSKF, 𝑅+ and sum of ranks 

where OBSKF outperforms AMBPSO, 𝑅−. 

Table 4.16 Sum of Ranks for AMBPSO vs OBSKF 

AMBPSO vs OBSKF Sum of Ranks 

AMBPSO Outperform OBSKF, 𝑅+ 7 

OBSKF Outperform AMBPSO, 𝑅− 146 

After the sum of ranks are obtained, the test statistic, 𝑇 is chosen. The test statistic, 

𝑇 value is the smallest value between 𝑅+ and 𝑅− as shown in equation 4.1. The null 

hypothesis states that the algorithms compared are equals with no significant difference. 

In Wilcoxon signed ranked test, the null hypothesis is rejected when the test statistic, 𝑇 

is less than the critical value, 𝑇0. By referring Appendix A, at 𝛼 = 0.05 and number of 

test inputs, 𝑛 = 17, the critical value, 𝑇0 = 35. Since, the test statistic, 𝑇 =  7 and is less 

than the critical value, 𝑇0, therefore, the null hypothesis can be rejected and there is 

significant difference between OBSKF and AMBPSO. 

4.4.3 AMBPSO vs SKFMM 

Table 4.17 shows the best, worst, mean and standard deviation (STD) of 

SINR(dB) values after the experiment is repeated 100 times. Comparison is made 

between AMBPSO and SKF for various SNR(dB) input values. 
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Table 4.17 Best, Worst, Mean and Standard Deviation(STD) of SINR(dB) for 

AMBPSO vs SKFMM 

SNR 

(dB) 

AMBPSO SKFMM 

Best Worst Mean STD Best Worst Mean STD 

-20 -10.0522 -10.0548 -10.0523 0.0004 -10.0522 -10.0522 -10.0522 1.50E-14 

-15 -5.1395 -5.1512 -5.1399 0.0020 -5.1395 -5.1395 -5.1395 6.15E-15 

-10 -0.2975 -0.3692 -0.2998 0.0098 -0.2975 -0.2975 -0.2975 5.04E-16 

-5 4.5321 4.3422 4.5269 0.0218 4.5321 4.5321 4.5321 7.90E-14 

0 9.4241 8.5481 9.3749 0.1643 9.4241 9.4241 9.4241 2.12E-06 

5 14.3768 12.0647 14.2676 0.3628 14.3768 14.3601 14.3724 0.0039 

10 19.3598 15.1371 19.2810 0.4463 19.3592 19.0344 19.2735 0.0781 

15 24.3542 16.5370 24.1008 1.0643 24.3515 23.5126 24.1363 0.1903 

20 29.3509 17.2416 29.0332 1.2290 29.3507 27.3467 29.0632 0.3056 

25 34.3515 22.4314 33.6680 1.4163 34.3434 32.8106 33.9984 0.3204 

30 39.3341 30.2715 38.7648 0.8722 39.3473 37.5921 39.0208 0.3171 

35 44.3440 32.6393 43.1564 1.5287 44.3484 42.2910 43.9895 0.4356 

40 49.3461 36.6898 48.1781 1.2409 49.3502 48.0500 49.0078 0.3099 

45 54.3358 43.2386 52.5134 1.5788 54.3408 52.7866 54.0659 0.3231 

50 59.3317 47.6499 58.3221 1.7439 59.3485 56.9759 59.0361 0.3208 

55 64.3458 52.7630 63.0660 1.6119 64.3512 62.4793 63.9707 0.3903 

60 69.3468 56.3379 67.5858 1.8369 69.3466 66.8526 69.0277 0.3680 

                  

              Neutral   

              Good   

              Bad   

Based on Table 4.17, the best SINR values for both AMBPSO and SKFMM is 

the same for 𝑆𝑁𝑅(𝑑𝐵) = [−20, −15,−10, −5, 0, 5] . AMBPSO has the best SINR 

values for input 𝑆𝑁𝑅(𝑑𝐵) = [10, 15, 20, 25,60] and SKFMM produce best SINR values 

at 𝑆𝑁𝑅(𝑑𝐵) = [30, 35, 40, 45, 50, 55, ]. For the worst SINR values, AMBPSO produces 

much lower worst SINR values compared SKFMM algorithm. The high values for worst 

SINR leads to much higher values for mean SINR. Moreover, the difference between best 

SINR and worst SINR for AMBPSO is much larger compared to SKFMM. This proves 

that SKFMM is more consistent than AMBPSO. The consistency of SKFMM can be 

further proven with standard deviation (STD) value obtained. The standard deviation of 

SKFMM is much lower than the standard deviation for AMBPSO, proves that SKFMM 

can produce much more consistent high SINR values than AMBPSO.  

Based on the mean results for both AMBPSO and SKFMM from Table 4.17, 

Wilcoxon Signed Ranked test statistical analysis is performed. Wilcoxon Signed Rank 

test calculates the sum of ranks where the first algorithm outperforms the second, 𝑅+ and 

the sum of ranks where the second algorithm outperforms the second, 𝑅−. Table 4.19 
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shows that the sum of ranks where AMBPSO outperforms SKFMM, 𝑅+ and sum of ranks 

where SKFMM outperforms AMBPSO, 𝑅−. 

Table 4.18 Sum of Ranks for AMBPSO vs SKFMM 

AMBSPO vs SKFMM Sum of Ranks 

AMBPSO Outperform SKFMM, 𝑅+ 5 

SKFMM Outperform AMBPSO, 𝑅− 148 

After the sum of ranks are obtained, the test statistic, 𝑇 is chosen. The test statistic, 

𝑇 value is the smallest value between 𝑅+ and 𝑅− as shown in equation 4.1. The null 

hypothesis states that the algorithms compared are equals with no significant difference. 

In Wilcoxon signed ranked test, the null hypothesis is rejected when the test statistic, 𝑇 

is less than the critical value, 𝑇0. By referring appendix A, at 𝛼 = 0.05 and number of 

test inputs, 𝑛 = 17, the critical value, 𝑇0 = 35. Since, the test statistic, 𝑇 =  5 and is less 

than the critical value, 𝑇0, therefore, the null hypothesis can be rejected and there is 

significant difference between SKFMM and AMBPSO. 

4.4.4 SKF vs OBSKF 

Table 4.19 shows the best, worst, mean and standard deviation (STD) of 

SINR(dB) values after the experiment is repeated 100 times. Comparison is made 

between SKF and OBSKF for various SNR(dB) input values. 
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Table 4.19 Best, Worst, Mean and Standard Deviation(STD) of SINR for 

SKF vs OBSKF 

SNR 

(dB) 

SKF OBSKF 

Best Worst Mean STD Best Worst Mean STD 

-20 -10.0522 -10.0549 -10.0523 0.0004 -10.0522 -10.0522 -10.0522 1.39E-07 

-15 -5.1395 -5.1464 -5.1398 0.0011 -5.1395 -5.1397 -5.1395 2.29E-05 

-10 -0.2975 -0.3028 -0.2977 0.0007 -0.2975 -0.2975 -0.2975 2.20E-07 

-5 4.5321 4.3828 4.5295 0.0175 4.5321 4.5316 4.5321 4.33E-05 

0 9.4241 9.3237 9.4208 0.0142 9.4241 9.4177 9.4240 0.0007 

5 14.3768 14.1437 14.3631 0.0306 14.3768 14.2131 14.3677 0.0245 

10 19.3590 18.8208 19.2736 0.0954 19.3564 18.8957 19.2854 0.0823 

15 24.3535 23.0034 24.1049 0.2935 24.3538 23.5108 24.1784 0.1529 

20 29.3469 28.0453 29.0012 0.3236 29.3438 27.1338 28.9768 0.4337 

25 34.3504 32.7718 33.9332 0.3790 34.3491 31.5473 33.9442 0.3964 

30 39.3477 37.5436 38.9249 0.3946 39.3467 37.3418 38.9474 0.3955 

35 44.3510 41.8109 43.9153 0.4384 44.3499 41.7999 43.8989 0.4392 

40 49.3456 46.3051 48.9181 0.4529 49.3341 47.0214 48.9543 0.3544 

45 54.3504 51.9201 53.8808 0.4746 54.3425 52.6826 53.9350 0.3521 

50 59.3355 55.8211 58.8351 0.6189 59.3478 56.6860 58.8876 0.4814 

55 64.3468 62.0234 63.8755 0.5364 64.3424 61.9313 63.9258 0.4389 

60 69.3396 67.7525 68.9202 0.4239 69.3464 66.8448 68.8720 0.5243 

                  

              Neutral   

              Good   

              Bad   

Based on Table 4.19, the best SINR values for both SKF and OBSKF is the same 

for 𝑆𝑁𝑅(𝑑𝐵) = [−20,−15, −10,−5, 0, 5] . SKF has the best SINR values for input 

𝑆𝑁𝑅(𝑑𝐵) = [10, 20, 25, 30, 35, 40, 45, 55] and OBSKF produce best 𝑆𝐼𝑁𝑅(𝑑𝐵) values 

at 𝑆𝑁𝑅(𝑑𝐵) = [15, 50, 60]. On the other hand, OBSKF can produce better worst, mean 

and standard deviation (STD) of SINR values than SKF for 𝑆𝑁𝑅(𝑑𝐵) =

[−20, −15,−10, −5, 0, 5, 10] . This proves that OBSKF is most effective in getting 

maximum SINR values at lower SNR inputs. Overall, OBSKF can mostly produce much 

higher mean SINR value than SKF and is much more consistent than SKF due to low 

standard deviation values. The exploration of opposite agents provided by the OBL 

technique helps improve the exploration of OBSKF, leading towards higher mean SINR 

and higher stability of SINR values. 

Based on the mean results for both SKF and OBSKF from Table 4.19, Wilcoxon 

Signed Ranked test statistical analysis is performed. Wilcoxon Signed Rank test 

calculates the sum of ranks where the first algorithm outperforms the second, 𝑅+ and the 

sum of ranks where the second algorithm outperforms the second, 𝑅−. Table 4.20 shows 
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the sum of ranks where SKF outperforms OBSKF, 𝑅+ and sum of ranks where OBSKF 

outperforms SKF, 𝑅−. 

Table 4.20 Sum of Ranks for SKF vs OBSKF 

SKF vs OBSKF Sum of Ranks 

SKF Outperform OBSKF, 𝑅+ 33 

OBSKF Outperform SKF, 𝑅− 120 

After the sum of ranks are obtained, the test statistic, 𝑇 is chosen. The test statistic, 

𝑇 value is the smallest value between 𝑅+ and 𝑅− as shown in equation 4.1. The null 

hypothesis states that the algorithms compared are equals with no significant difference. 

In Wilcoxon signed ranked test, the null hypothesis is rejected when the test statistic, 𝑇 

is less than the critical value, 𝑇0. By referring appendix A, at 𝛼 = 0.05 and number of 

test inputs, 𝑛 = 17, the critical value, 𝑇0 = 35. Since, the test statistic, 𝑇 = 33 and is less 

than the critical value, 𝑇0, therefore, the null hypothesis can be rejected and there is 

significant difference between OBSKF and SKF. 

4.4.5 SKF vs SKFMM 

Table 4.21 shows the best, worst, mean and standard deviation (STD) of 

SINR(dB) values after the experiment is repeated 100 times. Comparison is made 

between SKF and SKFMM for various SNR(dB) input values. 
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Table 4.21 Best, Worst, Mean and Standard Deviation(STD) of SINR for 

SKF vs SKFMM 

SNR 

(dB) 

SKF SKFMM 

Best Worst Mean STD Best Worst Mean STD 

-20 -10.0522 -10.0549 -10.0523 0.0004 -10.0522 -10.0522 -10.0522 1.50E-14 

-15 -5.1395 -5.1464 -5.1398 0.0011 -5.1395 -5.1395 -5.1395 6.15E-15 

-10 -0.2975 -0.3028 -0.2977 0.0007 -0.2975 -0.2975 -0.2975 5.04E-16 

-5 4.5321 4.3828 4.5295 0.0175 4.5321 4.5321 4.5321 7.90E-14 

0 9.4241 9.3237 9.4208 0.0142 9.4241 9.4241 9.4241 2.12E-06 

5 14.3768 14.1437 14.3631 0.0306 14.3768 14.3601 14.3724 0.0039 

10 19.3590 18.8208 19.2736 0.0954 19.3592 19.0344 19.2735 0.0781 

15 24.3535 23.0034 24.1049 0.2935 24.3515 23.5126 24.1363 0.1903 

20 29.3469 28.0453 29.0012 0.3236 29.3507 27.3467 29.0632 0.3056 

25 34.3504 32.7718 33.9332 0.3790 34.3434 32.8106 33.9984 0.3204 

30 39.3477 37.5436 38.9249 0.3946 39.3473 37.5921 39.0208 0.3171 

35 44.3510 41.8109 43.9153 0.4384 44.3484 42.2910 43.9895 0.4356 

40 49.3456 46.3051 48.9181 0.4529 49.3502 48.0500 49.0078 0.3099 

45 54.3504 51.9201 53.8808 0.4746 54.3408 52.7866 54.0659 0.3231 

50 59.3355 55.8211 58.8351 0.6189 59.3485 56.9759 59.0361 0.3208 

55 64.3468 62.0234 63.8755 0.5364 64.3512 62.4793 63.9707 0.3903 

60 69.3396 67.7525 68.9202 0.4239 69.3466 66.8526 69.0277 0.3680 

         

       Neutral  

       Good  

       Bad  

Based on Table 4.21, the best SINR values for both SKF and SKFMM is the same 

for 𝑆𝑁𝑅(𝑑𝐵) = [−20,−15, −10,−5, 0, 5] . SKF has the best SINR values for input 

𝑆𝑁𝑅(𝑑𝐵) = [15, 25, 30, 35, 45]  and SKFMM produce best 𝑆𝐼𝑁𝑅(𝑑𝐵)  values at 

𝑆𝑁𝑅(𝑑𝐵) = [10, 20, 40, 50, 55, 60]. Overall, the difference between the best SINR and 

the worst SINR for SKFMM is smaller compared to SKF. The lower difference between 

the best SINR and worst SINR means SKFMM can maintain a higher SINR values 

compared to SKF. SKFMM also produced higher mean SINR values and much lower 

standard deviation values compared to SKF. The high mean SINR and low standard 

deviation values for SKFMM proves that SKFMM is very consistent in maintaining 

higher mean SINR values. With the modified measurement in SKFMM algorithm, the 

SKFMM algorithm can prevent premature convergence and achieve much higher mean 

SINR values.  

Based on the mean results for both SKF and SKFMM from Table 4.21, Wilcoxon 

Signed Ranked test statistical analysis is performed. Wilcoxon Signed Rank test 
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calculates the sum of ranks where the first algorithm outperforms the second, 𝑅+ and the 

sum of ranks where the second algorithm outperforms the second, 𝑅−. Table 4.20 shows 

the sum of ranks where SKF outperforms SKFMM, 𝑅+ and sum of ranks where SKFMM 

outperforms SKF, 𝑅−. 

Table 4.22 Sum of Ranks for SKF vs SKFMM 

SKF vs SKFMM Sum of Ranks 

SKF Outperform SKFMM, 𝑅+ 2 

SKFMM Outperform SKF, 𝑅− 151 

After the sum of ranks are obtained, the test statistic, 𝑇 is chosen. The test statistic, 

𝑇 value is the smallest value between 𝑅+ and 𝑅− as shown in equation 4.1. The null 

hypothesis states that the algorithms compared are equals with no significant difference. 

In Wilcoxon signed ranked test, the null hypothesis is rejected when the test statistic, 𝑇 

is less than the critical value, 𝑇0. By referring appendix A, at 𝛼 = 0.05 and number of 

test inputs, 𝑛 = 17, the critical value, 𝑇0 = 35. Since, the test statistic, 𝑇 = 2 and is less 

than the critical value, 𝑇0, therefore, the null hypothesis can be rejected and there is 

significant difference between SKF and SKFMM. 

4.4.6 OBSKF vs SKFMM 

Table 4.23 shows the best, worst, mean and standard deviation (STD) of 

SINR(dB) values after the experiment is repeated 100 times. Comparison is made 

between OBSKF and SKFMM for various SNR(dB) input values. 
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Table 4.23 Best, Worst, Mean and Standard Deviation(STD) of SINR for 

OBSKF vs SKFMM 

SNR 

(dB) 

OBSKF SKFMM 

Best Worst Mean STD Best Worst Mean STD 

-20 -10.0522 -10.0522 -10.0522 1.39E-07 -10.0522 -10.0522 -10.0522 1.50E-14 

-15 -5.1395 -5.1397 -5.1395 2.29E-05 -5.1395 -5.1395 -5.1395 6.15E-15 

-10 -0.2975 -0.2975 -0.2975 2.20E-07 -0.2975 -0.2975 -0.2975 5.04E-16 

-5 4.5321 4.5316 4.5321 4.33E-05 4.5321 4.5321 4.5321 7.90E-14 

0 9.4241 9.4177 9.4240 0.0007 9.4241 9.4241 9.4241 2.12E-06 

5 14.3768 14.2131 14.3677 0.0245 14.3768 14.3601 14.3724 0.0039 

10 19.3564 18.8957 19.2854 0.0823 19.3592 19.0344 19.2735 0.0781 

15 24.3538 23.5108 24.1784 0.1529 24.3515 23.5126 24.1363 0.1903 

20 29.3438 27.1338 28.9768 0.4337 29.3507 27.3467 29.0632 0.3056 

25 34.3491 31.5473 33.9442 0.3964 34.3434 32.8106 33.9984 0.3204 

30 39.3467 37.3418 38.9474 0.3955 39.3473 37.5921 39.0208 0.3171 

35 44.3499 41.7999 43.8989 0.4392 44.3484 42.2910 43.9895 0.4356 

40 49.3341 47.0214 48.9543 0.3544 49.3502 48.0500 49.0078 0.3099 

45 54.3425 52.6826 53.9350 0.3521 54.3408 52.7866 54.0659 0.3231 

50 59.3478 56.6860 58.8876 0.4814 59.3485 56.9759 59.0361 0.3208 

55 64.3424 61.9313 63.9258 0.4389 64.3512 62.4793 63.9707 0.3903 

60 69.3464 66.8448 68.8720 0.5243 69.3466 66.8526 69.0277 0.3680 

         

       Neutral  

       Good  

       Bad  

Based on Table 4.23, the best SINR values for both OBSKF and SKFMM is the 

same for 𝑆𝑁𝑅(𝑑𝐵) = [−20,−15,−10,−5, 0, 5]. OBSKF has the best SINR values for 

input 𝑆𝑁𝑅(𝑑𝐵) = [15, 25,35, 45]  and SKFMM produce best 𝑆𝐼𝑁𝑅(𝑑𝐵)  values at 

𝑆𝑁𝑅(𝑑𝐵) = [10, 20, 30, 40, 50, 55, 60]. Overall, OBSKF produced much lower values 

for worst SINR compared to SKFMM. The higher values for worst SINR leads SKFMM 

to produce a much higher mean SINR values compared to OBSKF. SKFMM is also more 

consistent than OBSKF due to the lower standard deviation values. Both OBSKF and 

SKFMM are the modified versions of SKF, designed to prevent premature convergence. 

Since SKFMM can produce much higher mean SINR values than OBSKF, SKFMM 

algorithm is proven to be better algorithm than OBSKF in preventing premature 

convergence. 

Based on the mean results for both OBSKF and SKFMM from Table 4.23, 

Wilcoxon Signed Ranked test statistical analysis is performed. Wilcoxon Signed Rank 

test calculates the sum of ranks where the first algorithm outperforms the second, 𝑅+ and 
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the sum of ranks where the second algorithm outperforms the second, 𝑅−. Table 4.24 

shows the sum of ranks where OBSKF outperforms SKFMM, 𝑅+ and sum of ranks where 

SKFMM outperforms OBSKF, 𝑅−. 

Table 4.24 Sum of Ranks for OBSKF vs SKFMM 

OBSKF vs SKFMM Sum of Ranks 

OBSKF Outperform SKFMM, 𝑅+ 15 

SKFMM Outperform OBSKF, 𝑅− 138 

After the sum of ranks are obtained, the test statistic, 𝑇 is chosen. The test statistic, 

𝑇 value is the smallest value between 𝑅+ and 𝑅− as shown in equation 4.1. The null 

hypothesis states that the algorithms compared are equals with no significant difference. 

In Wilcoxon Signed Ranked Test, the null hypothesis is rejected when the test statistic, 

𝑇 is less than the critical value, 𝑇0. By referring appendix A, at 𝛼 = 0.05 and number of 

test inputs, 𝑛 = 17, the critical value, 𝑇0 = 35. Since, the test statistic, 𝑇 =  15 and is 

less than the critical value, 𝑇0,, the null hypothesis can be rejected and there is significant 

difference between OBSKF and SKFMM.  

4.5 Discussion 

Figure 4.7 shows the graph of the standard deviation values for AMBPSO, SKF, 

OBSKF and SKFMM for various SNR after 100 runs. From Figure 4.7, it shows that as 

the SNR increases, the values of standard deviation also increase, or the algorithms 

become less consistent in finding the best SINR. As the SNR increases, the noise power 

decreases. The noise power is relevant in finding the best SINR. When the noise power 

decreases, the algorithm finds it difficult to find suitable weights to null the interference 

signal, therefore, decreasing the algorithms consistency as the SNR increases. Figure 4.7 

also it is shown that all the SKF algorithms are much more consistent compared to 

AMBPSO for adaptive beamforming application. The AMBPSO algorithm begins to lose 

its consistency beginning from 𝑆𝑁𝑅 = −5𝑑𝐵.  
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Figure 4.7 Graph of Standard Deviation of AMBPSO, SKF, OBSKF and SKFMM 

 

 

Figure 4.8 Difference Between Best and Worst SINR 

Originally, the AMBPSO was designed to increase the exploration ability of the 

particles using Boolean method for PSO’s velocity update and control the speed of 

convergence using “negative selection” (NS), which is a basic mechanism of Artificial 

Immune System (AIS) (Zaharis & Yioultsis, 2011). To increase the exploitation ability 
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of the particles, after the completion of the NS, an adaptive mutation process is applied 

with “mutation probability” (𝑚). The AMBPSO avoids pure random search by starting 

with low values of “mutation probability” (𝑚) (Zaharis & Yioultsis, 2011). In every 

iteration, the 𝑚 value goes down linearly until it reaches zero, for exploitation. When the 

mutation probability, 𝑚 value decreases, the exploration capabilities of AMBPSO also 

decreases. With the decrease in exploration in the end of the iterative process, the 

algorithm may find the optimum weights and may get stuck in local optimum (Zaharis et 

al., 2012). As a result, the AMBPSO algorithm can’t maintain its consistency after the 

SNR reaches −5𝑑𝐵 and more, therefore, AMPSO can’t find better array weights that 

gives deeper nulls.  

In the SKF algorithm, the algorithm is shown to have the best and the most 

consistent performance in CEC2014 unimodal functions (Ibrahim et al., 2015). Each 

agent in the SKF algorithm acts as individual Kalman Filter. The Kalman Filter is an 

optimal recursive data processing algorithm that processes all measurement regardless of 

the precision, to estimate the current value (Kalman, 1960). The Kalman Filter can find 

the optimal solution regardless of the precision of the measurement. In SKF algorithm, 

no measurement is taken, therefore, the measured position is stochastically determined 

using sin(𝑟𝑎𝑛𝑑 × 2𝜋) . The measured position acts as a feedback to the estimation 

process. After that, with the help of the Kalman gain and the measured position, a new 

estimate can be determined. At the beginning of the iterative process the Kalman gain is 

higher, therefore, more of the measured position is used to influence the estimation 

(exploration). As the iteration progresses, the value of the Kalman gain becomes smaller, 

therefore, less of the measure position is used to influence the estimated value 

(exploitation). However, the values of the process noise, 𝑄 and the measurement noise, 

𝑅, remains fixed in SKF, from the beginning of the iterative process, therefore, limiting 

the Kalman gain’s ability to influence the exploration and exploitation. From Figure 4.9 

and Figure 4.10, it shows that the error covariance estimate, 𝑃, values and the Kalman 

gain, 𝐾, values only influence the SKF algorithm for the first 10 iterations, and does not 

have any influence during exploitation, at the end of the iterative process.  
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Figure 4.9 Graph of Error Covarience Estimate, 𝑃, Values vs. Iteration Number 

 

 

Figure 4.10 Graph of Kalman Gain, 𝐾, Values vs. Iteration Number 

 In SKF algorithm, the measurement-update mostly influence the exploration and 

exploitation in SKF algorithm. In the beginning of the iterative process, during 

exploration, the difference between the best-so-far solution and the predicted solution is 
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larger, which gives a larger measurement value. Towards the end of the iterative process 

the difference between the best-so-far solution and the predicted solution becomes 

smaller, promoting exploration. The measurement-update process in the SKF algorithm 

gives the most influence in finding the best array weights. The measurement-update in 

SKF algorithm, however, lacks in exploration towards the end of the iterative process, 

where the reducing difference between the best-so-far solution and the predicted solution 

reduces the exploration capabilities of the SKF algorithm until to almost no exploration 

at all. The lack of exploration towards the end of the iterative process can cause the 

algorithm to get stuck at local optimum. Sometimes, it is important to retain some amount 

of exploration towards the end of the iterative process, for algorithm to find much better 

solution (Zaharis et al., 2012). 

The OBSKF, on the other hand, is designed to further improve the exploration 

capabilities of the SKF algorithm, in addition with the exploration capabilities provided 

by the measurement update. The OBSKF algorithm applies Opposition-Based Learning 

(OBL) technique to generate opposite solution, perform fitness evaluation on opposite 

solution and compare with the fitness obtained using current solution. This method 

increases the chances the algorithm to find better weights that give maximum SINR by 

exploring the search space more. The increased exploration provided by the OBL 

technique has increase the OBSKF ability to find better mean array weights than the 

original SKF algorithm as shown in Table 4.19. Furthermore, OBSKF is also proven to 

be more consistent, producing lower standard deviation values than the original SKF 

algorithm. The execution of the OBL technique in OBSKF is controlled by the jumping 

rate condition. In OBSKF, if the randomly distributed values between [0,1] is below the 

jumping rate condition, the OBL technique will be executed. The jumping rate condition 

is set to a low value of 0.1 for best performance. When the jumping rate condition is set 

to 0.1, only 1000 iterations out of the 10000 iterations, will use the OBL technique 

depending on the random values and the rest of the iterations uses the original SKF 

algorithm. Therefore, the measurement-update is the one that contributes more to the 

exploration and exploitation than the OBL technique in the OBSKF algorithm.  

Since the measurement-update contributes mostly to the exploration and 

exploitation of the OBSKF algorithm, a modification of the measurement-update was 

proposed. The main aim of the modification to the measurement-update is to increase the 
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measurement error. Increase in measurement error promotes extra exploration to find the 

optimum solution and prevents the SKF algorithm from converging prematurely at local 

optimum. Since the SKFMM has increased exploration, the SKFMM algorithm can find 

better array weights that gives maximum mean SINR. Furthermore, the SKFMM 

algorithm is the most consistent algorithm in finding the maximum SINR compared to 

AMBPSO, SKF and OBSKF. Table 4.25 shows the sum of standard deviation for 

algorithms AMBPSO, SKF, OBSKF and SKFMM. All the SKF algorithms is shown to 

have better consistency than the existing AMBPSO algorithm. The SKFMM has the best 

consistency overall with the lowest standard deviation values. Table 4.26 shows the 

improvement in consistency of algorithms in adaptive beamforming. From Table 4.26, 

all the SKF algorithms shows an improvement of more than 70 %  in terms of 

consistency, compared to existing AMBPSO algorithm. Among the SKF algorithms, the 

SKFMM has the best consistency, with 22.50 % improvement in consistency to the SKF 

algorithm and with 17.50 % improvement in consistency to the OBSKF algorithm, for 

adaptive beamforming application. 

Table 4.25 Sum of Standard Deviation for AMBPSO, SKF, OBSKF and SKFMM 

Algorithms Sum of Standard Deviation Values 

AMBPSO 15.1303 

SKF 4.4958 

OBSKF 4.0764 

SKFMM 3.3631 

 

Table 4.26 Percentage of Improvement in Consistency  

Algorithms SKF OBSKF SKFMM 

vs. AMBPSO 70.29 % 73.06 % 77.77 % 

vs. SKF - 9.33 % 25.20 % 

vs. OBSKF - - 17.50 % 

 

4.6 Summary 

The performance of SKF algorithm and its variations, OBSKF and SKFMM, is 

evaluated and compared with the previously published work AMBPSO (Zaharis & 

Yioultsis, 2011). The radiation pattern produced by SKF algorithms produces much 

deeper nulls compared to AMBPSO. However, the AMBPSO still produces lowest 

maximum sidelobe level compared to all the SKF algorithms. The results show that the 
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SKF algorithms can produce high mean SINR values and lower standard deviation 

values. Of all the SKF algorithms, SKFMM is proven to be much better than OBSKF and 

SKF. The modified measurement in SKFMM is proven better in minimizing premature 

convergence. 
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CHAPTER 5  

 

 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Simulated Kalman Filter (SKF) has been proposed for the first time to improve 

the performance of the adaptive array antenna by maximizing the signal to interference 

plus noise ratio (SINR). Other than the original SKF algorithm, the Opposition-Based 

Simulated Kalman Filter (OBSKF) algorithm has also been proposed for adaptive 

beamforming. Furthermore, a new SKF algorithm with modified measurement 

(SKFMM) is introduced and applied for adaptive beamforming. All the SKF algorithms 

is compared with the existing algorithm, Adaptive Mutated Boolean Particle Swarm 

Optimization (AMBPSO). The SKF algorithms can produce deeper nulls and higher 

mean SINR values compared to AMBPSO. All three SKF algorithms are also found to 

be the most consistent algorithm for adaptive beamforming, producing an improvement 

of more than 70%, compared to AMBPSO. Among all the three SKF algorithms, the 

SKFMM produces the highest mean SINR values is the most consistent compared to SKF 

and OBSKF. SKFMM provides improved consistency of 25.20% compared to SKF and 

17.50% compared to OBSKF 

5.2 Recommendations 

Other than SKF, other algorithms with good exploration capabilities, that has not 

been applied to adaptive beamforming can be used to apply to improve the performance 

of adaptive array antenna. 

Furthermore, variations of the optimization algorithms can also be used to 

improve the adaptive beamforming performance.  
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New algorithms can be developed, specifically to improve the performance of 

adaptive array antenna. Since optimization algorithms only work in static environment, 

algorithms can be introduced to solve adaptive array antenna problems in dynamic 

environment. 

5.3 Significance of Research 

This research presents the first-time application of Simulated Kalman Filter 

(SKF) in adaptive beamforming. The SKF algorithm can outperform existing algorithm, 

AMBPSO, in adaptive beamforming application. Furthermore, another variation of SKF 

algorithm, named Opposition-Based Simulated Kalman Filter (OBSKF) is applied to 

adaptive beamforming. A new SKF variation, named Simulated Kalman Filter with 

Modified Measurement (SKFMM) is introduced and applied adaptive beamforming. 

Figure 5.1 shows the newly applied SKF algorithms in adaptive beamforming. 
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Figure 5.1 Newly applied SKF agorithms for Adaptive Beamforming 

 

Optimization Algorithm used in Adaptive 
Beamforming Application

Particle Swarm Optimization (PSO) 
(Darzi, Tiong, et al., 2015)

Adaptive Mutated Boolean PSO 
(AMBPSO)

(Zaharis & Yioultsis, 2011)

Gravitational Search Algorithm (GSA)
(Darzi et al., 2014)

Stochastic Leader GSA (SL-GSA)
(Darzi, Islam, et al., 2015)

Memory-Based GSA (MBGSA)
(Darzi, Sieh Kiong, et al., 2016)

Experience Oriented-Convergence 
Improved GSA (ECGSA)
(Darzi, Tiong, et al., 2016)

Firefly Algorithm (FA)
(Doroody, Tiong, & Darzi, 2015; Kaur & 

Banga, 2013; Zaman & Abdul Matin, 
2012)

Grey Wolf Optimization (GWO)
(Saxena & Kothari, 2016)

Adaptive Social Behaviour Optimization 
(ASBO)

(Rathod, Singh, & Meera, 2016)

Backtracking Search Optimization (BSO)
(Kerim Guney & Durmus, 2015)

Mean Variance Mapping Method 
(MVMO)

(Kerim Guney & Basbug, 2014)

Differential Search (DS)
(Kerim Guney, Durmus, & Basbug, 

2014)

Cat Swarm Optimization (CSO)
(Pappula & Ghosh, 2014)

Taguchi’s Optimization Method (TM)
(Dib, Goudos, & Muhsen, 2010)

Modified Taguchi’s Optimization 
Method (MTO)
(Zaharis, 2012)

Cuckoo Search Algorithm (CS)
(Abdul Rani, Abd Malek, & Siew-Chin, 

2012)

Harmony Search Algorithm (HSA)
(K. Guney & Onay, 2011)

Self-Adaptive DE (SADE)
(Dib et al., 2010)

Bees Algorithm (BA)
(K. Guney & Onay, 2010)

Adaptive Dispersion IWO (ADIWO)
(Zaharis, Skeberis, & Xenos, 2012)

Artificial Immune System (AIS)
Dynamic Mutated AIS (DM-AIS)

(Darzi et al., 2014)

Simulated Kalman Filter (SKF)

Opposition-Based SKF (OBSKF)

SKF with Modified Measurement 
(SKFMM)
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