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ABSTRAK 

Pengujian perisian merupakan aktiviti penting dalam kitar hayat pembangunan perisian 

Walaubagaimanapun, ujian menyeluruh untuk perisian berkonfigurasi tinggi adalah tidak 

praktikal kerana kekangan masa dan sumber. Tambahan pula, ujian menyeluruh 

membawa kepada masalah letupan kombinasi di mana kes-kes ujian berkembang dengan 

pesat dengan peningkatan input perisian. Kerana keberkesanannya bagi mengesan 

pepijat, ramai penyelidik kini beralih kepada strategi persampelan berdasarkan interaksi 

input, yang dipanggil ujian t-hala, di mana t menunjukkan kekuatan interaksi. Dikenali 

sebagai masalah NP-lengkap (iaitu, tidak berketentuan Polinomial masa), proses 

mengurangkan kes-kes ujian t-hala amat mencabar kerana ruang carian yang luas apabila 

berurusan dengan nilai-nilai input besar. Setakat ini, banyak strategi t-hala yang telah 

dicadangkan dalam literatur. Baru-baru ini, para penyelidik telah mencadangkan 

penggunaan meta-heuristik berasaskan strategi t-hala seiring dengan kemunculan bidang 

baru dipanggil  Kejuruteraan Perisian berasaskan Pencarian (SBSE). Walaupun berguna, 

tidak ada strategi t-hala berdasarkan meta-heuristik tunggal boleh mengatasi yang lain. 

Atas sebab ini, pencarian strategi t-hala meta-heuristik baru masih didambakan. Tesis ini 

membentangkan reka bentuk dan pelaksanaan yang strategi t-hala meta-heuristik baru, 

yang dikenali strategi t-hala kelawar (BTS), untuk menjana kekuatan campuran t-hala sut 

ujian. BTS adalah strategi t-hala pertama yang menggunakan algoritma kelawar sebagai 

teras dan mengadaptasi jarak Hamming sebagai kriteria pemilihan akhir bagi 

menambahbaik explorasi penyelesaian baharu. Keputusan eksperimen disokong oleh 

analisis statistik bukan parametrik menunjukkan bahawa BTS memberikan prestasi daya 

saing yang kompetitif berbanding strategi-strategi lain. Khususnya, BTS telah mencapai 

dan memadankan 68.181% saiz terbaik dari eksperiment penanda aras disamping 

menghasilkan 32.575% saiz terbaik baru. Penemuan ini menyumbang kepada bidang 

pengujian perisian dengan mengurangkan bilangan kes pengujian perisian untuk larian. 
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ABSTRACT 

Software testing is essential part of software development life cycle. Yet, exhaustive 

testing of highly configurable software is impractical owing to the limited time and 

resources. Furthermore, exhaustive testing leads to a combinatorial explosion problem 

whereby the test cases grow exponentially with the increase of software inputs. Owing to 

its effectiveness for bug finding, many researchers are turning to the sampling strategies 

based on input interaction, called t-way testing, where t indicates the interaction strength. 

Known to be an NP-complete (i.e. Non-deterministic Polynomial-time) problem, the 

process of minimizing t-way test cases is challenging owing to the potentially large 

generated search space when dealing with large input values. To date, many t-way 

strategies have been proposed in the literature. Recently, researchers have advocated the 

adoption of meta-heuristic based t-way strategies in line with the emergence of the new 

field called Search Based Software Engineering (SBSE). Although helpful, no single 

meta-heuristic based t-way strategies can claim dominance over their other counterparts. 

For this reason, the search for a new meta-heuristic based t-way strategy is still a useful 

endeavor. This thesis presents the design and implementation of a new meta-heuristic 

based t-way strategy, called Bat-inspired t-way Strategy (BTS), for generating a mixed-

strength t-way test suite. BTS is the first t-way strategy that adopts the Bat-inspired 

algorithm as its core implementation and adopts the Hamming distance as the final 

selection criteria to enhance the exploration of new solution. The experimental results 

supported by non-parametric statistical analysis demonstrate that BTS gives competitive 

performance over its counterparts. Specifically, BTS has achieved and matched 68.181% 

of the best sizes from the published benchmark results with 32.575 % new known best 

sizes. This finding contributes to the field of software testing by minimizing the number 

of test cases for test execution. 
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CHAPTER 1 

 

 

INTRODUCTION 

Software and hardware are the main components that drive computer 

technologies. Unlike hardware, software does not wear out. Here, software is a set of 

written code, functions and procedures that enables the user to accomplish a specific task. 

Whenever possible, software can be the replacement for its hardware counterparts, 

because software is flexible and allows easy customization as needed. In addition, the use 

of software can help to control maintenance costs.   

Software development passes through several stages, called the software 

development life cycle. Generally, the activities in the software development life cycle 

are divided into two main processes: building the product (creating the software) and 

maintaining the product quality (Baresi & Pezzè, 2006). Every single cycle in software 

development must meet the highest production standard to ensure software quality, in 

order to cope with software faults and defects (Naik & Tripathy, 2008).  

Software testing is the main gatekeeper of software quality, that is, in terms of 

minimizing the risk of software failure. Specifically, software testing ensures that 

software meets its specifications and quality standards.  

1.1 Overview of Software Testing 

Software testing is an integral part of the software development life cycle that 

consumes more than 40 to 50% of the development costs (Bertolino, 2007; Carroll, 2003; 

Kaner et al., 1999; Pan, 1999; Pendharkar, 2010). Often represented as a single activate 

in the development life cycle, software testing consists of a series of planned tasks that 

need to be executed along with the software development activities to ensure that a 

product is delivered without any defects (Katherine & Alagarsamy, 2012).  Figure 1.1 

shows the overall picture of a general software testing life cycle. 
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Figure 1.1 Overview of the software testing life cycle. 

Source: Katherine (2012). 

Referring to Figure 1.1, the software testing life cycle starts with the requirements 

capturing task. Here, the test engineers interact with the software-under-test 

specifications to capture the procedures and requirements of the software. Based on the 

captured requirements, software and test engineers collaborate to design test scenarios to 

prepare test cases that cover the entire input parameters of the software-under-test. Then, 

test engineers execute the generated test cases against the software-under-test. In case of 

defects detection, test engineers and developers collaborate to fix the detected defects 

with the support of software engineers. After that, the test execution is completed. The 

requirements’ engineers confirm the results to ensure that the software-under-test is 

meeting its specification.  

Concerning the test generation stage, manual test cases generation becomes 

practically impossible. Likewise, automated testing for all the possible inputs of software 

configurations (known as exhaustive testing) is impracticable due to the time and resource 

constraints. Therefore, effective sampling strategy can be an alternative to exhaustive 

testing which can reveal defects in the software-under-test (Burnstein, 2006; Hass, 2008).  

Over time, test case sampling (or design) strategies (i.e. cause and effect graphing, 

equivalence class partitioning, boundary value analysis, systematic random testing) have 

emerged to generate a set of test cases that are capable of detecting software faults and 

defects of the software-under-test. Although useful, the abovementioned strategies do not 

sufficiently address the interaction between software inputs. For this reason, researchers 
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have proposed a new sampling approach based on interaction testing, termed t-way 

testing (where t indicates the interaction strength) (Kuhn et al., 2004; Kuhn et al., 2008). 

Specifically, t-way testing focuses on the faults that occur due to the interaction between 

two or more parameters of the software of interest. 

1.2 Research Motivation 

Software systems are becoming more complex owing to the improvement of 

computer power as well as sophisticated and complex demands on technology. These 

complexities are sufficiently intricate and can often cause unwanted quality and reliability 

issues amongst the software components. 

Although desirable, exhaustive testing is impractical as the number of test cases 

can be tremendously large (Chaudhuri & Zhu, 1992; Copeland, 2004; Roper, 2002) even 

for the simplest software systems. As illustration, consider a simple logo generating 

system for a Computer Numerical Control (CNC) machine that support both laser 

printing and laser engraving with multi-color profile. The CNC software system can be 

seen in Figure 1.2. 

 

Figure 1.2 The CNC software system. 

The options dialog consists of one text box that accepts two values either “with 

text” or an empty, six radio selectors groups - four with five values each and another two 

radio selectors with two values each. Therefore, the system consists of four parameters 

of five-values each and three parameters of two-values, Here, each group of parameters 

have similar number of dependencies. Thus, testing all the inputs configurations (i.e., 

https://www.google.com/search?espv=2&biw=1366&bih=589&q=define+impractical&sa=X&sqi=2&ved=0ahUKEwifxZiS8_PPAhWIq48KHXjZC7cQ_SoIHzAA
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exhaustive test) would require 54 23 = 5,000 test cases.  Assuming that the four of the 

parameters (i.e. text, border shape, method and quality) have more impact on the overall 

system, the exhaustive test for the four aforementioned parameters would require 

23 51 = 40  test cases. Thus, the system overall exhaustive test would involve at 

most 5000 +  40 = 5040 test cases. If each test case required 5 minutes, then the testing 

process would approximately require 17.5 days to complete the exhaustive testing 

process of all the possible configurations. This example emphasizes that testing all the 

possible software inputs exhaustively is impossible owing to the limited time and 

resources for testing. Utilizing mixed-strength t-way test generation as illustrated in 

Figure 1.3, the overall system can be tested for t = 2 and the four mixed-strength 

parameters for t = 3. In this case, the overall test suite can be minimized up to 50 test 

cases. More explanation on t-way and mixed-strength test suite generation will be 

provided in Section 2.3 in Chapter 2.  

 

Figure 1.3 The parameters and their values for CNC software system. 

The aforementioned example has illustrated the potential test case minimization 

for a simple software with small parameters and values. Considering complex and highly 

configurable software system, the number of test cases for testing consideration that can 

be larger owing to the presence of many parameters and values (Chaudhuri & Zhu, 1992; 

Copeland, 2004; Roper, 2002). 
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1.3 Problem Statements 

Software systems are getting more complex owing to the advancement of 

computer technologies as well as sophisticated and complex demands from the users. 

These complexities are sufficiently intricate and can often cause unwanted quality and 

reliability issues amongst the systems components. In this regard, software testing can be 

considered to be an essential part of the development process (Bryce et al., 2005) to 

ensure that all software requirements specifications have been met (Cohen et al., 2007a). 

Although desirable, testing all the possible software inputs exhaustively is 

impracticable owing to a common problem in software testing called combinatorial 

explosion problem (Cohen et al., 1997; Cohen et al., 1996; Colbourn, 2009; Colbourn, 

2011; Tai & Lei, 2002). In real-life, software inputs (parameters and their value 

dependencies) are typically very large. For this reason, the configurations for testing 

consideration are exponentially expanding with the increased number of software inputs. 

Interaction testing (t-way) strategy has been known to successfully reduce the test cases 

for testing consideration. However, generating the minimum t-way test set is challenging 

because of the potentially large search space. Furthermore, such a problem is also 

considered as NP-Complete (i.e. Non-deterministic Polynomial-time) problem (Petke, 

2015). 

In the last 10 years, researchers have advocated the adoption of meta-heuristic 

based t-way strategies in line with the emergence of the new field called Search based 

Software Engineering (SBSE). To date, many t-way strategies have been proposed in the 

literature such as Genetic Algorithm (GA) (Chen & Chien, 2011; Lopez-Herrejon et al., 

2016; McCaffrey, 2009a, 2010; Sabharwal et al., 2016; Shiba et al., 2004; Srinivas & 

Deb, 1994), Simulated Bee Colony (SBC) (McCaffrey, 2009b), Ant Colony Optimization 

(ACO) (Chen & Chien, 2011; Chen & Zhang, 2009; Shiba et al., 2004), Simulated 

Annealing (SA) (Chen & Chien, 2011; Cohen et al., 2008a; Cohen et al., 2007b; Stardom, 

2001), Particle Swarm Optimization (PSO) (Ahmed & Zamli, 2010a; Ahmed & Zamli, 

2010b; Ahmed & Zamli, 2011b), Harmony Search (HS) (Alsewari & Zamli, 2012a), Hill 

Climbing (HC) (Alsewari et al., 2014; Zamli et al., 2015) and Cuckoo Search (CS) 

(Ahmed et al., 2015) to mention a few. Further elaboration on these strategies can be seen 

in Section 2.5.  
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Although helpful, no single meta-heuristic based t-way strategies can claim 

dominance over their other counterparts. For this reason, the search for a new meta-

heuristic based t-way strategy is still a useful endeavour. Bat-inspired algorithm (BA) is 

one of many newly developed meta-heuristic algorithms in the literature. Taking into 

account on its superiority over other meta-heuristic algorithms (i.e. GA, SA, HS and PSO) 

(Sureja, 2012), the performance of BA can be seen throughout several studies on 

optimization problems (Gherbi et al., 2014; Hegazy et al., 2015; Khan & Sahai, 2012; 

Senthilnath et al., 2016; Sureja, 2012; Taha et al., 2013; Yang, 2010) (Ali, 2014; Gandomi 

et al., 2013; Meng et al., 2015; Nguyen & Ho, 2016; Rakesh et al., 2013; Ramesh et al., 

2013; Rodrigues et al., 2014; Song et al., 2016). Despite its performance owing to 

superior exploration (i.e. manipulating in the region close to the best solution so far), 

existing BA appears to suffer from lack of diversification (i.e. exploring the solution 

space at the global scale). Therefore, the Hamming distance classifier is selected to 

enhance the exploration of BA as this method improves the selection of best test candidate 

for t-way test suite generation problem (Gonzalez-Hernandez, 2015). Ideally, the 

Hamming distance classifier ensures that the highest distance solution in the search space 

is selected when there are ties as far as the best candidates of test cases are concerned. 

Further elaboration on the superiority of BA and Hamming distance will be elaborated at 

the end of Chapter 2. 

The fundamental research questions are:  

RQ 1. What is the optimum t-way and mixed-strength test suite (i.e. smallest number 

of test cases) to be considered for testing? 

RQ 2. How effective can the t-way strategy perform the sampling from a large 

combinatorial test data? 

RQ 3. Will the optimum t-way test suite generated based on the BA algorithm 

effectively cover all test configurations to detect interaction bugs?  

Given the aforementioned prospects, this thesis presents the design and 

implementation of a new meta-heuristic based t-way strategy, called Bat-inspired t-way 

Strategy (BTS), for generating mixed-strength t-way test suite. BTS is the first t-way 

strategy that adopts BA as its core implementation and exploits the Hamming distance as 

the final selection criteria. It is the hypothesis that suggests the adoption of BA is useful 

for generating optimum mixed-strength t-way test suite is the main focus of this work.  
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1.4 Research Aim and Objectives 

The aim of this research effort is to propose a new t-way test generation strategy 

that supports mixed-strength interaction, called Bat-inspired t-way Strategy (BTS), 

augmented with Hamming distance classifier. Supporting the aim, the objectives of the 

research are: 

i. To study the design of BTS strategy for constructing a mixed-strength t-way test 

suite. 

ii. To model BTS as a research prototype using BA as the backbone search engine 

and introduces Hamming distance classifier in order to enhance the exploration 

of BA. 

iii. To evaluate the test suite size performance of BTS against existing strategies 

using well-known benchmarking case studies. 

 

1.5 Research Scope 

This research work focuses on the test case generation stage in the software testing 

life cycle. Specifically, the research work is to address the mixed-strength t-way 

sampling/generation for test execution. 

The scope of this research work is limited to the implementation of a t-way test 

generation strategy, BTS, taking the Bat algorithm as the core implementation. The 

current support interaction strength is set at t = 6 consistent with empirical evidence 

(where most (if not all interaction bugs) can all be detected). 

The focus of the work is on test planning (i.e. test generation) and not on test 

execution. As such, the performance of BTS for mixed-strength t-way test generation is 

based on its optimality (in terms of getting the most minimum test suite size). 
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1.6 Operational Framework 

The complete research operational framework used throughout this research work 

is illustrated in Figure 1.4. Here, the operational framework is divided into three main 

stages: literature review, research methodology, and the evaluation stage for the proposed 

strategy. 

 

Figure 1.4 The illustration of the operational framework for BTS. 
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The illustrated stages are elaborated to show how the stages are related as follows: 

Literature review stage involves identifying the core problem on combinatorial 

explosion of test cases. Based on the core problem, the work reviews how the 

combinatorial problem is currently being addressed in the literature. Based on the 

literature search, state-of-art sampling strategies including t-way interaction testing 

strategies are reviewed whereby the research gap is established in terms of the adoption 

of BA. From that, the requirement of the research is established to provide the 

justification for the adoption of BA. 

Research methodology (design and implementation) stage involves finding the 

best model for BA implementation. During this stage, it is decided that BTS strategy will 

be developed based on “one-test-at-a-time” approach in order to achieve best size 

performance. Then, the complete algorithms constructing the BTS strategy are designed 

and developed. BTS prototype is be implemented using Java programming language, in 

order to support cross-platforms environment (i.e., Mac, Linux, and Windows operating 

system). 

Finally, evaluation stage involves three main sub-stages: characterization of BTS, 

comparative benchmarking and statistical analysis respectively. Characterization and 

comparative benchmarking will be performed based on well-known configurations in the 

literature (refer to Chapter 4). By using well-known configurations, more objective 

comparison can be made amongst different strategies of interests. 

1.7 Thesis Organization 

The remainder of this thesis is organised into six chapters. The current chapter 

gives an overview of software testing including the basics of test case generation. Then, 

the t-way test generation strategy has been introduced in line with the new field of Search 

Based Software Engineering (SBSE). Finally, the problem statements as well as the 

research questions and aim are highlighted.  
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Chapter 2 presents an overview of test case design (or sampling) techniques. 

Then, an overview of the mathematical notation used in interaction test generation in 

order to elaborate the concept of t-way interaction test generation based on a defined 

problem (running example) as well as highlighting the main characteristics of t-way 

interaction test generation. Using the characteristics, a survey of existing t-way test 

generation strategies is provided including a special case for t-way that is mixed-strength 

interaction that corresponds to a sub-strength generation. Towards the end of the existing 

t-way survey in Chapter 2, an analysis of existing work is presented, which provides the 

requirements and justification for the development of BTS.  

Chapter 3 discusses and justifies the detailed t-way test generation design and 

implementation for BTS. Here, issues related to the enabling automated test generation 

are also explained. Additionally, the prototype implementation is also discussed in order 

to highlight its usage. 

In Chapter 4, a detailed account for evaluating BTS is presented. Here, the 

performance of the BTS strategy will be evaluated. Apart from the performance 

evaluation, a comparative study on the effectiveness of test suite generation will be 

highlighted using several real-world software test configurations. Additionally, BTS will 

also be compared against existing strategies in terms of the number of generated test cases 

for t-way and mixed-strength test suite generation. 

Finally, the conclusion of this work is given in Chapter 5, where the achievements 

and contributions are summarised. Additionally, the main research hypothesis is revisited 

and the usefulness of BTS is debated. Conclusions are drawn from the experience gained 

from this work and the significance of findings along with considerations for future work. 

 



CHAPTER 2 

 

 

LITERATURE REVIEW 

Common test generation problems have been briefly introduced in Chapter 1 

leading towards t-way interaction strategies. Owing to its importance, this chapter 

elaborates further on these well-known test case design strategies. Then, a review of the 

necessary mathematical notation used for t-way testing is introduced along with the 

notation for mixed interaction. Next, an overview of t-way interaction testing, including 

the problem of t-way interaction is identified using a mixed interaction running example 

along with the interaction tuples coverage mechanism.  Towards the end, an analysis and 

review of the literature follows the discussion. Finally, the advantages of BA are detailed 

out to justify its adoption for BTS implementation. 

2.1 The Test Case Design Strategies 

Software testing is considered as a planned activity within the software 

development life cycle. Before the execution of any test, test engineers need to prepare 

the appropriate test suites based on some sampling strategies (as exhaustive testing is 

impossible). In the next sub-sections, the well-known test case design strategies are 

reviewed highlighting their focus and importance. 

2.1.1 Random Testing 

Random testing (Duran & Ntafos, 1984) is one of the first test case design 

strategies used in software testing. Random testing as the name suggest is trying to 

generate random test cases. In some random testing approaches, invalid or unexpected 

inputs are randomly selected to reveal the defects. Systematic random testing method 

(Antony, 2003; Schroeder et al., 2004; Tseng et al., 2001), uses a probability sampling in 

which test cases are selected from the test space using a random staring test case. Then, 
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the rest of the test cases selected based on a sampling interval. The sampling interval is 

calculated by dividing the test space size by the needed test cases number. In general, 

random testing technique (i.e. systematic random testing) is not effective to use as a test 

suite design (or generation) because of the unfair distribution of test cases (Ammann & 

Offutt, 1994).  

2.1.2 Equivalence Class Partitioning 

The equivalence partitioning is used to design test cases for the well-defined 

inputs and outputs of software-under-test (Burnstein, 2006). Here, the software inputs are 

partitioned into classes that get equivalent treatment. A test case is selected for each class, 

considering that all the members of the represented class are treated equivalently by the 

software-under-test (Hass, 2008). In such a strategy, equivalence partitioning selects the 

test case from each equivalence class. If the selected test case from the equivalence class 

reveals a defect, then, the other test cases in the same class should reveal the same defect 

(as the test case for the class supposed to be equivalent to any other test case in that class 

in theory) (Sharma & Chandra, 2010). Similarly, if the selected test case does not reveal 

any defect, the other test cases in the same class should not reveal any defect, in other 

words, no further execution for specified class is required. Moreover, if a test case in a 

class revealed any defect, the others test data in the same class should not reveal any 

defect or vice versa, the defined equivalence classes are considered not correct or valid 

for the test execution. In this case, the equivalence classes are re-defined or divided into 

smaller classes. However, there is no defined role for selection the values in the 

equivalence class. Usually, the values are selected randomly based on the range and 

condition for the test parameters. Figure 2.1 illustrates a simple grade converter software 

to clarify this technique clearly. 

 

Figure 2.1 A grade converter software. 
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The simple converter software in Figure 2.1 views the corresponding grade letter 

for the score entered. The letter depends on the entered value from 0 to 100 as shown in 

Table 2.1. 

Table 2.1 The grading and their corresponding letters. 

Score  Grade 

80 -100  A  

70 - 79  B 

60 – 69 C 

50 - 59  D  

0  - 49 F 

As the input value for the score is a numeric value, there are infinite values that 

might be tested, in this case, five valid partitions might be selected as follows; 80 to 100, 

70 to 79, 60 to 69, 50 to 59 and 0 to 49. Here, the valid partitions also might be to split 

into more than one partitions as 0 to 49 could also be further divided into 0 to 25 and 26 

to 49. Then, a test case or value is selected from each of the partitions (i.e. 15, 47, 55, 62, 

74 and 85) is selected to be tested. Furthermore, other invalid equivalent class partitions 

should be defined; one with all the values less than 0 and the second invalid class with 

the values over 100. Thus, the test cases for this software based on this technique might 

be -5, 15, 47, 55, 62, 74, 85 and 120. However, defects might be occurring at the edges 

of equivalence classes (Myers et al., 2011). 

2.1.3 Boundary Value Analysis 

Boundary value analysis is a test case design technique similar to the equivalence 

class partitioning. The test cases in the boundary value analysis are selected similarly to 

the equivalence class technique with the present of the representatives of the boundary 

values of the edge of equivalence classes as many defects might be occurred on the edges 

of equivalence classes (Burnstein, 2006; Myers et al., 2011). Furthermore, the input space 

and the output space are being considered in the boundary value analysis. Like 

equivalence class partitioning, boundary value analysis has no specific method to achieve 

the best test suite design. The boundary value analysis mostly depends on the creativity 

of the test engineers to achieve the best test suite for the targeted software-under-test.  
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In such a technique, the range of values is determined. Then, the valid values or 

test cases are selected in the edge of each range. Furthermore, invalid test cases are 

selected beyond the boundaries of the test space. For example, a system has a range values 

from 0 to 100. In this situation, the boundary values 0 and 100 are a valid input to consider 

as test cases. Then, two invalid values beyond the selected boundary values are 

considered. In this situation, -1 and 101 are selected. Revisiting the grade converter 

software in Figure 2.1, the ranges (see Table 2.1) are corresponding to a different letter; 

each range is treated similarly as in the example mentioned above. Therefore, the test 

engineers must select the upper and the lower value for each boundary value. Thus, the 

test cases should be (-1, 0, 1, 48, 49, 50) for the output grade “A.” Here, the test suite for 

the grade converter should be (-1, 0, 1, 48, 49, 50, 51, 58, 59, 60, 61, 68, 69, 70, 71, 78, 

79, 80, 81, 99, 100, 101).  

2.1.4 Cause and Effect Graphing (CEG) 

Cause and effect graphing (CEG) (Nursimulu & Probert, 1995) is proposed to 

validate a software from its requirements specification. In other words, CEG generates 

test cases by transforming software requirements specification natural language into an 

acyclic Boolean logic network. This logic network contains two main logical 

relationships; inputs (causes), outputs (effects). Then, the constraints among the causes 

or effects are represented using a limited-entry decision table. Here, each column within 

the decision table represents a test case (Myers et al., 2011; Naik & Tripathy, 2008),  

In this technique, test engineer identifies the causes, effects, and limitations 

(constraints) from the requirements specification of the software-under-test. Then, an 

acyclic Boolean logic network is constructed, that graphically represents the identified 

causes, effects as nodes and their constraints. These nodes of causes and effects are 

connected with Boolean operators (not, or, and). Next, an identifier for each cause and 

effect is assigned. Then, the relationship between causes and effects is assigned. Finally, 

the cause and effect graph is transformed into a decision table. 
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For the abovementioned example in Figure 2.1, assuming that the requirements 

specification of the “Grade converter” software, the “Mark” field should only accept 

numbers and its length should not exceed three digits. In such a case, the software shows 

an error message “out-of-range.” Otherwise, the equivalent grade will appear. Hence, the 

range of the “Mark” is from 0 to 100. Here, the inputs or causes are as follows; C1: The 

mark is from 0 to 49, C2: The mark is from 50 to 59, C3: The mark is from 60 to 69, C4: 

The mark is from 70 to 79, and C5: The mark is from 80 to 100 (refer to Table 2.1), C6: 

The mark is out-of-range. Whereas, the output or effects are E1: The equivalent grade is 

“F,” E2: The equivalent grade is “D,” E3: The equivalent grade is “C,” E4: The equivalent 

grade is “B,” E5: The equivalent grade is “A,” respectively. As for, E6: The input is an 

out-of-range. Figure 2.2 illustrates the identified causes and effects. In addition, their 

relationships. 

The Cause and Effect Graphing (CEG) example

C1

C2

C3

C4

C5

E1

E2

E3

E4

E5

E6

If C1, then E1.

If C1 and C6, then E6.

If C2 and not C6, then E1.

If C2, then E2.

If C2 and C6, then E6.

If C1 and not C6, then E2.

If C3, then E3.

If C3 and C6, then E6.

If C3 and not C6, then E3.

If C4, then E4.

If C4 and C6, then E6.

If C4 and not C6, then E4.

If C5, then E5.

If C5 and C6, then E6.

If C5 and not C6, then E5.
C6 ^

^

^

^

 

Figure 2.2 The CEG for the Example in Figure 2.1. 

The next step is to construct the decision table based on the causes and effects. 

The first column contains the case based on the causes and effects, then each cell in the 

same row field with it corresponding value, the values can as follows; “1” indicates the 

inclusion of the reparative case, “0” indicates the exclusion reparative case and “*” 

indicates a “don’t care” value. Here, Table 2.2 shows the decision table for Figure 2.2. 

The columns TC1, TC2, TC3 represent the test cases that could be used to test the “Grade 

Converter” software. 
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Table 2.2 The decision table for the CEG in Figure 2-2. 

Case TC1 TC2 TC3 

C1 1 0 0 

C2 0 1 0 

C5 0 0 1 

C4 0 0 0 

C5 0 0 0 

C6 1 1 0 

E1 1 1 * 

E2 0 0 * 

E3 0 0 0 

E4 0 0 0 

E5 0 0 0 

E6 1 0 1 

 

2.1.5 Interaction Sampling 

Complementing the strategies highlighted earlier (i.e. systematic random testing, 

equivalence class partitioning, boundary value analysis, and cause and effect graphing), 

interaction t-way strategy deals with the interaction between the software inputs as faults 

could be triggered owing to the interaction itself. The next section and its subsection 

elaborate on the mathematical notations as well as fundamental concepts for t-way test 

suite generation. 

2.2 The Mathematical Notations for t-way Test Suite Generation 

Empirical research results indicate that software systems failure is mostly 

triggered by interactions among t parameters from (2 ≤ t ≤ 6) (Czarnecki et al., 2012; 

Kuhn et al., 2004). Interaction testing is a method capable of constructing the test suite 

that covers all t-way parameter-values. Commonly, the mathematical notation for 

interaction testing including t-way test generation is driven from algebraic mathematical 

properties of inputs and its values based on the Covering Array (CA) and Mixed-level 

Covering Array (MCA) notations (Cohen, 2004). 

The notation CA has four main parameters, namely, S , 𝑡 , 𝑝 , and 𝑣  (i.e. CA 

(𝑆, 𝑡, 𝑃, 𝑣)). CA is a matrix of size S  𝑃. Here, The symbols 𝑡 refers to the interaction 

strength, 𝑆  represents the test cases (rows), 𝑃  is known as number of parameters 

(columns) and 𝑣  refers to the number of 𝐶𝐴  values for a specific 𝑃  (Kuliamin & 

Petukhov, 2011; Yilmaz et al., 2006). 
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CA (𝑆, 2, 4, 3 3 3 3) is equivalent to CA (S, 𝑡, 𝑣𝑃). Hence, for  CA (𝑆, 2, 34),  it can 

be seen as S  4 array that covers the test suite. In this case, the test suite covers t = 2 (or 

termed pairwise interaction strength) with three 𝑣  values and four 𝑝 parameters, S is 

3  3 = 9 test cases. This case represents the most minimum covering array S (see Figure 

2.3 (A)) as shown is Equation 2.1 based on the definition of 𝐶𝐴𝑁 (Hartman & Raskin, 

2004b).  

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝐴 →  𝐶𝐴𝑁 (𝑡, 𝑣𝑃) = min  {∃|𝜆 𝐶𝐴 (S, 𝑡, 𝑃, 𝑣)} 2.1 

Nonetheless, systems usually have different values for each of its components. 

Therefore, MCA is introduced to represent each component as individual test parameter 

as its own values. MCA is indicated by MCA (S, 𝑡, 𝑝, 𝑣1𝑣2, … , 𝑣𝑛). The only difference to 

that of CA is that 𝑣𝑛 is specified values for related 𝑃 parameter for every single column 

𝑣𝑖 ∈ (1 ≤  𝑖 ≤  𝑃) containing elements of the set |𝑣𝑛
∗| =  𝑣𝑛. The row of each submatrix 

contains S  𝑡 interaction elements that cover all t-tuples from the related 𝑡 columns at 

least once. Similar to CA, MCA can be indicated as MCA (S, 𝑡, 𝑃, 𝑣1
𝑥1𝑣1

𝑥2, … , 𝑣𝑛
𝑥𝑖), where 

𝑝 as shown is Equation 2.2. 

𝑃 =  ∑𝑥n 

𝑛

𝑖=1

 2.2 

In here, each 𝑥𝑖 parameter has its own 𝑣𝑛 value, for example, a test suite covers 

pairwise interaction strength with four 𝑃  parameters, first two parameters have two 

values and the rest two has three values. MCA is formulated as MCA (S, 2, 22 32). In 

case of the most optimal value of S, MCA is represented as in Equation 2.3 (see Figure 

2.3 B) for the most optimal test suite. 

MCAN (𝑡, 𝑣1
𝑃1  𝑣2

𝑃2 , … , 𝑣𝑛
𝑃𝑖) = 𝑚𝑖𝑛  { ∃│𝜆 MCA (S, 𝑡, 𝑃, 𝑣1, 𝑣2, … , 𝑣𝑛)} 2.3 

In order to clarify the use of a CA and MCA for interaction testing, the reader is 

referred the representation of the most optimal test suite for the given example in Figure 

2.3 (B). 
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Figure 2.3 The illustration of the mathematical notations. 

As this study considered mixed-strength interaction (as variable-strength 

interaction only) (Bansal et al., 2015; Cohen et al., 2003a), the mixed-strength Covering 

Array (mCA) and mixed-strength Mixed-level Covering Array (mMCA) are following 

the same concepts of a CA and MCA with added condition for the mixed-strength 

interaction (MC ). Referred to as mixed-strength interaction condition, the mCA is 

formulated as mCA (𝑆, 𝑡, 𝑣𝑃, {MC})  and mMCA (𝑆, 𝑡, 𝑣1
𝑃1  𝑣2

𝑃2 , … , 𝑣𝑛
𝑃𝑖 , {MC}) , 

respectively, where the condition (MC) is one or more CA or MCA.  

For instance, mCA (𝑆, 2, 24, {MC}), where MC =  CA (𝑆, 3, 23) (see Figure 2.3 

(C)) implies a test size of 𝑆 for t = 2 for all four parameters along with a sub-strength t = 

3 for the first three parameters. The interaction elements for the main configuration in the 

mCA and the sub-configuration CA (mixed-strength) are combined together to generate a 

test suite of size 𝑆 . The running example in problem definition model section gives 

further description for the 𝑚𝑀𝐶𝐴 covering array shown in Figure 2.3 (D). 

  



19 

2.3 A Problem Definition Model for t-way Test Suite Generation 

In order to illustrate how the t-way test generation works, consider the source 

code inputs in Figure 2.4 as a running example. For simplicity, we consider a source code 

with two Boolean inputs and two arrays each of which has three characters. Here, the 

input consists of four parameters; 𝑃1, 𝑃2, 𝑃3, and 𝑃4. 𝑃1 and 𝑃2 have two values each (i.e. 

true or false) referred to as, 𝑃𝑖𝑣1 and 𝑃𝑖𝑣2 , respectively.  On the other hands, 𝑃3 and 𝑃4 

have three values each (i.e. 𝑃3  = {‘<’, ‘=’, ‘>’} relation values, 𝑃4  = {‘+’, ‘-’, ‘*’} 

operation values) referred to as, 𝑃𝑖𝑣1, 𝑃𝑖𝑣2 and 𝑃𝑖𝑣3, respectively.  

From this point on, the use of “combination” reflects the relation between the 

domain-under-test parameters as a set of parameters (i.e. x = { 𝑃1 , 𝑃2 }) (i.e. the 

combination of 𝑃1 and 𝑃2 and without their dependency values). The set of parameters-

values (i.e. x = {𝑃1𝑣1 , 𝑃2𝑣1, 𝑃3𝑣1, 𝑃4𝑣1}), is referred to as “configuration” as a set of the 

parameter dependencies values. Here, the use of the parameter (𝑃𝑖 ) refers to which 

parameter the value (i.e. 𝑣1, 𝑣2 𝑜𝑟 𝑣3) is related. 

Running Example

Input Parameters

        

Values

 𝑟   𝑟  < +

 𝑎𝑙𝑠  𝑎𝑙𝑠 = -

> *

 

Figure 2.4 Running example. 

Figure 2.4 demonstrates the input parameters, as a set of four parameters. 

Assuming that each parameter is triggering a specific action, the system can be tested 

based on the four parameters; 𝑃1 , 𝑃2 , 𝑃3  and 𝑃4 , respectively. Each of these four 

parameters has its own values (i.e. 𝑃1 = {𝑃1𝑣1, 𝑃1𝑣2}, 𝑃2 = {𝑃2𝑣1, 𝑃2𝑣2}, 𝑃3 = {𝑃3𝑣1, 

𝑃3𝑣2, 𝑃3𝑣3} and 𝑃4 = {𝑃4𝑣1, 𝑃4𝑣2, 𝑃4𝑣3}) as seen in Figure 2.5. 
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Input parameters 
[                      ]

− − −− −−−−−−−−

Values {

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2

𝑃3𝑣3 𝑃4𝑣3

}

 

Figure 2.5 The running example parameters and values. 

The maximum number of test configurations (exhaustive configurations at t=4) 

can be calculated based on the Equation 2.4. Where Pset i and vset i are sets of similar 

parameters and values. Thus, the exhaustive configurations consist of 2
2
 × 3

2
 = 36 test 

configurations (or cases) as shown in Figure 2.6.  

Number of configurations =(vset 1)
Pset 1 

×(vset 2)
Pset 2 

×,…,(vset i)
Pset i  2.4 

Input parameters 

[                      ] [                      ]

− − − − −−−−−−−−               − − − − −−−−−−−−

Values     {
𝑃1𝑣1 𝑃2𝑣1

𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

} {𝑃1𝑣2

𝑃2𝑣1
𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

}

− − − −−−−−−−−−               − − − − −−−−−−−−

Exhaustive 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣1
𝑃3𝑣1
𝑃3𝑣1

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣2
𝑃3𝑣2
𝑃3𝑣2

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣3
𝑃3𝑣3
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣1
𝑃3𝑣1

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣2
𝑃3𝑣2
𝑃3𝑣2

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣3
𝑃3𝑣3
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3}

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

+

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣1
𝑃3𝑣1
𝑃3𝑣1

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣2
𝑃3𝑣2
𝑃3𝑣2

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣3
𝑃3𝑣3
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣1
𝑃3𝑣1

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣2
𝑃3𝑣2
𝑃3𝑣2

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣3
𝑃3𝑣3
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3}

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 2.6 The exhaustive test suite (at t = 4) for CA(36,4, 22 32). 
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A closer look in Figure 2.6, the parameters can be viewed as columns in a matrix; 

𝑃1, 𝑃2, 𝑃3 and 𝑃4, respectively.  For column 𝑃1, the value 𝑃1𝑣1 is repeated 18 times then 

𝑃1𝑣2 is also 18 times to reach the maximum number of test cases (in Figure 2.6, 𝑃1𝑣1 and 

𝑃1𝑣2 are separated for the sake of illustration simplicity), which gives 36 cases in total. 

Here, the value repeated 18 times, because there are 36 configurations with 2 specified 

values for each. Therefore, 36 configurations are divided by 2 as specified by the 

repetition for 𝑃1(18 times). Then, for the column 𝑃2, the value 18 is also divided by the 

specified values for 𝑃2 which is 2 (9 times). The value of 𝑃2𝑣1 is repeated 9 times then 

𝑃2𝑣2 is also 9 times, Here, both of 𝑃2𝑣1 and 𝑃2𝑣2 are repeated 9 times each. In similar 

manner, for column 𝑃3, the values; 𝑃3𝑣1, 𝑃3𝑣2 and 𝑃3𝑣3 are repeated alternately 3 times 

each. For 𝑃2 = 9, the repetition is 𝑃3 divided by 3. Finally, for column 𝑃4, 𝑃4𝑣1, 𝑃4𝑣2and 

𝑃4𝑣3are repeated alternately until 36 configurations is reached. 

Here, to minimize the exhaustive test suite from full interaction strength (t = 4) 

in Figure 2.6, consider relaxing the interaction strength to 2-way (or t = 2) for the first 

two parameters 𝑃1, 𝑃2. Here, the range of values for (t) is between two (i.e. 2-way) and 

exhaustive case (the maximum number of defined parameters). In this case, the 

parameters 𝑃3, 𝑃4 values could be treated as “don’t care”, such that the values of 𝑃3, 𝑃4 

could be randomly assigned (i.e. 𝑃3𝑣1, 𝑃3𝑣2 or 𝑃3𝑣3 for 𝑃3 and 𝑃4𝑣1, 𝑃4𝑣2  or 𝑃4𝑣3 for 

𝑃4 ). Then, the number of test configurations for 2-way can be calculated based on the 

Equation 2.5 yielding 22 = 4 test configurations. For instance, the configurations follows 

the set role {𝑃1 , 𝑃2} for all the values (i.e. {𝑃1𝑣1, 𝑃2𝑣1} , {𝑃1𝑣1, 𝑃2𝑣2} ,{𝑃1𝑣2, 𝑃2𝑣1} , 

{𝑃1𝑣2, 𝑃2𝑣2}) (see Figure 2.7 (A), where, “𝑥” refers to “don’t care” values). Then, 𝑃3, 𝑃4 

values are added randomly. Using this technique, the number of test configurations for 

2-way test suite can be minimized to 4 test cases (see Figure 2.7 (B)). 
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[
 
 
 
 
 
 
 
 
 
 

Input parameters 

[                      ]

− − − − − −− − − − −−

Values {
  𝒗 
  𝒗 

  𝒗 
  𝒗 

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

}

− − − − − −− − − − −−
2 −way 

interaction 
set for
   ,   

{

  𝒗   𝒗     𝑥      𝑥   
  𝒗   𝒗     𝑥      𝑥   
  𝒗   𝒗     𝑥      𝑥   
  𝒗   𝒗     𝑥      𝑥   

}

]
 
 
 
 
 
 
 
 
 
 

→

[
 
 
 
 
 
 
 
 
 
 

Input parameters 

[                      ]

− − − − −− − − − −− −

Values {
  𝒗 
  𝒗 

  𝒗 
  𝒗 

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

}

− − − − −− − − − −− −
2 − way 
test cases 

for
   ,   

{

  𝒗   𝒗 𝑃3𝑣3 𝑃4𝑣1
  𝒗   𝒗 𝑃3𝑣1 𝑃4𝑣3
  𝒗   𝒗 𝑃3𝑣3 𝑃4𝑣2
  𝒗   𝒗 𝑃3𝑣2 𝑃4𝑣1

}

]
 
 
 
 
 
 
 
 
 
 

(A) (B)

 

Figure 2.7 The illustration of the interaction elements set in (A) and the test cases 

set in (B) for 2-way interaction strength (at t = 2). 

In real world software, it is difficult to point out which software parameter has 

insignificant effect or impact on the software. As a matter of fact, considering the impact 

of other than 2-way combinations may be needed. Therefore, the t-way test suite must be 

generated for all the software parameters to cover all (t) interaction for the software. Thus, 

all the possible parameters combinations for 2-way (i.e. (𝑃1, 𝑃2), (𝑃1, 𝑃3), (𝑃1, 𝑃4), (𝑃2, 

𝑃3 ), (𝑃2 , 𝑃4 ), and (𝑃3 , 𝑃4 )) need to be considered. In this example, there are six 

possibilities for 2-way interactions combinations need to be considered using similar 

method as illustrated for the 𝑃1 , 𝑃2  (see Figure 2.7). Here, there are six sets of 

combinations for 2-way interaction configurations, these configurations can be 

configured based on the six sets of combinations as follows; set i = {(𝑃1, 𝑃2, 𝑥, 𝑥}, set ii 

= {𝑃1, 𝑥, 𝑃3, 𝑥}, set iii = {𝑃1, 𝑥, 𝑥, 𝑃4}, set iv = {𝑥, 𝑃2, 𝑃3, 𝑥} , set v  = {𝑥, 𝑃2, 𝑥, 𝑃4} and  

set iv = {𝑥 , 𝑥 , 𝑃3 , 𝑃4}. In here, “𝑥” can be randomized based on the values of the 

represented parameters.  

Essentially, the interaction configurations with the do not care value “x” are called 

“interaction elements” (see in Figure 2.8 (A)). Typically, these interaction elements are 

growing exponentially when the number of the parameters and their values increases. The 

number of interaction configurations can be calculated using the following Equation (see 

Equation 2.5 (Colbourn & Dinitz, 2006).  

𝐼𝑛𝑡 𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑙 𝑚 𝑛𝑡𝑠 𝑠𝑖𝑧  =  (
𝑃
𝑡
) 𝑣𝑡 =

𝑃!

𝑡! (𝑃 − 𝑡)!
 𝑣𝑡 2.5 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input parameters 

[                      ]

− − − −− − − −− − −−

Values {

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2

𝑃3𝑣3 𝑃4𝑣3

}

− − − −− − − −− − −−

2 − way 
for

   ,   

{

𝑃1𝑣1 𝑃2𝑣1     𝑥      𝑥   
𝑃1𝑣1 𝑃2𝑣2     𝑥      𝑥   
𝑃1𝑣2 𝑃2𝑣1     𝑥      𝑥   
𝑃1𝑣2 𝑃2𝑣2     𝑥      𝑥   

} (i)

   ,   

{
 
 

 
 
𝑃1𝑣1    𝑥   𝑃3𝑣1    𝑥   
𝑃1𝑣1    𝑥   𝑃3𝑣2    𝑥   
𝑃1𝑣1    𝑥   𝑃3𝑣3    𝑥   
𝑃1𝑣2    𝑥   𝑃3𝑣1    𝑥   
𝑃1𝑣2    𝑥   𝑃3𝑣2    𝑥   
𝑃1𝑣2    𝑥   𝑃3𝑣3    𝑥   }

 
 

 
 

(ii)

   ,   

{
 
 

 
 
𝑃1𝑣1    𝑥      𝑥   𝑃4𝑣1
𝑃1𝑣1    𝑥      𝑥   𝑃4𝑣2
𝑃1𝑣1    𝑥       𝑥   𝑃4𝑣3
𝑃1𝑣2    𝑥      𝑥   𝑃4𝑣1
𝑃1𝑣2    𝑥      𝑥   𝑃4𝑣2
𝑃1𝑣2    𝑥      𝑥   𝑃4𝑣3}

 
 

 
 

(iii)

   ,   

{
 
 

 
 
   𝑥   𝑃2𝑣1 𝑃3𝑣1    𝑥   
   𝑥   𝑃2𝑣1 𝑃3𝑣2    𝑥   
   𝑥   𝑃2𝑣1 𝑃3𝑣3    𝑥   
   𝑥   𝑃2𝑣2 𝑃3𝑣1    𝑥   
   𝑥   𝑃2𝑣2 𝑃3𝑣2    𝑥   
   𝑥   𝑃2𝑣2 𝑃3𝑣3    𝑥   }

 
 

 
 

(iv)

   ,   

{
 
 

 
 
   𝑥   𝑃2𝑣1    𝑥   𝑃4𝑣1
   𝑥   𝑃2𝑣1    𝑥   𝑃4𝑣2
   𝑥   𝑃2𝑣1     𝑥   𝑃4𝑣3
   𝑥   𝑃2𝑣2    𝑥   𝑃4𝑣1
   𝑥   𝑃2𝑣2    𝑥   𝑃4𝑣2
   𝑥   𝑃2𝑣2     𝑥   𝑃4𝑣3}

 
 

 
 

(v)

   ,   

{
 
 
 
 

 
 
 
 
   𝑥      𝑥   𝑃3𝑣1 𝑃4𝑣1
   𝑥      𝑥   𝑃3𝑣1 𝑃4𝑣2
   𝑥      𝑥   𝑃3𝑣1 𝑃4𝑣3
   𝑥      𝑥   𝑃3𝑣2 𝑃4𝑣1
   𝑥      𝑥   𝑃3𝑣2 𝑃4𝑣2
   𝑥      𝑥   𝑃3𝑣2 𝑃4𝑣3
   𝑥      𝑥   𝑃3𝑣3 𝑃4𝑣1
   𝑥      𝑥   𝑃3𝑣3 𝑃4𝑣2
   𝑥      𝑥   𝑃3𝑣3 𝑃4𝑣3}

 
 
 
 

 
 
 
 

(vi)

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

→

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input parameters 

[                      ]

− − − −− − − −− − − −

Values {

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2

𝑃3𝑣3 𝑃4𝑣3

}

− − − −− − − −− − − −

2 − way 
for

   ,   

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3

} (i)

   ,   

{
 
 

 
 
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1}

 
 

 
 

(ii)

   ,   

{
 
 

 
 
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3}

 
 

 
 

(iii)

   ,   

{
 
 

 
 
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1}

 
 

 
 

(iv)

   ,   

{
 
 

 
 
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3}

 
 

 
 

(v)

   ,   

{
 
 
 
 

 
 
 
 
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3}

 
 
 
 

 
 
 
 

(vi)

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A) (B)

(interaction sets) (test cases sets with duplicates)

 

Figure 2.8 The running example interaction elements and test cases sets including 

randomized values. 

To finalize the test suite in Figure 2.8 (B), merging all the 2-way test cases sets 

can be considered in order to minimize and eliminate the duplicated test cases so as to 

produce a final test suite in Figure 2.9. 
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Input parameters 
[                      ]

− − −− −−−−−−−−

Values {

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2

𝑃3𝑣3 𝑃4𝑣3

}

− − −− −−−−−−−−

2 −𝑤𝑎𝑦
𝑡 𝑠𝑡 𝑠 𝑖𝑡 

{
 
 
 
 
 

 
 
 
 
 
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣1}

 
 
 
 
 

 
 
 
 
 

 

Figure 2.9 Merging of all 2-way test sets, Final test suite for CA(11,4, 22 32). 

Referring to Figure 2.9, it can be noted that the total test suite has been reduced 

from 36 (at full interaction strength t = 4) to 11 (at t = 2), Here, approximately 70% 

reduction has been achieved using the “random” based t-way strategy. From this 

example, significant test reduction advantage can be observed, which can potentially 

minimize the test execution cost and time. 

To evaluate the final test suite achieved in Figure 2.9, a coverage analysis of the 

2-way elements (or interaction tuples) has to be conducted. This example have six 

combinations elements as follows; (𝑃1, 𝑃2), (𝑃1, 𝑃3), (𝑃1, 𝑃4), (𝑃2, 𝑃3), (𝑃2, 𝑃4), and (𝑃3, 

𝑃4). Each of these combinations has its own interaction elements (configurations) that 

need to be covered at least once by the final test suite. As the strategy described in 

previous paragraphs has been based on random selection, non-optimum results have been 

produced as some interactions are covered by more than once. The interaction coverage 

analysis for 2-way test suite can be seen in Figure 2.10.  
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 − way 2 − way Test suite  𝑜𝑡𝑎𝑙 𝑜𝑓

combinations configurations occurrences occurrences

− − − − −− −−−−−− −−−−−− −−−−−−

(i)    ,   = {

𝑃1𝑣1 𝑃2𝑣1
𝑃1𝑣1 𝑃2𝑣2
𝑃1𝑣2 𝑃2𝑣1
𝑃1𝑣2 𝑃2𝑣2

} → [

3
2
2
4

] = 11

(ii)    ,   =

{
 
 

 
 
𝑃1𝑣1 𝑃3𝑣1
𝑃1𝑣1 𝑃3𝑣2
𝑃1𝑣1 𝑃3𝑣3
𝑃1𝑣2 𝑃3𝑣1
𝑃1𝑣2 𝑃3𝑣2
𝑃1𝑣2 𝑃3𝑣3}

 
 

 
 

→

[
 
 
 
 
 
2
2
1
2
2
2]
 
 
 
 
 

= 11

(iii)    ,   =

{
 
 

 
 
𝑃1𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃4𝑣3}

 
 

 
 

→

[
 
 
 
 
 
2
2
1
2
2
2]
 
 
 
 
 

= 11

(iv)    ,   =

{
 
 

 
 
𝑃2𝑣1 𝑃3𝑣1
𝑃2𝑣1 𝑃3𝑣2
𝑃2𝑣1 𝑃3𝑣3
𝑃2𝑣2 𝑃3𝑣1
𝑃2𝑣2 𝑃3𝑣2
𝑃2𝑣2 𝑃3𝑣3}

 
 

 
 

→

[
 
 
 
 
 
2
2
1
2
2
2]
 
 
 
 
 

= 11

(v)    ,   =

{
 
 

 
 
𝑃2𝑣1 𝑃4𝑣1
𝑃2𝑣1 𝑃4𝑣2
𝑃2𝑣1 𝑃4𝑣3
𝑃2𝑣2 𝑃4𝑣1
𝑃2𝑣2 𝑃4𝑣2
𝑃2𝑣2 𝑃4𝑣3}

 
 

 
 

→

[
 
 
 
 
 
2
2
1
2
2
2]
 
 
 
 
 

= 11

(vi)    ,   =

{
 
 
 
 

 
 
 
 
𝑃3𝑣1 𝑃4𝑣1
𝑃3𝑣1 𝑃4𝑣2
𝑃3𝑣1 𝑃4𝑣3
𝑃3𝑣2 𝑃4𝑣1
𝑃3𝑣2 𝑃4𝑣2
𝑃3𝑣2 𝑃4𝑣3
𝑃3𝑣3 𝑃4𝑣1
𝑃3𝑣3 𝑃4𝑣2
𝑃3𝑣3 𝑃4𝑣3}

 
 
 
 

 
 
 
 

→

[
 
 
 
 
 
 
 
 
1
2
1
2
1
1
1
1
1]
 
 
 
 
 
 
 
 

= 11

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.10 Analysis of 2- way interaction configurations occurrence. 

Figure 2.10 shows the interaction coverage analysis for 2-way test suite with the 

test suite achieved for all 2-way interaction configurations (given in Figure 2.8 (A))). The 

sum of the 2-way interaction configuration occurrences for each configuration must equal 
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the number total number of test cases in the final test suite, which is 11 (i.e. in Figure 

2.10, configuration set i, (𝑃1𝑣1, 𝑃2𝑣1 = 3), (𝑃1𝑣1, 𝑃2𝑣2 = 2), (𝑃1𝑣2, 𝑃2𝑣1 = 2), (𝑃1𝑣2, 𝑃2𝑣2 

= 4)), the total of occurrence equals 11 occurrences.  

In the case of parameters having a different impact on the software (assuming the 

defects are caused by the first three parameters), a special case of t-way concept called 

mixed-strength interaction can be considered.  

 

Figure 2.11 The mixed-strength interaction demonstration. 

Here in Figure 2.11, assuming that overall defects are caused by all 2-way 

interactions (main-strength), and the 3-way interactions (sub-strength) between (𝑃1, 𝑃2, 

𝑃3 ), the mixed-strength t-way interaction can be represented as 𝑚𝑀𝐶𝐴(𝑆, 2, 22 32,

𝐶𝐴(𝑆, 3,22 31)) whereby the sub-strength CA represents the mixed-strength condition 

(MC). 

The 2-way test suite for the overall (main) interaction strength is generated in 

Figure 2.9. Now, for the 3-way interaction, assuming that 𝑃4  parameter is having 

insignificant effect on the software. (i.e. “don’t care” value)., its parameter can be 

randomly generated to take any valid values (𝑃4𝑣1, 𝑃4𝑣2 or 𝑃4𝑣3) each time separately. 

In effect, for each combination there are only three selected parameters with one 

randomly generated value. Thus, 3-way interaction test suite is considered by using the 

set of 𝑃1, 𝑃2, 𝑃3 parameters for t = 3. In this case, the same approach is used to generate 

the test suite for 2-way for the first two parameters 𝑃1, 𝑃2 as in Figure 2.7 (B. As a result, 

there are 8 test cases for 3-way interaction strength (see Figure 2.12). In this case, the 

number of test cases is reduced significantly from 36 to simply 8 test cases for 3-way in 

this scenario. 



27 

Input parameters 

[                      ]

− − − − −−−−−−−−

Values {

  𝒗   𝒗   𝒗 𝑃4𝑣1
  𝒗   𝒗   𝒗 𝑃4𝑣2

  𝒗 𝑃4𝑣3

}

− −− − −−−−−−−−

3 −𝑤𝑎𝑦
𝑡 𝑠𝑡 𝑠 𝑖𝑡 

{
 
 
 
 
 
 

 
 
 
 
 
 
  𝒗 
  𝒗 
  𝒗 

  𝒗 
  𝒗 
  𝒗 

  𝒗 
  𝒗 
  𝒗 

𝑃4𝑣1
𝑃4𝑣1
𝑃4𝑣2

  𝒗 
  𝒗 
  𝒗 

  𝒗 
  𝒗 
  𝒗 

  𝒗 
  𝒗 
  𝒗 

𝑃4𝑣1
𝑃4𝑣3
𝑃4𝑣2

  𝒗 
  𝒗 
  𝒗 

  𝒗 
  𝒗 
  𝒗 

  𝒗 
  𝒗 
  𝒗 

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

  𝒗 
  𝒗 
  𝒗 

  𝒗 
  𝒗 
  𝒗 

  𝒗 
  𝒗 
  𝒗 

𝑃4𝑣2
𝑃4𝑣1
𝑃4𝑣1}

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 2.12 The 3-way interaction test suite for the first three parameters. 

 

In order to generate the mixed test suite for this scenario, the 2-way test set for 

the overall software (see Figure 2.9) is combined with the 3-way test set (sub-strength) 

for 𝑃1, 𝑃2, 𝑃3 (see Figure 2.12). Then, the duplicates are removed resulting in 15 test 

cases (see Figure 2.13).  

Referring to Figure 2.13, the test cases in Figure 2.13 (B) that are marked in bold 

text for the 3-way test suite are the ones that are not covered by the overall 2-way test 

suite. These test cases are added to the ones in Figure 2.13 (A) to construct the final 

mixed-strength test suite shown in Figure 2.13 (C), the rest (of test cases) in Figure 2.13 

(B) are the duplicates that have been eliminated.  
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2 − 𝑤𝑎𝑦 𝑡 𝑠𝑡 𝑠 𝑖𝑡 3 − 𝑤𝑎𝑦 𝑡 𝑠𝑡 𝑠 𝑖𝑡  𝑓𝑜𝑟    ,   ,   𝑀𝑖𝑥 𝑑 𝑖𝑛𝑡 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡 𝑠𝑡 𝑠 𝑖𝑡 

[
 
 
 
 
 
 
 
 
 
 
 
 
[                      ]
− − − − − −−− −−−−

{
 
 
 
 
 

 
 
 
 
 
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣1}

 
 
 
 
 

 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[                      ]
− − − − − −−−−−−−

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑃1𝑣1
𝑃1𝑣1
  𝒗 

𝑃2𝑣1
𝑃2𝑣1
  𝒗 

𝑃3𝑣1
𝑃3𝑣2
  𝒗 

𝑃4𝑣1
𝑃4𝑣1
  𝒗 

  𝒗 
𝑃1𝑣1
𝑃1𝑣1

  𝒗 
𝑃2𝑣2
𝑃2𝑣2

  𝒗 
𝑃3𝑣2
𝑃3𝑣3

  𝒗 
𝑃4𝑣3
𝑃4𝑣2

  𝒗 
𝑃1𝑣2
𝑃1𝑣2

  𝒗 
𝑃2𝑣1
𝑃2𝑣1

  𝒗 
𝑃3𝑣2
𝑃3𝑣3

  𝒗 
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣2
𝑃4𝑣1
𝑃4𝑣1}

 
 
 
 
 
 

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[                      ]
− − − − − −−−−−−−

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1}

 
 
 
 
 
 
 

 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A) (B) (C)

Figure 2.9 revisited Figure 2.12 revisited

(11 𝑡 𝑠𝑡 𝑐𝑎𝑠 𝑠) (12 𝑡 𝑠𝑡 𝑐𝑎𝑠 𝑠) (15 𝑡 𝑠𝑡 𝑐𝑎𝑠 𝑠)

 

Figure 2.13 The test suite for the overall system with the mixed-strength interaction. 
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Referring to Figure 2.13 (C) , the total test suite has been reduced from 36 (at full 

interaction strength t=4) to 15 for the mixed-strength example considered (i.e. the two-

way interaction with three-way sub-strength for the first three parameters (𝑃1, 𝑃2, 𝑃3)). 

In this case, a reduction of 58.3% has been achieved. Here, the test generated are covering 

all the interaction between the parameters and their values giving more focuses on the 

first three parameters.  

In this example, each of the 2-way and 3-way pair combinations are covered at 

least once in the interaction tuples (at least once as evident in their occurrences). Thus, 

the solution given in Figure 2.9 and Figure 2.13 (C) for mixed two-way test suite and 

mixed-strength test suite are correct. Here, the terms “covered” or “coverage” implies the 

“parameter coverage,” All the parameters in this example are covered by the generated 

interaction elements. In this manner, interaction elements are the highlighted 

configurations in Figure 2.8 without the randomized values (i.e. 37 interaction elements 

are generated in the interaction tuples for the set i, ii, iii, iv, v, and vi). Thus, some of the 

2-way interaction configurations are covered more than one times after the randomization 

process. In this case, the more interaction elements covered for the maximum available 

times (occurrences) often prevent optimum test suite (i.e. some of the 2-way 

combinations in Figure 2.8 are covered more than once). Ensuring that combinations are 

covered once is the key challenges in this research area, in order to get the most optimum 

results possible regardless of the value of interaction strength value (t).  

As the 𝑡 strength is further relaxed, the reduction of the test suite tends to increase. 

For example, the most minimum test suite for 2-way interaction strength in the example 

abovementioned is 11 test cases out of 36 test cases in it exhaustive case is achieved for 

the main-strength scenario. In the second scenario, a 15 test cases out of 36 is obtained 

with variable-strength. It is worth mentioning that 9 and 12 test cases can be achieved as 

in the both scenario (called the optimum test suite). In this example, a considerable result 

has been achieved. However, as highlighted in Chapter 1, pairwise (i.e. t = 2, as main-

strength) test suite generation is considered to be insufficient to cover (or capture) 100% 

of software defects. Therefore, focusing in higher degree of t strength is much desired.  
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Most importantly, this study is using the same concept used in this example with 

some modification for the mixed-strength generation. In this study t-way test suite 

generation is supported up to six degrees (i.e. 𝑚𝑎𝑥 𝑡 𝑚𝑎𝑖𝑛−𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 6 ) with the 

exception of mixed-strength (or sub-strength) generation that can be represented using 

Equation 2.6. 

𝑚𝑎𝑥 𝑡𝑠𝑢𝑏−𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = {
𝑃 − 1    , 𝑃 ≤ 6
6          , 6 > 𝑃

 2.6 

 

2.4 Formal Definition for t-way  

Building from the running example in the previous section; this section 

formalized the terminologies that will be used throughout the thesis. These terminologies 

will be extensively adopted in Chapter 3. 

Definition 1. A test Element (𝐸) as a synonym for parameter (𝑃) that consists of a set 

of values (i.e. 𝐸𝑖  ↔ {𝑃𝑖 = {𝑣1, 𝑣2, … , 𝑣𝑛}}) . Here, the test element E is a 

representation of a parameter and their dependencies as a component. The test 

element E for parameter 𝑃𝑖 is donated as 𝐸𝑖. For ease of use, as parameters are 

disjoint, whereas, each value 𝑣𝑛 refers to a unique parameter. This consideration 

allows us to address each value 𝑣𝑛 without referring to its parameter. 

 

Definition 2. An Element Set (ES) that contains the test element of the software-under-

test. Here, the ES for the running example is:  

 

𝐸𝑆 = the value sizes for {𝐸1, 𝐸2, 𝐸3, 𝐸4} 

 

Definition 3. The Element Combination (EC) (known as a t-tuple element) that contains 

the t-based pairing combination for the ES, here each EC∈ [E. 𝑠 𝑙, E. 𝑠 𝑙̅̅ ̅̅ ], where 

𝐸. 𝑠 𝑙 and 𝐸. 𝑠 𝑙̅̅ ̅̅  imply the state of selected and not selected element from ES 

respectively. Here, the selected elements are ticked (see 2.14), which shows an 

illustration of complete 2-way tuple selection used in the running example. 
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[
 
 
 
 
 
 
𝐸𝑆  ∶ 𝐸1 𝐸2 𝐸3 𝐸4
EC 1:  

EC 2:  

EC 3:  

EC 4:  

EC 5:  

EC 6:   ]
 
 
 
 
 
 

 

Figure 2.14 The element t-tuple sets dominastration. 

 

Definition 4. The Combinations t-Tuples Set (CTS) that is a list contains all the valid 

combination elements. For example, the in case of pairwise interaction, CTS = 

{EC 1, EC 2, EC 3, EC 4, EC 5, EC 6}, Figure 2.15 illustrates the CTS, these EC 

sets in CTS will use to generate all required interaction elements that cover all the 

test suite. 

[
 
 
 
 
 
 
𝐸𝐶 1 = {𝐸1, 𝐸2}

𝐸𝐶 2 = {𝐸1, 𝐸3}

𝐸𝐶 3 = {𝐸1, 𝐸4}

𝐸𝐶 4 = {𝐸2, 𝐸3}

𝐸𝐶 5 = {𝐸2, 𝐸4}

𝐸𝐶 6 = {𝐸3, 𝐸4}]
 
 
 
 
 
 

 

Figure 2.15 The combinations t-tuples set (CTS) list illustration. 

 

Definition 5. Interaction Element Tuples (IET). At based interaction element (IE) 

configurations set that each set covers an EC values. Each set of tuples in IET ∈

[𝑣. 𝑠 𝑙, 𝑣. 𝑠 𝑙̅̅ ̅̅  ], representing all the 𝑖  configurations driven by the generation of 

the combination dependencies on CTS list. Formally, IET is number of 

configurations sets that covers all CTS for the domain targeted. Each generated 

EC set in IET represent an “element t-tuple”. For example, let’s consider the 

demonstration for one EC (i.e. EC 1). Here, all the possible values for the test 

element 𝐸1  and 𝐸2  are considered. Unlike, 𝐸3  and 𝐸4  are considered as “don’t 

care” values (see Figure 2.16). 
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[
 
 
 
IE 1 = {𝑃1𝑣1, 𝑃2𝑣1, 𝑥, 𝑥}

IE 2 = {𝑃1𝑣1, 𝑃2𝑣2, 𝑥, 𝑥}

IE 3 = {𝑃1𝑣2, 𝑃2𝑣1, 𝑥, 𝑥}

IE 4 = {𝑃1𝑣2, 𝑃2𝑣2, 𝑥, 𝑥}]
 
 
 

 

Figure 2.16 The illustration for IE set for EC 1 tuple in IET.  

The example in the problem definition model section has six different valid t-

tuple, or element combinations (EC) are indicated as ticked () in Definition 3. The 

unselected elements are empty. In Definition 4, EC sets are formulated based on the EL 

list that defined the components of the software-under-test from Definition 2. Then, these 

EC sets is combined in a CTS set in order to generate the IE sets that construct IET 

Definition 5 for test suite generation process. To elaborate, each EC formulates its own 

representative IE set, combining all of the IE sets generated by the element t-tuples 

formulates IET. In the running example, The IET set is constructed based on six EC (or 

called parameter combinations) sets, each of which has its own unique interaction 

configurations. Each IE set in IET can be calculated using the Equation 2.7.  

𝐼𝐸 𝑠𝑖𝑧 =  (𝑣𝐸𝑖  )! 2.7 

Next, the element E1 and E2 values are constructing the IE set for EC1 above-

mentioned. Thus, the size of IE set for EC1 based on the Equation 2.7 is 2 × 2 = 4 IE in 

this case (i.e. 𝑣𝐸1 = 2 𝑎𝑛𝑑 𝑣𝐸2 = 2). 

Definition 6. In order to optimize the IE sets in IET, that covers all the possible EC sets 

in CTS for the targeted software-under-test using BA, an objective function 

(𝑓(𝑥)) for optimizing IET need to be identified. This objective function can be 

specified as follows;  

𝑓(𝑥) = ∑ 𝑦 𝑐𝑜𝑣 𝑟𝑠 𝐼𝐸

𝐼𝐸𝑇 𝑠𝑖𝑧𝑒

𝑛=1

 

2.8 

 , 𝑤ℎ 𝑟  𝑦 = {𝑣𝐸1 , 𝑣𝐸2 , … , 𝑣𝐸𝑖};  𝑖 =  1, 2, … ,𝑁   

The 𝑓(𝑥) is coverage function, 𝑓(𝑥) uses to evaluate the fitness of the covering 

IE by each generated solution (or test candidate (𝑦)). 𝑦 symbol implies a set of decision 

values (𝑣𝐸𝑖) constructed based on the N, N implies an index representing a reference of 

the generated values of 𝐸𝑖 in ES. IET size indicates the total number of IE in IET. 
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2.5 The Existing t-way Strategies 

This section highlights the well-known t-way test suite generation strategies. 

Here, following the scope of this work, algebraic strategies (i.e. Orthogonal Arrays (OA) 

(Bush, 1952; Cheng, 1980; Mandl, 1985), CA, and MCA) (Cohen et al., 1994; Cohen, 

2004; Williams, 2000; Williams & Probert, 1996) are not discussed further than the 

briefly description of CA and MCA used in the mathematical notation section (see 

Section 2.2), as these strategies are available for limited configurations (Cheng, 1980; Yu 

et al., 2008). In similar manner, our analysis also omit several of the greedy based 

strategies that only support low interaction strength (i.e. In Parameter Order (IPO) (Lei 

& Tai, 1998), the Orthogonal Array Based Testing Strategy (OATS) (Krishnan et al., 

2007), G2Way (Klaib et al., 2008), IRPS (Younis et al., 2008b; Younis et al., 2010), 

ITTW (Younis & Zamli, 2009a), Reverse Tracking Strategy (RTS) (Younis & Zamli, 

2009b), AllPairs (Bach, 2002), ReduceArray2 and ReduceArray3 (Daich, 2003), 

rdExpert (Copeland, 2004), SmartTest (Inc., 2014), ORA (Younis et al., 2008a), PS2Way 

(Khatun et al., 2011), MT2Way (Rabbi et al., 2012) and EPS2Way (Rabbi et al., 2011)). 

The scope of this work focuses on high interaction strength (i.e.3< t ≤ 6). 

Indeed, a number of surveys have been conducted in the last two decades. As a 

matter of fact, Cohen (Cohen, 2004) has surveyed the interaction test generation 

strategies into two main classifications, which are algebraic frameworks (i.e. OA, CA, 

MCA) and computational techniques including greedy algorithms frameworks, IPO, 

algebraic tools (i.e. TConfig (Williams et al., 2003), Combinatorial Test Services (CTS) 

(Hartman & Raskin, 2004a)), heuristic search (i.e. HC) and meta-heuristic search (i.e. 

SA, Great Deluge Algorithm, Tabu search (TS) and GA). Concerning meta-heuristic 

search, McMinn (McMinn, 2004) surveys the meta-heuristic search strategies including 

HC, SA, GA and Evolutionary Algorithms. 

Well ahead, Grindal (Grindal et al., 2005) surveyed the interaction test generation 

based on three main groups, the first group is non-deterministic (probabilistic) where the 

test suite is varying in each run (i.e. Automatic Efficient Test Generator (AETG) (Cohen 

et al., 1994) and CATS (known as TestCover) (Sherwood, 1994, 2003)) as a heuristic 

non- deterministic method. Then, deterministic group with three subgroups that includes 

instant (i.e. OA (Mandl, 1985) and CA), iterative (i.e. Each Choice also known as 1-way 

(Ammann & Offutt, 1994), Partly Pair-Wise (PPW) (Burroughs et al., 1994), Base Choice 
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(BC) (Ammann & Offutt, 1994), default testing (Burr & Young, 1998) and Anti-random 

(AR)(Malaiya, 1995)),  and parameter-based strategies (i.e. IPO). Lastly, the last group 

is the compound strategies (i.e. BCAETG), which is a compound of BC and AETG. 

Most importantly, Nie (Nie & Leung, 2011) highlighted a survey that specifically 

highlighted mixed-strength interaction strategies. Building from Nie and Leung, Othman 

(Othman et al., 2013) proposed a critical survey and analysis based on the main support 

for t-way test generation strategies (i.e. supported interaction, computational 

implementation, automation support, strategy approach, and deployment). Othman 

surveys and analysis includes several strategies such as In-Parameter-Order-General 

(IPOG) and its variants, Modified IPOG (MIPOG), ParaOrder, ReqOrder, AETG, Test 

Case Generator (TCG), Jenny, Pairwise Independent Combinatorial Testing (PICT), Test 

Vector Generator (TVG), SA, GA and Variable Strength Particle Swarm Test Generator 

(VS-PSTG), Union and Greedy strategy, Generalized T-Way Test Data Generator 

(GTWay), Density based Strategies and TConfig. Recently, Jimena Adriana (Timaná-

Peña et al., 2016) reviewed the state-of-art metaheuristic algorithms and their 

applications. Jimena Adriana review covered most of the well-known metaheuristic 

algorithms, which includes; SA, TS, GA, ACO, PSO, and HS algorithms. 

In another work, Dias Neto (Dias Neto et al., 2007), Afzal (Afzal et al., 2009) and 

Ali (Ali et al., 2010) systematically reviewed a handful of t-way test suite generation. Al-

Sewari and Zamli (Alsewari & Zamli, 2014), Khalsa and Labiche (Khalsa & Labiche, 

2014) analyse many strategies in their orchestrated survey. While Cohen, Grindal, 

McMinn, Othman, Jimena Adriana, Dias Neto, Afzal, Al-Sewari and Zamli Khalsa and 

Labiche have surveyed and analysed the state-of-the-art available t-way test suite 

generation strategies at the period of their work, their work has not considered recent 

developments especially on the application of newer meta-heuristic based strategies. 

Thus, this work extends existing reviews and surveys to include and highlight handful of 

a newly developed of t-way strategies. 

The key aspect discussed in this section is to observe the strength and limitation 

of the existing strategies in terms of the interaction strength degree supported and the 

method used to generate test suite in addition to the support of mixed-strength interaction. 

Here, the strategies are classified based on the consistency of the output (test suite 

generated) to two main groups; deterministic (i.e. the same test suite in each run) and 
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non-deterministic (or probabilistic whereby different test suite are generated in each run 

owing to the randomness behaviour of test selection) t-way strategies (see Figure 2.17).  
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Figure 2.17 The illustration of the deterministic and probabilistic process. 

The following sub-sections fulfil the main aspect in this section by highlighting 

existing t-way test suite generation strategies based the output of the test suite into two 

main categories, which are the deterministic and probabilistic t-way test suite strategies. 

Furthermore, following the scope of this work (to design, implement and evaluate a t-

way strategy based in swarm meta-heuristic algorithm, which is BA) the second category 

is divided into seven groups as well. 

2.5.1 Deterministic t-way Test Suite Generation Strategies 

In this sub-section, the first category, the deterministic strategies, of the t-way test 

generation strategies is discussed. All the t-way strategies in this category considered to 

be greedy strategies except TConfig (Williams et al., 2003) which can also be considered 

as algebraic and greedy strategies (i.e. TConfig uses several methods of test suite 

generation). These strategies considered to be flexible for test generation, however, the 

optimum test suite is mostly not achievable for most of the configurations in this category. 

2.5.1.1 Greedy Strategies 

To start with, TConfig (Williams et al., 2003) uses two different generation 

algorithms to construct its test suite; the first algorithm is recursive block method. 

Recursive block method generates test suite using algebraic approach, which means 

mathematical formula involves to generate t-way test suite, it contains an algorithm to 
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generate orthogonal arrays (OA) to initial blocks for the large covering array (Sherwood 

et al., 2005). in this method, the t-way test suite is generated by constructing a covering 

arrays from orthogonal arrays based on mathematical specifications (Williams, 2000; 

Williams & Probert, 2002). Unlike Recursive block, the second methods implore a 

modified  IPOG strategy (Lei et al., 2007) to generate a high t-way strength interaction.  

As IPOG (Lei et al., 2007) is essential for TConfig, IPOG is a generalization the 

pairwise approach used in IPO (Lei & Tai, 1998). A number of t-way strategies have been 

developed based on the concepts of IPOG (i.e. IPOG-D (Yu et al., 2008, 2009), IPOG-F 

(Forbes et al., 2008)  ,MIPOG (Younis & Zamli, 2010b; Younis & Zamli, 2011), MC-

MIPOG (Younis & Zamli, 2010a) and ParaOrder (Wang et al., 2008)), which called 

IPOG family use a vertical and horizontal extension similar to IPO. The test suite 

generation process starts with building the pairwise tests for the first parameter then 

extend to the other parameters and so on until all the parameters are covered. When the 

horizontal extension is not possible, the uncovered interactions are covered using a 

vertical extension. If needed. IPOG family supports high interaction strength (i.e. t ≤ 6) 

except MIPOG that supports interaction strength up to 12. Unlike MIPOG, ParaOrder 

(Wang et al., 2008)  only provides the support up to 3 interaction strength (i.e. t ≤ 3). On 

a positive note, ParaOrder allows prioritization of t-way interaction for its horizontal 

extension. The extended parameter for ParaOrder strategy is decided based on a number 

of values (i.e. parameter with the higher number of values will be extended first). 

However, only IPOG, IPOG-F, and ParaOrder supports mixed-strength interaction. 

Unlike IPOG, TConfig does not support for mixed-strength interaction. 

Jenny (Pallas, 2003) adopts a greedy algorithm to generate t-way test suite. Jenny 

starts with 1-way generation, then, proceeds with two-way generation up to nth-way 

specified by the user to cover all the test interactions. Jenny does not support mixed-

strength interaction. Complementing Jenny, IBM Intelligent Test Case Handler (ITCH) 

(Hartman et al., 2005),  was developed by IBM Haifa and Watson Research Laboratories. 

ITCH considered being an improvement of Combinatorial Test Services (Hartman & 

Raskin, 2004a) which only support two-way interaction. ITCH gives the user the ability 

to control the test suite size. ITCH uses an exhaustive search algorithm to generate t-way 

test suite up to 4 interaction strength. There is no evidence in the literature as to whether 

or not ITCH supports mixed-strength interaction. 
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Another strategy is GTWay (Klaib, 2009; Klaib et al., 2008; Klaib et al., 2015). 

GTWay employed three algorithms to generate t-way test suite. The first algorithm is a 

parser algorithm that constructs the SUT parameters and values as symbolic 

representation pairs to be used for t-way configurations generation. Then, the t-way pair 

generation algorithm generates the t-way interactions based on the configuration pairs 

from the parser algorithm. Finally, the backtracking algorithm generates the t-way test 

suite by iteratively combining the parameters values in the interaction tuples generated 

by the t-way pair generation algorithm. GTWay does not support variable-interaction. 

GTWay meant to address a high interaction strength (i.e. t < 12). 

2.5.2 Probabilistic t-way Test Suite Generation Strategies 

In this section, the second category, the probabilistic t-way test generation 

strategies are discussed. Given the effectiveness of probabilistic-based strategies than its 

deterministic counterparts in term of test suite reduction, it is not surprising that many 

researchers are focusing more on probabilistic approach. As t-way test suite generation 

can be viewed as a combinatorial optimization problem, many strategies for t-way test 

suite generation has emerged based on a meta-heuristic algorithm (i.e. GA, CS, HS, PSO, 

SA, and HC) as the backbone search engine. As the name suggests, meta-heuristic 

algorithm is dedicated algorithm to find the most optimal result for the targeted domain, 

which in this case test suite generation.  

In the following sub-sections, the probabilistic t-way strategies are grouped and 

briefly elaborated based on the main generation technique used for minimizing the test 

suite. These strategies can be divided into seven groups based on the method of 

optimization process as follows; Greedy, Evolutionary, Simulated Annealing, Harmonic, 

Stochastic, Tabu, and Swarm strategies. Here, some of the well-known pairwise strategies 

will be covered as this category follows the scope of this work,  as BA is categorized as 

swarm based optimization algorithm (Yang, 2014; Yang & Gandomi, 2012). Thus, some 

of the swarm optimization based pairwise strategies are also included. 
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2.5.2.1 Greedy Strategies 

This section describes the probabilistic greedy strategies as an effort to 

complement the review of greedy strategies for the deterministic category.  

AETG (Cohen et al., 1997; Cohen et al., 1994) can be considered as a pioneer 

strategy for t-way test reduction. AETG, developed by Cohen (Burr & Young, 1998; 

Cohen et al., 1997; Cohen et al., 1994; Dalal et al., 1999; Dalal et al., 1998; Ellims et al., 

2008), uses a greedy algorithm. AETG considered to be the first t-way test generation 

that is commercially available (Cohen, 2011). In this strategy, an empty test suite is 

defined. Then, ATEG starts its generation process. In each iteration, ATEG generates a 

set of test cases. Here, the best test case that covers the maximum number of the 

uncovered interaction elements (t-way interaction tuples) is selected and added to the test 

suite. AETG does not support mixed-strength interaction, and there is no published 

evidence to high interaction support (i.e. t equals 4, 5, or 6). Concerning implementation, 

AETG provides a reusable software component. For this reason, several variants of 

AETG have been developed including mAETG (Cohen, 2004) and mAETG_SAT 

(Cohen et al., 2007b). mAETG is the AETG modification strategy that supports mixed-

strength interaction. In addition to mAETG, Myra (Cohen, 2004) modified Test Case 

Generator (TCG) (Tung & Aldiwan, 2000) called mTCG. TCG considered being an open 

source variant of AETG. Generally, both TCG and mTCG improve the performance of 

the original AETG.  

Similar to AETG, Test Vector Generator (TVG) (Arshem, 2003) implements a 

public domain strategy supporting t-way test suite generation  (as TVG claimed to be 

ATEG variant). TVG exploits three algorithms namely, T-reduced algorithm, Plus-one 

algorithm, and Random sets algorithm for t-way generation. Although useful, not much 

information can be implied as the details implementation has not been made available in 

the literature. TVG generates test suite with a high value of interaction strength (i.e. t ≤ 

6). TVG also addresses mixed-strength interaction.  
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Another well-known strategy,  PICT (Czerwonka, 2006; Othman et al., 2013) is 

a public t-way strategy developed by Microsoft. This strategy is able to generate a t-way 

test suite that supports mixed-strength interaction. By generating all the interaction tuples 

then matching the interaction combinations with their test cases randomly, PICT often 

generates non-optimal results.  

Finally, Classification-Tree Editor eXtended Logics CTE-XL (Lehmann & 

Wegener, 2000) is a t-way test suite generation strategy based on Classification-Tree 

Method (CTM). Here, CTE-XL uses the CTM approach to classify the test data into 

classes based on the test specifications. The test cases are generated by classes from 

different classifications. CTE-XL has been enhanced through the time (Yu et al., 2003). 

However, CTE-XL supports low interaction strength (i.e. t ≤ 3).  There is no support for 

mixed-strength interaction.  

2.5.2.2 Evolutionary Strategies 

Evolutionary strategies, as the name suggest, is based on the evolutionary 

metaheuristic algorithms such as GA, genetic programing and evolutionary programing 

(Afzal et al., 2009; Bansal et al., 2015; Bryce & Colbourn, 2007; Shiba et al., 2004; 

Sthamer, 1995). These strategies are derived from the survival behaviour of the fittest 

individuals (natural selection process). Usually, these strategies use selection, crossover, 

mutation and replacement as their test suite generation process. They start with a set of 

test cases candidates that processed to generate a subset of the test cases (test suite) with 

the highest covering value. Generally, evolutionary strategies start with randomly 

generated test candidates that reflect chromosomes construction. Then, the chromosomes 

are processed. In each cycle, a crossover and mutation processes are undergoing to meet 

the best fitness of the predefined function. The best fitness chromosomes are considered 

to be the optimum test suite.  

Several evolutionary strategies have been proposed including PWiseGen (Flores 

& Cheon, 2011), G-PWiseGen (Sabharwal et al., 2017), PWiseGen-GM (Sabharwal et 

al., 2015), Pairwise test set generator using genetic algorithm (PTSG-GA)(Sabharwal et 

al., 2016), PWiseGen-VSCA (Bansal et al., 2015), GA-Huang (Huang et al., 2010), 

Genetic Algorithm for Pairwise Test Sets (GAPTS) (McCaffrey, 2009a, 2010), QICT 

(McCaffrey, 2009c), Weight-Based GA (WBGA) (Wang et al., 2013), Nondominated 
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Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002), A cellular genetic algorithm 

for multi-objective optimization (MOCell) (Nebro et al., 2009), A Parallel Genetic 

Algorithm based on Spark (PGAS) (Qi et al., 2016), and Evolutionary Genetic Algorithm 

(EGA) (Lopez-Herrejon et al., 2016). Mostly, the existing evolutionary strategies are 

capable of generating the low value of uniform interaction strength (i.e. t ≤ 3) with the 

exception of G-PWiseGen which higher interaction strength (i.e. t ≤ 4). Here, PWiseGen-

VSCA is the only GA-based strategy that covers mixed-strength interaction although 

supporting low interaction strength (i.e. t ≤ 3).  

2.5.2.3 Simulated Annealing Strategies 

Unlike evolutionary strategies, Simulated Annealing (SA) strategies (Bryce & 

Colbourn, 2007; Cohen et al., 2007b; Cohen et al., 2008b; Stardom, 2001) (Chen & 

Chien, 2011; Cohen et al., 2007b) adopt SA as the base of their test suite generation. SA 

strategies use a stochastic optimization method in general. Specifically, SA strategies are 

based on the metals annealing process, which use to obtain materials that are more 

resilient and possess better qualities for industry applications. Basically, this process start 

with melting the material at a specific temperature to reach its liquid state, in order to 

increase this material atoms mobility within the structure. Then, a cooling process 

undergoes until the temperature reaches a stopping condition. By each cooling process, 

the atoms lose their mobility to achieve thermal equilibrium at the end of the process. 

Thus, a highly stable material structure is produced. SA strategies rely on generating 

highly random test candidates, which are accepted based on probability-based 

transformations equations. Here, in each iteration, test candidates are checked to ensure 

the test candidate covers the highest number of t-tuples when it reaches the highest 

possible, a cooling schedule is applied. Then, the transformation is accepted. The 

candidate that covers largest number of t-tuples is selected and added as a test case. 

Finally, a test suite is generated at the end of the iterations. 

Several SA strategies have been developed including SA-Mayer (Mayer 

implementation of SA) SA_SAT (Cohen et al., 2007b; Cohen et al., 2008b), Augmented 

Simulated Annealing (ASA) (Cohen et al., 2003b), These strategies often adopt binary 

search algorithm to generate the test suite. Recent work includes  SA-H (George, 2012) 

and the Simulated Annealing algorithm for constrained Combinatorial interaction testing 

(CASA) (Garvin et al., 2009; Garvin et al., 2011) and the improved CASA (tCA) 
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(Haslinger et al., 2013). These strategies support low value of interaction strength (i.e. t 

≤ 3). Another strategy, SA-Bryce (Bryce implementation of SA) (Bryce & Colbourn, 

2007) and EDIST-SA (Rahman et al., 2015) demonstrates a 4-way interaction strength 

support. The Improved SA (ISA) (Torres-Jimenez & Rodriguez-Tello, 2012) employ a 

binary alphabet algorithm to cover a high interaction strength (i.e. t ≤ 6). Recently, a 

hybrid Simulated Annealing Variable Neighbourhood Search (SAVNS) (Rodriguez-

Cristerna et al., 2015) that is an improved version of SA-VNS (Rodriguez-Cristerna & 

Torres-Jimenez, 2012), employs SA with the variable neighbourhood search function to 

construct mixed-strength interaction up to t = 5. Similar to SAVNS, SA-Mayer, 

SA_SAT, and ASA are supporting mixed-strength interaction as well. 

2.5.2.4 Harmony based Strategies 

Harmony based strategies (Alsewari & Zamli, 2012a; Bao et al., 2015; LI et al., 

2013; Xiang et al., 2015) are based on the musical improvisation process employed in the 

harmony search algorithm. Harmonic strategies use global and local search to construct 

test suite. Here, Harmony Search Strategy (HSS) (Alsewari & Zamli, 2012a) considered 

being the state-of-are of harmonic strategies. HSS is an extended version of the Pairwise 

Harmony Search Strategy (PHSS) (Alsewari & Zamli, 2012b). Harmonic strategies adopt 

two probability values (i.e. the considering rate and pitch adjustment rate). Here, global 

search is iteratively performed by randomizing values in the Harmony memory whereby 

the local best value can be selected given a considering rate probability. Here, the local 

best value can be considered for improvements for further improvements in the local 

search (i.e. with pitch adjustment probability). Upon completing each iteration, the best 

value will be added to the final test suite until all pairwise interactions are covered. PHSS 

and the Harmony Search-Pairwise Test Suite Generator Tool (HS-PTSGT) (Xiang et al., 

2015) are supporting only pairwise interaction strength, in contrast, Improved HS (IHS) 

(Bao et al., 2015) supports up to 6. on the other hand, HSS and Harmony Search Test 

Suite Generator (HSTSG) (LI et al., 2013) are supporting mixed-strength interaction and 

high interaction strength (i.e. t ≤ 7 and t ≤ 15, respectively) as well. 
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2.5.2.5 Stochastic Hill Climbing Strategies 

Stochastic (Hill climbing) strategies (Alsewari et al., 2014, 2015; Bryce & 

Colbourn, 2007; Cohen et al., 2003a; Nasser et al., 2014; Stardom, 2001; Zamli et al., 

2015) is based on the hill climbing algorithm. Essentially, hill climbing constructs a test 

suite using a very simple method based on a series of transformations. Generally, hill 

climbing based strategies start with a random test case that evaluated based on the number 

of interaction sets that is not covered. Then, in the next iteration, a transformation for the 

current test case is processed where one of it parameters value is randomly regenerated 

based on the values in that position. This process continues until all the interaction sets 

are covered. Several strategies have been developed using based on the hill climbing 

including HC-Bryce (Bryce & Colbourn, 2007) that covers considerable interaction 

strength (i.e. t ≤ 4) and the Late Acceptance Hill Climbing (LAHC) strategy (Alsewari et 

al., 2014, 2015; Nasser et al., 2014; Zamli et al., 2015) that employ a memory that is  

randomly initial as a population of test cases. LAHC support mixed-strength interaction 

as well as a high interaction strength (i.e. t < 6). 

2.5.2.6 Tabu Strategies 

Tabu strategies (Bryce & Colbourn, 2007; Zamli et al., 2016; Zekaoui, 2006) are 

based on Tabu Search (TS). TS can avoid help to reduce the possibility of falling local 

minimum, Specifically, TS uses a temporary memory (tabu list) to avoid returning to past 

solutions. Several strategies have evolved based on TS including TS-Bryce (Bryce & 

Colbourn, 2007), TSA (or MiTS) (Gonzalez-Hernandez, 2015; Gonzalez-Hernandez et 

al., 2010), PAT (or POT) (Zekaoui, 2006) and  High Level Hyper-Heuristic (HHH) 

(Zamli et al., 2016). Unlike TS-Bryce and PAT which support only for small interaction 

strength (t ≤ 4), HHH and MiTS address the full support until t ≤ 6. Unlike other 

strategies, HHH adopts TS to leverage on the strength of four other algorithms for better 

test suite generation. MiTS is the only strategy that provides the support for mixed-

strength interaction. 
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2.5.2.7 Swarm Strategies 

Swarm strategies (Ahmed et al., 2014; Ahmed & Zamli, 2010a; Ahmed et al., 

2012b; Chen et al., 2010) mimic the behaviour or movements of organism swarms in 

nature (i.e. ants, bees, shoals of fish or flocks of birds). Several strategies have been 

implemented based on many optimization algorithms (e.g., Particle Swarm Optimization 

(PSO), Simplified Swarm Optimization (SSO), Ant Colony System (ACS), Ant Colony 

Optimization (ACO), Artificial Bee Colony (ABC), Simulated Bee Colony (SBC) and 

Cuckoo Search (CS)). Notably, PSO appears to be the most popular swarm based 

optimization algorithm adopted for t-way test generation.  

Many strategies employ PSO for test suite generation (Ahmed & Zamli, 2010a; 

Ahmed et al., 2012b; Chen et al., 2010). These strategies took an advantage of the local 

and global search performed by PSO to construct optimal test suite including PSO-Chen 

(Chen et al., 2010), TDGen_PSO (Mao et al., 2012), Discrete Particle Swarm 

Optimization (DPSO) (Jia-Ze & Shu-Yan, 2012) and Pairwise Particle Swarm Test 

Generator (PPSTG) (Ahmed & Zamli, 2011a)  are strategies that are proposed for 

pairwise test suite generation. PPSTG is then improved to a t-way strategy (i.e. Particle 

Swarm Test Generator (PSTG) (Ahmed & Zamli, 2010a; Ahmed et al., 2012b) and 

Variable Strength Particle Swarm Test Generator (VS-PSTG) (Ahmed & Zamli, 2011b)). 

Recently, a new implementation of PSO that uses fuzzy logic to tune the its heuristic 

parameters called FSAPSO (Mahmoud & Ahmed, 2015) has been proposed. In addition, 

SITG (Rabbi et al., 2015) has introduced a new t-way strategy based on PSO. SITG, 

PSTG, VS-PSTG and FSAPSO support ideal interaction strength (i.e. t ≤ 6).  On other 

note, VS-PSTG supports mixed-strength interaction as it implemented for this reason. 

Similarly, the SSO adopts a simplified version of PSO (also known as Many 

Optimization Liaisons (MOL)) (Ahmed et al., 2014). SSO strategy merely supports low 

interaction (i.e. t ≤ 3). Based on this idea, many swarm strategies have emerged such as 

bees-based strategies which include, Bees Algorithm (BA*) strategy (Zabil & Zamli, 

2013a; Zabil & Zamli, 2013b; Zabil et al., 2012), Artificial Bee Colony (ABC) (Mala & 

Mohan, 2009), Artificial Bee Colony-Covering Array Generator (ABC- CAG) (Bansal et 

al., 2016) and Simulated Bee Colony (SBC) (McCaffrey, 2009b). These strategies 

employ a bee family algorithm, which considered as a swarm algorithm. Generally, these 

algorithms based on the foraging (search for food) behaviour of bee colonies. Here, the 
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test cases represented as bees. The test suite generation starts with the random population 

for scout bees that search for a food source. The paths that bees visited are evaluated. The 

bees that cover the highest number of t-tuples by each iteration are selected to be a part 

of the test suite. BA shows high strength support (i.e. t ≤ 10). Unlike ABC, ABC- CAG 

and SBC, that only support low interaction strength (i.e. t = 2). 

Another type of swarm strategies are ants-based strategies (Chen & Chien, 2011; 

Chen & Zhang, 2009; Shiba et al., 2004), these strategies based on the forging behaviour 

of ant colonies. They employ the Ant Colony System (ACS) (Dorigo et al., 1989; Drigo 

et al., 1996) algorithm in general and its variant (i.e. Ant Colony Optimization 

(ACO)(Dorigo et al., 2006)) later on. Ants-based strategies simulate the communication 

that ants use to determine the shortest route between their colony location (starting 

location) and food sources. The test cases in these strategies are represented as a route 

from a start point to an end point (target). In other words, each test cases and its 

interaction coverage are combined into one element, called path. The quantity of 

pheromones left in each path visited by ants reflects the quality of the solution. The path 

with the largest quantity of pheromones and highest probability is chosen as an optimal 

solution (best test case).  

The most well-known ants-based strategies include the Variable Strength 

Interaction Test suites (ACS-VSITs) strategy (Xiang et al., 2009), ACS-VSITs strategy 

adopts ACS, as a variant of ACO.  Another strategy is Prioritized pairwise Interaction 

Test Suite (PITS) strategy (Chen et al., 2009) that adopts ACO as a general base 

algorithm. Actually, PITS generates test suite based on four variants of ACO, which are; 

Ant System, Ant System with Elitist, Ant Colony System, and Max-Min Ant System. 

Shiba (Shiba et al., 2004) also has proposed a strategy called Ant Colony Algorithm 

(ACA). ACA-Shiba constructs test suite using a combination of ACO and AETG. Based 

on ACO, ACA-Chen (Chen et al., 2009) shows a better competitive results. However, 

ACA-Chen performance could not be generalized as it only supports pairwise interaction. 

Here, ACA-Shiba, PITS and ACS-VSITs support the low value of interaction strength 

(i.e. t ≤ 3), only VSITs supports mixed-strength interaction.  
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The last type of swarm strategies is the cuckoo-based strategies (Ahmed et al., 

2015; Nasser et al., 2015) based on the Cuckoo Search (CS) Algorithm. cuckoo-based 

strategies (i.e. CS strategy (Ahmed et al., 2015) and Pairwise-CS (Nasser et al., 2015)) 

start by initializing a population of random test candidates (nests). Each nest consists of 

the random parameter values that represent test case candidates. Then, test cases are 

evaluated using a fitness function (i.e. based on the number of test case covered in the 

interaction sets (t-tuples)). Here, a test case candidate in each nest with the highest fitness 

value considered as a test case. The global search process in cuckoo-based strategies uses 

a Lévy flight transformation between the nests to determine the nest with the highest test 

case coverage. This process continues until all the t-tuples are covered. Pairwise-CS only 

covers pairwise interaction strength; in contrast, CS strategy supports high interaction 

strength (i.e. t ≤ 6). However, cuckoo-based strategies have not covered the support for a 

mixed-strength interaction.  

2.5.3 The Observation of the Highlighted t-way Strategies 

This sub-section illustrates an analysis of the features the well-known t-way 

strategies (see Figure 2.18). Figure 2.18 illustrates an analysis of the features that are 

commonly shared by each strategy and those that are not. The existing t-way strategies 

are firstly divided into two major categories; deterministic or probabilistic strategies. 

After that, the probabilistic strategies are divided into seven groups based in the method 

employed for test suite constriction. Figure 2.18 divides the interaction strength support 

into three groups; t ≤ 3, 3 < t ≤ 6 and t > 6 and highlights them with yellow, green and 

red, respectively. The mixed-strength supported strategies are highlighted as well with 

grey colour. Additionally, the swarm strategies are also divided into groups based on the 

swarm algorithm employed. A closer look to the Figure 2.18  shows that Bat-inspired 

algorithm (BA) has not been adopted in this field.  
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The t-way test suite generation strategies features
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Figure 2.18 Features of the existed t-way test suite generation strategies. 
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2.5.4 The Justification of the Adoption of BA 

As reported throughout the t-way testing literature in section 2.5, t-way interaction 

test generation has indeed achieved considerable progress. However, the investigation for 

new test suite generation strategies is deemed necessary (Yu et al., 2008) to achieve more 

effective t-way test suite. Table 2.3 summarizes the description of existing t-way 

strategies.  

Table 2.3 The analysis of existing t-way strategies. 
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Greedy AETG        
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mAETG_SAT        

TVG        

CTE-XL        
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GTWay        

Jenny        

ITCH        

TestCover        
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ParaOrder        

Algebraic OA        
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Evolutionary PWiseGen         
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PWiseGen-GM        
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GA-Huang        
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Strategy family 
Existed t-way 

strategies 

Simulated 

Annealing 

SA- Mayer        

SA_SAT        

ASA        

SA-Bryce        

CASA        

SA-VNS        

ISA        

SA-H        

Harmonic HSS        

PHSS        

HSTCG        

HIS        

HS-PTSGT        

Stochastic HC-Bryce        

LAHC        

Tabu Search TS-Bryce        

TSA (MiTS)        

PAT        

HHH        

Swarm Strategies PSTG (PSO)        

VS- PSTG (PSO)        

PSO-Chen (PSO)        

PPSTG (PSO)        

TDGen_PSO (PSO)        

DPSO (PSO)        

FSAPSO (PSO)        

SITG (PSO)        

SSO (PSO)        

ACA (ACO)        

ACS-VSITs (ACO)        

PITS (ACO)        

BA* (Bee)        

ABC (Bee)        

ABC- CAG (Bee)        

SBC (Bee)        

CS-Ahmad (CS)        

Pairwise CS (CS)        

From Table 2.3, it can be seen that the existing t-way strategies based on meta-

heuristic algorithms have not covered the implementation of BA as t-way and mixed-

strength strategy. BA superiority has been confirmed against several state-of-art meta-

heuristic algorithms. For instance, Senthilnath (Senthilnath et al., 2016) has verified the 
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high performance of BA compared to GA, PSO and Bat-K-Means (BKM) for solving 

crop type classification problems for satellite image. Gherbi (Gherbi et al., 2014) 

confirmed that BA produces significantly better results than most popular optimization 

algorithms, including the GA, SA and PSO. Moreover, BA is easy to implement, and its 

parameters are highly adjustable to fit many engineering solutions (Taha et al., 2013).  

In other works, Khan and Sahai (Khan & Sahai, 2012) report that the BA 

outperformed PSO and the GA for training Artificial Neural Networks (ANNs) within 

the e-learning context. Yang (Yang, 2010) also demonstrated that the BA achieves the 

best performance in contrast to PSO and the GA in terms of standard benchmark 

functions. In fact, Yang proves that PSO and HS could be considered as the generalization 

of the BA. Moreover, Sureja (Sureja, 2012) demonstrates that BA yields better solutions 

in comparison with the PSO, GA, and firefly algorithm. Similarly, a comparative study 

(Hegazy et al., 2015) on the BA, PSO, ANNs, Artificial Bee Colony (ABC), modified 

cuckoo search, support vector machine, and Flower Pollination Algorithm (FPA) 

confirms that BA is a superior meta-heuristic algorithm according to the results presented.  

Swarm strategies have not covered mixed-strength up to t = 6 with the exception 

of PSO, although researchers proves that BA performs better than PSO (Gherbi et al., 

2014; Khan & Sahai, 2012; Taha et al., 2013). Hence, adopting a superior meta-heuristic 

algorithm such as the BA could be effective to improve the state-of-the-arts. Generally, 

exploring the advantages of the new meta-heuristic algorithm could be advantageous to 

highlight its strengths and limitations for t-way test generation. For these reasons, the 

adoption of BA for t-way test suite generation is deemed a useful endeavour. 

Additionally, the adoption of Hamming distance classifier is deemed necessary in order 

to improve the exploration of BA (Gonzalez-Hernandez, 2015). 
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2.6 Summary 

In this chapter, the well-known test case design strategies are reviewed. Then, the 

mathematical notations for t-way test suite generation have been elaborated based on the 

covering array. Then after that, a simple running example has been adopted to illustrate 

the problem of t-way test suite generation with mixed-strength demonstration as well as 

the validation of the interaction coverage. Next, a survey of the state-of-art of existing t-

way strategies have been presented. Finally, an overview of the Bat-inspired algorithm 

along with the justification for implemented a new strategy called Bat-inspired Testing 

Strategy (BTS) is provided. BTS is aimed to address the t-way test suite generation for 

the up to the ideal interaction strength (t up to 6) and its special case of mixed-strength 

test suite generation.  

Building on the presented contents in this chapter, the next chapter discusses the 

design of BTS. Additionally, the chapter will also outline how BA is being used as the 

backbone for BTS. 

 



CHAPTER 3 

 

 

RESEARCH METHODOLOGY 

In the previous chapter, the concept of the t-way, its notations, survey, and 

analysis of the existing strategies were introduced. Finally, the adoption of BA as a basis 

to a t-way strategy proposed in this work has been justified. 

This chapter presents an overview of the design methods of the current study. This 

chapter specifically describes the design and implementation of the BTS strategy, 

including its three phases, which are input analysis, interaction generation, and test suite 

generation. Additionally, the relevant BTS variables were calibrated to achieve the best 

possible results. At the end of this chapter, the details of the BTS prototype is also 

presented. 

3.1 The Original BA Algorithm 

For the BTS strategy, BA was used as the backbone algorithm to achieve the most 

optimal test suite sizes. For a better understanding of the BTS principle, it is necessary to 

discuss the process of BA and their flow as earlier discussed by Yang (2010). 

The BA algorithm was developed based on the observation of the hunting 

behaviour of micro-bats in nature. To mimic the behavior of micro-bats in the simplest 

way, some approximations were necessary. Yang (2010) idealized three assumptions as 

follows: 

i. For sensing the distance ahead of their flight paths, micro-bats use echolocation, 

and they have their unique instinct to distinguish a target of food/prey from the 

background barriers. 
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ii. During hunting, bats may travel in a random manner at a velocity 𝑣𝑖 at position 

𝑥𝑖  with a combination of sensing frequency 𝑄𝑚𝑖𝑛 , varying wavelength 𝜆  and 

loudness 𝐴0  to hunt for prey. The frequency (or wavelength) of their emitted 

pulses can be automatically adjusted, and the pulse emission rate 𝑟 ∈ [0, 1] can 

also be fine-tuned automatically, giving the current proximity of their target. 

iii. The loudness of echoes from a micro-bat can be assumed to decay over time from 

a large and positive amplitude  𝐴0 to a small constant value 𝐴𝑚𝑖𝑛 (Yang, 2010). 

These assumptions allow the impementation of BA (Algorithm 1) as shown in the 

Figure 3.1. 

Algorithm 1: Bat-inspired Algorithm (BA) 

Input: objective function 𝑓(𝑥𝑖), 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝐷)
𝑇

. 

Output: Best fitness 𝑥∗. 

1: Define 𝑛,  𝑚𝑎𝑥, 𝑄𝑖 ∈ [𝑄𝑚𝑖𝑛 ,  𝑄𝑚𝑎𝑥]; 

2: Randomly Initialize 𝑥𝑖, 𝑣 𝑙𝑜𝑐𝑖𝑡𝑦𝑖, 𝑄𝑖for 𝑖 = 1, 2, … , 𝑛; 

3: Initialize pulse rates 𝑟𝑖 and the loudness 𝐴𝑖; 

4: while (𝑡𝑠 < T𝑚𝑎𝑥) do 

5:       for each bat ni do 

6: 

 

           Generate new solutions by adjusting frequency, update velocity and location  

           using motion equations (4-2 to 4-4); 

7:            if (𝑟𝑎𝑛𝑑(0,1) >  𝑟𝑖) then 

8:                  Select the best solution in the current population; 

9:                  Generate a local solution around the best solution; 

10:            End 

11:            Generate a new solution by flying randomly; 

12:            if (𝑟𝑎𝑛𝑑(0,1) < 𝐴𝑖 and 𝑓(𝑥𝑖) < 𝑓(𝑥)) then 

13:                  Accept the new solutions; 

14:                  Increase 𝑟𝑖 and reduce 𝐴𝑖  based on the tolerance; 

15:            End 

16:            Rank the bats and find the current best; 

17:       End 

18: End 

19: process results and visualization; 

Figure 3.1 The BA pseudo code. 

Source: Yang (2010). 

The BA algorithm in Figure 3.1 shows the pseudo code of BA  based on the 

implementation for global optimization problems (Yang, 2010). The BA algorithm starts 

by defining its variable settings and objective functions (the problem that needed to be 

solved). It then, initializes its population variables. Here, for each bat (𝑛 ) in the 
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population, the BA randomly initializes a set of variables as follows; initial location 

(solution) (𝑥𝑖), initial velocity (𝑣 𝑙𝑜𝑐𝑖𝑡𝑦𝑖) and initial frequency (𝑄𝑖), at each time step 

(𝑡𝑠). The cycle of iterations in the BA is referred to as the number of generations ( 𝑚𝑎𝑥). 

The maximum iteration refers to the maximum cycle of searches in the BA, which can 

be calculated based on the value of the multiplication of the number of generations with 

the number of bats’ population (Equation 3.1). 

𝑀𝑎𝑥𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑚𝑎𝑥 𝑛   3.1 

The next step is the iteration process for the maximum cycle. This second step is 

called the movement of the virtual bats 𝑛𝑖. These virtual bats are derived from the bat 

motion equations (Equations 3.2 to 3.4). In the motion equations, the location (𝑥𝑖) and 

velocity (𝑣 𝑙𝑜𝑐𝑖𝑡𝑦𝑖) of each virtual bat are updated based on the updated frequency (𝑄𝑖) 

by each cycle of iterations. Here, the pace and range of the virtual bats’ movement are 

basically controlled by 𝑄𝑖, which is similar to the movement of the swarming particles as 

follows: 

𝑄𝑖 = 𝑄𝑚𝑖𝑛 + (𝑄𝑚𝑎𝑥 + 𝑄𝑚𝑖𝑛)  𝑟𝑛𝑑   3.2 

𝑣 𝑙𝑜𝑐𝑖𝑡𝑦
𝑖

𝑡𝑠+1
= 𝑣 𝑙𝑜𝑐𝑖𝑡𝑦

𝑖

𝑡𝑠
+ (𝑥𝑖

𝑡𝑠 − 𝑥𝑏𝑒𝑠𝑡) 𝑄𝑖   3.3 

𝑥𝑖
𝑡𝑠+1 = 𝑥𝑖

𝑡𝑠 + 𝑣 𝑙𝑜𝑐𝑖𝑡𝑦
𝑖

𝑡𝑠+1
   3.4 

In Equation 3.2, the (𝑟𝑛𝑑) variable indicates a random vector that is randomly 

generated within the interval [0, 1]. This random vector controls the speed and ranges of 

the new generated velocity at specific time step by changing the value of 𝑄𝑖  which 

controls the output of Equation 3.3. This new velocity of the virtual bat 𝑛 controls its new 

location using its current location at a new time step based on Equation 3.4. Here, the 

new location is referred to as the new current global solution (or the current global best).  

The new current global solution is considered as the best global solution (𝑥∗) 

which is to be compared in the next cycles of iteration. If there are improvements, the 

solution for bat 𝑛 is then, considered as a new best global solution 𝑥∗. 
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The BA employs a local search approach (i.e. random walk) to improve the 

effectiveness and efficiency of its potential solutions using Equation 3.5. During the 

iteration of BA at time step 𝑡𝑠, new solutions are locally selected based on random walk 

around the current best solution at that time step. If the new solution is better than the 

current best, then, the new best becomes a global best solution. These new local solutions 

are generated based on a random vector condition; the random vector at the time step 𝑡𝑠 

for the bat 𝑛 at cycle 𝑖 must be greater than the pulse emission rate (𝑟𝑖) for the associated 

bat. Mathematically, the random walk is defined as follows; 

𝑥𝑛𝑒𝑤 = 𝑥𝑏𝑒𝑠𝑡 +  𝜖 𝐴𝑡𝑠   3.5 

In Equation 3.5, the symbol 𝐴𝑡𝑠 denotes the average of 𝐴𝑖
𝑡𝑠 (i.e. the loudness of 

bats 𝑛 at time step 𝑡s). The symbol 𝜖 drawn from [−1, 1] is a random vector that controls 

the direction and strength of the random walk. To a certain extent, the BA is deemed to 

be a balanced combination of swarm optimization and the intensive local search governed 

by the frequency tuning ability, loudness variability, and pulse rate. Thus, for each 

iteration of BA, the loudness 𝐴𝑖  and the emission pulse rate 𝑟𝑖  are updated based on 

Equations 3.6 and 3.7. 

𝐴𝑖
𝑡𝑠+1 =  𝛼𝐴𝑖

𝑡𝑠     3.6 

𝑟𝑖
𝑡𝑠 = 𝑟𝑖

0[1 − exp (−𝛾 𝑡𝑠)]    3.7 

Here, 𝛼 and 𝛾 are BA constant variables that are having a similar effect like the 

cooling factor in a cooling schedule of SA algorithm in the range of (0 < 𝛼 < 1) and 

(𝛾 > 0) with the exception demonstrated in Equation 3.8. 

𝐴𝑖
𝑡𝑠 → 0, 𝑟𝑖

𝑡𝑠 → 𝑟𝑖
0, 𝑡𝑠 → ∞.      3.8 

The 𝐴𝑖
0 and 𝑟𝑖

0 are randomly chosen from [0, 1] and the loudness 𝐴𝑖 and the pulse 

emission rate 𝑟𝑖 can only be updated when there is improvement in the new solution (i.e. 

the bats 𝑛 are moving towards the optimal solution).  

In this section, the BA is said to be overviewed. In the next section, the details of 

the BTS strategy and its algorithms that help the BA to construct t-way test suite are 

presented. 
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3.2 The BTS Strategy 

Generally, the BTS strategy undergoes three phases during the construction of the 

mixed strength t-way test suite as shown in Figure 3.2. The three phases illustrated in 

Figure 3.2 processed as follows: 

Phase 1. The BTS input analysis exploits the input analyser (parser) and legal values 

representation algorithm (see Algorithm 2). This phase set up the input for 

the next phase. 

Phase 2. The BTS interaction generation which adopts two algorithms; CTS and IET 

generators (see Algorithm 3 and Algorithm 4, respectively), which are 

responsible of generating the required t-tuples. 

Phase 3. The BTS test suite generation (see Algorithm 5) which exploits the BA as 

the core algorithm and exploits the Hamming distance selection criteria for 

mixed strength t-way test suite generation. 
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Figure 3.2 The overview of BTS strategy. 

These phases and their algorithms will further discuss and elaborate in the next 

three sub-sections. 
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3.2.1 Input Analysis 

In this phase, the input (𝐶𝐴, 𝑀𝐶𝐴, 𝑚𝐶𝐴 or 𝑚𝑀𝐶𝐴) processing is divided into two 

main processes; processing the input components (parameters and their values), and 

representing these components using numerical legal values. The first process starts by 

receiving the input, and then, processing the input components to a set of pre-defined 

variables in the memory (i.e. interaction strength (t), parameters (P) and their values (v)). 

To clarify the BTS algorithms, consider the mixed-strength mixed covering array 

(i.e. 𝑚𝑀𝐶𝐴 (𝑆, 2, 22 32, MC) where MC = 𝐴 (𝑆, 3, 22 31) for the first three elements) as 

the running example from Chapter 2. In this 𝑚𝑀𝐶𝐴  configuration, the interaction 

strength (t = 2) is considered for the overall system configuration. Then, the three-way (t 

= 3) sub-strength is considered based on its corresponding parameters. The overall test 

element sizes for each component are identified as test element sets (ES). Here, the 

element is representing the position of a parameter with it values, that called test 

component (i.e. the actual ES is ES = {E1, E2, E3, E4}). This ES is represented as a list in 

the memory, which follows the elements’ indexes with their value sizes (i.e. 

ES = {2, 2, 3, 3} as E1 = 2 values, E2 = 2 values, E3 = 3 values, E4 = 3 values). Figure 

3.3 shows the elements and their values construction on the ES. 

 

 

Figure 3.3 The illustration of the elements set based on the number of values for 

each elements. 
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The next process of the first phase is the representation of these components as 

Numerical Legal Values (NLV) (see Figure 3.4). These numerical legal values are 

processed and converted back to their actual values in the final test suite. The system is 

represented as follows: 

 𝐸1  =  {𝑣1, 𝑣2}, represented numerically as [1]: 1, 2.  

 𝐸2  =  {𝑣1, 𝑣2}, represented numerically as [2]: 1, 2. 

 𝐸3  =  {𝑣1, 𝑣2 𝑣3}, represented numerically as [3]: 1, 2, 3. 

 𝐸4  =  {𝑣1, 𝑣2 𝑣3}, represented numerically as [4]: 1, 2, 3. 

 

 Element set (ES) = {2,2,3,3}, Main-strength (t) = 2,  

Number of Element: 4, Total Number of values: 10 

 

Result of legal values representation: 

Test Element [1][2 values]: [1, 2] 

Test Element [2][2 values]: [1, 2] 

Test Element [3][3 values]: [1, 2, 3] 

Test Element [4][3 values]: [1, 2, 3] 

Figure 3.4 The illustration of the variables processed in the input analysis phase. 

Considering the sub-strength configurations, the three-way interaction for the first 

three test element is considered and processed as the following set; [sub-strength (t) : 

indexes of the Ei  in ES]. Noticeably, BTS is supporting multi-degree sub-strength 

configurations (CA and MCA) based on the index of the Ei . The details of the sub-

strength configuration representation can be seen in see Figure 3.5. 

 

 Element set (ES) = {2,2,3,3} 

 

Sub-strength (mixed-strength) configurations: 

[1] : [3:1,2,3] => (t = 3), element indexes: [1,2,3] 

Figure 3.5 The illustration of the mixed-strength configrations  
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The complete processes in the input analysis is presented in Figure 3.6 (Algorithm 

2, Input analyser and legal value representation). 

Algorithm 2: Input analyser and legal value representation 

Input: covering array notation (CA, MCA, mCA or mMCA). 

Output: ES, LV, sub-strength specifications. 

1: check the correctness of input; 

2: define 𝑁𝐿𝑉, 𝑡, 𝑃, 𝑣; 

3: define sub-strength, LV as two-dimensional set; 

4: define E , ES as set; 

5: process the main-strength system notation variables 𝑡, 𝑃, 𝑣; 

6: If (sub- strength = true) then process the sub-strength setting each as single set, 

then store each set in the sub-strength set; 

7: for index (i) = 1 to 𝑃 do 

8:       assign 𝑃𝑖 (𝑖𝑛𝑑𝑒𝑥) to E𝑖; 

9:       assign 𝑃𝑖 (𝑣𝑎𝑙𝑢𝑒𝑠 𝑠𝑖𝑧𝑒) to ES; 

10: End 

11: NLV = 1; 

12: for each value in E𝑖 do 

13:       define line token (LT); 

14:       LT(index)= E𝑖; 

15:       for 𝑖 = 1 to ESE𝑖 do 

16:            assign i to LTi; 

17:       End 

18:       append LT to LV; 

19: End 

20: process results and visualization; 

Figure 3.6 Pseudo code of input analyser and legal value representation algorithm. 

The next section elaborates the generation algorithms for the combination 

elements and interaction elements are also used to handle the mixed-strength combination 

and interaction elements in the most efficient possible way. This process of generation 

algorithm reuse minimized the complexity of the generation process as well. 
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3.2.2 Interaction Generation 

This phase involves the generation of the combination t-tuple sets (CTS), and the 

interaction element tuples (IET) based on the ES that contains the elements of the 

previously defined system-under-test. Here, the BTS employs a new generation approach 

that reversely generates the Binary Element Set (BES). The BES is important for the 

evaluation of the test cases coverage (the fitness of each test case provided by BA). This 

stage involves two algorithms; the CTS and IET generators. 

The first algorithm (CTS generator) generates the t-tuple sets (CTS), and after 

completing the input analysis, a legal value (LV) will be generated. This legal value set 

is for the generation of the element combination (EC) which is the basis of CTS. The 

CTS generation starts as soon as it receives the legal value (LV) and the interaction 

strength (t) value from the input analysis phase. The construction of the EC sets uses 

multiple level pairing method to match all the possible element position references 

together based on the defined interaction strength. 

Based on the 𝑚𝑀𝐶𝐴 (running example) from the previous section, the pairing of 

the Ei in ES must take place for all the Ei based on the t =2. In this case, each two of the 

Ei  selected together to construct the EC sets (see Figure 3.7). For the sub-strength, each 

set of the EC is constructed based on the specified t=3. In this example, only one EC set 

is constructed because there are only three Ei involved. The EC sets (generated pairs) for 

this example are as follows: 

 The two-way element set pairing output for testing the overall system; 

EC 1 =  {E1, E2}, represented numerically as EC [1] = 1, 2. 

EC 2 =  {E1, E3}, represented numerically as EC [2] = 1, 3. 

EC 3 =  {E1, E4}, represented numerically as EC [3] = 1, 4. 

EC 4 =  {E2, E3}, represented numerically as EC [4] = 2, 3. 

EC 5 =  {E2, E4}, represented numerically as EC [5] = 2, 4. 

EC 6 =  {E3, E4}, represented numerically as EC [6] = 2, 4. 

 The three-way element set pairing output for the sub-strength; 

EC 7 =  {E1, E2, E3}, represented numerically as EC [7] = 1, 2, 3. 
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All the represented ECs are then, stored in the CTS for further processing. For 

this example, there are six EC for the overall system and one for the mixed-strength in 

this case (Figure 3.7). The complete steps of the CTS generator can be seen in Algorithm 

3 (Figure 3.8). 

 

Figure 3.7 The illustration of EC matching and EC in CTS. 

Here, the CTS generator (Algorithm 3) has identified and constructed all the EC 

(also known as t based pairs) for the involved interaction strength (the 2-way main-

strength and the 3-way sub-strength). For the 3-way sub-strength, there is only one EC in 

this case; however, in the case of more Ei in the ES involving 3-way, there will be more 

ECs. For instance, if the 3-way sub-strength are assumed to be involved in all Ei in ES, 

there will be four ECs. The generated EC sets in the CTS serve the purpose of covering 

all the t-tuple of the software-under-test. As in the next stage of this phase, a binary 

element for each EC set is going to be constructed for the coverage calculation.  
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Algorithm 3: CTS generator 

Input: t, ES, sub-strength specification set. 

Output: CTS. 

1: define EC, CTS as empty set; 

2: for each E𝑖 in ES do 

3:       construct EC by matching E𝑖 with other E𝑖 in ES based on t degree; 

4:       append EC to CTS; 

5: End 

6: for each sub-strength specification in sub-strength do 

7:       get sub t value; 

8:       get Indexes for sub-strength E𝑖; 

9:       define sub-strength-EC as empty set; 

10:       for each (E𝑖𝑛𝑑𝑒𝑥)in Indexes do 

11:            select E𝑖 for E𝑖𝑛𝑑𝑒𝑥; 

12:            append E𝑖 to sub-strength-EC; 

13:       End 

14:       if (sub-strength-EC length = sub t) 

15:       append sub-strength-EC to CTS; 

16:       Else 

17:              for each E𝑖 in sub-strength-EC do 

18:                    construct sub-strength-EC by matching E𝑖 with other E𝑖 in ES based  

                   on sub t degree; 

19:                    append sub-strength-EC to CTS; 

20:               End 

21:        End 

22: End 

23: process results and visualization; 

Figure 3.8 The pseudo code of CTS generator. 

The second stage of this phase is to construct all the interaction elements tuples 

based on the represented binary element for all the EC in CTS. The two processes of 

generating IET and BES are combined in one algorithm to reduce the complexity of the 

generation process (i.e. the generation of all the possible binary elements and the selection 

of the binary elements that seems to be inefficient when done separately).  
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The IET generation starts with the selection of all the EC in the CTS and 

traversing them until all the interaction elements (IE) are generated for each EC. In the 

𝑚𝑀𝐶𝐴 example, there are seven EC sets that are specified based on Ei. The EC sets are 

requested to generate the IE elements numerically based on the numerical legal values 

represented earlier. The matching approach similar to the construction of EC in CTS was 

adopted in this process. The only difference is that in IET generation, the values of the Ei 

in each EC were matched. For example, the first EC in the CTS involves E1 and E2, these 

elements are represented in the ES set as the first and second indexes (see Figure 3.9).  

Next, the value of elements E1 and E2 are called from the legal value set, which 

in this case, two values per element are involved (i.e. 1 and 2, referring to 𝑣1 and 𝑣2, 

respectively). These values are cross-matched together to construct the representative IE 

sets. In other words, the values for the involved elements interacted together to construct 

the IE sets. In this case, E1 consists of two values (𝑣𝐸𝑖 = 2) and similar values can be 

seen for E2. Thus, the number of IE sets for this EC can be calculated using Equation 2.7, 

yielding 2 × 2 = 4. 

The process of matching the involved Ei values is done one IE at-a-time (row by 

row), with the IEs having the same ES index length. The values involved are added to 

their represented Ei indexes and the “x” (Don’t care values) are represented numerically 

as “-1”. For each EC, one binary element (BE) representation with the same ES length is 

constructed (i.e. the BE bit length equals ES bit length), and the values of the involved Ei 

in the specified EC are represented as “1”, and the “x” values as “0”. The details of this 

process are illustrated in Figure 3.9. The BE element is then, stored in the BES list for 

further usage in the next phase. 

This process is sustained throughout all the EC until the six 2-way sets of IEs are 

generated, then combined together into a single IET. The IET here, contains six sets of 

IEs. The BES contains the BE representation of the six 2-way EC that generates the six 

sets of IEs. In a same manner, the same process goes also for the EC that are constructed 

from the sub-strength. The BE and IE for the mixed-strength configurations consists of 

one IE set with three interacted Ei which also added to an IET (i.e. a one BE element to 

represent the single EC for the 3-way sub-strength).  
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Figure 3.9 The construction of interaction elements and binary elements. 

In the current example, there are seven groups of constructed IE sets with each 

set having a number of IE rows. The number of IE elements in all the sets based on the 

Equation 2.7 is as follows: 

 The two-way IE’s output for the main-strength; 

IE set 1 involves EC 1 = {E
1
  E2}     →     2  ×  2  =  4 IEs. 

IE set 2 involves EC 2 = {E
1
  E3}     →     2  ×  3  =  6 IEs. 

IE set 3 involves EC 3 = {E
1
  E4}     →     2  ×  3  =  6 IEs. 

IE set 4 involves EC 4 = {E
2
  E3}     →     2  ×  3  =  6 IEs. 

IE set 5 involves EC 5 = {E
2
  E4}     →     2  ×  3  =  6 IEs. 

IE set 6 involves EC 6 = {E3  E4}     →     3  ×  3  =  9 IEs. 

 The three-way element set pairing output for the sub-strength; 

For IE set 7, EC 7 = {E
1
 E2 E3}     →     2  × 2  ×  3  =  12 IEs. 

The total interaction elements are 49 generated IEs which can be also calculated 

using Equation 2.5. Here, these 49 IEs are the sum of all the IE sets from the two groups 

of main and sub-strength. The details of the full IE sets in IET are shown in Figure 3.11. 

 



65 

In this phase, the generation process constructs a dynamic multi-dimensional IET 

set which has all the IE sub-sets for each EC in CTS. The use of dynamic multi-

dimensional sets in BTS is necessary to avoid the limitations of the set index limit (set 

by the programming language). As the BTS is designed to fit large number of test suite 

generation, the concept of dynamic multi-dimensional set allowing BTS to store each IE 

set in a bigger set called, IET. In this manner, the IET set does not need any indexing (see 

Figure 3.10). 

Algorithm 4: IET generator 

Input: t, CTS. 

Output: IET, BES. 

1: define IET as multi-dimensional empty set; 

2: define BES as empty set; 

3: define IE as empty set; 

4: for each EC in CTS do 

5:       get the involved 𝑣𝐸𝑖 from LV that represent E𝑖 for EC; 

6:       define Temp as empty set; 

7:       construct IE by matching 𝑣𝐸𝑖 with other 𝑣𝐸𝑖 in LV based on the t degree; 

8:       append IE to IET; 

9       construct BE for EC based on the ES index length; 

10       append BE to BES; 

11 End 

12 process results and visualization; 

Figure 3.10 The pseudo code of IET generator that includes BES generation method. 
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Figure 3.11 The illustration of the CTS, IET and BES generation flow. 
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Another important point in this generation method is the construction of the BE 

(or binary equivalence) to represent each EC. The BE is important for the determination 

of the test case coverage. The generation of the binary equivalence for each EC sets is 

constructed using the same loop during the generation of the IEs. The BE and IE sets are 

then, appended to each corresponding set. Unlike the traditional approaches such as the 

GTWay (Zamli et al., 2011) where the BEs were generated before the IEs, the current 

approach generates the BE in the later part of the process. The rationale for such approach 

is the fact that traditional approaches of generating full table of binary equivalences has 

a high complexity in case of systems with a high number of components (large number 

elements of the test generation targeted domain). This is because it follows a (2𝐸 − 1) 

number of elements.  

In the BTS strategy, the mixed-strength interaction generation is combined with 

the main process to minimize the algorithm’s complexities. A sub ES set for each mixed-

strength configurations constructed based on the indexes of the involved test elements 

was used in this study. The same CTS and IET generator can be used to generate the 

mixed-strength CTS and IET set respectively. 

At the end of this phase, the aforementioned steps effectively generate complete 

sets of IEs that covers all the possible test interactions. These IEs sets needed to be 

optimized to achieve the test suite reduction. In the next sub-section, the reduction 

process based on the optimization concepts of BA is elaborated.  
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3.2.3 Test Suite Generation 

The BA can be used to efficiently solve several related engineering optimization 

problems (Yang, 2010, 2014; Yang & Gandomi, 2012). This algorithm can improve the 

solution quality because of the global and local search behaviour it implements. Here, the 

BA is employed as a search engine to calculate the fitness (coverage or weight) of the 

randomly generated test candidates for the proposed strategy. To achieve a minimum test 

suite optimization process, the test cases need to effectively and greedily cover all the t-

way tuples, if possible, at most once. 

The BA has conventionally developed on the assumption that bats can locate their 

prey in complete darkness. To apply this algorithm for interaction testing, we assume that 

the test candidates are bat locations in which each bat has its own possible solution 

(fitness) of the targeted problem. The BA search process in the BTS provides the best 

global optimum (or optimum test candidate that has the highest coverage of the t-tuples 

element values) based on the number of BEs involved. This optimum test candidate 

indicates the solution quality in terms of the best bat position (location) from its prey. 

Bats are avoiding obstacles using echolocation, thus, different frequencies are returned 

in each iteration with updated loudness and pulse emission rate. 

Based on the aforementioned description of the BA, Figure 3.12 (Algorithm 5) 

depicts the complete algorithm as the backbone for BTS. Unlike the standard BA 

algorithm, the BTS strategy introduces the Hamming distance classifier to decide the 

final suite. Specifically, the Hamming distance classifier measure two rows of (best) test 

cases (as string) based on the number of values in which they differ when there is a tie 

situation as far as the quality of the test cases are concerned. It is the farthest test case 

that will be finally selected by the Hamming distance classifier to ensure sufficient 

exploration of the search space.   

Lines 1 - 5 represent the initialization process which includes the request for the 

pre-processed data from the previous algorithms in the interaction generation phase (the 

interaction elements tuples (IET)), and the binary elements set (BES) (constructed based 

on algorithm 2 and 3 in the second phase of BTS strategy). 
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Algorithm 5: BTS test suite generation. 

Input: BES, IET, objective function 𝑓(𝑥𝑖), 𝑥𝑖 = (𝑣𝐸1 , … , 𝑣𝐸𝑖). 

Output: FTS 

1: request BES, IET and the objective function specification; 

2: define FTS as empty set; 

3: define 𝑥𝑏𝑒𝑠𝑡 best test candidate; 

4: initialize BA variables setting(𝑛,  𝑚𝑎𝑥, 𝑄𝑖 ∈ (𝑄𝑚𝑖𝑛 ,  𝑄𝑚𝑎𝑥), 𝐴, 𝑟, 𝑡𝑜𝑙 𝑟𝑎𝑛𝑐  and 𝑡𝑠) 

5: randomly Initialize BTS population(𝑛𝑖, 𝑥𝑖, 𝑣𝑖, 𝑓𝑖, 𝑄𝑖)for 𝑖 = 1, 2,… , 𝑛; 

6: evaluate initial population; 

7: select 𝑥𝑏𝑒𝑠𝑡 from all 𝑥𝑖
𝑡𝑠 in BTS population;        \\(initial global best) 

8: while (IET is not empty) do 

9:       while (𝑡𝑠 <  𝑚𝑎𝑥) do 

10:             for each bat 𝑛𝑖 in the population do 

11:                   generate new test candidates using motion movement equations; 

                        𝑄𝑖 = 𝑄𝑚𝑖𝑛 + (𝑄𝑚𝑎𝑥 +𝑄𝑚𝑖𝑛)  𝑟𝑎𝑛𝑑(0,1) ,       \\ 𝑟𝑎𝑛𝑑 ∈ (0, 1) 

                        𝑣𝑖
𝑡𝑠+1 = 𝑣𝑖

𝑡𝑠 + (𝑥𝑖
𝑡𝑠 − 𝑥𝑏𝑒𝑠𝑡) 𝑄𝑖 

                        𝑥𝑖
𝑡𝑠+1 = 𝑥𝑖

𝑡𝑠 + 𝑣𝑖
𝑡𝑠+1 

12:                   re-evaluate the population; 

13:                   if (𝑟𝑎𝑛𝑑(0,1) < 𝑟𝑖) then 

14:                         if ( 𝑓(𝑥𝑖
𝑡𝑠+1) > 𝑓(𝑥𝑏𝑒𝑠𝑡  ) ) than 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑖

𝑡𝑠+1;  

                        (new global best from current population) 

15:                   Else 

16:                         generate a new 𝑥𝑖
𝑡𝑠+1 by flying randomly around 𝑥𝑏𝑒𝑠𝑡; 

17:                   End 

18:             End 

19:             for each bat 𝑛𝑖 do             \\ random walk 

20:                   if (𝑟𝑎𝑛𝑑(0,1) < 𝐴𝑖  and 𝑓(𝑥𝑖
𝑡𝑠+1) > 𝑓(𝑥𝑏𝑒𝑠𝑡)) then 

21:                         accept the new 𝑥𝑖
𝑡𝑠+1 as new 𝑥𝑏𝑒𝑠𝑡;         \\(new global best) 

22:                         increase 𝑟𝑖 and reduce 𝐴𝑖  using the 𝑡𝑜𝑙 𝑟𝑎𝑛𝑐  value; 

23:                   End 

24:             End 

25:             for each bat 𝑛𝑖 do         \\ Hamming distance classifier 

26:                   if ( 𝑡𝑠 not equal 1 &&  multiple 𝑥𝑏𝑒𝑠𝑡) then 

27:                         select 𝑥𝑏𝑒𝑠𝑡 in the current population that has the highest distance 

                        from 𝑥𝑏𝑒𝑠𝑡 added to FTS;  

28:                   End 

29:             End 

30:       End 

31: append 𝑥𝑏𝑒𝑠𝑡 to FTS; 

32: remove the covered IE’s by 𝑥𝑏𝑒𝑠𝑡 from IET; 

33: End 

34: process results and visualization; 

Figure 3.12 The pseudo code of test suite generation. 
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Specifically, line 2 defines a new set for BTS output in the initialization process 

called the Final Test Suite set (FTS). In addition, the global best test candidate is also 

defined in line 3, which are going to store the best test candidate during the iteration of 

the algorithm. In line 4, the BA variables (settings); bats population size (𝑛), BA iteration 

( 𝑚𝑎𝑥), initial loudness (𝐴0), initial emission of pulse rate (𝑟0), tolerance and frequencies 

range (i.e. minimum frequency (𝑄𝑚𝑖𝑛), maximum frequency (𝑄𝑚𝑎𝑥)) are initialized in 

addition to the time step counter (𝑡𝑠). 

In line 5, the BTS modelling the test candidates as bats location (𝑥𝑏𝑎𝑡 𝑖). Here, the 

population is initialized based on the assumption that bats location (𝑥𝑏𝑎𝑡 𝑖) are the test 

candidates. The population is constructed as sets with a number of bats (𝑛𝑖), each having 

its owns location, velocity, fitness and frequency. The location of each bat are randomly 

initialized as a test candidate constructed based on the decision values (𝑣𝐸𝑖) that represent 

the test element in the ES. Each location represents a random test candidate (𝑥𝑏𝑎𝑡 𝑖) that 

is indexed for a specified bat as shown in Figure 3.13. 

Until now, the BTS iterations are yet to be started. The velocity and fitness for all 

the bats in the population are still having an initial value of zero. In contrast, the frequency 

(𝑄𝑖) is generated randomly in the range of 𝑄𝑚𝑖𝑛  to 𝑄𝑚𝑎𝑥  for the first iteration as the 

frequency is adjusted in the next cycle of iterations. Likewise, the velocity and location 

are updated for each bat in every cycle of iteration using the virtual bat movement (based 

motion equations). 
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Mapping of test candidates in BA papulation 

 

Figure 3.13 The illustration of test candidates mapping into the BA population. 

In lines 6 and 7, the initial evaluation (or the evaluation of the first generation) 

and the selection of the initial global best test candidate is processed. The evaluation steps 

calculate the fitness of all the bats in the population and store the values in the 

corresponding fitness field (column) for each specified bat in the population (Figure 

3.13). Here, the test candidate (𝑥𝑏𝑎𝑡 𝑖) is evaluated using the objective function specified 

earlier in Equation 2.8. The fitness is presented as the number of IEs covered by each bat. 

The best test candidate with the highest coverage value (or fitness) is then, is selected and 

considered as the best global bat. 

To select a best global coverage in case of multiple test candidates with the same 

maximum coverage and empty FTS, the Hamming distance classifier was not used in this 

step to determine the bat having the highest distance from the test cases in FTS as FTS is 

still empty. The first bats with the highest coverage values are selected randomly as the 

best global bat as they have the same maximum coverage value.  
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As the global best is selected, the iteration is initiated in line 8 where the BTS 

cycle until the IET, is empty. This consider as the stopping condition because all the test 

cases that covered all the IEs in the IET is generated. During this iteration from line 8 to 

line 33, the iteration for the BA time steps is cycling for all the bats as represented in line 

10 to line 30. The bats here are improved in each time steps or population generation. 

The process of improvement is progressing in line 11 and each bat solution is 

updated based on the virtual bat movement (motion movement) using Equations 3.2 to 

3.4. The improvement process of each test candidate is as follows: firstly, a new 

frequency is calculated for the specified bat using Equation 3.2 based on a random 

variable (rand) within the range of zero to one; secondly, a new velocity is calculated 

based on the current best global test candidate (the best test candidate selected earlier), 

and the new frequency using Equation 3.2; finally, a new test candidate is generated based 

on the new calculated velocity and the current test candidate in the population using 

Equation 3.3. 

In line 12, the new test candidate is generated using the new velocity for the 

targeted bat. A re-evaluation process of the generated solutions based on the objective 

function is carried out (i.e. owing to the potential improvements). 

Lines 13 – 17 update the test candidate using a random variable based on the 

emission of pulse rate values. If the random is less than the emitted pulse rate, and the 

fitness of the current bat is greater than the current global best, the test candidate considers 

as a global best. In order words, a random walk (local search) for the current test candidate 

will be considered. During the local search, the bat’s location (test candidate) is randomly 

generated around the best global candidate.  

Concerning the selection process in lines 19 to 24, a random variable is generated 

but  if it is less than the current loudness and the fitness of the current  test candidate is 

higher than the best global test candidate fitness (i.e. (𝑥𝑏𝑎𝑡 𝑖) is covering more interaction 

elements), then the test candidate is considered as the new global best. The algorithm 

then, increases the rate of pulse emission and reduces the loudness using the tolerance 

value. This case selects the best test candidate. In the case where multiple test candidates 

have similar maximum fitness, the Hamming distance classifier is called to decide which 

test candidate should be selected as the global best. 
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Lines 25 – 29 represent the updating of the best global test candidate based on the 

Hamming distance classifier with multiple test candidates with the same maximum 

coverage value. The generation step improvement is not equalled to one (i.e. not in the 

first cycle, as in this case the FTS is still empty). Here, two or more test candidates can 

share multiple best with the highest fitness. To break the tie situation, the Hamming 

distance classifier is adopted to select the candidate that has the farthest distance among 

the best candidates with respect to the test cases in the FTS using Equations 3.9. The 

distance term calculated for the test candidates with all the available test cases in FTS are 

shown in Figure 3.14.  

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐  (𝑑(𝑥)) =∑|𝑥𝑏𝑎𝑡𝑖 −  𝐶𝑛|  
3.9 

Let us assume the test candidate 𝑥𝑏𝑎𝑡 2 = {2 1 3 2} and the available test case  𝐶1 

= {1 1 1 1}, here, 𝑑 (𝑥𝑏𝑎𝑡 2,  𝐶1) = 4; the next test case  𝐶2 = {2 1 1 3}, 𝑑 (𝑥𝑏𝑎𝑡 2,  𝐶2)= 

3, and so on. In all these, the 𝑑 (𝑥𝑏𝑎𝑡 2) = 7. This process goes through all the best 

candidates (i.e., 𝑑 (𝑥𝑏𝑎𝑡 4) =  5 and 𝑑 (𝑥𝑏𝑎𝑡 6) =  9). In this example, the best test 

candidate with the highest (or farthest) distance (which is in this case 𝑥𝑏𝑎𝑡 6 ) is selected 

accordingly (refer to Figure 3.14). 

The iteration of the algorithm is contained until it satisfies the number of 

generations ( 𝑚𝑎𝑥) specified. In each cycle of generation, the test candidate is improved 

until the maximum coverage is achieved. The final best global candidate is considered as 

final test case that is added to the FTS. Then, the covered IEs are removed from the IET 

as shown in line 32. This process elaborated above is maintained until all the IEs in the 

IET has been covered (IET became empty). The final test suite is then, displayed. 

It should be noted that when there is only one best candidate satisfying the 

maximum coverage, the Hamming distance classifier will not be considered (lines 15 to 

18). But in the case of multiple bats with the same maximum coverage occurred, the 

Hamming distance classifier is used to determine the best candidate that need to be 

selected. 
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Figure 3.14 The illustration of Hamming distance classifier. 
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In a situation where the BA iteration ( 𝑚𝑎𝑥) has completed and the best bat has 

not satisfied the maximum coverage (there are still elements in the IET), the test candidate 

will be appended to the FTS. Here, the improvement process in the BTS failed to find the 

minimal test suite. 

The test suite generation algorithm stays in the cycling until the exit criteria are 

met. When the exit criteria are met (all the involved IEs in the IET are covered) the 

cycling stops and the FTS will be displayed. But on the contrary, the update and 

improvement of the test candidates will be going on until all the IEs in the IEL are 

covered. 

In the case of mixed-strength (sub-strength), the objective function is evaluated 

for its EC and the same process is undertaken. The obtained test suite for the main-

strength and the sub-strength are combined without the duplicates from the test cases in 

the sub-strength test suite. 

For more details, Figure 3.15 shows a simple illustration of the mechanism (or 

flow) of the of test suite generation in BTS.  
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Figure 3.15 The illustration of test suite generation mechanism. 
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3.2.4 Tuning of BTS Variables 

The process of the variables tuning for the BTS has been elaborated in this sub-

section. To ensure the most optimal results for the BTS with regards to the test suite size, 

the control variables for the BA have to be tuned based on the test suite generation 

problem. For the tuning purpose, a well-known test system (covering array) that 

involving a CA (N; 2, 57) is employed. The justification for adopting this configuration 

for the tuning process originates from the use of the same CA to tune many of the existing 

t-way strategies (Ahmed & Zamli, 2011b; Alsewari & Zamli, 2012a; Stardom, 2001). 

The process of tuning BTS is based on 20 runs (Ahmed & Zamli, 2011b; Stardom, 2001) 

for the specified CA with different variables settings. The BTS has five main control 

variables: {bats population size, generation, loudness, pulse rate, and tolerance}, that 

control the sizes of the obtained test suite. The size and average of the final test suite sets 

for the 20 runs have been recorded. Then, the results of the tuned variables are analysed 

to find the settings that fit the minimum size and average of the final test suites (Figure 

3.16 to Figure 3.23) (refer to Appendix B for a full detail of the variable setting execution 

outputs). The five variables (bat population and generation (iteration), loudness, pulse 

rate, and tolerance are executed for all the possible selected settings.  

The BA setting variables are varied depending on the problem to be solved. For 

instance, Yang (2014) has used the following parameters; {𝑛 = 25 to 50,  𝑚𝑎𝑥 = 10 , 𝐴𝑖 

= 0.25, 𝑟𝑖 = 0.5, 𝑄𝑚𝑖𝑛 = 0, 𝑄𝑚𝑎𝑥 = 2, tolerance = 0.00001}as a default setting values for 

his evaluation,  while Yang and Gandomi validated BA for solving a global engineering 

optimization problems using a fixed n = 20 and g = 1000  to perform 20 thousand searches 

which was not necessary for testing the suite generation (Yang & Gandomi, 2012).  

Yang (2014) also specified that if the loudness and pulse rate are fixed to 0 and 1, 

respectively, the BA can behave as the standard PSO in this setting. On the other hand, if 

these settings are fixed in the range of 0.7 to 0.9 (i.e. 𝐴𝑖 = 𝑟𝑖 from 0.7 to 0.9), the BA 

basically becomes a HS as 𝑄𝑖  change is equivalent to the pitch adjustment in HS. In 

another study, researchers used  𝑛 = 20, 𝐴𝑖 = 0.9, 𝑟𝑖 = 0.1, 𝑄𝑚𝑖𝑛 = 0, 𝑄𝑚𝑎𝑥 = 2 for their 

evaluation of a combined economic load and emission dispatch (Rakesh et al., 2013). The 

BA frequency variables were tuned in this process in a pre-specified range; the tolerance 

value was pre-defined for local search use as well. 
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The first variable is bat population (𝑛) and the iterations; for the bat population 

which indicates the number of bats involved in the test suite generation, this variable 

controls the randomly initialized test candidates in the memory. When the number of test 

candidate increases, the possibility of finding a better solution (a test candidate with 

maximum IEs coverage) improves and vice versa. Yang (2010) specified that the number 

of bat population can be more than 10 depending on the problem solved. Yang (2010) 

also set the bat population from 10 to 40 in his simulations for finding the global optima 

for several benchmarking functions (Yang, 2010). For the tuning of bat population, a set 

of four values (𝑛 = {10, 20, 50, 100}) were selected. 

Next, the iteration (generations (  𝑚𝑎𝑥 )), as name suggests, controls the 

improvement of the solution for all the initialized bats (test candidates) for each cycle of 

iteration. It is noticed that when the iterations variable increases, the possibility of 

founding a better solution is increased and vice versa. For the tuning of the maximum 

generation, we selected a set of five values ( 𝑚𝑎𝑥 = {10, 20, 50, 100, 200}). These bat 

population and generation values appear effective for obtaining the minimum test suite. 

Our experiments’ shows that the quality of the BTS solution is acceptable for these 

settings. Thus, these sets were used for a full tuning execution. 

The initial values of the loudness and pulse rate need to be tuned; the maximum 

effectiveness of these variable are in the range of [0 – 1]. Thus, a set of five values are 

selected in this range for both variables. The set contains five values (i.e. A, r = {0.05, 

0.25, 0.5, 0.75, 0.95}). For the tolerance that controls the adjustment of the loudness and 

pulse rate, another five values (i.e. tolerance = {0.00001, 0.0001, 0.001, 0.01, 0.1}) are 

selected to fit the test suite generation. 
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Figure 3.16 The illustration of minimum sizes with 10 bats. 

  

 

Figure 3.17 The illustration of sizes average with 10 bats. 

 



80 

 

Figure 3.18 The illustration of minimum sizes with 20 bats. 

 

 

Figure 3.19 The illustration of sizes average with 20 bats. 
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Figure 3.20 The illustration of minimum sizes with 50 bats. 

 

 

Figure 3.21 The illustration of sizes average with 50 bats. 
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Figure 3.22 The illustration of minimum sizes with 100 bats. 

 

 

Figure 3.23 The illustration of sizes average with 100 bats. 
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Based on the empirical experiments and the results of this study shown in Figure 

3.16 to Figure 3.23, the differences in the test suite slightly decreased when the bat 

population and generation increases for values more than 50. The same observation 

applies for loudness and pulse rate in case of the value 0.50 and tolerance value of 0.001. 

Here, the solution gives less variation for the higher values (and achieved more reduction 

in test sizes).  

Empirically, the sizes and averages stabilized when 𝑛 = 50,  𝑚𝑎𝑥  = 200, 𝐴𝑖  = 

0.25, 𝑟𝑖 = 0.05 and tolerance = 0.001. The most stable value for test suite averages = 

34.75, which was around 33 test cases in most of the cases which is better minimal test 

suite size than what is obtained in previous studies (Alsewari & Zamli, 2012a; Stardom, 

2001) . Thus, this setting is selected for the current problem been solved. 

The parameter values used for the BTS test suite generation benchmarking are as 

follows:  𝑛 =50,  𝑚𝑎𝑥 = 200, 𝐴𝑖 = 0.25, 𝑟𝑖 = 0.05, 𝑄𝑚𝑖𝑛 = 0, 𝑄𝑚𝑎𝑥 = 2, tolerance = 0.001. 

Here, the frequency range values were defined to the default setting for BA (as the 

changing of these setting did not affect the process of test suite generation). As observed 

from the experiments, the quality of the solution stabilized at this setting (BTS 

consistently achieved minimal test suite sizes). 
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3.3 Prototype Implementation 

The BTS strategy has been developed by using the Java programming language 

with JDK 1.8. Java has been selected owing to the cross-platform support. In addition, 

Java also provides rich GUI APIs that facilitates full executional testing platforms in the 

future. Figure 3.24 summarizes the BTS interface and Figure 3.25 illustrates the 

functional hierarchy of BTS. 

 

Figure 3.24 The BTS prototype. 

 

The prototype presents the actual data input and the result. Here, a test suite for a 

pizza selection software is generated based on it actual inputs that represented as  

𝐶𝐴(𝑆, 2, 3227). Here, the optimal test suite obtained is 10 test cases that can be stored 

into a file or viewed by clicking the test suite record. 

The test engineer (i.e. end user) can get FTS result in text file, that can be 

integrated to a test execution mechanism. Figure 3.25 shows the functional hierarchy for 

BTS including the main functionally for its four algorithms.  
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Figure 3.25 The functional hierarchy of BTS. 

 

3.4 Summary 

This chapter has provided the full details of the research design concepts of BTS 

and its algorithms are presented. Additionally, a step-by-step execution of the BTS 

strategy was presented in this chapter. Furthermore, the tuning and optimizing of the 

variables used for the BTS test suite generation was presented. Finally, the 

implementation of the BTS strategy is shown. 

The next chapter will present the reports of the BTS benchmarking experiments 

as well as the statistical analysis based on several real-world applications. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

In the previous chapter, the BTS design and implementation were illustrated and 

elaborated. Furthermore, the BTS parameter settings were optimized based on an 

elaborate tuning process.  

This chapter presents the evaluation of BTS starting with the experimental 

evaluations. The evaluations consist of the following; the characterization of the original 

BA and the modified Hamming BA used in the BTS; the comparative benchmarking 

experiments with well-known t-way strategies that are presented along with the necessary 

statistical analysis. Finally, the chapter concludes with the summary of the major 

findings. 

4.1 Experimental Evaluations 

The experimental evaluation of BTS is focusing on two main goals:  

 to characterize the performance of BA against the implemented Hamming BA. 

 to benchmark the Hamming BA against other competing approaches. 

Based on the aforementioned goals, the BTS evaluation is divided into three parts. 

In the first part, the size performance and the average time are reported for the BTS 

variants (the original BA and the Hamming BA). The second part covers the 

benchmarking of the Hamming BA against its counterparts along with the complete 

distribution pattern. The best tuning values with a maximum number of iteration (200) 

and population (50 bats) is adopted (refer to Chapter 3). 
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The benchmarking of BTS against the other strategies is divided into two sub-

sections. The first sub-section reports the results of BTS against other strategies for test 

suite generation. This is based on previous studies published by strategies’ publications 

(Ahmed et al., 2015; Ahmed et al., 2014; Ahmed & Zamli, 2011b; Ahmed et al., 2012a; 

Cohen, 2004; Lei et al., 2007; Shiba et al., 2004; Wang & He, 2013; Wang et al., 2008). 

The second sub-section reports the results of BTS against mixed strength supported 

strategies. This is also based on previous studies published by strategies’ publications 

(Ahmed & Zamli, 2011b; Ahmed et al., 2012a; Bansal et al., 2015; Cohen et al., 2003c; 

Wang & He, 2013; Wang et al., 2008; Xiang et al., 2009).  

As the strategies in the above-highlighted publications are not publicly available, 

it is not possible to do the time performance comparison. At best, only the size 

performances are considered since the size performances are not affected by computing 

environments (i.e., as currant computer more powerful than the one used in the previous 

strategies)  

The experimental platform comprises of a PC running Windows 7, Intel i7-3770 

Quad Core 3.4 GHz CPU, 4 GB RAM, and Java running environments (JRE) version 1.8. 

All the obtained experimental results are compared and presented in tables together with 

the benchmarked results from the other strategies’ publications. The cells marked “N/A” 

(not available) indicates that the specific configurations result is not available. Likewise, 

cells marked “N/S” (not supported) indicates that the specific configuration interaction 

strength is not supported by the strategy. The best sizes are marked with bold cells. The 

minimal average sizes are highlighted using dark cells. Whenever necessary, the minimal 

execution time is marked using italic cells. For the statistical significance, all the BTS 

(Size) results are based on 20 executions. the average size (Average) are reported for BTS. 

The statistical analysis based on Friedman (Daniel, 1990; Laerd Statistics, 2017a) 

and Wilcoxon Rank-Sum (Laerd Statistics, 2017b; Wilcoxon, 1945) will be conducted.  

This is to determine the significance of the results of the undertaken work. The rationale 

for adopting the Friedman and Wilcoxon Rank-Sum stemmed from the fact that the 

obtained results are not normally distributed. This presented the need for a non-

parametric test. As the benchmarking experiments consider 1 x N comparison, there 

could be potential significant field-wise errors which can disrupt the statistical 

conclusions. For this reason, the post-hoc analysis using the Bonferonni’s Holm 
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procedure is chosen to adjust the acceptance probability. Then, the obtained results are 

illustrated for the comparative benchmarking using interval plot. The benchmarking is 

based on the descriptive means values with the individual standard deviation interval for 

each of the strategies. 

Basically, the null hypothesis (H0 ) for the Friedman test is that there is no 

significant difference between the terms of the test suite sizes median for the results 

sample at 95 % confident level. Alternatively, the alternative hypothesis (H1) is that there 

is a significant difference in terms of the test suite sizes median. This means that the 

results median distribution is not equal (less or greater) for the sample. As Friedman test 

gives a general observation for all the results, a post-hoc test is needed to compare BTS 

results with the results of each other strategy. As highlighted earlier, the Wilcoxon Rank-

Sum test is adopted as the post-hoc method. 

The null hypothesis (H0) for Wilcoxon Rank-Sum test is that there is a significant 

median difference between the mean pair of samples. The results are compared to other 

strategies at a 95 % level of confidence level. Here, if the Wilcoxon statistic is less or 

equal to the alpha (𝛼 = 0.05) with Bonferroni-holm correction,  H0  will be rejected. 

Alternatively, H1 will be adopted if there is a significant difference in terms of the test 

suite sizes median of BTS with the other strategies. The Bonferroni-holm correction 

(multiple-comparison correction) is used when several dependent or independent 

statistical tests are being performed simultaneously. To avoid many spurious positives, 

the alpha value needs to be lowered to account for the number of comparisons being 

performed. 

The Bonferroni-holm correction value is calculated based on the given alpha for 

the entire set divided by the number of comparison (𝑚). This gives a critical value with 

Bonferroni-holm correction 𝛼ℎ𝑜𝑙𝑚 for the tested pairs. The Bonferroni-holm correction 

can be calculated using Equation 4-1. 

𝛼ℎ𝑜𝑙𝑚 = 
𝜶

𝑚 + 1 − 𝑘
 

  4.1 

To perform the statistical calculations, the SPSS Statistics Software Version 22 

and MiniTab 17 are used. MiniTab is used for interval plotting since SPSS cannot support 

the interval plot features. 
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4.2 Experimental Results 

In this sub-section, the BTS results are reported in three parts. In the first part, the 

BTS variants (the original BA and the Hamming BA) size performance and the average 

time results are reported. The second part reported the benchmarking of the Hamming 

BA of BTS against its t-way counterparts. Then, in the third part, the Hamming BA of 

BTS is benchmarked against its mixed strength counterparts. The benchmarking in this 

section is done along with the complete distribution pattern for both t-way and mixed 

strength interaction. 

4.2.1 Characterizing BTS 

This section highlights the performance of BTS with Hamming BA against the 

original BA. The configuration consists of a covering array 𝑚𝐶𝐴 (𝑆, 𝑡, 37, {MC}),MC =

 𝐶𝐴 (𝑆, 3, 34) where t is varied from (2 ≤ t ≤ 6). A total of 5 experiments is defined for 

characterizing BTS as follows: 

 Experiment 1: 𝑚𝐶𝐴 (𝑆, 2, 37, {MC}),MC =  𝐶𝐴 (𝑆, 3, 34)), . 

 Experiment 2: 𝑚𝐶𝐴 (𝑆, 3, 37, {MC}),MC =  𝐶𝐴 (𝑆, 3, 34)). 

 Experiment 3: 𝑚𝐶𝐴 (𝑆, 4, 37, {MC}),MC =  𝐶𝐴 (𝑆, 3, 34)). 

 Experiment 4: 𝑚𝐶𝐴 (𝑆, 5, 37, {MC}),MC =  𝐶𝐴 (𝑆, 3, 34)). 

 Experiment 5: 𝑚𝐶𝐴 (𝑆, 6, 37, {MC}),MC =  𝐶𝐴 (𝑆, 3, 34)). 

The obtained results are reported in Table 4.1. The best sizes are marked with 

bold cells while the minimal average sizes are highlighted using dark cells. The minimal 

execution time (in seconds) is marked using italic cells. 

Table 4.1 The characteristic of BTS (Hamming BA against original BA). 

Interaction 

strength (t) 

BTS with original BA BTS with Hamming BA 

best  worst  size time (s) best  worst  size time (s) 

Size Size Average Average Size Size Average Average 

2 31 37 32.850 2.652 30 34 32.350 3.678 

3 49 53 51.700 13.650 49 53 51.250 14.160 

4 155 160 157.150 91.350 153 159 156.000 97.690 

5 434 446 440.950 285.900 434 445 438.050 301.80 

6 963 988 976.600 304.900 860 955 933.400 343.80 
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The convergence pattern in Figure 4.1 shows the converging of the worst results 

of the BTS variants; Original BA and Hamming BA. 
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Figure 4.1 The convergence pattern. 

In Figure 4.1 the convergence pattern of the two variants of BTS. The Hamming 

BA variants shows a faster convergence to the optimal test suite with less iterations, while 

the original variants that uses the default BA gives less time execution. Notably, 

Hamming BA variants perform better in terms of test suite sizes. Therefore, The 

Hamming BA is selected for benchmarking with the existing strategies (As the minimal 

test suite is concerned).   



91 

4.2.2 Benchmarking with Other Strategies 

The BTS supports interaction strength up to six (2 ≤ t ≤ 6). This is the ideal 

interaction strength for t-way testing as suggested by (Czarnecki et al., 2012; Kuhn et al., 

2010; Kuhn et al., 2015). Therefore, four experimental benchmarking sets that have the 

specified interaction strength up to t = 6 are conducted. The selected benchmarking test 

configurations are publicly available in the literature. In the first three experimental sets 

(experimental sets 1, 2 and 3), the BTS is benchmarked against TConfig, IPOG, ITCH, 

Jenny, PICT, TVG, PSTG, CS and HSS. In the experimental set 4, the BTS is compared 

with the results obtained from the execution of PICT, TVG and TConfig. The selected 

sets of benchmarking experiments are as follows: 

 Experimental set 1: The benchmarking for test configurations with varying 

interaction strengths (2 ≤ t ≤ 6)-way with fixed parameters (3 ≤ P ≤ 12) and (v = 

3) each (see Table 4.2). 

 Experimental set 2: The benchmarking for test configurations with varying 

interaction strength (2 ≤ t ≤ 6)-way with fixed parameters (P = 7) and (2 ≤ v ≤ 5) 

each (see Table 4.3). 

 Experimental set 3: The benchmarking for test configurations with 4-way with 

interaction strength with varying parameters (5 ≤ P ≤ 10) and fixed (v = 5) each 

(see Table 4.4). 

 Experimental set 4: The benchmarking for four real-world software test 

configurations ( 𝐶𝐴(𝑆, 𝑡, 2135) , 𝐶𝐴(𝑆, 𝑡, 213252) , 𝐶𝐴(𝑆, 𝑡, 213342516181) , 

𝐶𝐴(𝑆, 𝑡, 263251)) with varying interaction strength (2 ≤ t ≤ 6)-way (see Table 

4.5). 
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Table 4.2 The minimum test suite sizes for experimental set 1. 

t-values P-values 

Deterministic Probabilistic 

TConfig IPOG ITCH Jenny PICT TVG PSTG CS HSS BTS 

Size Size Size Size Size Size Size Size Size Size Average 

2 3 10 11 9 9 10 10 9 9 9 9 9.7500 

4 10 12 9 13 13 12 9 9 9 9 9.0000 

5 14 14 15 14 13 13 12 11 12 11 11.100 

6 15 15 15 15 14 15 13 13 13 14 14.300 

7 15 17 15 16 16 15 15 14 15 15 15.100 

8 17 17 15 17 16 15 15 15 15 15 15.600 

9 17 17 15 18 17 15 17 16 17 16 16.300 

10 17 20 15 19 18 16 17 17 17 16 16.700 

11 20 20 15 17 18 16 17 18 17 17 17.350 

12 20 20 15 19 19 16 18 18 18 17 17.650 

3 4 32 39 27 34 34 34 27 28 30 27 30.100 

5 40 43 45 40 43 41 39 38 39 39 41.050 

6 48 53 45 51 48 49 45 43 45 33 38.300 

7 55 57 45 51 51 55 50 48 50 49 50.750 

8 58 63 45 58 59 60 54 53 54 52 53.150 

9 64 65 75 62 63 64 58 58 59 55 57.300 

10 68 68 75 65 65 68 62 62 62 59 60.750 

11 72 76 75 65 70 69 64 66 66 61 63.600 

12 77 76 75 68 72 70 67 70 67 65 65.950 
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t-values P-values 

Deterministic Probabilistic 

TConfig IPOG ITCH Jenny PICT TVG PSTG CS HSS BTS 

Size Size Size Size Size Size Size Size Size Size Average 

4 5 97 115 153 109 100 105 96 94 94 81 84.200 

6 141 181 153 140 142 139 133 132 132 130 134.40 

7 166 185 216 169 168 172 155 154 154 149 154.20 

8 190 203 216 187 189 192 175 173 174 172 174.55 

9 213 238 306 206 211 215 195 195 195 157 186.15 

10 235 241 336 221 231 233 210 211 212 205 207.25 

11 258 272 348 236 249 250 222 299 223 220 221.25 

12 272 275 372 252 269 268 244 253 244 235 437.60 

5 6 305 393 NS 348 310 321 312 304 310 256 279.90 

7 477 608 N/S 458 452 462 441 434 436 434 438.00 

8 583 634 N/S 548 555 562 515 515 515 514 517.10 

9 684 771 N/S 633 637 660 598 590 597 587 592.40 

10 773 784 N/S 714 735 750 667 682 670 659 663.50 

11 858 980 N/S 791 822 833 747 778 753 736 738.75 

12 938 980 N/S 850 900 824 809 880 809 797 848.60 

6 7 921 1281 N/S 1087 1015 1024 977 960 977 896 917.80 

8 1515 2098 N/S 1466 1455 1484 1402 1401 1402 1395 1399.5 

9 1931 2160 N/S 1840 1818 1849 1684 1689 1684 1682 1687.4 

10 N/A 2726 N/S 2160 2165 2192 1980 2027 1991 1976 2002.3 

11 N/A 2739 N/S 2459 2496 2533 2255 2298 2255 2192 2237.2 

12 N/A 3649 N/S 2757 2815 2597 2528 2638 2528 2503 2589.4 
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Table 4.3 The minimum test suite sizes for experimental set 2. 

𝒕-values 𝒗-values 

Deterministic Probabilistic  

TConfig IPOG ITCH Jenny PICT TVG PSTG CS HSS BTS 

Size Size Size Size Size Size Size Size Size Size Average 

2 2 7 8 6 8 7 7 6 6 7 7 7.00000 

3 15 17 15 16 16 15 15 15 14 15 15.0000 

4 28 28 28 28 27 27 26 25 25 24 24.9000 

5 40 42 45 37 40 42 37 37 35 33 35.1000 

3 2 16 19 13 14 15 15 13 12 12 15 15.5000 

3 55 57 45 51 51 55 50 49 50 49 50.3500 

4 112 208 112 124 124 134 116 117 121 115 115.900 

5 239 275 225 236 241 260 225 223 223 217 220.200 

4 2 36 48 40 31 32 31 29 27 29 31 33.7500 

3 166 185 216 169 168 167 155 155 155 152 154.200 

4 568 509 704 517 529 559 487 487 500 482 485.900 

5 1320 1349 1750 1248 1279 1385 1176 1171 1174 1153 1163.85 

5 2 56 128 N/S 57 57 59 53 53 53 54 59.0500 

3 477 608 N/S 458 452 464 441 439 437 435 439.550 

4 1792 2560 N/S 1938 1933 2010 1826 1845 1831 1802 1813.30 

5 N/A 8091 N/S 5895 5814 6257 5474 5479 5468 5417 5430.15 

6 2 64 64 N/S 87 72 78 64 66 64 64 64.0000 

3 921 1281 N/S 1087 1015 1016 977 973 916 914 924.550 

4 N/A 4096 N/S 6127 5847 5978 5599 5610 4096 5415 5446.25 

5 N/A 28513 N/S 23492 22502 23218 21595 21597 21748 21436 21371.4 
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Table 4.4 The minimum test suite sizes for experimental set 3. 

P-values 

Deterministic Probabilistic 

TConfig IPOG ITCH Jenny PICT TVG PSTG CS HSS BTS 

Size Size Size Size Size Size Size Size Size Size Average 

5 773 908 625 837 810 849 779 776 751 736 741.05 

6 1092 1239 625 1074 1072 1128 1001 991 990 965 972.70 

7 1320 1349 1750 1248 1279 1384 1209 1200 1186 1158 1162.4 

8 1532 1792 1750 1424 1468 1595 1417 1415 1358 1317 1324.6 

9 1724 1793 1750 1578 1643 1795 1570 1562 1530 1508 1510.3 

10 1878 1965 1750 1719 1812 1917 1716 1731 1624 1746 1763.3 
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Table 4.5 The minimum test suite sizes for experimental set 4. 

t-value Real-world software Test configurations 

Deterministic Probabilistic 

TConfig PICT TVG BTS  

Size Size Size Size Average 

2 Count MCA(𝑆, 2, 2135) 15 14 15 12 12.9000 

Nametbl 𝑀𝐶𝐴(𝑆, 2, 213252) 26 25 25 25 25.1500 

Flex 𝑀𝐶𝐴(𝑆, 2, 263251) 18 17 19 15 16.7000 

Grep 𝑀𝐶𝐴(𝑆, 2, 213342516181) 53 49 53 48 51.0500 

3 Count 𝑀𝐶𝐴(𝑆, 3, 2135) 44 44 45 33 36.0000 

Nametbl 𝑀𝐶𝐴(𝑆, 3, 213252) 82 79 87 75 79.2500 

Flex 𝑀𝐶𝐴(𝑆, 3, 263251) 62 53 55 51 54.9000 

Grep 𝑀𝐶𝐴(𝑆, 3, 213342516181) 314 289 291 270 277.950 

4 Count 𝑀𝐶𝐴(𝑆, 4, 2135) 126 113 121 113 116.200 

Nametbl 𝑀𝐶𝐴(𝑆, 4, 213252) 248 228 230 225 225.400 

Flex 𝑀𝐶𝐴(𝑆, 4, 263251) 149 135 134 134 135.600 

Grep 𝑀𝐶𝐴(𝑆, 4, 213342516181) 1458 1167 1350 1225 1229.90 

5 Count 𝑀𝐶𝐴(𝑆, 5, 2135) 263 251 268 243 245.500 

Nametbl 𝑀𝐶𝐴(𝑆, 5, 213252) 450 450 450 450 450.000 

Flex 𝑀𝐶𝐴(𝑆, 5, 263251) 349 305 312 291 295.700 

Grep 𝑀𝐶𝐴(𝑆, 5, 213342516181) 5160 4634 5288 4758 4761.00 

6 Flex 𝑀𝐶𝐴(𝑆, 6, 263251) 732 654 671 612 625.400 

Grep 𝑀𝐶𝐴(𝑆, 6, 213342516181) 14258 15627 17576 13983 14394.3 
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4.2.3 Benchmarking for Mixed-Strength Test Configurations 

In this sub-section, the performance of BTS in terms of test suite sizes for mixed-

strength test suite generations is presented. The performance is based on well-known 

standard benchmark configurations that are publicly available in the related literatures 

(Ahmed & Zamli, 2011b; Alsewari & Zamli, 2012a; Bansal et al., 2015; Cohen et al., 

2003c; Xiang et al., 2009). Four different experimental sets are selected to access the 

performance of the BTS. The BTS results are compared to the available results of nine 

well-known t-way strategies that support mixed-strength test suite construction. 

The comparative experimental sets are as follows: 

 Experimental set 5: The benchmarking results of 18 different sub-strength test 

configurations with uniform mCA (𝑆, 2, 315, {MC}) as main-strength (see Table 

4.6). 

 Experimental set 6: The benchmarking results of 13 different sub-strength test 

configurations with mixed-strength mMCA (𝑆, 2, 43 53 62 , {MC})  as main-

strength (see Table 4.7). 

 Experimental set 7: The benchmarking results of 11 different sub-strength test 

configurations with mixed-strength mMCA (𝑆, 2, 101 91 81 71 61 51 41 31 21 ,

{MC}) as main-strength (see Table 4.8). 

 Experimental set 8: The benchmarking results of 6 different sub-strength test 

configurations with mixed-strength mMCA (𝑆, 2, 330102 , {MC})  as main-

strength (see Table 4.9). 

The four comparative mixed-strength experimental sets (Table 4.6 to Table 4.9) 

show the comparative results of BTS against ITCH (Hartman et al., 2005), IPOG (Lei et 

al., 2007), TVG  (Arshem, 2003), PICT (Czerwonka, 2006), SA-Mayer (Cohen et al., 

2003c), ACS-VSITs (Xiang et al., 2009), PWiseGen-VSCA (Bansal et al., 2015), VS-

PSTG (Ahmed & Zamli, 2011b) and HSS (Alsewari & Zamli, 2012a). 

 



98 

Table 4.6 The minimum test suite sizes for experimental set 5. 

Test configurations Deterministic Probabilistic 

𝒎𝑪𝑨 (𝑺,  ,   𝟓, {𝐌𝐂}) ITCH IPOG TVG PICT 
SA- 

Mayer 

ACS- 

VSITs 

PWiseGen- 

VSCA 
VS-PSTG HSS BTS 

{𝐌𝐂} Size Size Size Size Size Size Size Size Size Size Average 

ᴓ 31 21 22 35 16 19 16 19 20 19 19.70 

𝐶𝐴 (𝑆, 3, 33) 48 27 27 81 27 27 27 27 27 27 27.30 

𝐶𝐴 (𝑆, 3, 33)2 59 30 30 739 27 27 27 27 27 27 27.70 

𝐶𝐴 (𝑆, 3, 33)3 69 33 30 785 27 27 27 27 27 27 28.00 

𝐶𝐴 (𝑆, 3, 34) 59 39 35 105 27 27 27 30 27 30 32.10 

𝐶𝐴 (𝑆, 3, 35) 62 39 41 131 33 38 33 38 38 39 40.70 

𝐶𝐴 (𝑆, 4, 34) 103 81 81 245 N/S N/S 81 81 81 81 81.00 

𝐶𝐴 (𝑆, 4, 35) 118 122 103 301 N/S N/S 91 97 94 90 97.30 

𝐶𝐴 (𝑆, 4, 37) 189 181 168 505 N/S N/S 158 158 159 154 155.6 

𝐶𝐴 (𝑆, 5, 35) 261 243 243 730 N/S N/S 243 243 243 243 243.0 

𝐶𝐴 (𝑆, 5, 37) 481 581 462 1356 N/S N/S 441 441 441 429 438.7 

𝐶𝐴 (𝑆, 6, 36) 745 729 729 2187 N/S N/S 729 729 729 729 729.0 

𝐶𝐴 (𝑆 ,6, 37) 1050 1196 1028 3045 N/S N/S N/A 966 902 950 963.1 

𝐶𝐴 (𝑆, 3, 34), 
𝐶𝐴 (𝑆, 3, 35), 
𝐶𝐴 (𝑆, 3, 36) 

114 51 53 1376 34 40 40 45 45 43 45.50 

𝐶𝐴 (𝑆, 3, 36) 61 53 48 146 34 45 40 45 45 45 46.40 

𝐶𝐴 (𝑆, 3, 37) 68 58 54 154 41 48 47 49 51 47 49.70 

𝐶𝐴 (𝑆, 3, 39) 94 65 62 177 50 57 57 57 62 56 57.60 

𝐶𝐴 (𝑆, 3, 315) 132 N/S 81 83 67 76 74 74 77 73 74.70 
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Table 4.7 The minimum test suite sizes for experimental set 6. 

Test configurations Deterministic Probabilistic 

𝒎𝑴𝑪𝑨 (𝑺,  ,   𝟓 𝟔  , {𝐌𝐂}) ITCH IPOG TVG PICT 
SA- 

Mayer 

ACS- 

VSITs 

PWiseGen- 

VSCA 
VS-PSTG HSS BTS 

{𝐌𝐂} Size Size Size Size Size Size Size Size Size Size Average 

ᴓ 48 43 44 43 36 41 37 42 42 41 42.300 

𝐶𝐴(𝑆, 3, 43) 97 83 67 384 64 64 64 64 64 64 64.100 

𝑀𝐶𝐴(𝑆, 3, 4352) 164 147 132 781 100 104 120 124 116 122 125.00 

𝑀𝐶𝐴(𝑆, 3, 53) 145 136 125 750 125 125 125 125 125 125 125.00 

𝑀𝐶𝐴(𝑆, 4, 4351) 354 329 320 1920 N/S N/S 320 320 320 453 463.70 

𝑀𝐶𝐴(𝑆, 5, 4352) 1639 1602 1600 9600 N/S N/S 1600 1600 1600 1600 1600.0 

𝐶𝐴(𝑆, 3, 43),  
𝐶𝐴(𝑆, 3, 53) 

194 136 125 8000 125 125 125 125 125 125 125.00 

𝑀𝐶𝐴(𝑆, 4, 4351),  
𝑀𝐶𝐴(𝑆, 4, 5262) 

1220 900 900 NA N/S N/S 900 900 900 900 900.00 

𝑀𝐶𝐴(𝑆, 4, 4352) 510 512 496 2874 N/S N/S 472 472 453 456 465.70 

𝑀𝐶𝐴(𝑆, 5, 4352) 2520 2763 2592 15048 N/S N/S 2430 2430 2430 2380 2409.6 

𝑀𝐶𝐴(𝑆, 3, 435361) 254 215 237 1266 171 201 206 206 212 204 208.60 

𝑀𝐶𝐴(𝑆, 3, 5162) 188 180 180 900 180 180 180 180 180 180 180.00 

𝑀𝐶𝐴(𝑆, 3, 435362) 312 N/S 302 261 214 255 260 260 263 256 259.50 
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Table 4.8 The minimum test suite sizes for experimental set 7. 

Test configurations Deterministic Probabilistic 

𝒎𝑴𝑪𝑨 (𝑺,  ,  𝟎 𝟗 𝟖 𝟕 𝟔 𝟓       , {𝐌𝐂}) 
ITCH IPOG TVG PICT 

SA- 

Mayer 

ACS- 

VSITs 

PWiseGen- 

VSCA 
VS-PSTG HSS BTS 

{𝐌𝐂} Size Size Size Size Size Size Size Size Size Size Average 

ᴓ 119 91 99 102 N/A N/A 92 97 94 93 96.500 

𝑀𝐶𝐴 (𝑆, 3, 1019181) 765 720 720 31256 N/A N/A 720 720 720 720 720.00 

𝑀𝐶𝐴 (𝑆, 3, 716151) 301 221 210 19515 N/A N/A 210 210 210 210 210.30 

𝑀𝐶𝐴 (𝑆, 3, 413121) 140 91 99 2397 N/A N/A 92 97 94 94 96.000 

𝑀𝐶𝐴 (𝑆, 3, 101918171) 806 772 784 22878 N/A N/A 740 742 740 735 742.10 

𝑀𝐶𝐴 (𝑆, 3, 1019181), 
𝑀𝐶𝐴 (𝑆, 3, 716151) 

947 720 720 N/A N/A N/A 720 720 720 720 720.00 

𝑀𝐶𝐴 (𝑆, 3, 1019181), 
𝑀𝐶𝐴 (𝑆, 6, 716151413121) 

5803 5041 5040 N/A N/A N/A N/A 5040 5040 5040 5043.2 

𝑀𝐶𝐴 (𝑆, 3, 1019181), 
𝑀𝐶𝐴 (𝑆, 3, 716151), 
𝑀𝐶𝐴 (𝑆, 3, 413121) 

968 720 720 N/A N/A N/A 720 720 720 720 720.00 

𝑀𝐶𝐴 (𝑆, 4, 51413121) 237 142 123 1200 N/A N/A 120 120 120 120 120.00 

𝑀𝐶𝐴 (𝑆, 5, 10191413121) 2276 2160 2160 124157 N/A N/A 2160 2160 2160 2160 2160.0 

𝑀𝐶𝐴 (𝑆, 6, 716151413121) 5157 5041 5040 N/A N/A N/A 5040 5040 5040 5040 5040.0 
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Table 4.9 The minimum test suite sizes for experimental set 8. 

Test configurations Deterministic Probabilistic 

𝒎𝑴𝑪𝑨 (𝑺,  ,   𝟎 𝟎 , {𝐌𝐂}) ITCH IPOG TVG PICT 
SA- 

Mayer 

ACS- 

VSITs 

PWiseGen- 

VSCA 
VS-PSTG HSS BTS 

{𝐌𝐂} Size Size Size Size Size Size Size Size Size Size Average 

ᴓ N/A 101 101 100 100 100 N/A 102 106 107 114.10 

𝐶𝐴 (𝑆, 3, 320) N/A 100 103 940 100 100 N/A 105 109 105 106.40 

𝑀𝐶𝐴(𝑆, 3, 320102) N/A N/S 423 423 304 396 N/A 481 450 466 473.20 

𝑀𝐶𝐴(𝑆, 4, 33101) N/A 273 270 810 N/A N/A N/A 270 270 270 270.00 

𝑀𝐶𝐴(𝑆, 5, 33102) N/A 2700 2700 2800 N/A N/A N/A 2700 2700 2700 2700.0 

𝑀𝐶𝐴(𝑆, 6, 34102) N/A 8100 8100 N/A N/A N/A N/A 8100 8100 8100 8100.0 
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4.3 Statistical Analysis of the Experimental Results 

The statistical analysis is performed using the Friedman and Wilcoxon signed-

rank test with Bonferroni-holm correction (𝛼ℎ𝑜𝑙𝑚) at 95 % confident level (i.e. 𝛼 =

0.05). Additionally, an interval plot of the obtained results (the mean) by each compared 

strategies is drawn. The interval plots depict the obtained result distributions and their 

means at a 95 % confidence level (or confidence interval (CI))  

In this section, the statistical analysis is divided into two sub-sections. The first 

sub-section considers the results of t-way benchmarking while the second sub-section 

considers the results of the mixed-strength benchmarking. The strategies with N/A and 

N/S results are considered incomplete and ignored samples as there is no available result 

for the specified test configuration. 

4.3.1 Statistical Analysis for t-way Results  

The statistical analysis is reported in Tables 4.10 to 4.17. The four interval plots 

for the mean distributions of individual strategy results (test suite sizes means) are also 

shown in the aforementioned tables. Figures 4.1 to 4.4 shows each strategy descriptive 

results’ distribution and the resulting mean values. 
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Table 4.10 Friedman test for Table 5.2. 

Friedman  Conclusion 

Degree of freedom = 7, 𝛼 =0.05 

Friedman statistic (p-value) = 8.310E-42 

Chi-square value (X2)  = 210.100 

8.310E-42 < 0.05 (i.e. p-value < α). 
 

Thus, reject H0 and proceed to the post-hoc test. 

Note: the results for (TConfig and ITCH) are ignored. 

 

Table 4.11 Wilcoxon signed-rank (Post-hoc) test for Table 5.2. 

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦  Conclusion 

BTS vs IPOG 0.0000000354 0.00714286 Reject H0 

BTS vs PICT 0.0000000517 0.00833333 Reject H0 

BTS vs Jenny 0.0000000520 0.01000000 Reject H0 

BTS vs TVG 0.0000002934 0.01250000 Reject H0 

BTS vs HSS 0.0000003324 0.01666667 Reject H0 

BTS vs PSTG 0.0000004984 0.02500000 Reject H0 

BTS vs CS 0.0000017114 0.05000000 Reject H0 

 

 

Figure 4.2 The illustration of Table 5.2 results' intervals with CL 95%. 
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Table 4.12 Friedman test for Table 5.3. 

Friedman  Conclusion 

Degree of freedom = 7, 𝛼 =0.05 

Friedman statistic (p-value) = 6.8673E-18 

Chi-square value (X2)  = 96.104 

6.8673E-18 < 0.05 

 

Thus, reject H0 and proceed to the post-hoc test. 

Note: the results for (TConfig and ITCH) are ignored. 

 

Table 4.13 Wilcoxon signed-rank (Post-hoc) test for Table 5.3. 

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦  Conclusion 

BTS vs PICT 0.0002745713 0.00714286 Reject H0 

BTS vs Jenny 0.0002876189 0.00833333 Reject H0 

BTS vs TVG 0.0004377772 0.01000000 Reject H0 

BTS vs IPOG 0.0016940519 0.01250000 Reject H0 

BTS vs PSTG 0.0052675313 0.01666667 Reject H0 

BTS vs CS 0.0089096180 0.02500000 Reject H0 

BTS vs HSS 0.0701753156 0.05000000 Retain H0 

 

 

Figure 4.3 The illustration of Table 5.3 results' intervals with CL 95%. 
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Table 4.14 Friedman test for Table 5.4. 

Friedman  Conclusion 

Degree of freedom = 9, 𝛼 =0.05 

Friedman statistic (p-value) = 1.2330E-5 

Chi-square value (X2)  = 38.836 

1.2330E-5 < 0.05 

 

Thus, reject H0 and proceed to the post-hoc test. 

 

Table 4.15 Wilcoxon signed-rank (Post-hoc) test for Table 5.4. 

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦  Conclusion 

BTS vs TConfig 0.02770785 0.00555556 Retain H0 

BTS vs IPOG 0.02770785 0.00625000 Retain H0 

BTS vs PICT 0.02770785 0.00714286 Retain H0 

BTS vs TVG 0.02770785 0.00833333 Retain H0 

BTS vs Jenny 0.04639946 0.01000000 Retain H0 

BTS vs PSTG 0.04639946 0.01250000 Retain H0 

BTS vs CS 0.04639946 0.01666667 Retain H0 

BTS vs ITCH 0.34544753 0.02500000 Retain H0 

BTS vs HSS 0.34544753 0.05000000 Retain H0 

 

 

Figure 4.4 The illustration of Table 5.4 results' intervals with CL 95%. 
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Table 4.16 Friedman test for Table 5.5. 

Friedman  Conclusion 

Degree of freedom = 3, 𝛼 =0.05 

Friedman statistic (p-value) = 4.6293E-8 

Chi-square value (X2)  = 36.988 

4.6293E-8 < 0.05 

 

Thus, reject H0 and proceed to the post-hoc test. 

 

Table 4.17 Wilcoxon signed-rank (Post-hoc) test for Table 5.5. 

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦  Conclusion 

BTS vs TConfig 0.00029190 0.01666667 Reject H0 

BTS vs TVG 0.00064839 0.02500000 Reject H0 

BTS vs PICT 0.06063245 0.05000000 Retain H0 

 

 

Figure 4.5 The illustration of Table 5.5 results' intervals with CL 95%. 

 

4.3.2 Statistical Analysis of Mixed-Strength Results 

The statistical analysis of the mixed-strength benchmarking is reported in Tables 

4.18 to 4.24. Also reported in the tables along with the four interval plots of the mean 

size distribution of each individual strategy results (test suite sizes). A general 

observation test (Friedman test) is reported first; then, in case of a statistical significant, 
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a post-hoc test is performed. Figures 4.6 to 4.9 show each strategy’s descriptive result 

distributions and the mean value. 

Table 4.18 Friedman test for Table 5.6. 

Friedman  Conclusion 

Degree of freedom = 5, 𝛼 =0.05 

Friedman statistic (p-value) = 5.1268E-16 

Chi-square value (X2)  = 81.023 

5.1268E-16 < 0.05 

 

Thus, reject H0 and proceed to the post-hoc test. 

Note: the results for (IPOG, SA-Mayer, ACS-VSITs, and PWiseGen-VSCA) are ignored. 

 

Table 4.19 Wilcoxon signed-rank (Post-hoc) test for Table 5.6. 

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦  Conclusion 

BTS vs ITCH 0.00019575 0.01000000 Reject H0 

BTS vs PICT 0.00019644 0.01250000 Reject H0 

BTS vs TVG 0.00095345 0.01666667 Reject H0 

BTS vs PSTG 0.01471359 0.02500000 Reject H0 

BTS vs HSS 0.14138133 0.05000000 Retain H0 

 

 

Figure 4.6 The illustration of Table 5.6 results' intervals with CL 95%. 
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Table 4.20 Friedman test for Table 5.7. 

Friedman  Conclusion 

Degree of freedom = 5, 𝛼 =0.05 

Friedman statistic (p-value) = 5.1739E-8 

Chi-square value (X2)  = 42.278 

5.1739E-8 < 0.05 

 

Thus, reject H0 and proceed to the post-hoc test. 

Note: the results for (IPOG, PICT, SA-Mayer and ACS-VSITs) are ignored. 

 

Table 4.21 Wilcoxon signed-rank (Post-hoc) test for Table 5.7. 

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦  Conclusion 

BTS vs ITCH 0.01590644 0.01000000 Retain H0 

BTS vs TVG 0.123025194 0.01250000 Retain H0 

BTS vs PSTG 0.235885211 0.01666667 Retain H0 

BTS vs PWiseGen-VSCA 0.734402143 0.02500000 Retain H0 

BTS vs HSS 0.735316691 0.05000000 Retain H0 

 

 

Figure 4.7 The illustration of Table 5.7 results' intervals with CL 95%. 
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Table 4.22 Friedman test for Table 5.8. 

Friedman  Conclusion 

Degree of freedom = 5, 𝛼 =0.05 

Friedman statistic (p-value) = 4.5553E-7 

Chi-square value (X2)  = 37.593 

4.5553E-7 < 0.05 

 

Thus, reject H0 and proceed to the post-hoc test. 

Note: the results for (PICT, SA-Mayer, ACS-VSITs and PWiseGen-VSCA) are ignored. 

 

Table 4.23 Wilcoxon signed-rank (Post-hoc) test for Table 5.8. 

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦  Conclusion 

BTS vs ITCH 0.00333001 0.01000000 Reject H0 

BTS vs TVG 0.067889155 0.01250000 Retain H0 

BTS vs PSTG 0.10880943 0.01666667 Retain H0 

BTS vs HSS 0.179712495 0.02500000 Retain H0 

BTS vs IPOG 0.235885211 0.05000000 Retain H0 

 

 

Figure 4.8 The illustration of Table 5.8 results' intervals with CL 95%. 
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Table 4.24 Friedman test for Table 5.9. 

Friedman  Conclusion 

Degree of freedom = 3, 𝛼 =0.05 

Friedman statistic (p-value) = 0.1277 

Chi-square value (X2)  = 5.690 

4.5553E-7 < 0.05 

Thus, retain H0, there no statistical significant 

(the post-hoc test is not required in this case).  

Note: the results for (ITCH, IPOG, PICT, SA-Mayer, ACS-VSITs and PWiseGen-VSCA) are 

ignored. 

 

 

Figure 4.9 The illustration of Table 5.9 results' intervals with CL 95%. 
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4.4 Experimental Observation and Discussion 

The statistical analysis of the mixed-strength benchmarking is reported in Tables 

5.18 to 5.24 along with the four interval plots of the mean size distribution of each 

individual strategy results (test suite sizes). A general observation test (Friedman test) is 

reported first; then, in case of a statistical significant, a post-hoc test is performed. Figures 

5.6 to 5.9 show each strategy’s descriptive result distributions and the mean value. 

4.4.1 Experimental Results and Statistical Analysis Observations 

This section discusses the experimental results in details. Regarding the 

characterizing of BTS based on the comparison of the BTS variants (original BA and 

Hamming BA) reported in Table 4.1, the results of the benchmarking experiments 

revealed that the Hamming BA variant of BTS achieved the best sizes for the selected 

mixed covering arrays with variation of interaction strength from (2 ≤ t ≤ 6). The original 

BA variant of BTS matches the best result only in two entries (when t = 3 and t = 5). The 

same pattern can be seen as far as the average size is concerned. In terms of average time, 

the original BTS expectedly outperforms the Hamming based BTS. This performance is 

achieved owing to the overhead in implementing the Hamming distance classifier. 

Concerning the convergence pattern based on the worst sizes in Figure 5.1, the 

BTS with Hamming BA shows higher converging rate (generate fewer test suite with 

fewer iterations) than the BTS with original BA in Experiment 1 and 5. For the other 

experiments, the BTS with Hamming BA is converging faster as well. 

Regarding the second part of the benchmarking experiments in sub-section 4.2.2, 

the benchmarking results with other strategies (experimental sets 1 to 4 in Table 4.2 to 

Table 4.5) based on the Hamming BA variant of BTS show that the probabilistic 

strategies outperforms the deterministic strategies in general. From the statistical analysis 

of this sub-section, Friedman test gives a statistical significance for all the involved 

strategies in each experimental set (H0 is rejected). Thus, a post-hoc test is performed to 

give a general observation for the median distribution of BTS against the other strategies 

(Table 4.2 to Table 4.5).  



112 

Based on the experimental sets 1, 2 and 3 The BTS is compared to TConfig, 

IPOG, ITCH, Jenny, PICT, TVG, PSTG, CS, and HSS strategies. For experimental set 1 

in Table 4.2, the BTS excels in most of the test configurations with 77.5 % of the best (or 

most minimum) test suite sizes (31 out of 40 entries). Clearly, the BTS contributes to 25 

out of the 31 entries with new minimal test suite sizes. In these test configurations, the 

BTS performed ahead of its counterparts especially when t>3. The ITCH and CS perform 

well in the low interaction strength (t ≤ 3) with 10 and 8 entries (25 % and 20 of the most 

minimum test suite sizes, respectively). Here, the ITCH is not capable (or do not 

supported) of generating a test suite for high interactions (t ≥ 3). Similar to ITCH and CS, 

the PSTG and HSS perform similarly with 4 entries each which is 10 % of the most 

minimum test suite sizes. Furthermore, Jenny and TVG only report the minimum test 

suite size of an entry. This is a 2.5 % of the minimal test suite sizes of the 40 entries. In 

these test configurations, IPOG, TConfig, and PICT have not reported significant or 

minimum test suite size for any entries.  

From the statistical analysis shown in Table 4.2 (given in Table 4.10 and Table 

4.11), Friedman test indicates that the null hypothesis is rejected at 95 % confidence level. 

Similarly, the post-hoc (Wilcoxon signed-rank) test in Table 4.11 shows that there is a 

significant difference. This is evidenced in the rejection of the null hypothesis for all 

pairs. All the BTS comparison with other strategies show differences as far as the size 

performance of BTS is concerned. Thus, the BTS is statistically better than other 

strategies based on the median distribution.  

From the interval plots shown in Figure 4.2 for Table 4.2, it is noted that BTS 

manages to achieve the minimum overall average. The best performance is achieved 

based on the mean distribution at 95 % confidence levels. The HSS and PSTG show 

similar performance while CS is in the third rank. Jenny, TVG and PICT is ranked forth 

to sixth, respectively. Finally, IPOG shows the worst overall mean distribution, hence, 

having the poorest size performance. Here, TConfig and ITCH results are ignored owning 

to their result completeness (not complete sample). 

According to the results of experimental set 2 in Table 4.3, the BTS manages to 

get the best results with a percentage entry of 60 % (12 out of 20 entries). It is interesting 

to note that 10 of the 12 best result entries are new minimal test suite sizes obtained by 

BTS. Similar to the observations in Table 4.2, the BTS excels in the high interaction 
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strength (t > 3). The other strategies shared the best results for 10 entries. Here, 2 of the 

10 shared entries are with BTS. In these test configurations, HSS and CS perform well in 

4 entries each while ITCH performed with 3 best sizes with low interaction strength (t ≤ 

3) followed by PSTG, IPOG and TConfig with 2 entries each. The rest of the strategies 

(Jenny, PICT and TVG) give similar results. However, no best sizes are obtained for 

Jenny, PICT and TVG. 

Based on the statistical analysis shown in Table 4.3 (given in Table 4.12 and Table 

4.13), the null hypothesis is rejected at 95 % confidence level by the Friedman test. As a 

result, there is a significant difference in terms of median distribution. Likewise, the post-

hoc test indicates that the null hypothesis is rejected for all the pair compassion. The HSS 

is exempted here as far as size performance of BTS is concerned. For this reason, BTS is 

statistically better than other strategies in this experimental set with the exception of HSS. 

The interval plot presented in Figure 4.3 for Table 4.3 shows that HSS gives the 

minimum mean. The BTS comes in second and the other strategies ranked in the 

following order; CS, PSTG, PICT, Jenny, TVG and IPOG (while ignoring the 

contributions of TConfig and ITCH). 

Considering the results shown in Table 4.4, BTS, HSS and ITCH achieve the 

overall best test suite sizes. Clearly, the BTS achieves 50 % of the best sizes (3 out of 6 

entries). Additionally, the obtained best sizes are the new best sizes generated by the BTS 

for the system configurations (P = 7, 8 and 9 with 1158, 1317 and 1508 test cases, 

respectively). The ITCH keeps the best sizes for 2 test configurations (P = 5 and 6, 

recording 625 test cases for each entry) with a percentage of 33.33 %. The HSS only 

gives the best result for one entry (P = 10 with 1624 test cases). For experimental set 3, 

only 3 strategies were observed to be able to achieve the best sizes. The other strategies 

produce acceptable results as compared to the best sizes.  

In the statistical analysis presented in Table 4.4 (given in Table 4.14 and Table 

4.15), Friedman test (Table 4.14) shows statistical significance at 95 % confidence level. 

Hence, the null hypothesis is rejected. As a result, a post-hoc test is considered. The post-

hoc result shown Table 4.15 favors the alternate hypothesis in all the cases as far as 

median distribution is concerned. There is no statistical significant result based on the 
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pair comparisons). Thus, BTS is not significantly better than the other strategies in terms 

of median distribution of the sizes obtained. 

From the mean distribution shown in the interval plot in Figure 4.4 for Table 4.4, 

the HSS is shown to give the minimum mean. The BTS follows in the second position. 

Overall, the performance of BTS is better than those of CS, PSTG, Jenny, PICT, ITCH, 

TVG, TConfig, and IPOG. 

In experimental set 4, the BTS is executed against three available strategies 

(TConfig, PICT and TVG). Table 4.5 highlights the reported results of four real world 

open source software systems (Count, Nametbl, Flex, and Grap). The BTS manages to 

achieve a high size performance (best sizes) with a percentage of 88.89 % of the best test 

suite sizes (16 out of 18 entries). Additionally, the BTS also contributes to 13 minimal 

test suite sizes the other three entries shares with the other strategies (4-way Count and 

Flex, and 5-way Nametbl software). The PICT achieves 4 best test suite sizes with a 

percentage of 22.22 % (4 out of 18 system configurations for the 4-way and 5-way of 

Grap software). Here, the PICT achieves 2 minimal test suite sizes. The TVG achieves 2 

best sizes (4-way Flex and 5-way Nametbl software). Finally, TConfig shares one best 

size with all of the strategies (5-way Nametbl software with a 450 test cases). Overall, 

the BTS dominates the best results in general. Most importantly, this new experimental 

set shows the size performance of BTS for real-world test suite generation.  

From the statistical analysis shown in Table 4.5 (given in Table 4.16 and Table 

4.17), Friedman test (Table 4.16) shows statistical significance at 95 % confidence level. 

Therefore, the null hypothesis is rejected. As a result, a post-hoc test is considered. The 

post-hoc analysis in Table 4.17 shows that the null hypothesis is rejected when the BTS 

pair is compared with TConfig and TVG. This indicates that BTS is significantly better 

than the TConfig and TVG. However, in the case of the BTS against PICT, the null 

hypothesis is accepted. Thus, there is no statistically significant result based on the 

comparison of BTS with PICT in terms of the median distribution of the obtained sizes.  

From the illustration of the mean distribution shown in Figure 4.5 for Table 4.5, 

the BTS manages to be in the first rank with the minimum overall result average. Then, 

PICT, TConfig and TVG is ranked second, third and fourth, respectively.  
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Referring to the mixed-strength benchmarking experimental sets reported in sub-

section 4.2.3 (experimental sets 5 to 8 in Table 4.6 to Table 4.9), It is generally observed 

that probabilistic based strategies outperforms the deterministic based strategies for both 

main-strength and sub-strength generations. 

From the mixed-strength test configuration ( 𝑚𝐶𝐴 (𝑆;  2, 315, {𝑀𝐶} ), 

experimental set 5) shown in Table 4.6, the BTS performs well. Here, 50 % of the best 

sizes are obtained (9 out of 18 entries). The BTS manages to obtain three new minimal 

test suite sizes (in the following sub-configurations;𝐶𝐴 (𝑆, 4, 35) , 𝐶𝐴 (𝑆, 4, 37) , and 

𝐶𝐴 (𝑆, 5, 37)). Thus, an improvement of 16.66 % (3 out of 18 new minimum test suite) 

of the total entries is achieved. For the other best sizes, the BTS shares 33.33 % with 

other strategies. In these test configurations, the SA-Mayer generates the best test suite 

in general with a percentage of 61.11% (11 out of 18 entries). Specifically, the SA-Mayer 

in the low interaction strength achieved the best results as it only supports t up to 3 (t ≤ 

3). Putting the SA-Mayer aside, the PWiseGen-VSCA, HSS, and VS-PSTG produce 

competitive results as well with percentages of 50 %, 44.45 % and 33.33 % best sizes. 

This corresponds to 9, 8, and 6 out of 18 entries, respectively. For the ACS-VSITs, TVG 

and IPOG performs similarly with 22.22 % of the best sizes obtained (4 out of 18 entries 

each). The PICT and ITCH generates the worst results for the mixed-strength test 

configuration. 

From the statistical analysis shown in Table 4.6 (given in Table 4.18 and Table 

4.19), the null hypothesis is rejected at 95 % confidence level (Friedman test in Table 

4.18). Then, the post-hoc test in Table 4.19 indicates that the BTS is statistically better 

than other strategies. This is based on the median distribution with the exception of HSS. 

Unlike the BTS against HSS (null hypothesis accepted), the null hypothesis is rejected 

for BTS against ITCH, PICT, TVG, PSTG. The contributions of IPOG, SA-Mayer, ACS-

VSITs, and PWiseGen-VSCA are ignored. Thus, the BTS is statistically better than 

ITCH, PICT, TVG and PSTG based on the median distribution. 

The interval plot presented in Figure 4.6 for Table 4.6 shows that the HSS gave 

the minimum mean. The BTS comes in the second rank followed by the other strategies 

ranked in in the following order; PSTG, TVG, ITCH and PICT. PICT performs the worst 

in terms of the overall mean distribution of results.   
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From experimental set 6, the mixed-strength test configuration 

𝑚𝑀𝐶𝐴 (𝑆;  2, 435362, {𝑀𝐶}) in Table 4.7, SA-Mayer, and HSS perform best with a 

percentage of 61.54 %. This is the best result accounting for 8 out of 13 entries each). 

The BTS, VS-PSTG, and PWiseGen-VSCA perform well with a percentage of 53.85 % 

of the best test suite sizes. This corresponds to 7 out of 13 entries each. The BTS manages 

to obtain a new minimal test suite size in the case of  𝑀𝐶𝐴(𝑆, 4, 4352) sub-strength 

configuration with 2,380 test cases. Here, the BTS, VS-PSTG, and PWiseGen-VSCA 

generate the same results for the low interaction strength (t ≤ 3). For the interaction 

strength values (t > 3), the HSS and BTS outperformed all the other strategies. The TVG, 

ACS-VSITs, and IPOG also generated competitive results with a percentage of 46.15 %, 

30.77 % and 15.38 % of the best results, respectively. The ITCH and PICT consistently 

produce the worst results for the mixed-strength test configuration. 

From the statistical analysis in Table 4.7 (given in Table 4.20 and Table 4.21), the 

Friedman test in Table 4.20 favoured the null hypothesis at 95 % confidence level. 

However, the post-hoc test shown in Table 4.21 indicates that BTS is not statistically 

better than the other strategies based on the median distribution.  As a result, the null 

hypothesis is retained for all the pair comparisons). The contribution of IPOG, PICT, SA-

Mayer and ACS-VSITs is ignored due to incomplete samples.  

The interval plot presented in Figure 4.7 for Table 4.7 shows that HSS gives the 

minimum mean. The BTS comes in the second rank and the other strategies ranked in the 

following order; PSTG, PWiseGen-VSCA, TVG and ITCH. 

In experimental set 7, the mixed-strength test configuration given in Table 4.8 

demonstrates acceptable performance of several strategies (BTS, HSS, VS-PSTG, 

PWiseGen-VSCA, TVG and IPOG) for this test generation. It is observed that these 

strategies perform well with the increased number of parameter values as in the test 

configuration. In the case of the mixed-strength test configuration 

(𝑚𝑀𝐶𝐴 (𝑆;  2, 101 91 81 71 61 51 41 31 21, {MC})), the BTS excels in most cases with 

a percentage of 81.82 % of the best results (9 out of 11 entries). Furthermore, the BTS 

manages to get a new minimal test suite size for one sub-strength 

(𝑀𝐶𝐴 (𝑆, 3, 101918171) ). Regarding HSS and VS-PSTG, these strategies perform 

equally with a percentage of 72.72 % of the best test suite sizes (8 out of 11 entries). 

Similarly, PWiseGen-VSCA and TVG obtain a percentage of 63.63 % of the best sizes 
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(7 out of 11 entries). In the same manner, the IPOG generates competitive test suite size 

in many sub-strength configurations with a percentage of 54.55 % of the best sizes. The 

ITCH and PICT generate the poorest results in most cases with no best size obtained 

among all the test configurations (with some missing results). As for SA-Mayer and ACS-

VSITs, no published results are available. 

From the statistical analysis in Table 4.8 (given in Table 4.22 and Table 4.23), 

Friedman test indicates that there is a significant difference at 95 % confidence level. The 

null hypothesis is thereby, rejected. The post-hoc test in Table 4.23 shows that there is 

only statistically significant difference in the case of BTS against ITCH. The null 

hypothesis is also rejected. Nevertheless, the other pair comparisons in the post-hoc test 

retain the null hypothesis. Thus, the performance of BTS is only statistically better than 

that of ITCH. Here, the results of PICT, SA-Mayer, ACS-VSITs and PWiseGen-VSCA 

are ignored.  

The interval plots presented in Figure 4.8 for Table 4.8 show that HSS, PSTG, 

TVG, IPOG and BTS is ranked first while ITCH ranks last. Here, the BTS performs in a 

similar way to the other strategies in terms of mean distribution.  

In Table 4.9, the results of the experimental set 8 are reported. Here, the mixed-

strength test configuration (𝑚𝑀𝐶𝐴 (𝑆;  2, 320102, {𝑀𝐶}) is benchmarked with a sub-

strength up to t = 6 (high sub-strength interaction). The BTS, HSS, VS-PSTG, SA-Mayer, 

IPOG and TVG are able to obtain a percentage of 50 % of the best sizes each (3 out of 6 

entries each). In fact, the BTS, HSS and VS-PSTG generate the optimal test suite size for 

high interaction strength (t > 3). However, the SA-Mayer dominates the low interaction 

strength (t ≤ 3). The ACS-VSITs strategy obtains with a 33.33 % of the best sizes (2 out 

of 6 entries). The PICT achieves16.66 % of the best sizes (1 out of 6 entries). Regarding 

PWiseGen-VSCA and ITCH, no published results are available.  

From the statistical analysis shown in Table 4.9 (given in Table 4.24), the general 

observation test (Friedman test) favours the alternative hypothesis at 95 % confidence 

level. The null hypothesis is retained and as a result, a post-hoc test is not considered. 

This is because there is no statistically significant difference between the BTS against 

HSS, PSTG and TVG. The contribution of TCH, IPOG, PICT, SA-Mayer, ACS-VSITs 

and PWiseGen-VSCA are ignored.  
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From the interval plots shown in Figure 4.9 for Table 4.9, the BTS, HSS, PSTG 

and TVG ranks in similar manner as far as mean distribution of their overall results is 

concerned.  

4.4.2 Discussion 

Overall, the BTS gives competitive test suite sizes in most of the test 

configurations considered. The BTS manages to achieve the optimal test suite (new 

minimal test suite size) in a number of test configurations as detailed in the previous sub-

section.  

From the first part of the comparative benchmarking in section 4.2.1, the 

Hamming BA variant achieves better results than the original BA (see Table 4.1). 

However, the original BA has a lower execution time as compared to the Hamming BA 

for all the specified configurations.  

At a glance, the convergence pattern of experiment 2 to 4 looks similar. However, 

a closer look revealed otherwise. Unlike experiment 1 and 5, the Hamming BA converges 

faster (in the smallest test suite the worst-case scenario) at less iteration (see Figure 5.1). 

Here, it is observed that the Hamming BA outperforms the original BA in terms of size 

performance. Here, this convergence pattern works well owing to the adoption of 

Hamming distance classifier. Specifically, the Hamming distance classifier improves the 

exploration of Hamming BTS. The exploration roams the random search space on a 

global scale (BA global search) by selecting the highest distance test case from the pool 

of generated candidates when there is a tie between 2 or more test candidates. In effect, 

the Hamming BTS ensures wider coverage of test cases with more diversity. On the 

negative note, the exploration consumed more time and computational resources owing 

to the need to compute and evaluate the Hamming distance. 

Contrarily, the exploitation in both the original BA and Hamming BA focuses on 

searching in a local region via exploiting the current suitable solution (through BA 

random walks). The extreme exploitation tends to reject the diversified solutions and led 

to local optima. It is the loudness and emission of pulse rates that controls the BA 

exploitation using random walks. As no change is made in our Hamming BA as far as 
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loudness and emission of pulse rate is concerned, the implementation of the Hamming 

distance classifier did not affect the exploitation. 

Based on the eight experimental benchmarked experiments in Section 4.2.2 and 

4.2.3, the BTS obtains competitive results in all the cases. Table 4.25 reports the 

percentage of the number of best sizes (the minimal sizes) obtained by the BTS. The 

number is out of the total number of benchmarked system configurations for each of the 

conducted experimental sets.  To be specific, the BTS achieves 68.181% of the best sizes 

of published results (90 out of 132 entries). The BTS contributes 32.575 % corresponding 

to 43 out of 90 best sizes (new obtained best sizes). 

Table 4.25 The experimental sets observation. 

Experimental 

sets 

Number of 

Improved 

best sizes by 

BTS 

Number of 

best sizes 

obtained 

Total system 

configurations 

benchmarked 

The 

percentage of 

the Improved 

best sizes 

The 

percentage of 

the obtained 

best sizes 

1 25 31 40 62.500% 77.500% 

2 10 12 20 50.000% 60.000% 

3 3 3 6 50.000% 50.000% 

4 * 16 18 * 88.888% 

5 3 9 18 16.666% 50.000% 

6 1 7 13 7.6923% 53.846% 

7 1 9 11 9.0909% 81.818% 

8 0 3 6 0.0000% 50.000% 

Total 43 90 132   

*Note: Experimental set 4 is a new set of experiments. Thus, no new best is considered (i.e. no 

improved best sizes as its for this study). 
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From the statistical analysis reported in Table 4.26, the BTS offers statistical 

significance in 20 out of 41 cases considered (48.78 %) at 95 % confidence level. 

Table 4.26 The statistical significant achieved for each experimental sets. 

Experimental 

Sets 

Comparison to the all 

Strategies 

Statistical Significant 

Comparison 

Number of Statistical 

Significant Cases 

1 All strategies BTS vs IPOG 7 out of 7 

BTS vs PICT 

BTS vs Jenny 

BTS vs TVG 

BTS vs HSS 

BTS vs PSTG 

BTS vs CS 

2 Except HSS BTS vs PICT 6 out of 7 

BTS vs Jenny 

BTS vs TVG 

BTS vs IPOG 

BTS vs PSTG 

BTS vs CS 

3 None (no statistical significant) 0 out of 9 

4 Except PICT BTS vs TConfig 2 out of 3 

BTS vs TVG 

5 Except HSS BTS vs ITCH 4 out of 5 

BTS vs PICT 

BTS vs TVG 

BTS vs PSTG 

6 None 0 out of 5 

7 Except TVG, PSTG, 

HSS and IPOG 

BTS vs ITCH 1 out of 5 

8 None, Post-hoc test has not performed - 

Total   20 out of 41 

Referring to Table 4.26, the null hypotheses is rejected for 20 pair comparisons. 

In the case of experimental set 1, all the comparisons are in favour of BTS (7 out of 7 

entries). In experimental sets 2, 4 and 5, the null hypothesis is rejected except in the case 

of one strategy (HSS for experimental sets 2 and 5, PICT for experimental sets 4). In 

experimental set 7, only the case with ITCH showed statistical significance. In 

experimental sets 3 and 6, no statistical significance is achieved (the null hypothesis is 

retained in all the pair comparisons). Similarly, there is no statistical significance is 

achieved in experimental set 8. 
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4.5 Summary 

This chapter has presented the performance of BTS. The benchmarking of BTS 

includes comparative evaluation against existing strategies as well as the corresponding 

statistical analysis. The size performance of BTS achieved statistically significant results. 

Building on the current content in this chapter, the next chapter will summarize 

all the findings, make conclusions and remark on contributions, as well as provide a 

roadmap for possible future research in this direction. 

 



CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

The previous chapter has subjected BTS with a number of experiments in order 

to establish its true performance in terms of generated test suite size. Building from all 

the materials presented in the previous chapters, this chapter highlights the impact of the 

results obtained and implication for future work.  

5.1 Objectives Revisited 

This research effort was aimed to design, implement and evaluate a t-way test 

generation strategy that supports mixed-strength interaction, called Bat-inspired t-way 

Strategy (BTS). The objectives of this research study were as follows: 

 To design BTS strategy for constructing a mixed strength t-way test suite. 

 To implement BTS as a research prototype using BA as the backbone search 

engine and introduces Hamming distance classifier in order to enhance the 

exploration of BA. 

 To evaluate the test suite size performance of BTS against existing strategies 

using well-known benchmarking case studies. 

Addressing the first objective, a new t-way test suite generation strategy, called 

BTS, is developed. The proposed strategy is designed to generate a minimized t-way and 

mixed-strength test suite taking the BA algorithm as the basis of the study. The main key 

aspect of this objective is satisfied owing to the successful implementation of BTS. 

The BTS strategy generates a mixed t-way test suite, within the objective of 

generating the minimal test suite that is valid and covers all the possible test 

configurations up to t = 6. The BTS strategy takes on the test configurations (expressed 
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as covering array notation) for software under test. The strategy processes the test 

specification requirement as notation to minimize the test suite automatically. 

Concerning the second objective, BTS employs the BA as a search engine to find 

the maximum covered interaction by each generated test case. BA is implemented in BTS 

to support the optimal finding for the combinatorial interaction test generation. BA is also 

modified to fit our implementation. Additionally, BA is enhanced using a best selection 

technique through the Hamming distance classifier. Specifically, the exploration process 

of BA global search is improved. 

BTS provides execution scalability for test suite execution approaches. As the 

data size increases rapidly based on increasing test parameters and their dependencies, 

testing all the data becomes difficult and resource consuming. Addressing this limitation, 

BTS provides the ability to store an optimal test suite into files for the execution process. 

In this manner, test engineers can execute the testing activity without having to think 

about the correctness of their test cases as BTS generated test data covers all test data, 

hence, potentially saving resources and time. Furthermore, BTS generated test suite can 

be easily integrated with automated test execution approaches (i.e. the output is a simple 

file that lists the entire generated test cases). 

As for the final objective, BTS has been successfully employed to undertake all 

the experimentations given, hence, highlighting its size performance for test suite 

generation. Experimentation against several well-known strategies have helped to reveal 

the performance of BTS in a seamless manner. In the conducted evaluation, BTS results 

are successfully compared against the available t-way test suite generation strategies. 

BTS experimental results have been encouraging as many newly introduced t-way 

results.  

Considering the mixed-strength test configurations (i.e. system with multiple 

numbers of parameter and values) and highly interacting test configurations (i.e. for t > 

3), BTS often produces the optimal test suite. As for mixed-strength test suite, BTS 

consistently generates the best test suite size. Overall, BTS obtained 68.181% of the best 

sizes of all the benchmarked test configurations (i.e. 90 out of 132 entries) as reported in 

Table 4.25. Additionally, BTS manages to improve the best sizes published in the 

literature (Ahmed et al., 2015; Ahmed et al., 2014; Ahmed & Zamli, 2011b; Bansal et al., 
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2015; Cohen, 2004; Cohen et al., 2003c; Lei et al., 2007; Shiba et al., 2004; Wang & He, 

2013; Xiang et al., 2009) with a 32.575% (i.e. 43 out of 132 entries (see Table 4.2 to 

Table 4.4 and Table 4.6 to Table 4.9)). Furthermore, the statistical analysis shows 48.78% 

statistical significance based on the pier compression of Wilcoxon signed-rank (see Table 

4.26). Therefore, this study concludes that that BTS is a useful strategy for generating t-

way and mixed-strength test suites. 

In this thesis, BTS strategy is designed for test suite generation of high inputs 

(highly configurable) software system. The generation method support generating high 

scale input (i.e. 2100 and more) as the BTS uses the advantage of Java for memory 

management to efficiently utilize the available memory for the generated search space. 

The use of string interaction elements and test candidates reduce the memory needed for 

high configuration system as string variable can store a lot of information that can be 

parsed in the test generation process. This allows BTS to generate a test site for highly 

configurable software systems. 

5.2 Contribution 

Summing up, based on earlier discussion, the main contribution of BTS relates to 

its t-way test suite generation support. The research contribution undertaken in this 

research work can be stated from different perspectives as follows: 

 BTS is the first strategy that applies BA as a backbone engine to its test suite 

reduction mechanism. 

 BTS modified the BA algorithm by employing a selection (or best finding) 

technique that improves the exploration of the BA (i.e. improving the global 

random search) via the Hamming distance classifier.  

 BTS contributes to a number of well-known benchmarking test configurations 

published literatures with 43 new test suite sizes (see Table 4.2 to Table 4.9). 
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5.3 Future work 

Given that the application of BTS presented in this study is still a prototype, an 

obvious starting point for future work will be to complete the implementation to support 

automated test execution and other t-way test generation types. In particular, several t-

way features needed to be included (i.e. input-output relations t-way, sequencing t-way 

and constraints t-way).  

Currently, BTS only addresses the automated test suite generation. Therefore, in 

order to improve its applicability, there is also a need to automate as much as possible 

the execution of test cases generated by BTS whenever possible. This automation could 

be in the form of automatic translation of the test cases generated by BTS into actual 

executable form through some forms of scripting language. Such endeavour will help 

alleviate the burden of test engineers from cumbersome and manual test execution. 

Providing constraints support for BTS including Software Product Line (SPL) is 

one area for exploration. BTS strategy can be modified to add constraints interaction 

support. The constraints interaction can be established by removing the constraints 

configurations (or invalid configurations) from the IET and re-generate the test cases that 

involved constraints. Expectedly, a similar reduction of test cases can be achieved. 

Finally, sequence support to BTS strategy could also be explored. In some domain 

implementation, sequences of input parameters do matters. Thus, it is desirable for BTS 

to be able to provide sequence-based t-way test suite generation. 
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APPENDIX A 

THE RUNNING COMMAND-LINE FOR BTS 

BTS adapts special command-lines for advance used through a command prompt 

execution. These command-line has been designed for simplicity and to enable a faster 

process of the specify software inputs specifications. Additionally, the variables for BTS 

and operating environment as well. 

Table A.1 The command-line specifications for BTS. 

Command  Specifications 

-d -d <main-strength (t): Elements-values (ES)> 

-m -m <sub-strength (t): indexes of the involved elements> 

-r -r <number of executions> 

-n -n <bat papulation size> 

-i -i <number of iteration ( 𝑚𝑎𝑥)> 

-l -l <loudness value> 

-p -l <emission of pulse rate value> 

-t -t <tolerance value> 

-h -h <Hamming distance limit> 

 

Table A.2 Examples of command-line specifications for BTS. 

Command  Specifications Example 

-d –d <2:5,5,5,5> 

The specification for 4 elements each has 5 values for 2-way. 

-m –m <3:1,2,3#3:2,3,4>  

The specification for the first three elements from the above-mentioned 

example with 3-way sub-strength and the last three for another 3-way sub-

strength.  

Notice: all the indexes specified in BTS are started from 1 to N for simplicity 

and test engineers’ convenience. We did not follows the default indexing method 

in programing, which starts from zero. 

-r  -r <20>  

This command used for the sake of this research results to run the 

benchmarking for 20 times. 

-n -n <50>  

-i -i <100> 

-l -l <0.5> 

-r -r <0.25> 

-t -t <0.0001> 

-h -h <10> 
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Figure A.1 The BTS advance user prototype. 
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APPENDIX B 

BTS TUNING DATA 

Table B.1 Full details of BTS tunning sizes and their averages. 

Bat population size 10 

Loudness Pulse Rate Tolerance 

Iteration 

10 20 50 100 200 

Size Average Size Average Size Average Size Average Size Average 

0.05 0.05 0.00001 38 39.85 37 37.95 35 36.85 35 36.40 35 36.10 

0.0001 37 39.30 37 37.90 36 36.90 36 36.85 34 36.10 

0.001 38 39.30 37 38.05 36 36.95 34 36.10 35 36.25 

0.01 38 40.00 36 37.70 35 36.80 35 36.30 34 35.80 

0.1 38 39.75 36 37.90 36 37.05 35 36.20 34 35.80 

0.25 0.00001 38 39.70 36 37.90 36 36.90 35 36.30 35 35.80 

0.0001 38 39.55 36 37.90 35 36.50 35 36.30 34 35.60 

0.001 38 39.70 36 37.70 36 37.00 35 36.60 35 36.25 

0.01 38 39.30 37 37.90 35 36.20 35 36.25 35 36.10 

0.1 38 39.55 36 37.75 35 36.65 35 36.40 35 35.90 

0.5 0.00001 38 39.20 36 37.90 35 36.70 35 36.20 35 36.15 

0.0001 38 39.80 35 37.50 35 36.50 35 36.25 34 35.80 

0.001 38 39.70 36 37.80 36 36.95 35 36.35 34 35.80 

0.01 37 39.30 37 37.70 35 36.60 35 36.45 35 36.15 

0.1 37 39.30 36 38.20 35 36.50 35 36.30 35 36.20 

0.75 0.00001 37 39.40 36 37.60 36 36.80 35 36.50 35 36.20 

0.0001 37 39.75 37 37.90 35 36.95 35 36.35 35 36.05 

0.001 38 39.75 36 37.90 35 36.50 35 36.40 35 36.10 
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0.01 38 39.40 36 37.80 36 37.00 35 36.35 35 36.15 

0.1 36 39.00 36 38.00 36 36.75 35 36.60 35 36.35 

0.95 0.00001 38 39.45 35 37.75 34 36.90 35 36.05 35 35.95 

0.0001 38 39.55 36 37.65 35 36.70 35 36.60 35 36.20 

0.001 37 39.20 36 37.60 35 36.65 34 36.35 35 36.00 

0.01 38 39.40 36 38.10 36 37.00 35 36.35 34 36.15 

0.1 38 39.35 36 38.00 35 36.90 35 36.30 35 36.00 

0.25 0.05 0.00001 38 39.55 36 37.95 35 36.55 35 36.55 35 36.25 

0.0001 38 39.40 37 38.10 35 36.65 35 36.45 35 36.15 

0.001 38 39.25 36 37.95 35 36.65 35 35.95 35 36.10 

0.01 37 39.50 36 37.95 36 36.85 34 36.10 35 36.10 

0.1 37 39.30 37 38.35 36 37.05 35 36.55 34 35.65 

0.25 0.00001 37 39.25 36 37.95 36 36.90 34 35.95 34 35.70 

0.0001 38 39.45 35 37.35 34 36.65 35 35.95 35 35.85 

0.001 38 39.25 37 38.15 35 36.90 35 36.25 35 36.00 

0.01 38 39.40 36 37.75 36 36.65 35 36.45 35 36.25 

0.1 38 39.80 36 37.70 36 36.90 34 36.10 34 36.15 

0.5 0.00001 37 39.35 36 37.70 35 36.85 34 36.10 35 36.10 

0.0001 38 39.30 37 38.10 35 36.65 35 36.40 35 35.95 

0.001 38 39.70 36 38.05 35 36.80 35 36.35 34 35.85 

0.01 38 39.75 36 37.70 35 36.75 35 36.35 35 36.25 

0.1 38 39.70 36 38.00 35 36.70 35 36.20 35 36.10 

0.75 0.00001 38 39.40 36 38.00 35 36.60 35 36.35 34 36.05 

0.0001 37 39.40 36 38.00 35 36.60 35 36.15 35 36.10 

0.001 37 39.40 35 37.60 34 36.70 35 36.30 35 36.05 

0.01 38 39.50 36 38.20 36 36.95 34 36.20 35 36.35 

0.1 38 39.70 36 37.85 35 36.75 35 36.40 34 35.95 



144 

0.95 0.00001 38 39.50 35 37.85 36 36.55 35 36.45 34 35.65 

0.0001 38 39.65 36 38.10 35 36.75 34 36.30 35 35.80 

0.001 38 39.50 37 38.20 35 36.70 35 36.35 35 36.00 

0.01 38 39.35 37 38.05 35 36.70 34 35.90 35 35.90 

0.1 38 39.50 37 37.70 35 36.80 35 36.10 35 36.10 

0.5 0.05 0.00001 38 39.40 37 38.30 36 36.80 35 36.10 35 36.05 

0.0001 38 39.85 36 37.85 35 36.75 35 36.45 35 36.30 

0.001 38 39.35 36 37.85 36 37.00 34 36.00 35 35.95 

0.01 38 39.70 37 38.10 36 36.60 35 36.40 35 35.95 

0.1 38 39.75 36 37.95 34 36.80 34 36.15 34 35.80 

0.25 0.00001 38 39.70 36 37.75 36 36.65 35 36.05 34 35.85 

0.0001 37 39.35 36 37.70 35 36.70 34 36.30 35 36.10 

0.001 38 39.55 36 38.10 34 36.80 35 36.30 35 36.05 

0.01 38 39.50 36 38.00 36 36.70 35 36.50 35 35.85 

0.1 39 39.65 36 37.85 35 36.75 35 36.75 35 36.25 

0.5 0.00001 38 39.65 36 37.80 35 36.60 35 36.40 34 35.75 

0.0001 38 39.65 36 37.75 36 36.75 35 36.05 34 35.55 

0.001 36 39.50 37 38.25 35 36.65 35 36.35 34 36.05 

0.01 38 39.30 36 38.00 35 37.05 35 36.40 35 36.15 

0.1 37 39.25 37 37.90 35 36.65 35 36.45 35 36.00 

0.75 0.00001 38 39.65 36 37.65 36 36.55 35 36.30 35 36.00 

0.0001 38 39.55 36 37.85 36 37.05 35 36.20 35 36.10 

0.001 38 39.30 37 37.95 36 37.05 35 36.30 35 36.10 

0.01 38 39.30 36 37.80 36 37.20 34 36.10 33 35.75 

0.1 38 39.00 37 37.85 35 36.85 35 36.30 35 36.15 

0.95 0.00001 38 39.60 37 37.80 35 36.90 35 36.55 34 36.00 

0.0001 37 39.55 36 37.95 36 37.15 34 36.50 35 36.10 
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0.001 38 39.60 37 38.05 35 37.15 35 36.40 35 36.25 

0.01 37 39.50 37 37.95 36 36.85 34 35.90 35 36.35 

0.1 38 39.40 36 37.75 36 36.70 34 36.05 35 36.00 

0.75 0.05 0.00001 38 40.00 37 37.85 35 36.95 35 36.15 35 35.85 

0.0001 38 39.05 36 37.75 36 36.80 35 36.15 35 36.15 

0.001 37 39.20 37 38.00 35 36.50 35 36.35 35 36.10 

0.01 38 39.45 36 37.80 35 36.90 35 36.25 34 35.90 

0.1 38 39.35 36 38.20 36 36.95 35 36.55 35 36.15 

0.25 0.00001 38 39.70 36 37.80 35 36.85 35 36.25 35 35.95 

0.0001 38 39.40 36 37.75 35 36.45 35 36.10 35 36.25 

0.001 37 39.65 37 37.80 36 36.95 35 36.65 35 36.05 

0.01 38 39.20 36 37.75 35 36.60 35 36.10 35 35.90 

0.1 38 39.80 36 37.70 35 36.65 35 36.20 36 36.30 

0.5 0.00001 38 39.45 36 37.65 36 36.55 36 36.60 35 36.05 

0.0001 37 39.95 36 37.80 35 36.85 35 36.00 34 35.55 

0.001 38 39.20 37 37.75 35 36.80 35 36.10 35 36.15 

0.01 38 39.60 37 38.15 35 37.00 35 36.25 35 36.05 

0.1 38 39.60 36 37.90 35 36.55 35 36.35 35 36.05 

0.75 0.00001 38 39.40 36 37.80 36 36.85 35 36.40 35 36.05 

0.0001 38 39.60 37 38.10 35 36.35 35 36.15 34 35.90 

0.001 38 39.40 37 38.25 36 36.90 35 36.15 35 36.00 

0.01 38 39.50 37 38.15 36 36.65 35 36.65 34 35.80 

0.1 38 39.80 37 38.20 36 36.60 34 36.05 34 35.95 

0.95 0.00001 37 39.40 35 38.00 35 36.35 34 36.45 34 35.95 

0.0001 38 39.05 36 37.75 35 36.75 35 36.10 35 36.20 

0.001 38 39.30 36 37.55 35 36.75 35 36.20 34 35.75 

0.01 37 39.75 37 37.75 35 36.65 35 36.20 34 36.05 
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0.1 38 39.65 36 37.85 35 36.65 35 36.10 34 35.75 

0.95 0.05 0.00001 38 39.50 36 37.60 36 36.85 34 36.15 35 36.20 

0.0001 38 39.30 36 37.55 36 36.60 35 36.30 35 36.00 

0.001 38 39.60 36 37.85 36 36.90 35 36.55 35 35.75 

0.01 38 39.60 37 37.85 36 36.85 34 36.30 34 35.75 

0.1 37 39.15 37 37.85 35 36.70 35 36.45 35 35.90 

0.25 0.00001 37 39.15 36 37.95 35 36.95 34 35.95 35 35.90 

0.0001 37 39.35 37 37.90 36 36.75 35 36.35 35 36.15 

0.001 37 39.40 36 37.55 36 37.05 35 36.20 33 35.70 

0.01 36 38.95 36 38.00 35 36.55 35 36.25 35 36.05 

0.1 38 39.55 36 37.75 35 36.50 35 36.20 35 36.05 

0.5 0.00001 38 39.85 36 37.80 35 36.90 35 36.35 35 36.40 

0.0001 37 39.35 36 38.00 35 36.75 35 36.65 35 35.75 

0.001 38 39.45 37 37.80 36 37.05 35 36.30 33 36.00 

0.01 38 39.35 36 37.50 35 36.70 35 36.20 35 35.95 

0.1 38 39.20 36 38.05 35 37.00 34 36.20 35 36.25 

0.75 0.00001 38 39.10 36 37.65 36 36.85 35 35.90 35 35.85 

0.0001 37 39.25 37 38.30 36 36.85 35 36.40 35 36.00 

0.001 37 39.60 36 37.90 36 36.75 34 36.15 35 36.00 

0.01 37 39.65 36 37.90 35 36.70 35 36.25 35 36.15 

0.1 38 39.65 36 37.70 35 36.90 34 36.10 34 35.85 

0.95 0.00001 38 39.60 37 37.65 36 37.00 35 36.35 35 36.40 

0.0001 37 39.35 37 37.80 36 37.05 35 36.70 34 35.80 

0.001 36 38.90 38 38.45 35 36.50 35 36.30 35 36.00 

0.01 38 39.30 36 38.00 35 36.80 34 36.00 35 35.90 

0.1 38 39.65 36 37.80 36 36.80 35 36.15 35 36.20 
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Bat population size 20 

0.05 0.05 0.00001 37 37.75 36 37.05 35 36.20 34 35.95 34 35.60 

0.0001 37 38.00 36 36.80 35 36.20 34 35.80 34 35.85 

0.001 36 37.55 35 36.50 35 36.20 34 35.55 34 35.45 

0.01 37 38.10 35 36.75 35 35.95 33 35.60 34 35.60 

0.1 36 37.65 35 36.85 36 36.70 33 35.70 34 35.75 

0.25 0.00001 36 37.70 36 36.75 35 35.85 35 36.05 35 35.90 

0.0001 37 38.10 36 36.90 34 36.25 35 35.90 34 35.80 

0.001 36 37.85 35 37.10 35 36.05 35 35.95 33 35.55 

0.01 37 37.75 36 37.00 35 35.80 35 35.95 35 35.60 

0.1 36 37.60 35 36.65 34 36.00 35 35.70 35 35.80 

0.5 0.00001 36 37.75 36 36.65 35 35.90 34 35.75 34 35.65 

0.0001 37 38.00 35 36.55 35 36.40 35 35.95 34 35.70 

0.001 36 37.60 36 36.95 34 35.90 34 35.60 34 35.50 

0.01 36 37.45 35 36.50 34 36.05 34 36.15 34 35.75 

0.1 36 37.55 35 36.55 35 36.00 34 35.70 34 35.65 

0.75 0.00001 36 37.80 36 36.70 34 35.85 34 36.15 33 35.60 

0.0001 36 37.50 35 36.60 35 36.25 35 36.10 34 35.40 

0.001 36 37.90 35 36.75 35 36.65 35 36.05 34 35.65 

0.01 37 37.95 35 36.85 35 36.25 34 35.90 35 35.90 

0.1 36 37.55 35 36.35 35 35.75 34 35.70 34 35.75 

0.95 0.00001 36 38.10 35 36.70 35 36.10 34 35.75 34 35.75 

0.0001 36 37.70 36 36.85 35 36.10 34 35.60 34 35.70 

0.001 37 37.80 35 36.55 35 36.30 34 35.80 34 35.90 

0.01 36 38.05 35 36.70 35 36.15 34 35.70 34 35.50 

0.1 36 37.80 35 37.00 34 35.80 34 35.60 35 35.65 

0.25 0.05 0.00001 35 37.45 35 36.65 35 36.00 34 35.55 34 35.75 
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0.0001 36 37.40 36 36.90 35 36.10 34 35.95 34 35.35 

0.001 37 38.10 35 36.50 34 36.15 35 36.00 35 35.85 

0.01 36 38.00 35 36.90 34 36.00 35 35.50 34 35.75 

0.1 36 37.75 34 37.05 35 36.05 34 35.95 34 35.45 

0.25 0.00001 36 37.75 35 36.65 34 36.00 35 35.75 32 35.55 

0.0001 36 37.90 35 36.65 35 36.15 35 35.95 33 35.75 

0.001 36 37.40 35 37.05 35 36.45 35 36.05 34 35.40 

0.01 36 37.65 35 36.60 33 36.00 35 36.10 34 35.70 

0.1 36 37.90 36 36.90 35 35.75 34 35.80 34 35.75 

0.5 0.00001 36 37.60 35 36.95 35 35.95 35 36.00 34 35.70 

0.0001 37 37.95 36 37.05 35 36.20 34 35.70 35 36.05 

0.001 36 37.60 35 36.70 35 35.95 35 35.50 34 35.45 

0.01 36 37.80 35 36.85 34 35.90 34 35.95 35 35.65 

0.1 36 37.55 35 36.60 35 36.20 33 35.60 35 35.80 

0.75 0.00001 36 37.55 36 36.80 35 36.25 34 35.80 34 35.30 

0.0001 36 37.75 35 36.65 35 35.90 34 35.65 34 35.70 

0.001 36 37.75 35 36.75 34 35.95 35 35.85 34 35.75 

0.01 35 37.65 35 36.80 35 36.20 35 36.00 34 35.25 

0.1 36 37.70 35 36.80 34 35.80 34 36.05 33 35.45 

0.95 0.00001 37 38.10 34 36.55 35 36.35 34 35.95 35 36.00 

0.0001 36 37.95 35 36.65 35 35.90 34 35.85 34 35.40 

0.001 36 37.55 35 36.75 35 35.95 34 35.65 34 35.45 

0.01 36 37.70 35 36.50 34 36.10 34 35.85 34 35.70 

0.1 36 37.90 35 36.75 34 35.60 35 36.00 35 35.45 

0.5 0.05 0.00001 36 37.70 35 36.55 34 36.00 35 35.85 34 35.40 

0.0001 36 37.80 35 36.75 35 36.10 33 35.55 34 35.60 

0.001 36 37.65 36 36.60 34 36.10 34 35.80 33 35.65 
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0.01 37 38.35 35 36.95 35 36.15 35 36.00 33 35.70 

0.1 36 37.50 36 36.90 35 36.15 34 35.75 35 35.60 

0.25 0.00001 35 37.80 35 36.70 35 35.90 35 35.75 34 35.35 

0.0001 36 37.55 35 36.60 34 36.00 34 36.10 34 35.60 

0.001 36 37.70 35 36.65 35 35.90 34 35.50 34 35.70 

0.01 37 38.25 36 37.05 35 36.25 35 36.05 34 35.50 

0.1 36 37.90 36 36.60 34 35.65 34 35.80 34 35.30 

0.5 0.00001 36 37.70 35 36.75 35 36.10 33 35.50 35 35.85 

0.0001 36 37.45 35 36.40 35 36.00 34 35.65 33 35.65 

0.001 36 37.45 35 36.65 34 36.05 34 35.65 34 35.45 

0.01 37 38.05 35 36.90 35 36.10 35 35.75 35 35.85 

0.1 36 37.75 35 36.85 35 36.25 35 35.70 34 35.75 

0.75 0.00001 37 37.90 36 36.80 35 36.15 35 35.85 35 35.85 

0.0001 37 37.80 36 36.60 35 35.80 34 35.70 33 35.55 

0.001 37 37.80 35 36.35 35 36.00 35 35.85 34 35.55 

0.01 36 37.95 35 36.40 35 36.20 34 35.60 34 35.75 

0.1 37 37.70 35 36.90 35 35.85 35 36.00 35 36.00 

0.95 0.00001 37 38.20 35 36.60 35 36.35 34 35.55 34 35.50 

0.0001 36 37.65 35 36.60 35 36.35 34 35.70 34 35.45 

0.001 36 37.80 35 36.75 34 35.95 34 35.65 34 35.25 

0.01 36 37.80 36 36.90 34 35.80 35 35.65 34 35.70 

0.1 36 37.75 35 36.70 34 36.05 33 35.40 34 35.95 

0.75 0.05 0.00001 36 37.65 35 36.70 34 35.80 34 35.75 34 35.25 

0.0001 37 37.85 35 36.75 35 35.85 35 35.95 34 35.55 

0.001 37 37.80 36 36.60 35 35.90 33 36.10 34 35.65 

0.01 36 37.85 35 36.75 35 36.05 34 35.70 34 35.70 

0.1 37 37.65 35 36.60 34 36.00 34 35.75 33 35.50 
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0.25 0.00001 37 38.00 35 36.45 35 36.05 33 35.80 35 35.90 

0.0001 36 37.95 35 36.70 35 35.75 34 35.90 34 35.60 

0.001 37 37.90 36 36.90 35 36.00 35 35.70 35 35.80 

0.01 36 37.60 35 36.35 34 36.00 34 35.85 35 35.65 

0.1 36 37.70 36 36.85 35 36.35 34 36.00 33 35.45 

0.5 0.00001 36 37.60 35 36.65 34 36.20 35 35.80 34 35.90 

0.0001 36 37.90 35 36.55 35 36.20 34 35.95 34 35.95 

0.001 37 37.65 35 36.50 35 36.15 35 35.65 34 35.65 

0.01 37 37.90 35 36.60 34 36.20 33 35.95 34 35.70 

0.1 36 38.15 36 37.10 35 36.35 34 35.55 34 35.65 

0.75 0.00001 36 37.70 36 36.80 34 36.10 34 35.80 35 35.70 

0.0001 36 37.60 36 36.80 35 36.00 35 35.70 34 35.75 

0.001 36 37.80 35 37.05 32 35.80 35 35.75 34 35.55 

0.01 37 37.70 35 36.80 35 35.90 33 35.90 35 35.80 

0.1 36 37.65 34 36.25 35 36.25 35 35.65 33 35.30 

0.95 0.00001 36 38.05 36 36.65 35 36.40 34 35.75 33 35.60 

0.0001 36 37.40 35 36.55 34 36.00 34 35.30 34 35.60 

0.001 36 38.00 35 36.70 34 36.00 35 35.50 34 35.40 

0.01 36 37.30 35 36.85 33 35.80 35 35.65 34 35.65 

0.1 36 37.55 35 36.45 35 36.10 35 35.90 34 35.80 

0.95 0.05 0.00001 36 37.60 35 36.60 34 36.20 34 35.95 35 35.55 

0.0001 36 37.70 36 36.80 35 36.25 34 35.45 33 35.50 

0.001 35 37.45 35 36.80 35 36.05 33 35.70 35 35.60 

0.01 37 37.80 35 36.45 33 35.95 34 35.75 34 35.40 

0.1 36 37.55 35 36.65 35 36.10 34 36.10 34 35.75 

0.25 0.00001 36 37.80 35 36.55 35 36.20 35 36.00 34 35.70 

0.0001 36 37.70 36 37.00 35 36.20 34 35.65 33 35.30 
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0.001 36 37.70 35 36.40 35 36.00 35 36.10 35 35.75 

0.01 36 37.75 35 36.45 35 36.15 34 35.75 34 35.55 

0.1 35 38.00 36 36.65 34 36.05 35 35.85 33 35.05 

0.5 0.00001 36 37.60 34 36.45 33 35.70 33 35.80 34 35.65 

0.0001 37 37.90 35 36.85 34 35.90 35 35.80 34 35.75 

0.001 36 37.55 35 36.80 35 35.95 34 35.90 34 35.70 

0.01 37 37.85 34 36.70 35 36.00 35 35.75 35 36.00 

0.1 35 37.65 35 36.50 35 36.15 34 35.75 34 35.65 

0.75 0.00001 37 37.70 35 36.60 34 35.95 34 35.85 35 35.65 

0.0001 36 37.55 35 37.00 35 35.95 34 35.85 33 35.65 

0.001 36 37.55 36 36.85 35 36.00 34 35.90 34 35.90 

0.01 36 37.65 35 36.40 34 35.80 34 35.70 35 35.80 

0.1 36 37.95 35 36.50 35 36.10 34 35.75 34 35.35 

0.95 0.00001 36 37.65 36 36.90 34 36.00 34 35.55 34 35.75 

0.0001 36 37.40 35 36.45 35 36.05 35 35.85 34 35.65 

0.001 37 37.85 35 36.90 35 35.90 35 35.90 32 35.45 

0.01 36 37.60 35 36.50 35 36.05 34 35.60 33 35.60 

0.1 35 37.45 35 36.65 35 36.00 35 35.80 34 35.25 

Bat population size 50 

0.05 0.05 0.00001 34 36.35 35 35.85 34 35.55 34 35.65 33 35.15 

0.0001 35 36.30 35 35.75 33 35.45 34 35.50 34 35.35 

0.001 34 36.55 34 35.75 34 35.85 34 35.60 33 35.40 

0.01 35 36.55 35 35.75 34 35.85 34 35.50 33 35.15 

0.1 35 36.30 34 35.80 34 35.60 35 35.60 34 35.35 

0.25 0.00001 35 36.35 35 36.00 34 35.75 34 35.95 35 35.90 

0.0001 35 36.50 34 35.60 35 35.90 34 35.40 34 35.40 

0.001 35 36.45 34 35.70 34 35.70 34 35.55 34 35.20 
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0.01 35 36.25 35 36.10 35 35.85 33 35.35 33 35.50 

0.1 35 35.95 34 35.90 34 35.40 35 35.55 34 35.40 

0.5 0.00001 35 36.55 35 36.15 34 35.70 33 35.80 34 35.45 

0.0001 35 36.25 35 35.95 34 35.65 34 35.45 34 35.15 

0.001 35 36.15 34 36.00 35 35.90 35 35.70 34 35.35 

0.01 35 36.55 34 35.80 34 35.35 33 35.40 34 35.50 

0.1 35 36.00 35 35.65 34 35.85 34 35.60 34 35.35 

0.75 0.00001 35 36.60 35 36.05 34 35.35 34 35.50 34 35.35 

0.0001 34 36.15 35 35.95 34 35.55 34 35.75 34 35.55 

0.001 35 36.35 34 35.60 34 35.50 34 35.40 34 35.35 

0.01 35 36.35 34 35.80 34 35.80 34 35.20 34 35.50 

0.1 35 36.40 35 35.85 33 35.60 33 35.45 35 35.75 

0.95 0.00001 35 36.55 35 36.20 34 35.70 34 35.30 34 35.35 

0.0001 35 36.30 35 35.95 34 35.85 34 35.55 33 35.40 

0.001 35 36.55 35 35.90 35 35.55 34 35.55 34 35.40 

0.01 34 36.55 34 36.05 34 35.55 34 35.60 35 35.70 

0.1 35 36.25 33 35.50 34 35.25 33 35.40 34 35.55 

0.25 0.05 0.00001 35 36.30 34 35.55 34 35.55 33 35.55 34 35.35 

0.0001 35 36.60 34 35.50 34 35.70 34 35.45 34 35.20 

0.001 35 36.20 35 36.05 34 35.65 34 35.65 33 34.75 

0.01 35 36.50 34 35.65 34 35.55 35 35.70 34 35.45 

0.1 35 36.35 34 35.75 35 35.50 34 35.55 34 35.55 

0.25 0.00001 35 36.40 35 36.15 35 35.90 33 35.50 34 35.55 

0.0001 35 36.35 35 35.75 34 35.55 33 35.40 32 35.25 

0.001 35 36.20 35 35.95 33 35.45 34 35.45 34 35.35 

0.01 34 36.45 35 36.10 34 35.90 34 35.50 34 35.40 

0.1 35 36.45 35 36.25 35 35.80 34 35.65 35 35.70 
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0.5 0.00001 35 36.05 34 35.75 34 35.60 34 35.55 34 35.55 

0.0001 35 36.35 35 36.05 35 35.90 34 35.50 34 35.45 

0.001 35 36.40 34 35.70 35 35.85 34 35.45 34 35.10 

0.01 35 36.35 35 35.70 34 35.35 35 35.55 34 35.70 

0.1 35 36.30 35 35.60 34 35.45 33 35.35 34 35.35 

0.75 0.00001 34 36.10 35 35.85 34 35.35 33 35.30 34 35.45 

0.0001 35 36.25 35 36.05 35 36.10 34 35.35 33 35.50 

0.001 35 36.45 34 36.05 34 35.50 34 35.55 34 35.40 

0.01 35 36.20 35 35.50 34 35.35 34 35.40 34 35.65 

0.1 35 36.20 34 35.90 32 35.15 35 35.50 34 35.40 

0.95 0.00001 35 36.35 34 35.80 34 35.70 34 35.65 34 35.50 

0.0001 35 36.10 34 35.55 35 35.55 34 35.80 34 34.95 

0.001 33 36.25 34 36.15 34 35.95 34 35.70 33 35.40 

0.01 35 36.15 35 35.90 35 35.75 33 34.90 34 35.60 

0.1 35 36.30 34 35.90 34 35.75 34 35.20 33 35.20 

0.5 0.05 0.00001 35 36.35 34 35.60 33 35.45 33 35.50 34 35.40 

0.0001 35 36.35 35 36.05 34 35.55 35 35.80 34 35.35 

0.001 34 36.45 35 36.20 34 35.65 33 35.45 34 35.80 

0.01 35 35.85 35 36.05 34 35.85 33 35.20 35 35.80 

0.1 35 36.50 35 35.75 35 35.55 33 35.55 33 35.40 

0.25 0.00001 36 36.65 34 35.90 34 35.70 34 35.70 34 35.45 

0.0001 35 36.45 35 35.85 34 35.50 34 35.75 34 35.55 

0.001 35 36.45 35 35.85 34 35.60 34 35.30 34 35.45 

0.01 34 36.20 35 35.70 35 35.55 34 35.20 34 35.15 

0.1 35 36.40 34 35.80 34 35.65 34 35.25 34 35.55 

0.5 0.00001 34 36.15 34 35.75 34 35.65 34 35.45 33 35.40 

0.0001 34 36.00 34 35.70 34 35.70 34 35.70 33 35.35 
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0.001 35 36.35 35 35.85 33 35.60 34 35.65 34 35.45 

0.01 35 36.50 35 35.70 34 35.60 35 35.80 34 35.20 

0.1 35 36.20 35 36.05 33 35.65 34 35.55 34 35.15 

0.75 0.00001 35 36.35 34 36.20 34 35.55 34 35.70 34 35.45 

0.0001 35 36.50 34 35.55 34 35.55 33 35.45 34 35.30 

0.001 35 36.35 34 35.80 34 35.70 34 35.25 33 35.25 

0.01 36 36.30 35 35.85 34 35.45 34 35.30 33 35.25 

0.1 35 36.25 35 36.15 34 35.45 34 35.30 34 35.40 

0.95 0.00001 35 36.40 35 35.95 34 35.75 34 35.75 34 35.40 

0.0001 35 36.45 34 36.15 35 36.00 34 35.60 34 35.50 

0.001 35 36.10 35 35.85 34 35.45 35 35.70 34 35.65 

0.01 35 36.30 34 35.85 34 35.55 35 35.60 34 35.45 

0.1 36 36.50 35 35.55 34 35.55 35 35.75 34 35.75 

0.75 0.05 0.00001 35 36.65 34 35.85 34 35.50 33 35.25 33 35.55 

0.0001 35 36.50 35 35.70 34 35.60 33 35.40 34 35.35 

0.001 35 36.55 35 35.70 34 35.65 34 35.60 34 35.45 

0.01 35 36.40 34 35.65 34 35.55 34 35.50 34 35.25 

0.1 35 36.35 33 35.75 34 35.65 34 35.45 34 35.30 

0.25 0.00001 35 36.45 34 35.75 34 35.70 33 35.20 34 35.40 

0.0001 35 36.55 35 36.15 33 35.40 34 35.25 33 35.25 

0.001 35 36.50 35 35.85 33 35.60 34 35.30 34 35.35 

0.01 35 36.20 34 35.65 34 35.55 35 35.60 34 35.45 

0.1 35 36.15 35 36.10 34 35.65 34 35.30 34 35.40 

0.5 0.00001 35 36.55 34 35.70 35 35.60 34 35.60 34 35.30 

0.0001 36 36.30 35 36.10 35 35.70 34 35.75 33 35.40 

0.001 35 36.15 34 35.50 34 35.70 34 35.30 34 35.35 

0.01 34 36.30 35 35.95 34 35.45 33 35.55 34 34.95 
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0.1 35 36.25 34 35.80 33 35.00 34 35.45 34 35.40 

0.75 0.00001 34 36.25 35 36.15 34 35.55 35 35.60 33 35.10 

0.0001 35 36.05 33 35.80 34 35.60 34 35.45 34 35.35 

0.001 35 36.35 34 35.90 34 35.55 34 35.25 34 35.25 

0.01 34 36.40 34 35.85 33 35.70 34 35.50 34 35.35 

0.1 35 36.45 35 36.05 34 35.35 34 35.80 34 35.75 

0.95 0.00001 35 36.05 34 35.95 34 35.35 33 35.45 34 35.60 

0.0001 34 36.40 34 36.15 35 35.90 34 35.75 34 35.65 

0.001 35 36.35 34 35.75 34 35.80 34 35.10 33 35.00 

0.01 34 36.45 35 35.80 34 35.45 34 35.45 34 35.40 

0.1 35 36.25 35 36.10 33 35.10 33 35.50 34 35.45 

0.95 0.05 0.00001 35 36.35 35 35.65 34 35.45 34 35.15 34 35.60 

0.0001 34 36.45 34 35.65 34 35.40 35 35.55 34 35.30 

0.001 35 36.20 34 35.75 34 35.30 33 35.70 34 35.35 

0.01 35 36.35 35 35.80 35 35.50 35 35.65 34 35.70 

0.1 34 36.15 34 35.70 34 35.30 33 35.25 34 35.25 

0.25 0.00001 35 36.45 35 36.05 33 35.70 34 35.45 34 35.65 

0.0001 35 36.35 34 35.75 34 35.40 34 35.25 35 35.35 

0.001 35 36.05 35 35.35 34 35.60 35 35.55 34 35.35 

0.01 34 36.00 34 35.90 34 35.25 34 35.45 34 35.35 

0.1 35 36.40 34 35.95 34 35.55 33 35.15 34 35.45 

0.5 0.00001 34 36.15 34 35.55 34 35.55 33 35.45 34 35.35 

0.0001 35 36.50 34 35.85 34 35.55 34 35.65 34 35.65 

0.001 34 36.05 34 35.60 34 35.55 34 35.60 34 35.60 

0.01 35 36.15 35 35.70 33 35.45 35 35.65 33 35.05 

0.1 35 36.15 34 35.85 34 35.45 34 35.70 34 35.30 

0.75 0.00001 35 36.20 34 35.80 33 35.35 34 35.05 33 35.35 
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0.0001 35 35.90 34 35.75 35 35.85 33 35.15 34 35.45 

0.001 35 36.25 35 35.90 35 35.90 34 35.30 34 35.65 

0.01 35 36.35 35 35.70 34 35.65 34 35.45 34 35.45 

0.1 34 36.10 34 35.80 35 35.60 34 35.30 33 35.25 

0.95 0.00001 35 36.30 35 36.20 34 35.20 34 35.60 35 35.75 

0.0001 35 36.40 35 36.00 34 35.85 34 35.30 34 35.20 

0.001 34 36.70 34 35.80 35 35.60 35 35.65 33 35.20 

0.01 35 36.50 33 35.70 35 35.75 34 35.20 34 35.80 

0.1 35 36.40 34 35.90 33 35.55 34 35.45 34 35.55 

Bat population size 100 

0.05 0.05 0.00001 34 35.30 34 35.45 33 35.35 34 35.15 34 35.10 

0.0001 35 36.00 34 35.30 34 35.25 34 35.35 33 35.35 

0.001 35 36.20 34 35.70 34 35.55 34 35.40 33 35.15 

0.01 35 35.95 34 35.70 34 35.30 34 35.55 34 35.35 

0.1 34 36.15 34 35.50 34 35.40 34 35.30 33 35.15 

0.25 0.00001 34 35.75 34 35.45 34 35.55 34 35.45 34 35.45 

0.0001 35 35.75 34 35.40 35 35.45 34 35.65 35 35.65 

0.001 34 35.70 35 35.75 33 35.00 34 35.85 32 35.30 

0.01 35 35.75 33 35.45 34 35.45 34 35.50 34 35.45 

0.1 34 36.00 34 35.40 34 35.25 34 34.90 33 35.30 

0.5 0.00001 34 35.90 34 35.45 33 35.30 34 35.35 34 35.45 

0.0001 35 35.80 34 35.50 35 35.50 35 35.80 34 35.25 

0.001 34 35.30 34 35.50 34 35.20 33 34.95 34 35.25 

0.01 34 35.60 35 35.80 34 35.50 35 35.80 34 35.45 

0.1 34 36.00 34 35.30 35 35.50 34 35.35 34 35.35 

0.75 0.00001 35 35.75 34 35.35 34 35.45 34 35.75 33 35.25 

0.0001 34 35.75 34 35.75 34 35.90 34 35.40 33 35.25 
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0.001 35 35.90 34 35.50 34 35.35 33 35.35 34 35.35 

0.01 35 35.75 35 35.75 34 35.45 34 35.45 34 35.30 

0.1 34 35.75 34 35.45 34 35.35 34 35.05 34 35.55 

0.95 0.00001 34 35.80 34 35.35 34 35.45 34 35.40 34 35.30 

0.0001 34 35.85 34 35.75 34 35.30 33 35.35 34 35.25 

0.001 34 35.65 34 35.70 34 35.35 34 35.50 33 35.30 

0.01 35 35.90 34 35.60 34 35.45 34 35.55 34 35.35 

0.1 35 35.90 34 35.65 33 35.30 34 35.60 34 35.60 

0.25 0.05 0.00001 34 35.75 34 35.65 33 35.10 34 35.15 34 35.40 

0.0001 34 35.90 34 35.75 34 35.60 33 35.25 33 35.10 

0.001 34 35.60 35 35.80 34 35.40 33 35.00 34 35.40 

0.01 34 35.65 34 35.65 35 35.85 34 35.45 33 35.35 

0.1 35 36.10 35 35.75 34 35.45 33 35.00 33 35.10 

0.25 0.00001 34 35.75 34 35.80 34 35.60 34 35.70 34 35.50 

0.0001 34 35.95 33 35.25 34 35.75 33 35.20 33 35.55 

0.001 34 35.50 33 35.25 34 35.30 34 35.60 34 35.60 

0.01 34 35.95 34 35.70 34 35.70 34 35.45 33 35.30 

0.1 35 35.70 35 35.65 34 35.30 34 35.30 33 35.00 

0.5 0.00001 35 35.55 35 35.55 33 35.50 35 35.55 35 35.70 

0.0001 35 35.95 34 35.85 34 35.05 33 35.25 34 35.35 

0.001 35 36.00 33 35.50 34 35.45 34 35.70 34 35.40 

0.01 34 35.55 34 35.60 34 35.45 34 35.40 34 35.55 

0.1 34 35.80 34 35.75 33 35.20 34 35.35 33 34.95 

0.75 0.00001 35 36.10 35 35.90 35 35.65 33 35.35 34 35.40 

0.0001 34 35.70 34 35.30 34 35.35 33 35.50 35 35.45 

0.001 35 35.90 34 35.15 34 35.60 34 35.25 33 35.35 

0.01 34 35.60 35 35.55 34 35.35 35 35.50 34 35.45 
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0.1 34 35.80 34 35.80 33 35.20 35 35.60 34 35.25 

0.95 0.00001 34 35.60 34 35.80 35 35.85 34 35.40 33 35.30 

0.0001 34 35.85 34 35.65 34 35.15 35 36.00 34 35.10 

0.001 33 35.65 32 35.15 34 35.30 33 35.50 33 35.40 

0.01 34 35.80 35 35.70 33 35.05 34 35.45 34 35.00 

0.1 35 35.55 35 35.70 34 35.40 34 35.60 33 35.60 

0.5 0.05 0.00001 34 35.65 34 35.75 34 35.25 34 35.40 34 35.20 

0.0001 35 36.00 34 35.35 34 35.15 33 35.20 34 35.50 

0.001 34 35.80 34 35.35 34 35.70 34 35.45 34 35.55 

0.01 35 35.80 33 35.15 34 35.50 34 35.55 34 35.25 

0.1 35 35.75 34 35.60 33 35.45 34 35.65 34 35.25 

0.25 0.00001 34 35.80 34 35.50 34 35.55 34 35.30 33 35.20 

0.0001 35 36.05 34 35.35 34 35.35 34 35.40 34 35.15 

0.001 33 35.75 34 35.45 35 35.55 34 34.90 34 35.80 

0.01 35 36.10 34 35.40 34 35.75 34 35.35 33 35.30 

0.1 35 35.85 34 35.30 35 35.45 34 35.40 33 35.10 

0.5 0.00001 34 35.60 34 35.80 35 35.40 34 35.30 34 35.10 

0.0001 35 35.80 35 35.40 34 35.50 35 35.50 35 35.60 

0.001 34 35.95 33 35.45 34 35.15 34 35.35 34 35.25 

0.01 35 36.10 34 35.35 34 35.75 33 35.25 34 35.70 

0.1 35 35.90 35 35.50 35 35.65 33 34.90 33 35.15 

0.75 0.00001 34 35.80 34 35.55 33 35.50 34 35.55 34 35.45 

0.0001 35 36.05 34 36.10 34 35.65 34 35.10 35 35.75 

0.001 34 35.80 33 35.35 34 35.50 34 35.40 34 35.50 

0.01 34 36.10 34 35.75 34 35.45 33 35.20 34 35.45 

0.1 35 36.05 33 35.80 34 35.80 34 35.45 33 34.95 

0.95 0.00001 34 35.80 33 35.25 34 35.30 33 35.35 34 35.45 
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0.0001 34 35.75 34 35.35 34 35.70 34 35.35 34 35.05 

0.001 35 35.95 34 35.40 34 35.25 34 35.30 34 35.45 

0.01 34 35.85 34 35.50 34 35.35 34 35.25 33 35.35 

0.1 35 36.00 34 35.90 35 35.65 34 35.40 34 35.30 

0.75 0.05 0.00001 35 35.90 34 35.60 34 35.50 35 35.50 34 35.35 

0.0001 34 35.75 35 35.65 34 35.55 34 35.60 34 35.50 

0.001 34 35.80 34 35.70 34 35.25 33 35.35 33 35.00 

0.01 34 35.60 34 35.30 33 35.45 34 35.50 34 35.15 

0.1 34 35.60 34 35.35 35 35.80 35 35.80 34 35.45 

0.25 0.00001 34 35.85 33 35.50 33 35.35 34 35.20 34 35.20 

0.0001 34 36.10 34 35.40 33 35.20 34 35.40 34 35.45 

0.001 34 36.00 34 35.45 33 35.40 34 35.30 33 35.45 

0.01 34 35.95 34 35.70 35 35.25 34 35.35 33 35.45 

0.1 35 35.95 34 35.35 34 35.55 34 35.15 34 35.25 

0.5 0.00001 34 35.65 32 35.65 34 35.45 34 35.45 33 35.10 

0.0001 35 36.10 34 35.70 33 35.50 34 35.30 34 35.25 

0.001 35 35.95 35 35.85 34 35.45 34 35.25 34 35.50 

0.01 35 35.60 33 35.50 33 35.35 35 35.55 34 35.50 

0.1 34 35.50 34 35.95 33 35.40 35 35.75 35 35.65 

0.75 0.00001 35 35.65 34 35.30 35 35.30 34 35.35 34 35.30 

0.0001 34 35.75 35 35.60 35 35.30 33 35.30 34 35.50 

0.001 35 35.65 34 35.70 33 35.30 34 35.30 34 35.35 

0.01 34 35.95 33 35.30 33 35.40 34 35.70 34 35.25 

0.1 34 35.70 33 35.20 33 35.20 34 35.45 34 35.35 

0.95 0.00001 35 36.05 34 35.70 33 35.30 35 35.80 33 35.40 

0.0001 35 35.90 33 35.60 35 35.60 35 35.45 33 35.25 

0.001 34 35.95 34 35.40 33 35.30 33 35.40 34 35.35 
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0.01 35 35.85 34 35.70 34 35.65 34 35.75 34 35.55 

0.1 34 35.70 34 35.50 34 35.40 34 35.35 34 35.55 

0.95 0.05 0.00001 34 35.50 34 35.65 34 35.45 34 35.35 34 35.05 

0.0001 34 35.85 35 35.65 34 35.45 33 35.25 34 35.45 

0.001 34 35.65 34 35.50 34 35.60 35 35.65 34 35.50 

0.01 35 35.95 34 35.55 33 35.75 34 35.30 33 35.45 

0.1 34 35.70 35 35.65 34 35.50 34 35.50 33 35.25 

0.25 0.00001 34 35.60 34 35.45 33 35.10 32 35.10 33 35.30 

0.0001 33 35.50 34 35.45 33 35.30 33 35.25 35 35.70 

0.001 34 35.35 34 35.55 33 35.40 33 35.30 33 35.60 

0.01 35 35.75 34 35.80 33 35.25 34 35.45 34 35.50 

0.1 34 35.95 34 35.50 34 35.80 34 35.70 34 35.65 

0.5 0.00001 35 35.65 34 35.35 34 35.40 34 35.20 34 35.40 

0.0001 35 35.70 34 35.45 34 35.45 34 35.15 33 35.30 

0.001 34 35.85 34 35.55 34 35.45 34 35.25 33 35.55 

0.01 35 35.95 34 35.60 34 35.15 34 35.35 33 35.45 

0.1 35 36.25 34 35.80 33 35.45 35 35.45 34 35.50 

0.75 0.00001 33 35.60 34 35.80 34 35.20 34 35.70 33 35.55 

0.0001 33 35.55 34 35.60 33 35.45 34 35.40 33 35.20 

0.001 35 35.85 34 35.35 33 35.35 34 35.55 34 35.65 

0.01 34 35.80 33 35.30 35 35.65 34 35.50 35 35.75 

0.1 35 36.00 35 35.55 33 35.50 34 35.60 34 35.45 

0.95 0.00001 34 36.00 34 35.50 33 35.00 34 35.65 35 35.45 

0.0001 34 35.70 34 35.80 33 35.05 33 35.30 34 35.55 

0.001 35 35.85 34 35.50 34 35.35 33 35.15 34 35.50 

0.01 33 35.70 34 35.50 34 35.70 34 35.70 33 35.20 

0.1 35 36.15 35 35.70 33 35.65 34 35.20 34 35.35 
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