

A BAT-INSPIRED T-WAY STRATEGY FOR

MIXED-STRENGTH TEST SUITE

GENERATION

YAZAN AHMAD AL SARIERA

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : ___

Date of Birth : ___

Title : ___

Academic Session : ___

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number

Date: 27 October 2017

 (Supervisor’s Signature)

Name of Supervisor

Date: 27 October 2017

Yazan Ahmad Sadeq Al Sariera

24/09/1988

A Bat-inspired T-Way Strategy for Mixed-Strength Test Suite

Generation

M858546

Prof. Dr. Kamal Z. Zamli

2017/2018

SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Doctor of

Philosophy.

 (Supervisor’s Signature)

Full Name : Prof. Dr. Kamal Z. Zamli

Position : Dean, Faculty of Computer Systems and Software Engineering,

 (Professor)

Date : 27 October 2017

 (Co-supervisor’s Signature)

Full Name : Assoc. Prof. Mazlina Abdul Majid

Position : Deputy Dean, Faculty of Computer Systems and Software Engineering,

 (Associate Professor)

Date : 27 October 2017

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : Yazan Ahmad Sadeq Al Sariera

ID Number : PCS14001

Date : 27 October 2017

A BAT-INSPIRED T-WAY STRATEGY FOR MIXED-STRENGTH TEST SUITE

GENERATION

YAZAN AHMAD SADEQ AL SARIERA

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy

Faculty of Computer Systems and Software Engineering

UNIVERSITI MALAYSIA PAHANG

OCTOBER 2017

ii

DEDICATION

Dedicated to my parents.

For their endless love, support and encouragement.

iii

ACKNOWLEDGEMENTS

First and foremost, I owe my deepest gratitude to Allah (SWT) for giving me live, strength and

guidance throughout my study period and the ability to complete this thesis.

I am deeply grateful to my parents: my mother Eman Alsariera and my father Ahmad Alsariera

for your prayers and unlimited support. I certainly would not be where I am today without their

nurture, guidance, love and care throughout my life. There are not enough words in the world to

express my appreciation. Whatever I do, I will not be able to return the love, bestowal and support.

I pray Allah for your perfect health and prolong age and may Allah reward you richly. Love you

both.

I am greatly indebted and appreciate very much to my brothers and sister for their

encouragements, supports and sacrifices all the time. To my relatives and dearest beloved, a

grateful thank you for your support and encouragement, may Allah bless you all.

I would like to express my gratitude to my research supervisor Prof. Dr. Kamal Zuhairi Zamli for

his excellent ideas, profound technical vision, invaluable guidance, patience, motivation, many

fruitful discussions and constant support in making this thesis possible. I am so much grateful for

accepting me to become a part of his research team.

I would like to thank my co-supervisor Assoc. Prof. Mazlina A. Majid and Dr. AbdulRahman A.

AlSewari for their support and the faculty members and staff for their hard work as well.

Finally, I would like to acknowledge and thank Universiti Malaysia Pahang for allowing me to

conduct my research and providing the required assistance. In addition, I would like to thank the

Ministry of Science, Technology and Innovation (MOSTI), Malaysia for funding this work.

iv

ABSTRAK

Pengujian perisian merupakan aktiviti penting dalam kitar hayat pembangunan perisian

Walaubagaimanapun, ujian menyeluruh untuk perisian berkonfigurasi tinggi adalah tidak

praktikal kerana kekangan masa dan sumber. Tambahan pula, ujian menyeluruh

membawa kepada masalah letupan kombinasi di mana kes-kes ujian berkembang dengan

pesat dengan peningkatan input perisian. Kerana keberkesanannya bagi mengesan

pepijat, ramai penyelidik kini beralih kepada strategi persampelan berdasarkan interaksi

input, yang dipanggil ujian t-hala, di mana t menunjukkan kekuatan interaksi. Dikenali

sebagai masalah NP-lengkap (iaitu, tidak berketentuan Polinomial masa), proses

mengurangkan kes-kes ujian t-hala amat mencabar kerana ruang carian yang luas apabila

berurusan dengan nilai-nilai input besar. Setakat ini, banyak strategi t-hala yang telah

dicadangkan dalam literatur. Baru-baru ini, para penyelidik telah mencadangkan

penggunaan meta-heuristik berasaskan strategi t-hala seiring dengan kemunculan bidang

baru dipanggil Kejuruteraan Perisian berasaskan Pencarian (SBSE). Walaupun berguna,

tidak ada strategi t-hala berdasarkan meta-heuristik tunggal boleh mengatasi yang lain.

Atas sebab ini, pencarian strategi t-hala meta-heuristik baru masih didambakan. Tesis ini

membentangkan reka bentuk dan pelaksanaan yang strategi t-hala meta-heuristik baru,

yang dikenali strategi t-hala kelawar (BTS), untuk menjana kekuatan campuran t-hala sut

ujian. BTS adalah strategi t-hala pertama yang menggunakan algoritma kelawar sebagai

teras dan mengadaptasi jarak Hamming sebagai kriteria pemilihan akhir bagi

menambahbaik explorasi penyelesaian baharu. Keputusan eksperimen disokong oleh

analisis statistik bukan parametrik menunjukkan bahawa BTS memberikan prestasi daya

saing yang kompetitif berbanding strategi-strategi lain. Khususnya, BTS telah mencapai

dan memadankan 68.181% saiz terbaik dari eksperiment penanda aras disamping

menghasilkan 32.575% saiz terbaik baru. Penemuan ini menyumbang kepada bidang

pengujian perisian dengan mengurangkan bilangan kes pengujian perisian untuk larian.

v

ABSTRACT

Software testing is essential part of software development life cycle. Yet, exhaustive

testing of highly configurable software is impractical owing to the limited time and

resources. Furthermore, exhaustive testing leads to a combinatorial explosion problem

whereby the test cases grow exponentially with the increase of software inputs. Owing to

its effectiveness for bug finding, many researchers are turning to the sampling strategies

based on input interaction, called t-way testing, where t indicates the interaction strength.

Known to be an NP-complete (i.e. Non-deterministic Polynomial-time) problem, the

process of minimizing t-way test cases is challenging owing to the potentially large

generated search space when dealing with large input values. To date, many t-way

strategies have been proposed in the literature. Recently, researchers have advocated the

adoption of meta-heuristic based t-way strategies in line with the emergence of the new

field called Search Based Software Engineering (SBSE). Although helpful, no single

meta-heuristic based t-way strategies can claim dominance over their other counterparts.

For this reason, the search for a new meta-heuristic based t-way strategy is still a useful

endeavor. This thesis presents the design and implementation of a new meta-heuristic

based t-way strategy, called Bat-inspired t-way Strategy (BTS), for generating a mixed-

strength t-way test suite. BTS is the first t-way strategy that adopts the Bat-inspired

algorithm as its core implementation and adopts the Hamming distance as the final

selection criteria to enhance the exploration of new solution. The experimental results

supported by non-parametric statistical analysis demonstrate that BTS gives competitive

performance over its counterparts. Specifically, BTS has achieved and matched 68.181%

of the best sizes from the published benchmark results with 32.575 % new known best

sizes. This finding contributes to the field of software testing by minimizing the number

of test cases for test execution.

vi

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS iii

ABSTRAK iv

ABSTRACT v

TABLE OF CONTENT vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Overview of Software Testing 1

1.2 Research Motivation 3

1.3 Problem Statements 5

1.4 Research Aim and Objectives 7

1.5 Research Scope 7

1.6 Operational Framework 8

1.7 Thesis Organization 9

CHAPTER 2 LITERATURE REVIEW 11

2.1 The Test Case Design Strategies 11

2.1.1 Random Testing 11

2.1.2 Equivalence Class Partitioning 12

vii

2.1.3 Boundary Value Analysis 13

2.1.4 Cause and Effect Graphing (CEG) 14

2.1.5 Interaction Sampling 16

2.2 The Mathematical Notations for t-way Test Suite Generation 16

2.3 A Problem Definition Model for t-way Test Suite Generation 19

2.4 Formal Definition for t-way 30

2.5 The Existing t-way Strategies 33

2.5.1 Deterministic t-way Test Suite Generation Strategies 35

2.5.2 Probabilistic t-way Test Suite Generation Strategies 37

2.5.3 The Observation of the Highlighted t-way Strategies 45

2.5.4 The Justification of the Adoption of BA 47

2.6 Summary 50

CHAPTER 3 RESEARCH METHODOLOGY 51

3.1 The Original BA Algorithm 51

3.2 The BTS Strategy 55

3.2.1 Input Analysis 57

3.2.2 Interaction Generation 60

3.2.3 Test Suite Generation 68

3.2.4 Tuning of BTS Variables 77

3.3 Prototype Implementation 84

3.4 Summary 85

CHAPTER 4 RESULTS AND DISCUSSION 86

4.1 Experimental Evaluations 86

4.2 Experimental Results 89

viii

4.2.1 Characterizing BTS 89

4.2.2 Benchmarking with Other Strategies 91

4.2.3 Benchmarking for Mixed-Strength Test Configurations 97

4.3 Statistical Analysis of the Experimental Results 102

4.3.1 Statistical Analysis for t-way Results 102

4.3.2 Statistical Analysis of Mixed-Strength Results 106

4.4 Experimental Observation and Discussion 111

4.4.1 Experimental Results and Statistical Analysis Observations 111

4.4.2 Discussion 118

4.5 Summary 121

CHAPTER 5 CONCLUSION AND FUTURE WORK 122

5.1 Objectives Revisited 122

5.2 Contribution 124

5.3 Future work 125

REFERENCES 126

APPENDIX A THE RUNNING COMMAND-LINE FOR BTS 140

APPENDIX B BTS TUNING DATA 142

APPENDIX C THE LIST OF PUBLICATIONS AND AWARDS 161

ix

LIST OF TABLES

Table 2.1 The grading and their corresponding letters. 13

Table 2.2 The decision table for the CEG in Figure 2-2. 16

Table 2.3 The analysis of existing t-way strategies. 47

Table 4.1 The characteristic of BTS (Hamming BA against original BA). 89

Table 4.2 The minimum test suite sizes for experimental set 1. 92

Table 4.3 The minimum test suite sizes for experimental set 2. 94

Table 4.4 The minimum test suite sizes for experimental set 3. 95

Table 4.5 The minimum test suite sizes for experimental set 4. 96

Table 4.6 The minimum test suite sizes for experimental set 5. 98

Table 4.7 The minimum test suite sizes for experimental set 6. 99

Table 4.8 The minimum test suite sizes for experimental set 7. 100

Table 4.9 The minimum test suite sizes for experimental set 8. 101

Table 4.10 Friedman test for Table 5.2. 103

Table 4.11 Wilcoxon signed-rank (Post-hoc) test for Table 5.2. 103

Table 4.12 Friedman test for Table 5.3. 104

Table 4.13 Wilcoxon signed-rank (Post-hoc) test for Table 5.3. 104

Table 4.14 Friedman test for Table 5.4. 105

Table 4.15 Wilcoxon signed-rank (Post-hoc) test for Table 5.4. 105

Table 4.16 Friedman test for Table 5.5. 106

Table 4.17 Wilcoxon signed-rank (Post-hoc) test for Table 5.5. 106

Table 4.18 Friedman test for Table 5.6. 107

Table 4.19 Wilcoxon signed-rank (Post-hoc) test for Table 5.6. 107

Table 4.20 Friedman test for Table 5.7. 108

Table 4.21 Wilcoxon signed-rank (Post-hoc) test for Table 5.7. 108

Table 4.22 Friedman test for Table 5.8. 109

Table 4.23 Wilcoxon signed-rank (Post-hoc) test for Table 5.8. 109

Table 4.24 Friedman test for Table 5.9. 110

Table 4.25 The experimental sets observation. 119

Table 4.26 The statistical significant achieved for each experimental sets. 120

Table A.1 The command-line specifications for BTS. 140

Table A.2 Examples of command-line specifications for BTS. 140

Table B.1 Full details of BTS tunning sizes and their averages. 142

x

LIST OF FIGURES

Figure 1.1 Overview of the software testing life cycle. 2

Figure 1.2 The CNC software system. 3

Figure 1.3 The parameters and their values for CNC software system. 4

Figure 1.4 The illustration of the operational framework for BTS. 8

Figure 2.1 A grade converter software. 12

Figure 2.2 The CEG for the Example in Figure 2.1. 15

Figure 2.3 The illustration of the mathematical notations. 18

Figure 2.4 Running example. 19

Figure 2.5 The running example parameters and values. 20

Figure 2.6 The exhaustive test suite (at t = 4) for CA(36,4, 22 32). 20

Figure 2.7 The illustration of the interaction elements set in (A) and the test

cases set in (B) for 2-way interaction strength (at t = 2). 22

Figure 2.8 The running example interaction elements and test cases sets

including randomized values. 23

Figure 2.9 Merging of all 2-way test sets, Final test suite for CA(11,4, 22 32). 24

Figure 2.10 Analysis of 2- way interaction configurations occurrence. 25

Figure 2.11 The mixed-strength interaction demonstration. 26

Figure 2.12 The 3-way interaction test suite for the first three parameters. 27

Figure 2.13 The test suite for the overall system with the mixed-strength

interaction. 28

Figure 2.14 The element t-tuple sets dominastration. 31

Figure 2.15 The combinations t-tuples set (CTS) list illustration. 31

Figure 2.16 The illustration for IE set for EC 1 tuple in IET. 32

Figure 2.17 The illustration of the deterministic and probabilistic process. 35

Figure 2.18 Features of the existed t-way test suite generation strategies. 46

Figure 3.1 The BA pseudo code. 52

Figure 3.2 The overview of BTS strategy. 56

Figure 3.3 The illustration of the elements set based on the number of values

for each elements. 57

Figure 3.4 The illustration of the variables processed in the input analysis

phase. 58

Figure 3.5 The illustration of the mixed-strength configrations 58

Figure 3.6 Pseudo code of input analyser and legal value representation

algorithm. 59

Figure 3.7 The illustration of EC matching and EC in CTS. 61

xi

Figure 3.8 The pseudo code of CTS generator. 62

Figure 3.9 The construction of interaction elements and binary elements. 64

Figure 3.10 The pseudo code of IET generator that includes BES generation

method. 65

Figure 3.11 The illustration of the CTS, IET and BES generation flow. 66

Figure 3.12 The pseudo code of test suite generation. 69

Figure 3.13 The illustration of test candidates mapping into the BA population. 71

Figure 3.14 The illustration of Hamming distance classifier. 74

Figure 3.15 The illustration of test suite generation mechanism. 76

Figure 3.16 The illustration of minimum sizes with 10 bats. 79

Figure 3.17 The illustration of sizes average with 10 bats. 79

Figure 3.18 The illustration of minimum sizes with 20 bats. 80

Figure 3.19 The illustration of sizes average with 20 bats. 80

Figure 3.20 The illustration of minimum sizes with 50 bats. 81

Figure 3.21 The illustration of sizes average with 50 bats. 81

Figure 3.22 The illustration of minimum sizes with 100 bats. 82

Figure 3.23 The illustration of sizes average with 100 bats. 82

Figure 3.24 The BTS prototype. 84

Figure 3.25 The functional hierarchy of BTS. 85

Figure 4.1 The convergence pattern. 90

Figure 4.2 The illustration of Table 5.2 results' intervals with CL 95%. 103

Figure 4.3 The illustration of Table 5.3 results' intervals with CL 95%. 104

Figure 4.4 The illustration of Table 5.4 results' intervals with CL 95%. 105

Figure 4.5 The illustration of Table 5.5 results' intervals with CL 95%. 106

Figure 4.6 The illustration of Table 5.6 results' intervals with CL 95%. 107

Figure 4.7 The illustration of Table 5.7 results' intervals with CL 95%. 108

Figure 4.8 The illustration of Table 5.8 results' intervals with CL 95%. 109

Figure 4.9 The illustration of Table 5.9 results' intervals with CL 95%. 110

Figure A.1 The BTS advance user prototype. 141

xii

LIST OF ABBREVIATIONS

A0 Loudness

Ai Initial loudness

ABC Artificial Bee Colony

ABC- CAG Artificial Bee Colony-Covering Array Generator

ACA Ant Colony Algorithm

ACA-Shiba Ant Colony Algorithm implemented by Shiba

ACO Ant Colony Optimization

ACS Ant Colony System

ACS-Chen Ant Colony Algorithm implemented by Bryce

ACS-VSITs Ant Colony System Variable Strength Interaction Test suites

ACTS Advanced Combinatorial Testing Suite

AETG Automatic Efficient Test Generator

ANNs Artificial Neural Networks

AR Anti-random

BA Bat-inspired Algorithm

BA* Bees Algorithm

BC Base Choice

BCAETG Compound BC and AETG strategy

BE Binary Element

BES Binary Element Set

BKM Bat-K-Means

BTS Bat-inspired Testing Strategy

CA Covering Array

CASA Simulated Annealing Algorithm for constrained Combinatorial

interaction testing

CATS TestCover

CEG Cause and effect graphing

CI Confidence interval

CPU Central Processing Unit

CS Cuckoo Search

CTE-XL Classification-Tree Editor eXtended Logics

CTM Classification-Tree Method

CTS Combination t-Tuple Set

CTS Combinations t-Tuples Set

CTS* Combinatorial Test Services

CNC Computer Numerical control

DF Degree Of Freedom

DPSO Discrete Particle Swarm Optimization

E Element

EC Element Combination

EC's Element Combinations

EGA Evolutionary Genetic Algorithm

ES Element Set

FPA Flower Pollination Algorithm

xiii

FSAPSO Fuzzy Logic Agorithm Particle Swarm Optimization

FTS Final Test Suite

GA Genetic Algorithm

GA-Huang Genetic Algorithm strategy implemented by Huang

GAPTS Genetic Algorithm for Pairwise Test Sets

GUI Graphical User Interface

H0 Null hypothesis

H1 Alternative hypothesis

HC Hill Climbing

HC-Bryce Hill Climbing strategy implemented by Bryce

HHH High Level Hyper-Heuristic

HS Harmony Search

HS-PTSGT Harmony Search-Pairwise Test Suite Generator Tool

HSS Harmony Search Strategy

HSTSG Harmony Search Test Suite Generator

IE Interaction Element

IE's Interaction Elements

IET Interaction Element Tuples

HIS Improved HS

IPO In Parameter Order

IPOG In-Parameter-Order-General

IPOG-D In-Parameter-Order-General Double

ISA Improved SA

ITCH Intelligent Test Case Handler

JRE Java Running Environments

LAHC Late Acceptance Hill Climbing

LOC Lines of Code

mAETG Modified Automatic Efficient Test Generator

MCA Mixed-level Covering Array

mMCA Mixed-strength Mixed-level Covering Array

MIPOG Modified IPOG

MOCell A Cellular genetic algorithm for MultiObjective optimization

MOL Many Optimization Liaisons

mCA Mixed-strength Covering Array

mTCG Modified Test Case Generator

NP Non-deterministic Polynomial-time

NSGA-II Nondominated Sorting Genetic Algorithm II

OA Orthogonal Arrays

OATS Orthogonal Array Based Testing Strategy

𝑃 Parameter

PGAS A Parallel Genetic Algorithm based on Spark

PHSS Pairwise Harmony Search Strategy

PICT Pairwise Independent Combinatorial Testing

PITS Prioritized pairwise Interaction Test Suite

PPSTG Pairwise Particle Swarm Test Generator

PPW Partly Pair-Wise

xiv

PSO Particle Swarm Optimization

PSO-Chen Particle Swarm Optimization strategy implemented by Chen

PSTG Particle Swarm Test Generator

PTSG-GA Pairwise test set generator using genetic algorithm

Q Frequency

𝑟 Emission of pulse rate

RAM Random Access Memory

RTS Reverse Tracking Strategy

SA Simulated Annealing

SA-Bryce Simulated Annealing strategy implemented by Bryce

SA-Mayer Simulated Annealing strategy implemented by Mayer

SAVNS Simulated Annealing Variable Neighbourhood Search

SBC Simulated Bee Colony

SBSE Search-Based Software Engineering

SSO Simplified Swarm Optimization

T Interaction strength

tCA Improved CASA

TCG Test Case Generator

TConfig Test Configuration

Tmax Number of generation (iteration)

TS Tabu search

𝑡𝑠 Time Step

TS-Bryce Tabu Search strategy implemented by Bryce

TVG Test Vector Generator

𝑣 Value

MC Mixed-strength condition

VSITs Variable Strength Interaction Test suites

VS-PSTG Variable Strength Particle Swarm Test Generator

X Position (location)

X2 Chi-square

𝑎 Alpha

CHAPTER 1

INTRODUCTION

Software and hardware are the main components that drive computer

technologies. Unlike hardware, software does not wear out. Here, software is a set of

written code, functions and procedures that enables the user to accomplish a specific task.

Whenever possible, software can be the replacement for its hardware counterparts,

because software is flexible and allows easy customization as needed. In addition, the use

of software can help to control maintenance costs.

Software development passes through several stages, called the software

development life cycle. Generally, the activities in the software development life cycle

are divided into two main processes: building the product (creating the software) and

maintaining the product quality (Baresi & Pezzè, 2006). Every single cycle in software

development must meet the highest production standard to ensure software quality, in

order to cope with software faults and defects (Naik & Tripathy, 2008).

Software testing is the main gatekeeper of software quality, that is, in terms of

minimizing the risk of software failure. Specifically, software testing ensures that

software meets its specifications and quality standards.

1.1 Overview of Software Testing

Software testing is an integral part of the software development life cycle that

consumes more than 40 to 50% of the development costs (Bertolino, 2007; Carroll, 2003;

Kaner et al., 1999; Pan, 1999; Pendharkar, 2010). Often represented as a single activate

in the development life cycle, software testing consists of a series of planned tasks that

need to be executed along with the software development activities to ensure that a

product is delivered without any defects (Katherine & Alagarsamy, 2012). Figure 1.1

shows the overall picture of a general software testing life cycle.

2

Figure 1.1 Overview of the software testing life cycle.

Source: Katherine (2012).

Referring to Figure 1.1, the software testing life cycle starts with the requirements

capturing task. Here, the test engineers interact with the software-under-test

specifications to capture the procedures and requirements of the software. Based on the

captured requirements, software and test engineers collaborate to design test scenarios to

prepare test cases that cover the entire input parameters of the software-under-test. Then,

test engineers execute the generated test cases against the software-under-test. In case of

defects detection, test engineers and developers collaborate to fix the detected defects

with the support of software engineers. After that, the test execution is completed. The

requirements’ engineers confirm the results to ensure that the software-under-test is

meeting its specification.

Concerning the test generation stage, manual test cases generation becomes

practically impossible. Likewise, automated testing for all the possible inputs of software

configurations (known as exhaustive testing) is impracticable due to the time and resource

constraints. Therefore, effective sampling strategy can be an alternative to exhaustive

testing which can reveal defects in the software-under-test (Burnstein, 2006; Hass, 2008).

Over time, test case sampling (or design) strategies (i.e. cause and effect graphing,

equivalence class partitioning, boundary value analysis, systematic random testing) have

emerged to generate a set of test cases that are capable of detecting software faults and

defects of the software-under-test. Although useful, the abovementioned strategies do not

sufficiently address the interaction between software inputs. For this reason, researchers

3

have proposed a new sampling approach based on interaction testing, termed t-way

testing (where t indicates the interaction strength) (Kuhn et al., 2004; Kuhn et al., 2008).

Specifically, t-way testing focuses on the faults that occur due to the interaction between

two or more parameters of the software of interest.

1.2 Research Motivation

Software systems are becoming more complex owing to the improvement of

computer power as well as sophisticated and complex demands on technology. These

complexities are sufficiently intricate and can often cause unwanted quality and reliability

issues amongst the software components.

Although desirable, exhaustive testing is impractical as the number of test cases

can be tremendously large (Chaudhuri & Zhu, 1992; Copeland, 2004; Roper, 2002) even

for the simplest software systems. As illustration, consider a simple logo generating

system for a Computer Numerical Control (CNC) machine that support both laser

printing and laser engraving with multi-color profile. The CNC software system can be

seen in Figure 1.2.

Figure 1.2 The CNC software system.

The options dialog consists of one text box that accepts two values either “with

text” or an empty, six radio selectors groups - four with five values each and another two

radio selectors with two values each. Therefore, the system consists of four parameters

of five-values each and three parameters of two-values, Here, each group of parameters

have similar number of dependencies. Thus, testing all the inputs configurations (i.e.,

https://www.google.com/search?espv=2&biw=1366&bih=589&q=define+impractical&sa=X&sqi=2&ved=0ahUKEwifxZiS8_PPAhWIq48KHXjZC7cQ_SoIHzAA

4

exhaustive test) would require 54 23 = 5,000 test cases. Assuming that the four of the

parameters (i.e. text, border shape, method and quality) have more impact on the overall

system, the exhaustive test for the four aforementioned parameters would require

23 51 = 40 test cases. Thus, the system overall exhaustive test would involve at

most 5000 + 40 = 5040 test cases. If each test case required 5 minutes, then the testing

process would approximately require 17.5 days to complete the exhaustive testing

process of all the possible configurations. This example emphasizes that testing all the

possible software inputs exhaustively is impossible owing to the limited time and

resources for testing. Utilizing mixed-strength t-way test generation as illustrated in

Figure 1.3, the overall system can be tested for t = 2 and the four mixed-strength

parameters for t = 3. In this case, the overall test suite can be minimized up to 50 test

cases. More explanation on t-way and mixed-strength test suite generation will be

provided in Section 2.3 in Chapter 2.

Figure 1.3 The parameters and their values for CNC software system.

The aforementioned example has illustrated the potential test case minimization

for a simple software with small parameters and values. Considering complex and highly

configurable software system, the number of test cases for testing consideration that can

be larger owing to the presence of many parameters and values (Chaudhuri & Zhu, 1992;

Copeland, 2004; Roper, 2002).

5

1.3 Problem Statements

Software systems are getting more complex owing to the advancement of

computer technologies as well as sophisticated and complex demands from the users.

These complexities are sufficiently intricate and can often cause unwanted quality and

reliability issues amongst the systems components. In this regard, software testing can be

considered to be an essential part of the development process (Bryce et al., 2005) to

ensure that all software requirements specifications have been met (Cohen et al., 2007a).

Although desirable, testing all the possible software inputs exhaustively is

impracticable owing to a common problem in software testing called combinatorial

explosion problem (Cohen et al., 1997; Cohen et al., 1996; Colbourn, 2009; Colbourn,

2011; Tai & Lei, 2002). In real-life, software inputs (parameters and their value

dependencies) are typically very large. For this reason, the configurations for testing

consideration are exponentially expanding with the increased number of software inputs.

Interaction testing (t-way) strategy has been known to successfully reduce the test cases

for testing consideration. However, generating the minimum t-way test set is challenging

because of the potentially large search space. Furthermore, such a problem is also

considered as NP-Complete (i.e. Non-deterministic Polynomial-time) problem (Petke,

2015).

In the last 10 years, researchers have advocated the adoption of meta-heuristic

based t-way strategies in line with the emergence of the new field called Search based

Software Engineering (SBSE). To date, many t-way strategies have been proposed in the

literature such as Genetic Algorithm (GA) (Chen & Chien, 2011; Lopez-Herrejon et al.,

2016; McCaffrey, 2009a, 2010; Sabharwal et al., 2016; Shiba et al., 2004; Srinivas &

Deb, 1994), Simulated Bee Colony (SBC) (McCaffrey, 2009b), Ant Colony Optimization

(ACO) (Chen & Chien, 2011; Chen & Zhang, 2009; Shiba et al., 2004), Simulated

Annealing (SA) (Chen & Chien, 2011; Cohen et al., 2008a; Cohen et al., 2007b; Stardom,

2001), Particle Swarm Optimization (PSO) (Ahmed & Zamli, 2010a; Ahmed & Zamli,

2010b; Ahmed & Zamli, 2011b), Harmony Search (HS) (Alsewari & Zamli, 2012a), Hill

Climbing (HC) (Alsewari et al., 2014; Zamli et al., 2015) and Cuckoo Search (CS)

(Ahmed et al., 2015) to mention a few. Further elaboration on these strategies can be seen

in Section 2.5.

6

Although helpful, no single meta-heuristic based t-way strategies can claim

dominance over their other counterparts. For this reason, the search for a new meta-

heuristic based t-way strategy is still a useful endeavour. Bat-inspired algorithm (BA) is

one of many newly developed meta-heuristic algorithms in the literature. Taking into

account on its superiority over other meta-heuristic algorithms (i.e. GA, SA, HS and PSO)

(Sureja, 2012), the performance of BA can be seen throughout several studies on

optimization problems (Gherbi et al., 2014; Hegazy et al., 2015; Khan & Sahai, 2012;

Senthilnath et al., 2016; Sureja, 2012; Taha et al., 2013; Yang, 2010) (Ali, 2014; Gandomi

et al., 2013; Meng et al., 2015; Nguyen & Ho, 2016; Rakesh et al., 2013; Ramesh et al.,

2013; Rodrigues et al., 2014; Song et al., 2016). Despite its performance owing to

superior exploration (i.e. manipulating in the region close to the best solution so far),

existing BA appears to suffer from lack of diversification (i.e. exploring the solution

space at the global scale). Therefore, the Hamming distance classifier is selected to

enhance the exploration of BA as this method improves the selection of best test candidate

for t-way test suite generation problem (Gonzalez-Hernandez, 2015). Ideally, the

Hamming distance classifier ensures that the highest distance solution in the search space

is selected when there are ties as far as the best candidates of test cases are concerned.

Further elaboration on the superiority of BA and Hamming distance will be elaborated at

the end of Chapter 2.

The fundamental research questions are:

RQ 1. What is the optimum t-way and mixed-strength test suite (i.e. smallest number

of test cases) to be considered for testing?

RQ 2. How effective can the t-way strategy perform the sampling from a large

combinatorial test data?

RQ 3. Will the optimum t-way test suite generated based on the BA algorithm

effectively cover all test configurations to detect interaction bugs?

Given the aforementioned prospects, this thesis presents the design and

implementation of a new meta-heuristic based t-way strategy, called Bat-inspired t-way

Strategy (BTS), for generating mixed-strength t-way test suite. BTS is the first t-way

strategy that adopts BA as its core implementation and exploits the Hamming distance as

the final selection criteria. It is the hypothesis that suggests the adoption of BA is useful

for generating optimum mixed-strength t-way test suite is the main focus of this work.

7

1.4 Research Aim and Objectives

The aim of this research effort is to propose a new t-way test generation strategy

that supports mixed-strength interaction, called Bat-inspired t-way Strategy (BTS),

augmented with Hamming distance classifier. Supporting the aim, the objectives of the

research are:

i. To study the design of BTS strategy for constructing a mixed-strength t-way test

suite.

ii. To model BTS as a research prototype using BA as the backbone search engine

and introduces Hamming distance classifier in order to enhance the exploration

of BA.

iii. To evaluate the test suite size performance of BTS against existing strategies

using well-known benchmarking case studies.

1.5 Research Scope

This research work focuses on the test case generation stage in the software testing

life cycle. Specifically, the research work is to address the mixed-strength t-way

sampling/generation for test execution.

The scope of this research work is limited to the implementation of a t-way test

generation strategy, BTS, taking the Bat algorithm as the core implementation. The

current support interaction strength is set at t = 6 consistent with empirical evidence

(where most (if not all interaction bugs) can all be detected).

The focus of the work is on test planning (i.e. test generation) and not on test

execution. As such, the performance of BTS for mixed-strength t-way test generation is

based on its optimality (in terms of getting the most minimum test suite size).

8

1.6 Operational Framework

The complete research operational framework used throughout this research work

is illustrated in Figure 1.4. Here, the operational framework is divided into three main

stages: literature review, research methodology, and the evaluation stage for the proposed

strategy.

Figure 1.4 The illustration of the operational framework for BTS.

9

The illustrated stages are elaborated to show how the stages are related as follows:

Literature review stage involves identifying the core problem on combinatorial

explosion of test cases. Based on the core problem, the work reviews how the

combinatorial problem is currently being addressed in the literature. Based on the

literature search, state-of-art sampling strategies including t-way interaction testing

strategies are reviewed whereby the research gap is established in terms of the adoption

of BA. From that, the requirement of the research is established to provide the

justification for the adoption of BA.

Research methodology (design and implementation) stage involves finding the

best model for BA implementation. During this stage, it is decided that BTS strategy will

be developed based on “one-test-at-a-time” approach in order to achieve best size

performance. Then, the complete algorithms constructing the BTS strategy are designed

and developed. BTS prototype is be implemented using Java programming language, in

order to support cross-platforms environment (i.e., Mac, Linux, and Windows operating

system).

Finally, evaluation stage involves three main sub-stages: characterization of BTS,

comparative benchmarking and statistical analysis respectively. Characterization and

comparative benchmarking will be performed based on well-known configurations in the

literature (refer to Chapter 4). By using well-known configurations, more objective

comparison can be made amongst different strategies of interests.

1.7 Thesis Organization

The remainder of this thesis is organised into six chapters. The current chapter

gives an overview of software testing including the basics of test case generation. Then,

the t-way test generation strategy has been introduced in line with the new field of Search

Based Software Engineering (SBSE). Finally, the problem statements as well as the

research questions and aim are highlighted.

10

Chapter 2 presents an overview of test case design (or sampling) techniques.

Then, an overview of the mathematical notation used in interaction test generation in

order to elaborate the concept of t-way interaction test generation based on a defined

problem (running example) as well as highlighting the main characteristics of t-way

interaction test generation. Using the characteristics, a survey of existing t-way test

generation strategies is provided including a special case for t-way that is mixed-strength

interaction that corresponds to a sub-strength generation. Towards the end of the existing

t-way survey in Chapter 2, an analysis of existing work is presented, which provides the

requirements and justification for the development of BTS.

Chapter 3 discusses and justifies the detailed t-way test generation design and

implementation for BTS. Here, issues related to the enabling automated test generation

are also explained. Additionally, the prototype implementation is also discussed in order

to highlight its usage.

In Chapter 4, a detailed account for evaluating BTS is presented. Here, the

performance of the BTS strategy will be evaluated. Apart from the performance

evaluation, a comparative study on the effectiveness of test suite generation will be

highlighted using several real-world software test configurations. Additionally, BTS will

also be compared against existing strategies in terms of the number of generated test cases

for t-way and mixed-strength test suite generation.

Finally, the conclusion of this work is given in Chapter 5, where the achievements

and contributions are summarised. Additionally, the main research hypothesis is revisited

and the usefulness of BTS is debated. Conclusions are drawn from the experience gained

from this work and the significance of findings along with considerations for future work.

CHAPTER 2

LITERATURE REVIEW

Common test generation problems have been briefly introduced in Chapter 1

leading towards t-way interaction strategies. Owing to its importance, this chapter

elaborates further on these well-known test case design strategies. Then, a review of the

necessary mathematical notation used for t-way testing is introduced along with the

notation for mixed interaction. Next, an overview of t-way interaction testing, including

the problem of t-way interaction is identified using a mixed interaction running example

along with the interaction tuples coverage mechanism. Towards the end, an analysis and

review of the literature follows the discussion. Finally, the advantages of BA are detailed

out to justify its adoption for BTS implementation.

2.1 The Test Case Design Strategies

Software testing is considered as a planned activity within the software

development life cycle. Before the execution of any test, test engineers need to prepare

the appropriate test suites based on some sampling strategies (as exhaustive testing is

impossible). In the next sub-sections, the well-known test case design strategies are

reviewed highlighting their focus and importance.

2.1.1 Random Testing

Random testing (Duran & Ntafos, 1984) is one of the first test case design

strategies used in software testing. Random testing as the name suggest is trying to

generate random test cases. In some random testing approaches, invalid or unexpected

inputs are randomly selected to reveal the defects. Systematic random testing method

(Antony, 2003; Schroeder et al., 2004; Tseng et al., 2001), uses a probability sampling in

which test cases are selected from the test space using a random staring test case. Then,

12

the rest of the test cases selected based on a sampling interval. The sampling interval is

calculated by dividing the test space size by the needed test cases number. In general,

random testing technique (i.e. systematic random testing) is not effective to use as a test

suite design (or generation) because of the unfair distribution of test cases (Ammann &

Offutt, 1994).

2.1.2 Equivalence Class Partitioning

The equivalence partitioning is used to design test cases for the well-defined

inputs and outputs of software-under-test (Burnstein, 2006). Here, the software inputs are

partitioned into classes that get equivalent treatment. A test case is selected for each class,

considering that all the members of the represented class are treated equivalently by the

software-under-test (Hass, 2008). In such a strategy, equivalence partitioning selects the

test case from each equivalence class. If the selected test case from the equivalence class

reveals a defect, then, the other test cases in the same class should reveal the same defect

(as the test case for the class supposed to be equivalent to any other test case in that class

in theory) (Sharma & Chandra, 2010). Similarly, if the selected test case does not reveal

any defect, the other test cases in the same class should not reveal any defect, in other

words, no further execution for specified class is required. Moreover, if a test case in a

class revealed any defect, the others test data in the same class should not reveal any

defect or vice versa, the defined equivalence classes are considered not correct or valid

for the test execution. In this case, the equivalence classes are re-defined or divided into

smaller classes. However, there is no defined role for selection the values in the

equivalence class. Usually, the values are selected randomly based on the range and

condition for the test parameters. Figure 2.1 illustrates a simple grade converter software

to clarify this technique clearly.

Figure 2.1 A grade converter software.

13

The simple converter software in Figure 2.1 views the corresponding grade letter

for the score entered. The letter depends on the entered value from 0 to 100 as shown in

Table 2.1.

Table 2.1 The grading and their corresponding letters.

Score Grade

80 -100 A

70 - 79 B

60 – 69 C

50 - 59 D

0 - 49 F

As the input value for the score is a numeric value, there are infinite values that

might be tested, in this case, five valid partitions might be selected as follows; 80 to 100,

70 to 79, 60 to 69, 50 to 59 and 0 to 49. Here, the valid partitions also might be to split

into more than one partitions as 0 to 49 could also be further divided into 0 to 25 and 26

to 49. Then, a test case or value is selected from each of the partitions (i.e. 15, 47, 55, 62,

74 and 85) is selected to be tested. Furthermore, other invalid equivalent class partitions

should be defined; one with all the values less than 0 and the second invalid class with

the values over 100. Thus, the test cases for this software based on this technique might

be -5, 15, 47, 55, 62, 74, 85 and 120. However, defects might be occurring at the edges

of equivalence classes (Myers et al., 2011).

2.1.3 Boundary Value Analysis

Boundary value analysis is a test case design technique similar to the equivalence

class partitioning. The test cases in the boundary value analysis are selected similarly to

the equivalence class technique with the present of the representatives of the boundary

values of the edge of equivalence classes as many defects might be occurred on the edges

of equivalence classes (Burnstein, 2006; Myers et al., 2011). Furthermore, the input space

and the output space are being considered in the boundary value analysis. Like

equivalence class partitioning, boundary value analysis has no specific method to achieve

the best test suite design. The boundary value analysis mostly depends on the creativity

of the test engineers to achieve the best test suite for the targeted software-under-test.

14

In such a technique, the range of values is determined. Then, the valid values or

test cases are selected in the edge of each range. Furthermore, invalid test cases are

selected beyond the boundaries of the test space. For example, a system has a range values

from 0 to 100. In this situation, the boundary values 0 and 100 are a valid input to consider

as test cases. Then, two invalid values beyond the selected boundary values are

considered. In this situation, -1 and 101 are selected. Revisiting the grade converter

software in Figure 2.1, the ranges (see Table 2.1) are corresponding to a different letter;

each range is treated similarly as in the example mentioned above. Therefore, the test

engineers must select the upper and the lower value for each boundary value. Thus, the

test cases should be (-1, 0, 1, 48, 49, 50) for the output grade “A.” Here, the test suite for

the grade converter should be (-1, 0, 1, 48, 49, 50, 51, 58, 59, 60, 61, 68, 69, 70, 71, 78,

79, 80, 81, 99, 100, 101).

2.1.4 Cause and Effect Graphing (CEG)

Cause and effect graphing (CEG) (Nursimulu & Probert, 1995) is proposed to

validate a software from its requirements specification. In other words, CEG generates

test cases by transforming software requirements specification natural language into an

acyclic Boolean logic network. This logic network contains two main logical

relationships; inputs (causes), outputs (effects). Then, the constraints among the causes

or effects are represented using a limited-entry decision table. Here, each column within

the decision table represents a test case (Myers et al., 2011; Naik & Tripathy, 2008),

In this technique, test engineer identifies the causes, effects, and limitations

(constraints) from the requirements specification of the software-under-test. Then, an

acyclic Boolean logic network is constructed, that graphically represents the identified

causes, effects as nodes and their constraints. These nodes of causes and effects are

connected with Boolean operators (not, or, and). Next, an identifier for each cause and

effect is assigned. Then, the relationship between causes and effects is assigned. Finally,

the cause and effect graph is transformed into a decision table.

15

For the abovementioned example in Figure 2.1, assuming that the requirements

specification of the “Grade converter” software, the “Mark” field should only accept

numbers and its length should not exceed three digits. In such a case, the software shows

an error message “out-of-range.” Otherwise, the equivalent grade will appear. Hence, the

range of the “Mark” is from 0 to 100. Here, the inputs or causes are as follows; C1: The

mark is from 0 to 49, C2: The mark is from 50 to 59, C3: The mark is from 60 to 69, C4:

The mark is from 70 to 79, and C5: The mark is from 80 to 100 (refer to Table 2.1), C6:

The mark is out-of-range. Whereas, the output or effects are E1: The equivalent grade is

“F,” E2: The equivalent grade is “D,” E3: The equivalent grade is “C,” E4: The equivalent

grade is “B,” E5: The equivalent grade is “A,” respectively. As for, E6: The input is an

out-of-range. Figure 2.2 illustrates the identified causes and effects. In addition, their

relationships.

The Cause and Effect Graphing (CEG) example

C1

C2

C3

C4

C5

E1

E2

E3

E4

E5

E6

If C1, then E1.

If C1 and C6, then E6.

If C2 and not C6, then E1.

If C2, then E2.

If C2 and C6, then E6.

If C1 and not C6, then E2.

If C3, then E3.

If C3 and C6, then E6.

If C3 and not C6, then E3.

If C4, then E4.

If C4 and C6, then E6.

If C4 and not C6, then E4.

If C5, then E5.

If C5 and C6, then E6.

If C5 and not C6, then E5.
C6 ^

^

^

^

Figure 2.2 The CEG for the Example in Figure 2.1.

The next step is to construct the decision table based on the causes and effects.

The first column contains the case based on the causes and effects, then each cell in the

same row field with it corresponding value, the values can as follows; “1” indicates the

inclusion of the reparative case, “0” indicates the exclusion reparative case and “*”

indicates a “don’t care” value. Here, Table 2.2 shows the decision table for Figure 2.2.

The columns TC1, TC2, TC3 represent the test cases that could be used to test the “Grade

Converter” software.

16

Table 2.2 The decision table for the CEG in Figure 2-2.

Case TC1 TC2 TC3

C1 1 0 0

C2 0 1 0

C5 0 0 1

C4 0 0 0

C5 0 0 0

C6 1 1 0

E1 1 1 *

E2 0 0 *

E3 0 0 0

E4 0 0 0

E5 0 0 0

E6 1 0 1

2.1.5 Interaction Sampling

Complementing the strategies highlighted earlier (i.e. systematic random testing,

equivalence class partitioning, boundary value analysis, and cause and effect graphing),

interaction t-way strategy deals with the interaction between the software inputs as faults

could be triggered owing to the interaction itself. The next section and its subsection

elaborate on the mathematical notations as well as fundamental concepts for t-way test

suite generation.

2.2 The Mathematical Notations for t-way Test Suite Generation

Empirical research results indicate that software systems failure is mostly

triggered by interactions among t parameters from (2 ≤ t ≤ 6) (Czarnecki et al., 2012;

Kuhn et al., 2004). Interaction testing is a method capable of constructing the test suite

that covers all t-way parameter-values. Commonly, the mathematical notation for

interaction testing including t-way test generation is driven from algebraic mathematical

properties of inputs and its values based on the Covering Array (CA) and Mixed-level

Covering Array (MCA) notations (Cohen, 2004).

The notation CA has four main parameters, namely, S , 𝑡 , 𝑝 , and 𝑣 (i.e. CA

(𝑆, 𝑡, 𝑃, 𝑣)). CA is a matrix of size S 𝑃. Here, The symbols 𝑡 refers to the interaction

strength, 𝑆 represents the test cases (rows), 𝑃 is known as number of parameters

(columns) and 𝑣 refers to the number of 𝐶𝐴 values for a specific 𝑃 (Kuliamin &

Petukhov, 2011; Yilmaz et al., 2006).

17

CA (𝑆, 2, 4, 3 3 3 3) is equivalent to CA (S, 𝑡, 𝑣𝑃). Hence, for CA (𝑆, 2, 34), it can

be seen as S 4 array that covers the test suite. In this case, the test suite covers t = 2 (or

termed pairwise interaction strength) with three 𝑣 values and four 𝑝 parameters, S is

3 3 = 9 test cases. This case represents the most minimum covering array S (see Figure

2.3 (A)) as shown is Equation 2.1 based on the definition of 𝐶𝐴𝑁 (Hartman & Raskin,

2004b).

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝐴 → 𝐶𝐴𝑁 (𝑡, 𝑣𝑃) = min {∃|𝜆 𝐶𝐴 (S, 𝑡, 𝑃, 𝑣)} 2.1

Nonetheless, systems usually have different values for each of its components.

Therefore, MCA is introduced to represent each component as individual test parameter

as its own values. MCA is indicated by MCA (S, 𝑡, 𝑝, 𝑣1𝑣2, … , 𝑣𝑛). The only difference to

that of CA is that 𝑣𝑛 is specified values for related 𝑃 parameter for every single column

𝑣𝑖 ∈ (1 ≤ 𝑖 ≤ 𝑃) containing elements of the set |𝑣𝑛
∗| = 𝑣𝑛. The row of each submatrix

contains S 𝑡 interaction elements that cover all t-tuples from the related 𝑡 columns at

least once. Similar to CA, MCA can be indicated as MCA (S, 𝑡, 𝑃, 𝑣1
𝑥1𝑣1

𝑥2, … , 𝑣𝑛
𝑥𝑖), where

𝑝 as shown is Equation 2.2.

𝑃 = ∑𝑥n

𝑛

𝑖=1

 2.2

In here, each 𝑥𝑖 parameter has its own 𝑣𝑛 value, for example, a test suite covers

pairwise interaction strength with four 𝑃 parameters, first two parameters have two

values and the rest two has three values. MCA is formulated as MCA (S, 2, 22 32). In

case of the most optimal value of S, MCA is represented as in Equation 2.3 (see Figure

2.3 B) for the most optimal test suite.

MCAN (𝑡, 𝑣1
𝑃1 𝑣2

𝑃2 , … , 𝑣𝑛
𝑃𝑖) = 𝑚𝑖𝑛 { ∃│𝜆 MCA (S, 𝑡, 𝑃, 𝑣1, 𝑣2, … , 𝑣𝑛)} 2.3

In order to clarify the use of a CA and MCA for interaction testing, the reader is

referred the representation of the most optimal test suite for the given example in Figure

2.3 (B).

18

Figure 2.3 The illustration of the mathematical notations.

As this study considered mixed-strength interaction (as variable-strength

interaction only) (Bansal et al., 2015; Cohen et al., 2003a), the mixed-strength Covering

Array (mCA) and mixed-strength Mixed-level Covering Array (mMCA) are following

the same concepts of a CA and MCA with added condition for the mixed-strength

interaction (MC). Referred to as mixed-strength interaction condition, the mCA is

formulated as mCA (𝑆, 𝑡, 𝑣𝑃, {MC}) and mMCA (𝑆, 𝑡, 𝑣1
𝑃1 𝑣2

𝑃2 , … , 𝑣𝑛
𝑃𝑖 , {MC}) ,

respectively, where the condition (MC) is one or more CA or MCA.

For instance, mCA (𝑆, 2, 24, {MC}), where MC = CA (𝑆, 3, 23) (see Figure 2.3

(C)) implies a test size of 𝑆 for t = 2 for all four parameters along with a sub-strength t =

3 for the first three parameters. The interaction elements for the main configuration in the

mCA and the sub-configuration CA (mixed-strength) are combined together to generate a

test suite of size 𝑆 . The running example in problem definition model section gives

further description for the 𝑚𝑀𝐶𝐴 covering array shown in Figure 2.3 (D).

19

2.3 A Problem Definition Model for t-way Test Suite Generation

In order to illustrate how the t-way test generation works, consider the source

code inputs in Figure 2.4 as a running example. For simplicity, we consider a source code

with two Boolean inputs and two arrays each of which has three characters. Here, the

input consists of four parameters; 𝑃1, 𝑃2, 𝑃3, and 𝑃4. 𝑃1 and 𝑃2 have two values each (i.e.

true or false) referred to as, 𝑃𝑖𝑣1 and 𝑃𝑖𝑣2 , respectively. On the other hands, 𝑃3 and 𝑃4

have three values each (i.e. 𝑃3 = {‘<’, ‘=’, ‘>’} relation values, 𝑃4 = {‘+’, ‘-’, ‘*’}

operation values) referred to as, 𝑃𝑖𝑣1, 𝑃𝑖𝑣2 and 𝑃𝑖𝑣3, respectively.

From this point on, the use of “combination” reflects the relation between the

domain-under-test parameters as a set of parameters (i.e. x = { 𝑃1 , 𝑃2 }) (i.e. the

combination of 𝑃1 and 𝑃2 and without their dependency values). The set of parameters-

values (i.e. x = {𝑃1𝑣1 , 𝑃2𝑣1, 𝑃3𝑣1, 𝑃4𝑣1}), is referred to as “configuration” as a set of the

parameter dependencies values. Here, the use of the parameter (𝑃𝑖) refers to which

parameter the value (i.e. 𝑣1, 𝑣2 𝑜𝑟 𝑣3) is related.

Running Example

Input Parameters

Values

 𝑟 𝑟 < +

 𝑎𝑙𝑠 𝑎𝑙𝑠 = -

> *

Figure 2.4 Running example.

Figure 2.4 demonstrates the input parameters, as a set of four parameters.

Assuming that each parameter is triggering a specific action, the system can be tested

based on the four parameters; 𝑃1 , 𝑃2 , 𝑃3 and 𝑃4 , respectively. Each of these four

parameters has its own values (i.e. 𝑃1 = {𝑃1𝑣1, 𝑃1𝑣2}, 𝑃2 = {𝑃2𝑣1, 𝑃2𝑣2}, 𝑃3 = {𝑃3𝑣1,

𝑃3𝑣2, 𝑃3𝑣3} and 𝑃4 = {𝑃4𝑣1, 𝑃4𝑣2, 𝑃4𝑣3}) as seen in Figure 2.5.

20

Input parameters
[]

− − −− −−−−−−−−

Values {

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2

𝑃3𝑣3 𝑃4𝑣3

}

Figure 2.5 The running example parameters and values.

The maximum number of test configurations (exhaustive configurations at t=4)

can be calculated based on the Equation 2.4. Where Pset i and vset i are sets of similar

parameters and values. Thus, the exhaustive configurations consist of 2
2
 × 3

2
 = 36 test

configurations (or cases) as shown in Figure 2.6.

Number of configurations =(vset 1)
Pset 1

×(vset 2)
Pset 2

×,…,(vset i)
Pset i 2.4

Input parameters

[] []

− − − − −−−−−−−− − − − − −−−−−−−−

Values {
𝑃1𝑣1 𝑃2𝑣1

𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

} {𝑃1𝑣2

𝑃2𝑣1
𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

}

− − − −−−−−−−−− − − − − −−−−−−−−

Exhaustive

{

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣1
𝑃3𝑣1
𝑃3𝑣1

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣2
𝑃3𝑣2
𝑃3𝑣2

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣3
𝑃3𝑣3
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣1
𝑃3𝑣1

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣2
𝑃3𝑣2
𝑃3𝑣2

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣1
𝑃1𝑣1
𝑃1𝑣1

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣3
𝑃3𝑣3
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3}

+

{

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣1
𝑃3𝑣1
𝑃3𝑣1

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣2
𝑃3𝑣2
𝑃3𝑣2

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣1
𝑃2𝑣1
𝑃2𝑣1

𝑃3𝑣3
𝑃3𝑣3
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣1
𝑃3𝑣1

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣2
𝑃3𝑣2
𝑃3𝑣2

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣3
𝑃3𝑣3
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3}

Figure 2.6 The exhaustive test suite (at t = 4) for CA(36,4, 22 32).

21

A closer look in Figure 2.6, the parameters can be viewed as columns in a matrix;

𝑃1, 𝑃2, 𝑃3 and 𝑃4, respectively. For column 𝑃1, the value 𝑃1𝑣1 is repeated 18 times then

𝑃1𝑣2 is also 18 times to reach the maximum number of test cases (in Figure 2.6, 𝑃1𝑣1 and

𝑃1𝑣2 are separated for the sake of illustration simplicity), which gives 36 cases in total.

Here, the value repeated 18 times, because there are 36 configurations with 2 specified

values for each. Therefore, 36 configurations are divided by 2 as specified by the

repetition for 𝑃1(18 times). Then, for the column 𝑃2, the value 18 is also divided by the

specified values for 𝑃2 which is 2 (9 times). The value of 𝑃2𝑣1 is repeated 9 times then

𝑃2𝑣2 is also 9 times, Here, both of 𝑃2𝑣1 and 𝑃2𝑣2 are repeated 9 times each. In similar

manner, for column 𝑃3, the values; 𝑃3𝑣1, 𝑃3𝑣2 and 𝑃3𝑣3 are repeated alternately 3 times

each. For 𝑃2 = 9, the repetition is 𝑃3 divided by 3. Finally, for column 𝑃4, 𝑃4𝑣1, 𝑃4𝑣2and

𝑃4𝑣3are repeated alternately until 36 configurations is reached.

Here, to minimize the exhaustive test suite from full interaction strength (t = 4)

in Figure 2.6, consider relaxing the interaction strength to 2-way (or t = 2) for the first

two parameters 𝑃1, 𝑃2. Here, the range of values for (t) is between two (i.e. 2-way) and

exhaustive case (the maximum number of defined parameters). In this case, the

parameters 𝑃3, 𝑃4 values could be treated as “don’t care”, such that the values of 𝑃3, 𝑃4

could be randomly assigned (i.e. 𝑃3𝑣1, 𝑃3𝑣2 or 𝑃3𝑣3 for 𝑃3 and 𝑃4𝑣1, 𝑃4𝑣2 or 𝑃4𝑣3 for

𝑃4). Then, the number of test configurations for 2-way can be calculated based on the

Equation 2.5 yielding 22 = 4 test configurations. For instance, the configurations follows

the set role {𝑃1 , 𝑃2} for all the values (i.e. {𝑃1𝑣1, 𝑃2𝑣1} , {𝑃1𝑣1, 𝑃2𝑣2} ,{𝑃1𝑣2, 𝑃2𝑣1} ,

{𝑃1𝑣2, 𝑃2𝑣2}) (see Figure 2.7 (A), where, “𝑥” refers to “don’t care” values). Then, 𝑃3, 𝑃4

values are added randomly. Using this technique, the number of test configurations for

2-way test suite can be minimized to 4 test cases (see Figure 2.7 (B)).

22

[

Input parameters

[]

− − − − − −− − − − −−

Values {
 𝒗
 𝒗

 𝒗
 𝒗

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

}

− − − − − −− − − − −−
2 −way

interaction
set for
 ,

{

 𝒗 𝒗 𝑥 𝑥
 𝒗 𝒗 𝑥 𝑥
 𝒗 𝒗 𝑥 𝑥
 𝒗 𝒗 𝑥 𝑥

}

]

→

[

Input parameters

[]

− − − − −− − − − −− −

Values {
 𝒗
 𝒗

 𝒗
 𝒗

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

}

− − − − −− − − − −− −
2 − way
test cases

for
 ,

{

 𝒗 𝒗 𝑃3𝑣3 𝑃4𝑣1
 𝒗 𝒗 𝑃3𝑣1 𝑃4𝑣3
 𝒗 𝒗 𝑃3𝑣3 𝑃4𝑣2
 𝒗 𝒗 𝑃3𝑣2 𝑃4𝑣1

}

]

(A) (B)

Figure 2.7 The illustration of the interaction elements set in (A) and the test cases

set in (B) for 2-way interaction strength (at t = 2).

In real world software, it is difficult to point out which software parameter has

insignificant effect or impact on the software. As a matter of fact, considering the impact

of other than 2-way combinations may be needed. Therefore, the t-way test suite must be

generated for all the software parameters to cover all (t) interaction for the software. Thus,

all the possible parameters combinations for 2-way (i.e. (𝑃1, 𝑃2), (𝑃1, 𝑃3), (𝑃1, 𝑃4), (𝑃2,

𝑃3), (𝑃2 , 𝑃4), and (𝑃3 , 𝑃4)) need to be considered. In this example, there are six

possibilities for 2-way interactions combinations need to be considered using similar

method as illustrated for the 𝑃1 , 𝑃2 (see Figure 2.7). Here, there are six sets of

combinations for 2-way interaction configurations, these configurations can be

configured based on the six sets of combinations as follows; set i = {(𝑃1, 𝑃2, 𝑥, 𝑥}, set ii

= {𝑃1, 𝑥, 𝑃3, 𝑥}, set iii = {𝑃1, 𝑥, 𝑥, 𝑃4}, set iv = {𝑥, 𝑃2, 𝑃3, 𝑥} , set v = {𝑥, 𝑃2, 𝑥, 𝑃4} and

set iv = {𝑥 , 𝑥 , 𝑃3 , 𝑃4}. In here, “𝑥” can be randomized based on the values of the

represented parameters.

Essentially, the interaction configurations with the do not care value “x” are called

“interaction elements” (see in Figure 2.8 (A)). Typically, these interaction elements are

growing exponentially when the number of the parameters and their values increases. The

number of interaction configurations can be calculated using the following Equation (see

Equation 2.5 (Colbourn & Dinitz, 2006).

𝐼𝑛𝑡 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑙 𝑚 𝑛𝑡𝑠 𝑠𝑖𝑧 = (
𝑃
𝑡
) 𝑣𝑡 =

𝑃!

𝑡! (𝑃 − 𝑡)!
 𝑣𝑡 2.5

23

[

Input parameters

[]

− − − −− − − −− − −−

Values {

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2

𝑃3𝑣3 𝑃4𝑣3

}

− − − −− − − −− − −−

2 − way
for

 ,

{

𝑃1𝑣1 𝑃2𝑣1 𝑥 𝑥
𝑃1𝑣1 𝑃2𝑣2 𝑥 𝑥
𝑃1𝑣2 𝑃2𝑣1 𝑥 𝑥
𝑃1𝑣2 𝑃2𝑣2 𝑥 𝑥

} (i)

 ,

{

𝑃1𝑣1 𝑥 𝑃3𝑣1 𝑥
𝑃1𝑣1 𝑥 𝑃3𝑣2 𝑥
𝑃1𝑣1 𝑥 𝑃3𝑣3 𝑥
𝑃1𝑣2 𝑥 𝑃3𝑣1 𝑥
𝑃1𝑣2 𝑥 𝑃3𝑣2 𝑥
𝑃1𝑣2 𝑥 𝑃3𝑣3 𝑥 }

(ii)

 ,

{

𝑃1𝑣1 𝑥 𝑥 𝑃4𝑣1
𝑃1𝑣1 𝑥 𝑥 𝑃4𝑣2
𝑃1𝑣1 𝑥 𝑥 𝑃4𝑣3
𝑃1𝑣2 𝑥 𝑥 𝑃4𝑣1
𝑃1𝑣2 𝑥 𝑥 𝑃4𝑣2
𝑃1𝑣2 𝑥 𝑥 𝑃4𝑣3}

(iii)

 ,

{

 𝑥 𝑃2𝑣1 𝑃3𝑣1 𝑥
 𝑥 𝑃2𝑣1 𝑃3𝑣2 𝑥
 𝑥 𝑃2𝑣1 𝑃3𝑣3 𝑥
 𝑥 𝑃2𝑣2 𝑃3𝑣1 𝑥
 𝑥 𝑃2𝑣2 𝑃3𝑣2 𝑥
 𝑥 𝑃2𝑣2 𝑃3𝑣3 𝑥 }

(iv)

 ,

{

 𝑥 𝑃2𝑣1 𝑥 𝑃4𝑣1
 𝑥 𝑃2𝑣1 𝑥 𝑃4𝑣2
 𝑥 𝑃2𝑣1 𝑥 𝑃4𝑣3
 𝑥 𝑃2𝑣2 𝑥 𝑃4𝑣1
 𝑥 𝑃2𝑣2 𝑥 𝑃4𝑣2
 𝑥 𝑃2𝑣2 𝑥 𝑃4𝑣3}

(v)

 ,

{

 𝑥 𝑥 𝑃3𝑣1 𝑃4𝑣1
 𝑥 𝑥 𝑃3𝑣1 𝑃4𝑣2
 𝑥 𝑥 𝑃3𝑣1 𝑃4𝑣3
 𝑥 𝑥 𝑃3𝑣2 𝑃4𝑣1
 𝑥 𝑥 𝑃3𝑣2 𝑃4𝑣2
 𝑥 𝑥 𝑃3𝑣2 𝑃4𝑣3
 𝑥 𝑥 𝑃3𝑣3 𝑃4𝑣1
 𝑥 𝑥 𝑃3𝑣3 𝑃4𝑣2
 𝑥 𝑥 𝑃3𝑣3 𝑃4𝑣3}

(vi)

]

→

[

Input parameters

[]

− − − −− − − −− − − −

Values {

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2

𝑃3𝑣3 𝑃4𝑣3

}

− − − −− − − −− − − −

2 − way
for

 ,

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3

} (i)

 ,

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1}

(ii)

 ,

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3}

(iii)

 ,

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1}

(iv)

 ,

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3}

(v)

 ,

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3}

(vi)

]

(A) (B)

(interaction sets) (test cases sets with duplicates)

Figure 2.8 The running example interaction elements and test cases sets including

randomized values.

To finalize the test suite in Figure 2.8 (B), merging all the 2-way test cases sets

can be considered in order to minimize and eliminate the duplicated test cases so as to

produce a final test suite in Figure 2.9.

24

Input parameters
[]

− − −− −−−−−−−−

Values {

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2

𝑃3𝑣3 𝑃4𝑣3

}

− − −− −−−−−−−−

2 −𝑤𝑎𝑦
𝑡 𝑠𝑡 𝑠 𝑖𝑡

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣1}

Figure 2.9 Merging of all 2-way test sets, Final test suite for CA(11,4, 22 32).

Referring to Figure 2.9, it can be noted that the total test suite has been reduced

from 36 (at full interaction strength t = 4) to 11 (at t = 2), Here, approximately 70%

reduction has been achieved using the “random” based t-way strategy. From this

example, significant test reduction advantage can be observed, which can potentially

minimize the test execution cost and time.

To evaluate the final test suite achieved in Figure 2.9, a coverage analysis of the

2-way elements (or interaction tuples) has to be conducted. This example have six

combinations elements as follows; (𝑃1, 𝑃2), (𝑃1, 𝑃3), (𝑃1, 𝑃4), (𝑃2, 𝑃3), (𝑃2, 𝑃4), and (𝑃3,

𝑃4). Each of these combinations has its own interaction elements (configurations) that

need to be covered at least once by the final test suite. As the strategy described in

previous paragraphs has been based on random selection, non-optimum results have been

produced as some interactions are covered by more than once. The interaction coverage

analysis for 2-way test suite can be seen in Figure 2.10.

25

[

2 − way 2 − way Test suite 𝑜𝑡𝑎𝑙 𝑜𝑓

combinations configurations occurrences occurrences

− − − − −− −−−−−− −−−−−− −−−−−−

(i) , = {

𝑃1𝑣1 𝑃2𝑣1
𝑃1𝑣1 𝑃2𝑣2
𝑃1𝑣2 𝑃2𝑣1
𝑃1𝑣2 𝑃2𝑣2

} → [

3
2
2
4

] = 11

(ii) , =

{

𝑃1𝑣1 𝑃3𝑣1
𝑃1𝑣1 𝑃3𝑣2
𝑃1𝑣1 𝑃3𝑣3
𝑃1𝑣2 𝑃3𝑣1
𝑃1𝑣2 𝑃3𝑣2
𝑃1𝑣2 𝑃3𝑣3}

→

[

2
2
1
2
2
2]

= 11

(iii) , =

{

𝑃1𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃4𝑣2
𝑃1𝑣2 𝑃4𝑣3}

→

[

2
2
1
2
2
2]

= 11

(iv) , =

{

𝑃2𝑣1 𝑃3𝑣1
𝑃2𝑣1 𝑃3𝑣2
𝑃2𝑣1 𝑃3𝑣3
𝑃2𝑣2 𝑃3𝑣1
𝑃2𝑣2 𝑃3𝑣2
𝑃2𝑣2 𝑃3𝑣3}

→

[

2
2
1
2
2
2]

= 11

(v) , =

{

𝑃2𝑣1 𝑃4𝑣1
𝑃2𝑣1 𝑃4𝑣2
𝑃2𝑣1 𝑃4𝑣3
𝑃2𝑣2 𝑃4𝑣1
𝑃2𝑣2 𝑃4𝑣2
𝑃2𝑣2 𝑃4𝑣3}

→

[

2
2
1
2
2
2]

= 11

(vi) , =

{

𝑃3𝑣1 𝑃4𝑣1
𝑃3𝑣1 𝑃4𝑣2
𝑃3𝑣1 𝑃4𝑣3
𝑃3𝑣2 𝑃4𝑣1
𝑃3𝑣2 𝑃4𝑣2
𝑃3𝑣2 𝑃4𝑣3
𝑃3𝑣3 𝑃4𝑣1
𝑃3𝑣3 𝑃4𝑣2
𝑃3𝑣3 𝑃4𝑣3}

→

[

1
2
1
2
1
1
1
1
1]

= 11

]

Figure 2.10 Analysis of 2- way interaction configurations occurrence.

Figure 2.10 shows the interaction coverage analysis for 2-way test suite with the

test suite achieved for all 2-way interaction configurations (given in Figure 2.8 (A))). The

sum of the 2-way interaction configuration occurrences for each configuration must equal

26

the number total number of test cases in the final test suite, which is 11 (i.e. in Figure

2.10, configuration set i, (𝑃1𝑣1, 𝑃2𝑣1 = 3), (𝑃1𝑣1, 𝑃2𝑣2 = 2), (𝑃1𝑣2, 𝑃2𝑣1 = 2), (𝑃1𝑣2, 𝑃2𝑣2

= 4)), the total of occurrence equals 11 occurrences.

In the case of parameters having a different impact on the software (assuming the

defects are caused by the first three parameters), a special case of t-way concept called

mixed-strength interaction can be considered.

Figure 2.11 The mixed-strength interaction demonstration.

Here in Figure 2.11, assuming that overall defects are caused by all 2-way

interactions (main-strength), and the 3-way interactions (sub-strength) between (𝑃1, 𝑃2,

𝑃3), the mixed-strength t-way interaction can be represented as 𝑚𝑀𝐶𝐴(𝑆, 2, 22 32,

𝐶𝐴(𝑆, 3,22 31)) whereby the sub-strength CA represents the mixed-strength condition

(MC).

The 2-way test suite for the overall (main) interaction strength is generated in

Figure 2.9. Now, for the 3-way interaction, assuming that 𝑃4 parameter is having

insignificant effect on the software. (i.e. “don’t care” value)., its parameter can be

randomly generated to take any valid values (𝑃4𝑣1, 𝑃4𝑣2 or 𝑃4𝑣3) each time separately.

In effect, for each combination there are only three selected parameters with one

randomly generated value. Thus, 3-way interaction test suite is considered by using the

set of 𝑃1, 𝑃2, 𝑃3 parameters for t = 3. In this case, the same approach is used to generate

the test suite for 2-way for the first two parameters 𝑃1, 𝑃2 as in Figure 2.7 (B. As a result,

there are 8 test cases for 3-way interaction strength (see Figure 2.12). In this case, the

number of test cases is reduced significantly from 36 to simply 8 test cases for 3-way in

this scenario.

27

Input parameters

[]

− − − − −−−−−−−−

Values {

 𝒗 𝒗 𝒗 𝑃4𝑣1
 𝒗 𝒗 𝒗 𝑃4𝑣2

 𝒗 𝑃4𝑣3

}

− −− − −−−−−−−−

3 −𝑤𝑎𝑦
𝑡 𝑠𝑡 𝑠 𝑖𝑡

{

 𝒗
 𝒗
 𝒗

 𝒗
 𝒗
 𝒗

 𝒗
 𝒗
 𝒗

𝑃4𝑣1
𝑃4𝑣1
𝑃4𝑣2

 𝒗
 𝒗
 𝒗

 𝒗
 𝒗
 𝒗

 𝒗
 𝒗
 𝒗

𝑃4𝑣1
𝑃4𝑣3
𝑃4𝑣2

 𝒗
 𝒗
 𝒗

 𝒗
 𝒗
 𝒗

 𝒗
 𝒗
 𝒗

𝑃4𝑣1
𝑃4𝑣2
𝑃4𝑣3

 𝒗
 𝒗
 𝒗

 𝒗
 𝒗
 𝒗

 𝒗
 𝒗
 𝒗

𝑃4𝑣2
𝑃4𝑣1
𝑃4𝑣1}

Figure 2.12 The 3-way interaction test suite for the first three parameters.

In order to generate the mixed test suite for this scenario, the 2-way test set for

the overall software (see Figure 2.9) is combined with the 3-way test set (sub-strength)

for 𝑃1, 𝑃2, 𝑃3 (see Figure 2.12). Then, the duplicates are removed resulting in 15 test

cases (see Figure 2.13).

Referring to Figure 2.13, the test cases in Figure 2.13 (B) that are marked in bold

text for the 3-way test suite are the ones that are not covered by the overall 2-way test

suite. These test cases are added to the ones in Figure 2.13 (A) to construct the final

mixed-strength test suite shown in Figure 2.13 (C), the rest (of test cases) in Figure 2.13

(B) are the duplicates that have been eliminated.

28

2 − 𝑤𝑎𝑦 𝑡 𝑠𝑡 𝑠 𝑖𝑡 3 − 𝑤𝑎𝑦 𝑡 𝑠𝑡 𝑠 𝑖𝑡 𝑓𝑜𝑟 , , 𝑀𝑖𝑥 𝑑 𝑖𝑛𝑡 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡 𝑠𝑡 𝑠 𝑖𝑡

[

[]
− − − − − −−− −−−−

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣1}

]

+

[

[]
− − − − − −−−−−−−

{

𝑃1𝑣1
𝑃1𝑣1
 𝒗

𝑃2𝑣1
𝑃2𝑣1
 𝒗

𝑃3𝑣1
𝑃3𝑣2
 𝒗

𝑃4𝑣1
𝑃4𝑣1
 𝒗

 𝒗
𝑃1𝑣1
𝑃1𝑣1

 𝒗
𝑃2𝑣2
𝑃2𝑣2

 𝒗
𝑃3𝑣2
𝑃3𝑣3

 𝒗
𝑃4𝑣3
𝑃4𝑣2

 𝒗
𝑃1𝑣2
𝑃1𝑣2

 𝒗
𝑃2𝑣1
𝑃2𝑣1

 𝒗
𝑃3𝑣2
𝑃3𝑣3

 𝒗
𝑃4𝑣2
𝑃4𝑣3

𝑃1𝑣2
𝑃1𝑣2
𝑃1𝑣2

𝑃2𝑣2
𝑃2𝑣2
𝑃2𝑣2

𝑃3𝑣1
𝑃3𝑣2
𝑃3𝑣3

𝑃4𝑣2
𝑃4𝑣1
𝑃4𝑣1}

]

=

[

[]
− − − − − −−−−−−−

{

𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣3
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣3 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣2 𝑃4𝑣1
𝑃1𝑣1 𝑃2𝑣1 𝑃3𝑣3 𝑃4𝑣2
𝑃1𝑣1 𝑃2𝑣2 𝑃3𝑣1 𝑃4𝑣1
𝑃1𝑣2 𝑃2𝑣1 𝑃3𝑣1 𝑃4𝑣1}

]

(A) (B) (C)

Figure 2.9 revisited Figure 2.12 revisited

(11 𝑡 𝑠𝑡 𝑐𝑎𝑠 𝑠) (12 𝑡 𝑠𝑡 𝑐𝑎𝑠 𝑠) (15 𝑡 𝑠𝑡 𝑐𝑎𝑠 𝑠)

Figure 2.13 The test suite for the overall system with the mixed-strength interaction.

29

Referring to Figure 2.13 (C) , the total test suite has been reduced from 36 (at full

interaction strength t=4) to 15 for the mixed-strength example considered (i.e. the two-

way interaction with three-way sub-strength for the first three parameters (𝑃1, 𝑃2, 𝑃3)).

In this case, a reduction of 58.3% has been achieved. Here, the test generated are covering

all the interaction between the parameters and their values giving more focuses on the

first three parameters.

In this example, each of the 2-way and 3-way pair combinations are covered at

least once in the interaction tuples (at least once as evident in their occurrences). Thus,

the solution given in Figure 2.9 and Figure 2.13 (C) for mixed two-way test suite and

mixed-strength test suite are correct. Here, the terms “covered” or “coverage” implies the

“parameter coverage,” All the parameters in this example are covered by the generated

interaction elements. In this manner, interaction elements are the highlighted

configurations in Figure 2.8 without the randomized values (i.e. 37 interaction elements

are generated in the interaction tuples for the set i, ii, iii, iv, v, and vi). Thus, some of the

2-way interaction configurations are covered more than one times after the randomization

process. In this case, the more interaction elements covered for the maximum available

times (occurrences) often prevent optimum test suite (i.e. some of the 2-way

combinations in Figure 2.8 are covered more than once). Ensuring that combinations are

covered once is the key challenges in this research area, in order to get the most optimum

results possible regardless of the value of interaction strength value (t).

As the 𝑡 strength is further relaxed, the reduction of the test suite tends to increase.

For example, the most minimum test suite for 2-way interaction strength in the example

abovementioned is 11 test cases out of 36 test cases in it exhaustive case is achieved for

the main-strength scenario. In the second scenario, a 15 test cases out of 36 is obtained

with variable-strength. It is worth mentioning that 9 and 12 test cases can be achieved as

in the both scenario (called the optimum test suite). In this example, a considerable result

has been achieved. However, as highlighted in Chapter 1, pairwise (i.e. t = 2, as main-

strength) test suite generation is considered to be insufficient to cover (or capture) 100%

of software defects. Therefore, focusing in higher degree of t strength is much desired.

30

Most importantly, this study is using the same concept used in this example with

some modification for the mixed-strength generation. In this study t-way test suite

generation is supported up to six degrees (i.e. 𝑚𝑎𝑥 𝑡 𝑚𝑎𝑖𝑛−𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 6) with the

exception of mixed-strength (or sub-strength) generation that can be represented using

Equation 2.6.

𝑚𝑎𝑥 𝑡𝑠𝑢𝑏−𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = {
𝑃 − 1 , 𝑃 ≤ 6
6 , 6 > 𝑃

 2.6

2.4 Formal Definition for t-way

Building from the running example in the previous section; this section

formalized the terminologies that will be used throughout the thesis. These terminologies

will be extensively adopted in Chapter 3.

Definition 1. A test Element (𝐸) as a synonym for parameter (𝑃) that consists of a set

of values (i.e. 𝐸𝑖 ↔ {𝑃𝑖 = {𝑣1, 𝑣2, … , 𝑣𝑛}}) . Here, the test element E is a

representation of a parameter and their dependencies as a component. The test

element E for parameter 𝑃𝑖 is donated as 𝐸𝑖. For ease of use, as parameters are

disjoint, whereas, each value 𝑣𝑛 refers to a unique parameter. This consideration

allows us to address each value 𝑣𝑛 without referring to its parameter.

Definition 2. An Element Set (ES) that contains the test element of the software-under-

test. Here, the ES for the running example is:

𝐸𝑆 = the value sizes for {𝐸1, 𝐸2, 𝐸3, 𝐸4}

Definition 3. The Element Combination (EC) (known as a t-tuple element) that contains

the t-based pairing combination for the ES, here each EC∈ [E. 𝑠 𝑙, E. 𝑠 𝑙̅̅ ̅̅], where

𝐸. 𝑠 𝑙 and 𝐸. 𝑠 𝑙̅̅ ̅̅ imply the state of selected and not selected element from ES

respectively. Here, the selected elements are ticked (see 2.14), which shows an

illustration of complete 2-way tuple selection used in the running example.

31

[

𝐸𝑆 ∶ 𝐸1 𝐸2 𝐸3 𝐸4
EC 1:

EC 2:

EC 3:

EC 4:

EC 5:

EC 6:]

Figure 2.14 The element t-tuple sets dominastration.

Definition 4. The Combinations t-Tuples Set (CTS) that is a list contains all the valid

combination elements. For example, the in case of pairwise interaction, CTS =

{EC 1, EC 2, EC 3, EC 4, EC 5, EC 6}, Figure 2.15 illustrates the CTS, these EC

sets in CTS will use to generate all required interaction elements that cover all the

test suite.

[

𝐸𝐶 1 = {𝐸1, 𝐸2}

𝐸𝐶 2 = {𝐸1, 𝐸3}

𝐸𝐶 3 = {𝐸1, 𝐸4}

𝐸𝐶 4 = {𝐸2, 𝐸3}

𝐸𝐶 5 = {𝐸2, 𝐸4}

𝐸𝐶 6 = {𝐸3, 𝐸4}]

Figure 2.15 The combinations t-tuples set (CTS) list illustration.

Definition 5. Interaction Element Tuples (IET). At based interaction element (IE)

configurations set that each set covers an EC values. Each set of tuples in IET ∈

[𝑣. 𝑠 𝑙, 𝑣. 𝑠 𝑙̅̅ ̅̅], representing all the 𝑖 configurations driven by the generation of

the combination dependencies on CTS list. Formally, IET is number of

configurations sets that covers all CTS for the domain targeted. Each generated

EC set in IET represent an “element t-tuple”. For example, let’s consider the

demonstration for one EC (i.e. EC 1). Here, all the possible values for the test

element 𝐸1 and 𝐸2 are considered. Unlike, 𝐸3 and 𝐸4 are considered as “don’t

care” values (see Figure 2.16).

32

[

IE 1 = {𝑃1𝑣1, 𝑃2𝑣1, 𝑥, 𝑥}

IE 2 = {𝑃1𝑣1, 𝑃2𝑣2, 𝑥, 𝑥}

IE 3 = {𝑃1𝑣2, 𝑃2𝑣1, 𝑥, 𝑥}

IE 4 = {𝑃1𝑣2, 𝑃2𝑣2, 𝑥, 𝑥}]

Figure 2.16 The illustration for IE set for EC 1 tuple in IET.

The example in the problem definition model section has six different valid t-

tuple, or element combinations (EC) are indicated as ticked () in Definition 3. The

unselected elements are empty. In Definition 4, EC sets are formulated based on the EL

list that defined the components of the software-under-test from Definition 2. Then, these

EC sets is combined in a CTS set in order to generate the IE sets that construct IET

Definition 5 for test suite generation process. To elaborate, each EC formulates its own

representative IE set, combining all of the IE sets generated by the element t-tuples

formulates IET. In the running example, The IET set is constructed based on six EC (or

called parameter combinations) sets, each of which has its own unique interaction

configurations. Each IE set in IET can be calculated using the Equation 2.7.

𝐼𝐸 𝑠𝑖𝑧 = (𝑣𝐸𝑖)! 2.7

Next, the element E1 and E2 values are constructing the IE set for EC1 above-

mentioned. Thus, the size of IE set for EC1 based on the Equation 2.7 is 2 × 2 = 4 IE in

this case (i.e. 𝑣𝐸1 = 2 𝑎𝑛𝑑 𝑣𝐸2 = 2).

Definition 6. In order to optimize the IE sets in IET, that covers all the possible EC sets

in CTS for the targeted software-under-test using BA, an objective function

(𝑓(𝑥)) for optimizing IET need to be identified. This objective function can be

specified as follows;

𝑓(𝑥) = ∑ 𝑦 𝑐𝑜𝑣 𝑟𝑠 𝐼𝐸

𝐼𝐸𝑇 𝑠𝑖𝑧𝑒

𝑛=1

2.8

 , 𝑤ℎ 𝑟 𝑦 = {𝑣𝐸1 , 𝑣𝐸2 , … , 𝑣𝐸𝑖}; 𝑖 = 1, 2, … ,𝑁

The 𝑓(𝑥) is coverage function, 𝑓(𝑥) uses to evaluate the fitness of the covering

IE by each generated solution (or test candidate (𝑦)). 𝑦 symbol implies a set of decision

values (𝑣𝐸𝑖) constructed based on the N, N implies an index representing a reference of

the generated values of 𝐸𝑖 in ES. IET size indicates the total number of IE in IET.

33

2.5 The Existing t-way Strategies

This section highlights the well-known t-way test suite generation strategies.

Here, following the scope of this work, algebraic strategies (i.e. Orthogonal Arrays (OA)

(Bush, 1952; Cheng, 1980; Mandl, 1985), CA, and MCA) (Cohen et al., 1994; Cohen,

2004; Williams, 2000; Williams & Probert, 1996) are not discussed further than the

briefly description of CA and MCA used in the mathematical notation section (see

Section 2.2), as these strategies are available for limited configurations (Cheng, 1980; Yu

et al., 2008). In similar manner, our analysis also omit several of the greedy based

strategies that only support low interaction strength (i.e. In Parameter Order (IPO) (Lei

& Tai, 1998), the Orthogonal Array Based Testing Strategy (OATS) (Krishnan et al.,

2007), G2Way (Klaib et al., 2008), IRPS (Younis et al., 2008b; Younis et al., 2010),

ITTW (Younis & Zamli, 2009a), Reverse Tracking Strategy (RTS) (Younis & Zamli,

2009b), AllPairs (Bach, 2002), ReduceArray2 and ReduceArray3 (Daich, 2003),

rdExpert (Copeland, 2004), SmartTest (Inc., 2014), ORA (Younis et al., 2008a), PS2Way

(Khatun et al., 2011), MT2Way (Rabbi et al., 2012) and EPS2Way (Rabbi et al., 2011)).

The scope of this work focuses on high interaction strength (i.e.3< t ≤ 6).

Indeed, a number of surveys have been conducted in the last two decades. As a

matter of fact, Cohen (Cohen, 2004) has surveyed the interaction test generation

strategies into two main classifications, which are algebraic frameworks (i.e. OA, CA,

MCA) and computational techniques including greedy algorithms frameworks, IPO,

algebraic tools (i.e. TConfig (Williams et al., 2003), Combinatorial Test Services (CTS)

(Hartman & Raskin, 2004a)), heuristic search (i.e. HC) and meta-heuristic search (i.e.

SA, Great Deluge Algorithm, Tabu search (TS) and GA). Concerning meta-heuristic

search, McMinn (McMinn, 2004) surveys the meta-heuristic search strategies including

HC, SA, GA and Evolutionary Algorithms.

Well ahead, Grindal (Grindal et al., 2005) surveyed the interaction test generation

based on three main groups, the first group is non-deterministic (probabilistic) where the

test suite is varying in each run (i.e. Automatic Efficient Test Generator (AETG) (Cohen

et al., 1994) and CATS (known as TestCover) (Sherwood, 1994, 2003)) as a heuristic

non- deterministic method. Then, deterministic group with three subgroups that includes

instant (i.e. OA (Mandl, 1985) and CA), iterative (i.e. Each Choice also known as 1-way

(Ammann & Offutt, 1994), Partly Pair-Wise (PPW) (Burroughs et al., 1994), Base Choice

34

(BC) (Ammann & Offutt, 1994), default testing (Burr & Young, 1998) and Anti-random

(AR)(Malaiya, 1995)), and parameter-based strategies (i.e. IPO). Lastly, the last group

is the compound strategies (i.e. BCAETG), which is a compound of BC and AETG.

Most importantly, Nie (Nie & Leung, 2011) highlighted a survey that specifically

highlighted mixed-strength interaction strategies. Building from Nie and Leung, Othman

(Othman et al., 2013) proposed a critical survey and analysis based on the main support

for t-way test generation strategies (i.e. supported interaction, computational

implementation, automation support, strategy approach, and deployment). Othman

surveys and analysis includes several strategies such as In-Parameter-Order-General

(IPOG) and its variants, Modified IPOG (MIPOG), ParaOrder, ReqOrder, AETG, Test

Case Generator (TCG), Jenny, Pairwise Independent Combinatorial Testing (PICT), Test

Vector Generator (TVG), SA, GA and Variable Strength Particle Swarm Test Generator

(VS-PSTG), Union and Greedy strategy, Generalized T-Way Test Data Generator

(GTWay), Density based Strategies and TConfig. Recently, Jimena Adriana (Timaná-

Peña et al., 2016) reviewed the state-of-art metaheuristic algorithms and their

applications. Jimena Adriana review covered most of the well-known metaheuristic

algorithms, which includes; SA, TS, GA, ACO, PSO, and HS algorithms.

In another work, Dias Neto (Dias Neto et al., 2007), Afzal (Afzal et al., 2009) and

Ali (Ali et al., 2010) systematically reviewed a handful of t-way test suite generation. Al-

Sewari and Zamli (Alsewari & Zamli, 2014), Khalsa and Labiche (Khalsa & Labiche,

2014) analyse many strategies in their orchestrated survey. While Cohen, Grindal,

McMinn, Othman, Jimena Adriana, Dias Neto, Afzal, Al-Sewari and Zamli Khalsa and

Labiche have surveyed and analysed the state-of-the-art available t-way test suite

generation strategies at the period of their work, their work has not considered recent

developments especially on the application of newer meta-heuristic based strategies.

Thus, this work extends existing reviews and surveys to include and highlight handful of

a newly developed of t-way strategies.

The key aspect discussed in this section is to observe the strength and limitation

of the existing strategies in terms of the interaction strength degree supported and the

method used to generate test suite in addition to the support of mixed-strength interaction.

Here, the strategies are classified based on the consistency of the output (test suite

generated) to two main groups; deterministic (i.e. the same test suite in each run) and

35

non-deterministic (or probabilistic whereby different test suite are generated in each run

owing to the randomness behaviour of test selection) t-way strategies (see Figure 2.17).

Deterministic
strategies

Probabilistic
strategies

Te
st

 s
u

it
e

ge
n

er
at

io
n

Test suite

- test case

Test suite

…
Accept or

reject
- test case

- reject

Figure 2.17 The illustration of the deterministic and probabilistic process.

The following sub-sections fulfil the main aspect in this section by highlighting

existing t-way test suite generation strategies based the output of the test suite into two

main categories, which are the deterministic and probabilistic t-way test suite strategies.

Furthermore, following the scope of this work (to design, implement and evaluate a t-

way strategy based in swarm meta-heuristic algorithm, which is BA) the second category

is divided into seven groups as well.

2.5.1 Deterministic t-way Test Suite Generation Strategies

In this sub-section, the first category, the deterministic strategies, of the t-way test

generation strategies is discussed. All the t-way strategies in this category considered to

be greedy strategies except TConfig (Williams et al., 2003) which can also be considered

as algebraic and greedy strategies (i.e. TConfig uses several methods of test suite

generation). These strategies considered to be flexible for test generation, however, the

optimum test suite is mostly not achievable for most of the configurations in this category.

2.5.1.1 Greedy Strategies

To start with, TConfig (Williams et al., 2003) uses two different generation

algorithms to construct its test suite; the first algorithm is recursive block method.

Recursive block method generates test suite using algebraic approach, which means

mathematical formula involves to generate t-way test suite, it contains an algorithm to

36

generate orthogonal arrays (OA) to initial blocks for the large covering array (Sherwood

et al., 2005). in this method, the t-way test suite is generated by constructing a covering

arrays from orthogonal arrays based on mathematical specifications (Williams, 2000;

Williams & Probert, 2002). Unlike Recursive block, the second methods implore a

modified IPOG strategy (Lei et al., 2007) to generate a high t-way strength interaction.

As IPOG (Lei et al., 2007) is essential for TConfig, IPOG is a generalization the

pairwise approach used in IPO (Lei & Tai, 1998). A number of t-way strategies have been

developed based on the concepts of IPOG (i.e. IPOG-D (Yu et al., 2008, 2009), IPOG-F

(Forbes et al., 2008) ,MIPOG (Younis & Zamli, 2010b; Younis & Zamli, 2011), MC-

MIPOG (Younis & Zamli, 2010a) and ParaOrder (Wang et al., 2008)), which called

IPOG family use a vertical and horizontal extension similar to IPO. The test suite

generation process starts with building the pairwise tests for the first parameter then

extend to the other parameters and so on until all the parameters are covered. When the

horizontal extension is not possible, the uncovered interactions are covered using a

vertical extension. If needed. IPOG family supports high interaction strength (i.e. t ≤ 6)

except MIPOG that supports interaction strength up to 12. Unlike MIPOG, ParaOrder

(Wang et al., 2008) only provides the support up to 3 interaction strength (i.e. t ≤ 3). On

a positive note, ParaOrder allows prioritization of t-way interaction for its horizontal

extension. The extended parameter for ParaOrder strategy is decided based on a number

of values (i.e. parameter with the higher number of values will be extended first).

However, only IPOG, IPOG-F, and ParaOrder supports mixed-strength interaction.

Unlike IPOG, TConfig does not support for mixed-strength interaction.

Jenny (Pallas, 2003) adopts a greedy algorithm to generate t-way test suite. Jenny

starts with 1-way generation, then, proceeds with two-way generation up to nth-way

specified by the user to cover all the test interactions. Jenny does not support mixed-

strength interaction. Complementing Jenny, IBM Intelligent Test Case Handler (ITCH)

(Hartman et al., 2005), was developed by IBM Haifa and Watson Research Laboratories.

ITCH considered being an improvement of Combinatorial Test Services (Hartman &

Raskin, 2004a) which only support two-way interaction. ITCH gives the user the ability

to control the test suite size. ITCH uses an exhaustive search algorithm to generate t-way

test suite up to 4 interaction strength. There is no evidence in the literature as to whether

or not ITCH supports mixed-strength interaction.

37

Another strategy is GTWay (Klaib, 2009; Klaib et al., 2008; Klaib et al., 2015).

GTWay employed three algorithms to generate t-way test suite. The first algorithm is a

parser algorithm that constructs the SUT parameters and values as symbolic

representation pairs to be used for t-way configurations generation. Then, the t-way pair

generation algorithm generates the t-way interactions based on the configuration pairs

from the parser algorithm. Finally, the backtracking algorithm generates the t-way test

suite by iteratively combining the parameters values in the interaction tuples generated

by the t-way pair generation algorithm. GTWay does not support variable-interaction.

GTWay meant to address a high interaction strength (i.e. t < 12).

2.5.2 Probabilistic t-way Test Suite Generation Strategies

In this section, the second category, the probabilistic t-way test generation

strategies are discussed. Given the effectiveness of probabilistic-based strategies than its

deterministic counterparts in term of test suite reduction, it is not surprising that many

researchers are focusing more on probabilistic approach. As t-way test suite generation

can be viewed as a combinatorial optimization problem, many strategies for t-way test

suite generation has emerged based on a meta-heuristic algorithm (i.e. GA, CS, HS, PSO,

SA, and HC) as the backbone search engine. As the name suggests, meta-heuristic

algorithm is dedicated algorithm to find the most optimal result for the targeted domain,

which in this case test suite generation.

In the following sub-sections, the probabilistic t-way strategies are grouped and

briefly elaborated based on the main generation technique used for minimizing the test

suite. These strategies can be divided into seven groups based on the method of

optimization process as follows; Greedy, Evolutionary, Simulated Annealing, Harmonic,

Stochastic, Tabu, and Swarm strategies. Here, some of the well-known pairwise strategies

will be covered as this category follows the scope of this work, as BA is categorized as

swarm based optimization algorithm (Yang, 2014; Yang & Gandomi, 2012). Thus, some

of the swarm optimization based pairwise strategies are also included.

38

2.5.2.1 Greedy Strategies

This section describes the probabilistic greedy strategies as an effort to

complement the review of greedy strategies for the deterministic category.

AETG (Cohen et al., 1997; Cohen et al., 1994) can be considered as a pioneer

strategy for t-way test reduction. AETG, developed by Cohen (Burr & Young, 1998;

Cohen et al., 1997; Cohen et al., 1994; Dalal et al., 1999; Dalal et al., 1998; Ellims et al.,

2008), uses a greedy algorithm. AETG considered to be the first t-way test generation

that is commercially available (Cohen, 2011). In this strategy, an empty test suite is

defined. Then, ATEG starts its generation process. In each iteration, ATEG generates a

set of test cases. Here, the best test case that covers the maximum number of the

uncovered interaction elements (t-way interaction tuples) is selected and added to the test

suite. AETG does not support mixed-strength interaction, and there is no published

evidence to high interaction support (i.e. t equals 4, 5, or 6). Concerning implementation,

AETG provides a reusable software component. For this reason, several variants of

AETG have been developed including mAETG (Cohen, 2004) and mAETG_SAT

(Cohen et al., 2007b). mAETG is the AETG modification strategy that supports mixed-

strength interaction. In addition to mAETG, Myra (Cohen, 2004) modified Test Case

Generator (TCG) (Tung & Aldiwan, 2000) called mTCG. TCG considered being an open

source variant of AETG. Generally, both TCG and mTCG improve the performance of

the original AETG.

Similar to AETG, Test Vector Generator (TVG) (Arshem, 2003) implements a

public domain strategy supporting t-way test suite generation (as TVG claimed to be

ATEG variant). TVG exploits three algorithms namely, T-reduced algorithm, Plus-one

algorithm, and Random sets algorithm for t-way generation. Although useful, not much

information can be implied as the details implementation has not been made available in

the literature. TVG generates test suite with a high value of interaction strength (i.e. t ≤

6). TVG also addresses mixed-strength interaction.

39

Another well-known strategy, PICT (Czerwonka, 2006; Othman et al., 2013) is

a public t-way strategy developed by Microsoft. This strategy is able to generate a t-way

test suite that supports mixed-strength interaction. By generating all the interaction tuples

then matching the interaction combinations with their test cases randomly, PICT often

generates non-optimal results.

Finally, Classification-Tree Editor eXtended Logics CTE-XL (Lehmann &

Wegener, 2000) is a t-way test suite generation strategy based on Classification-Tree

Method (CTM). Here, CTE-XL uses the CTM approach to classify the test data into

classes based on the test specifications. The test cases are generated by classes from

different classifications. CTE-XL has been enhanced through the time (Yu et al., 2003).

However, CTE-XL supports low interaction strength (i.e. t ≤ 3). There is no support for

mixed-strength interaction.

2.5.2.2 Evolutionary Strategies

Evolutionary strategies, as the name suggest, is based on the evolutionary

metaheuristic algorithms such as GA, genetic programing and evolutionary programing

(Afzal et al., 2009; Bansal et al., 2015; Bryce & Colbourn, 2007; Shiba et al., 2004;

Sthamer, 1995). These strategies are derived from the survival behaviour of the fittest

individuals (natural selection process). Usually, these strategies use selection, crossover,

mutation and replacement as their test suite generation process. They start with a set of

test cases candidates that processed to generate a subset of the test cases (test suite) with

the highest covering value. Generally, evolutionary strategies start with randomly

generated test candidates that reflect chromosomes construction. Then, the chromosomes

are processed. In each cycle, a crossover and mutation processes are undergoing to meet

the best fitness of the predefined function. The best fitness chromosomes are considered

to be the optimum test suite.

Several evolutionary strategies have been proposed including PWiseGen (Flores

& Cheon, 2011), G-PWiseGen (Sabharwal et al., 2017), PWiseGen-GM (Sabharwal et

al., 2015), Pairwise test set generator using genetic algorithm (PTSG-GA)(Sabharwal et

al., 2016), PWiseGen-VSCA (Bansal et al., 2015), GA-Huang (Huang et al., 2010),

Genetic Algorithm for Pairwise Test Sets (GAPTS) (McCaffrey, 2009a, 2010), QICT

(McCaffrey, 2009c), Weight-Based GA (WBGA) (Wang et al., 2013), Nondominated

40

Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002), A cellular genetic algorithm

for multi-objective optimization (MOCell) (Nebro et al., 2009), A Parallel Genetic

Algorithm based on Spark (PGAS) (Qi et al., 2016), and Evolutionary Genetic Algorithm

(EGA) (Lopez-Herrejon et al., 2016). Mostly, the existing evolutionary strategies are

capable of generating the low value of uniform interaction strength (i.e. t ≤ 3) with the

exception of G-PWiseGen which higher interaction strength (i.e. t ≤ 4). Here, PWiseGen-

VSCA is the only GA-based strategy that covers mixed-strength interaction although

supporting low interaction strength (i.e. t ≤ 3).

2.5.2.3 Simulated Annealing Strategies

Unlike evolutionary strategies, Simulated Annealing (SA) strategies (Bryce &

Colbourn, 2007; Cohen et al., 2007b; Cohen et al., 2008b; Stardom, 2001) (Chen &

Chien, 2011; Cohen et al., 2007b) adopt SA as the base of their test suite generation. SA

strategies use a stochastic optimization method in general. Specifically, SA strategies are

based on the metals annealing process, which use to obtain materials that are more

resilient and possess better qualities for industry applications. Basically, this process start

with melting the material at a specific temperature to reach its liquid state, in order to

increase this material atoms mobility within the structure. Then, a cooling process

undergoes until the temperature reaches a stopping condition. By each cooling process,

the atoms lose their mobility to achieve thermal equilibrium at the end of the process.

Thus, a highly stable material structure is produced. SA strategies rely on generating

highly random test candidates, which are accepted based on probability-based

transformations equations. Here, in each iteration, test candidates are checked to ensure

the test candidate covers the highest number of t-tuples when it reaches the highest

possible, a cooling schedule is applied. Then, the transformation is accepted. The

candidate that covers largest number of t-tuples is selected and added as a test case.

Finally, a test suite is generated at the end of the iterations.

Several SA strategies have been developed including SA-Mayer (Mayer

implementation of SA) SA_SAT (Cohen et al., 2007b; Cohen et al., 2008b), Augmented

Simulated Annealing (ASA) (Cohen et al., 2003b), These strategies often adopt binary

search algorithm to generate the test suite. Recent work includes SA-H (George, 2012)

and the Simulated Annealing algorithm for constrained Combinatorial interaction testing

(CASA) (Garvin et al., 2009; Garvin et al., 2011) and the improved CASA (tCA)

41

(Haslinger et al., 2013). These strategies support low value of interaction strength (i.e. t

≤ 3). Another strategy, SA-Bryce (Bryce implementation of SA) (Bryce & Colbourn,

2007) and EDIST-SA (Rahman et al., 2015) demonstrates a 4-way interaction strength

support. The Improved SA (ISA) (Torres-Jimenez & Rodriguez-Tello, 2012) employ a

binary alphabet algorithm to cover a high interaction strength (i.e. t ≤ 6). Recently, a

hybrid Simulated Annealing Variable Neighbourhood Search (SAVNS) (Rodriguez-

Cristerna et al., 2015) that is an improved version of SA-VNS (Rodriguez-Cristerna &

Torres-Jimenez, 2012), employs SA with the variable neighbourhood search function to

construct mixed-strength interaction up to t = 5. Similar to SAVNS, SA-Mayer,

SA_SAT, and ASA are supporting mixed-strength interaction as well.

2.5.2.4 Harmony based Strategies

Harmony based strategies (Alsewari & Zamli, 2012a; Bao et al., 2015; LI et al.,

2013; Xiang et al., 2015) are based on the musical improvisation process employed in the

harmony search algorithm. Harmonic strategies use global and local search to construct

test suite. Here, Harmony Search Strategy (HSS) (Alsewari & Zamli, 2012a) considered

being the state-of-are of harmonic strategies. HSS is an extended version of the Pairwise

Harmony Search Strategy (PHSS) (Alsewari & Zamli, 2012b). Harmonic strategies adopt

two probability values (i.e. the considering rate and pitch adjustment rate). Here, global

search is iteratively performed by randomizing values in the Harmony memory whereby

the local best value can be selected given a considering rate probability. Here, the local

best value can be considered for improvements for further improvements in the local

search (i.e. with pitch adjustment probability). Upon completing each iteration, the best

value will be added to the final test suite until all pairwise interactions are covered. PHSS

and the Harmony Search-Pairwise Test Suite Generator Tool (HS-PTSGT) (Xiang et al.,

2015) are supporting only pairwise interaction strength, in contrast, Improved HS (IHS)

(Bao et al., 2015) supports up to 6. on the other hand, HSS and Harmony Search Test

Suite Generator (HSTSG) (LI et al., 2013) are supporting mixed-strength interaction and

high interaction strength (i.e. t ≤ 7 and t ≤ 15, respectively) as well.

42

2.5.2.5 Stochastic Hill Climbing Strategies

Stochastic (Hill climbing) strategies (Alsewari et al., 2014, 2015; Bryce &

Colbourn, 2007; Cohen et al., 2003a; Nasser et al., 2014; Stardom, 2001; Zamli et al.,

2015) is based on the hill climbing algorithm. Essentially, hill climbing constructs a test

suite using a very simple method based on a series of transformations. Generally, hill

climbing based strategies start with a random test case that evaluated based on the number

of interaction sets that is not covered. Then, in the next iteration, a transformation for the

current test case is processed where one of it parameters value is randomly regenerated

based on the values in that position. This process continues until all the interaction sets

are covered. Several strategies have been developed using based on the hill climbing

including HC-Bryce (Bryce & Colbourn, 2007) that covers considerable interaction

strength (i.e. t ≤ 4) and the Late Acceptance Hill Climbing (LAHC) strategy (Alsewari et

al., 2014, 2015; Nasser et al., 2014; Zamli et al., 2015) that employ a memory that is

randomly initial as a population of test cases. LAHC support mixed-strength interaction

as well as a high interaction strength (i.e. t < 6).

2.5.2.6 Tabu Strategies

Tabu strategies (Bryce & Colbourn, 2007; Zamli et al., 2016; Zekaoui, 2006) are

based on Tabu Search (TS). TS can avoid help to reduce the possibility of falling local

minimum, Specifically, TS uses a temporary memory (tabu list) to avoid returning to past

solutions. Several strategies have evolved based on TS including TS-Bryce (Bryce &

Colbourn, 2007), TSA (or MiTS) (Gonzalez-Hernandez, 2015; Gonzalez-Hernandez et

al., 2010), PAT (or POT) (Zekaoui, 2006) and High Level Hyper-Heuristic (HHH)

(Zamli et al., 2016). Unlike TS-Bryce and PAT which support only for small interaction

strength (t ≤ 4), HHH and MiTS address the full support until t ≤ 6. Unlike other

strategies, HHH adopts TS to leverage on the strength of four other algorithms for better

test suite generation. MiTS is the only strategy that provides the support for mixed-

strength interaction.

43

2.5.2.7 Swarm Strategies

Swarm strategies (Ahmed et al., 2014; Ahmed & Zamli, 2010a; Ahmed et al.,

2012b; Chen et al., 2010) mimic the behaviour or movements of organism swarms in

nature (i.e. ants, bees, shoals of fish or flocks of birds). Several strategies have been

implemented based on many optimization algorithms (e.g., Particle Swarm Optimization

(PSO), Simplified Swarm Optimization (SSO), Ant Colony System (ACS), Ant Colony

Optimization (ACO), Artificial Bee Colony (ABC), Simulated Bee Colony (SBC) and

Cuckoo Search (CS)). Notably, PSO appears to be the most popular swarm based

optimization algorithm adopted for t-way test generation.

Many strategies employ PSO for test suite generation (Ahmed & Zamli, 2010a;

Ahmed et al., 2012b; Chen et al., 2010). These strategies took an advantage of the local

and global search performed by PSO to construct optimal test suite including PSO-Chen

(Chen et al., 2010), TDGen_PSO (Mao et al., 2012), Discrete Particle Swarm

Optimization (DPSO) (Jia-Ze & Shu-Yan, 2012) and Pairwise Particle Swarm Test

Generator (PPSTG) (Ahmed & Zamli, 2011a) are strategies that are proposed for

pairwise test suite generation. PPSTG is then improved to a t-way strategy (i.e. Particle

Swarm Test Generator (PSTG) (Ahmed & Zamli, 2010a; Ahmed et al., 2012b) and

Variable Strength Particle Swarm Test Generator (VS-PSTG) (Ahmed & Zamli, 2011b)).

Recently, a new implementation of PSO that uses fuzzy logic to tune the its heuristic

parameters called FSAPSO (Mahmoud & Ahmed, 2015) has been proposed. In addition,

SITG (Rabbi et al., 2015) has introduced a new t-way strategy based on PSO. SITG,

PSTG, VS-PSTG and FSAPSO support ideal interaction strength (i.e. t ≤ 6). On other

note, VS-PSTG supports mixed-strength interaction as it implemented for this reason.

Similarly, the SSO adopts a simplified version of PSO (also known as Many

Optimization Liaisons (MOL)) (Ahmed et al., 2014). SSO strategy merely supports low

interaction (i.e. t ≤ 3). Based on this idea, many swarm strategies have emerged such as

bees-based strategies which include, Bees Algorithm (BA*) strategy (Zabil & Zamli,

2013a; Zabil & Zamli, 2013b; Zabil et al., 2012), Artificial Bee Colony (ABC) (Mala &

Mohan, 2009), Artificial Bee Colony-Covering Array Generator (ABC- CAG) (Bansal et

al., 2016) and Simulated Bee Colony (SBC) (McCaffrey, 2009b). These strategies

employ a bee family algorithm, which considered as a swarm algorithm. Generally, these

algorithms based on the foraging (search for food) behaviour of bee colonies. Here, the

44

test cases represented as bees. The test suite generation starts with the random population

for scout bees that search for a food source. The paths that bees visited are evaluated. The

bees that cover the highest number of t-tuples by each iteration are selected to be a part

of the test suite. BA shows high strength support (i.e. t ≤ 10). Unlike ABC, ABC- CAG

and SBC, that only support low interaction strength (i.e. t = 2).

Another type of swarm strategies are ants-based strategies (Chen & Chien, 2011;

Chen & Zhang, 2009; Shiba et al., 2004), these strategies based on the forging behaviour

of ant colonies. They employ the Ant Colony System (ACS) (Dorigo et al., 1989; Drigo

et al., 1996) algorithm in general and its variant (i.e. Ant Colony Optimization

(ACO)(Dorigo et al., 2006)) later on. Ants-based strategies simulate the communication

that ants use to determine the shortest route between their colony location (starting

location) and food sources. The test cases in these strategies are represented as a route

from a start point to an end point (target). In other words, each test cases and its

interaction coverage are combined into one element, called path. The quantity of

pheromones left in each path visited by ants reflects the quality of the solution. The path

with the largest quantity of pheromones and highest probability is chosen as an optimal

solution (best test case).

The most well-known ants-based strategies include the Variable Strength

Interaction Test suites (ACS-VSITs) strategy (Xiang et al., 2009), ACS-VSITs strategy

adopts ACS, as a variant of ACO. Another strategy is Prioritized pairwise Interaction

Test Suite (PITS) strategy (Chen et al., 2009) that adopts ACO as a general base

algorithm. Actually, PITS generates test suite based on four variants of ACO, which are;

Ant System, Ant System with Elitist, Ant Colony System, and Max-Min Ant System.

Shiba (Shiba et al., 2004) also has proposed a strategy called Ant Colony Algorithm

(ACA). ACA-Shiba constructs test suite using a combination of ACO and AETG. Based

on ACO, ACA-Chen (Chen et al., 2009) shows a better competitive results. However,

ACA-Chen performance could not be generalized as it only supports pairwise interaction.

Here, ACA-Shiba, PITS and ACS-VSITs support the low value of interaction strength

(i.e. t ≤ 3), only VSITs supports mixed-strength interaction.

45

The last type of swarm strategies is the cuckoo-based strategies (Ahmed et al.,

2015; Nasser et al., 2015) based on the Cuckoo Search (CS) Algorithm. cuckoo-based

strategies (i.e. CS strategy (Ahmed et al., 2015) and Pairwise-CS (Nasser et al., 2015))

start by initializing a population of random test candidates (nests). Each nest consists of

the random parameter values that represent test case candidates. Then, test cases are

evaluated using a fitness function (i.e. based on the number of test case covered in the

interaction sets (t-tuples)). Here, a test case candidate in each nest with the highest fitness

value considered as a test case. The global search process in cuckoo-based strategies uses

a Lévy flight transformation between the nests to determine the nest with the highest test

case coverage. This process continues until all the t-tuples are covered. Pairwise-CS only

covers pairwise interaction strength; in contrast, CS strategy supports high interaction

strength (i.e. t ≤ 6). However, cuckoo-based strategies have not covered the support for a

mixed-strength interaction.

2.5.3 The Observation of the Highlighted t-way Strategies

This sub-section illustrates an analysis of the features the well-known t-way

strategies (see Figure 2.18). Figure 2.18 illustrates an analysis of the features that are

commonly shared by each strategy and those that are not. The existing t-way strategies

are firstly divided into two major categories; deterministic or probabilistic strategies.

After that, the probabilistic strategies are divided into seven groups based in the method

employed for test suite constriction. Figure 2.18 divides the interaction strength support

into three groups; t ≤ 3, 3 < t ≤ 6 and t > 6 and highlights them with yellow, green and

red, respectively. The mixed-strength supported strategies are highlighted as well with

grey colour. Additionally, the swarm strategies are also divided into groups based on the

swarm algorithm employed. A closer look to the Figure 2.18 shows that Bat-inspired

algorithm (BA) has not been adopted in this field.

46

The t-way test suite generation strategies features

D
et

er
m

in
is

ti
c

P
ro

b
ab

ili
st

ic
(n

o
n

-D
et

er
m

in
is

ti
c)

Greedy

Swarm
strategies

Stochastic

Harmonic

Tabu search

Evolutionary

Simulated
Annealing

A
CO

Bee

Cuckoo

P
SO

Algebraic

Interaction strength support

OA, CA, MCA
TestCover
Density
ParaOrder
CTE-XL
AETG, mAERG
mAETG_SAT
TCG, mTCG
PWiseGen
PWiseGen-GM
PTSG-GA
GA-Huang
GAPTS, QICT
WBGA, MOCell
PGAS, EGA
PWiseGen-VSCA
SA- Mayer, ASA
SA_SAT
CASA, tCA,
SA-H, SA-VNS
PHSS
HS-PTSGT

PSO-Chen
PPSTG
DPSO
SSO
ACS-VSITs
ACA
PITS
ABC
ABC-CAG
Pairwise CS

t ≤ 3

IPOG-D
IPOG,

IPOG-F, ITCH
TVG, PICT

G-PWiseGen

SAVNS

SA-Bryce, ISA
EDIST-SA
IHS

HC-Bryce,
LAHC
TSA (MiTS)
TS-Bryce, PAT
HHH

FSAPSO
SITG
BSTG
VS-PSTG

CS

3 < t ≤ 6

MIPOG, Jenny
GTWay

HSS
HSTCG

BA*

t > 6

TConfig

M
ix

ed
-s

tr
en

gt
h

su
pp

or
t

Figure 2.18 Features of the existed t-way test suite generation strategies.

47

2.5.4 The Justification of the Adoption of BA

As reported throughout the t-way testing literature in section 2.5, t-way interaction

test generation has indeed achieved considerable progress. However, the investigation for

new test suite generation strategies is deemed necessary (Yu et al., 2008) to achieve more

effective t-way test suite. Table 2.3 summarizes the description of existing t-way

strategies.

Table 2.3 The analysis of existing t-way strategies.

Supported

Not supported

Randomness

Interaction

strength

M
ix

ed
-stren

g
th

su
p

p
o

rt

E
n

h
a

n
ced

 sea
rch

a
lg

o
rith

m

D
eterm

in
istic

N
o

n
-

D
eterm

in
istic

t ≤
 3

3
 <

 t <
 6

6
 ≤

 t

Strategy family
Existed t-way

strategies

Greedy AETG

mAETG

mAETG_SAT

TVG

CTE-XL

PICT

MIPOG

GTWay

Jenny

ITCH

TestCover

Density

IPOG

IPOG-D

IPOG-F

ParaOrder

Algebraic OA

CA

MCA

TConfig

Evolutionary PWiseGen

G-PWiseGen

PWiseGen-GM

PTSG-GA

PWiseGen-VSCA

GA-Huang

GAPTS

QICT

WBGA

MOCell

PGAS

EGA

48

Supported

Not supported

Randomness

Interaction

strength

M
ix

ed
-stren

g
th

su
p

p
o

rt

E
n

h
a

n
ced

 sea
rch

a
lg

o
rith

m

D
eterm

in
istic

N
o

n
-

D
eterm

in
istic

t ≤
 3

3
 <

 t <
 6

6
 ≤

 t

Strategy family
Existed t-way

strategies

Simulated

Annealing

SA- Mayer

SA_SAT

ASA

SA-Bryce

CASA

SA-VNS

ISA

SA-H

Harmonic HSS

PHSS

HSTCG

HIS

HS-PTSGT

Stochastic HC-Bryce

LAHC

Tabu Search TS-Bryce

TSA (MiTS)

PAT

HHH

Swarm Strategies PSTG (PSO)

VS- PSTG (PSO)

PSO-Chen (PSO)

PPSTG (PSO)

TDGen_PSO (PSO)

DPSO (PSO)

FSAPSO (PSO)

SITG (PSO)

SSO (PSO)

ACA (ACO)

ACS-VSITs (ACO)

PITS (ACO)

BA* (Bee)

ABC (Bee)

ABC- CAG (Bee)

SBC (Bee)

CS-Ahmad (CS)

Pairwise CS (CS)

From Table 2.3, it can be seen that the existing t-way strategies based on meta-

heuristic algorithms have not covered the implementation of BA as t-way and mixed-

strength strategy. BA superiority has been confirmed against several state-of-art meta-

heuristic algorithms. For instance, Senthilnath (Senthilnath et al., 2016) has verified the

49

high performance of BA compared to GA, PSO and Bat-K-Means (BKM) for solving

crop type classification problems for satellite image. Gherbi (Gherbi et al., 2014)

confirmed that BA produces significantly better results than most popular optimization

algorithms, including the GA, SA and PSO. Moreover, BA is easy to implement, and its

parameters are highly adjustable to fit many engineering solutions (Taha et al., 2013).

In other works, Khan and Sahai (Khan & Sahai, 2012) report that the BA

outperformed PSO and the GA for training Artificial Neural Networks (ANNs) within

the e-learning context. Yang (Yang, 2010) also demonstrated that the BA achieves the

best performance in contrast to PSO and the GA in terms of standard benchmark

functions. In fact, Yang proves that PSO and HS could be considered as the generalization

of the BA. Moreover, Sureja (Sureja, 2012) demonstrates that BA yields better solutions

in comparison with the PSO, GA, and firefly algorithm. Similarly, a comparative study

(Hegazy et al., 2015) on the BA, PSO, ANNs, Artificial Bee Colony (ABC), modified

cuckoo search, support vector machine, and Flower Pollination Algorithm (FPA)

confirms that BA is a superior meta-heuristic algorithm according to the results presented.

Swarm strategies have not covered mixed-strength up to t = 6 with the exception

of PSO, although researchers proves that BA performs better than PSO (Gherbi et al.,

2014; Khan & Sahai, 2012; Taha et al., 2013). Hence, adopting a superior meta-heuristic

algorithm such as the BA could be effective to improve the state-of-the-arts. Generally,

exploring the advantages of the new meta-heuristic algorithm could be advantageous to

highlight its strengths and limitations for t-way test generation. For these reasons, the

adoption of BA for t-way test suite generation is deemed a useful endeavour.

Additionally, the adoption of Hamming distance classifier is deemed necessary in order

to improve the exploration of BA (Gonzalez-Hernandez, 2015).

50

2.6 Summary

In this chapter, the well-known test case design strategies are reviewed. Then, the

mathematical notations for t-way test suite generation have been elaborated based on the

covering array. Then after that, a simple running example has been adopted to illustrate

the problem of t-way test suite generation with mixed-strength demonstration as well as

the validation of the interaction coverage. Next, a survey of the state-of-art of existing t-

way strategies have been presented. Finally, an overview of the Bat-inspired algorithm

along with the justification for implemented a new strategy called Bat-inspired Testing

Strategy (BTS) is provided. BTS is aimed to address the t-way test suite generation for

the up to the ideal interaction strength (t up to 6) and its special case of mixed-strength

test suite generation.

Building on the presented contents in this chapter, the next chapter discusses the

design of BTS. Additionally, the chapter will also outline how BA is being used as the

backbone for BTS.

CHAPTER 3

RESEARCH METHODOLOGY

In the previous chapter, the concept of the t-way, its notations, survey, and

analysis of the existing strategies were introduced. Finally, the adoption of BA as a basis

to a t-way strategy proposed in this work has been justified.

This chapter presents an overview of the design methods of the current study. This

chapter specifically describes the design and implementation of the BTS strategy,

including its three phases, which are input analysis, interaction generation, and test suite

generation. Additionally, the relevant BTS variables were calibrated to achieve the best

possible results. At the end of this chapter, the details of the BTS prototype is also

presented.

3.1 The Original BA Algorithm

For the BTS strategy, BA was used as the backbone algorithm to achieve the most

optimal test suite sizes. For a better understanding of the BTS principle, it is necessary to

discuss the process of BA and their flow as earlier discussed by Yang (2010).

The BA algorithm was developed based on the observation of the hunting

behaviour of micro-bats in nature. To mimic the behavior of micro-bats in the simplest

way, some approximations were necessary. Yang (2010) idealized three assumptions as

follows:

i. For sensing the distance ahead of their flight paths, micro-bats use echolocation,

and they have their unique instinct to distinguish a target of food/prey from the

background barriers.

52

ii. During hunting, bats may travel in a random manner at a velocity 𝑣𝑖 at position

𝑥𝑖 with a combination of sensing frequency 𝑄𝑚𝑖𝑛 , varying wavelength 𝜆 and

loudness 𝐴0 to hunt for prey. The frequency (or wavelength) of their emitted

pulses can be automatically adjusted, and the pulse emission rate 𝑟 ∈ [0, 1] can

also be fine-tuned automatically, giving the current proximity of their target.

iii. The loudness of echoes from a micro-bat can be assumed to decay over time from

a large and positive amplitude 𝐴0 to a small constant value 𝐴𝑚𝑖𝑛 (Yang, 2010).

These assumptions allow the impementation of BA (Algorithm 1) as shown in the

Figure 3.1.

Algorithm 1: Bat-inspired Algorithm (BA)

Input: objective function 𝑓(𝑥𝑖), 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝐷)
𝑇

.

Output: Best fitness 𝑥∗.

1: Define 𝑛, 𝑚𝑎𝑥, 𝑄𝑖 ∈ [𝑄𝑚𝑖𝑛 , 𝑄𝑚𝑎𝑥];

2: Randomly Initialize 𝑥𝑖, 𝑣 𝑙𝑜𝑐𝑖𝑡𝑦𝑖, 𝑄𝑖for 𝑖 = 1, 2, … , 𝑛;

3: Initialize pulse rates 𝑟𝑖 and the loudness 𝐴𝑖;

4: while (𝑡𝑠 < T𝑚𝑎𝑥) do

5: for each bat ni do

6:

 Generate new solutions by adjusting frequency, update velocity and location

 using motion equations (4-2 to 4-4);

7: if (𝑟𝑎𝑛𝑑(0,1) > 𝑟𝑖) then

8: Select the best solution in the current population;

9: Generate a local solution around the best solution;

10: End

11: Generate a new solution by flying randomly;

12: if (𝑟𝑎𝑛𝑑(0,1) < 𝐴𝑖 and 𝑓(𝑥𝑖) < 𝑓(𝑥)) then

13: Accept the new solutions;

14: Increase 𝑟𝑖 and reduce 𝐴𝑖 based on the tolerance;

15: End

16: Rank the bats and find the current best;

17: End

18: End

19: process results and visualization;

Figure 3.1 The BA pseudo code.

Source: Yang (2010).

The BA algorithm in Figure 3.1 shows the pseudo code of BA based on the

implementation for global optimization problems (Yang, 2010). The BA algorithm starts

by defining its variable settings and objective functions (the problem that needed to be

solved). It then, initializes its population variables. Here, for each bat (𝑛) in the

53

population, the BA randomly initializes a set of variables as follows; initial location

(solution) (𝑥𝑖), initial velocity (𝑣 𝑙𝑜𝑐𝑖𝑡𝑦𝑖) and initial frequency (𝑄𝑖), at each time step

(𝑡𝑠). The cycle of iterations in the BA is referred to as the number of generations (𝑚𝑎𝑥).

The maximum iteration refers to the maximum cycle of searches in the BA, which can

be calculated based on the value of the multiplication of the number of generations with

the number of bats’ population (Equation 3.1).

𝑀𝑎𝑥𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥 𝑛 3.1

The next step is the iteration process for the maximum cycle. This second step is

called the movement of the virtual bats 𝑛𝑖. These virtual bats are derived from the bat

motion equations (Equations 3.2 to 3.4). In the motion equations, the location (𝑥𝑖) and

velocity (𝑣 𝑙𝑜𝑐𝑖𝑡𝑦𝑖) of each virtual bat are updated based on the updated frequency (𝑄𝑖)

by each cycle of iterations. Here, the pace and range of the virtual bats’ movement are

basically controlled by 𝑄𝑖, which is similar to the movement of the swarming particles as

follows:

𝑄𝑖 = 𝑄𝑚𝑖𝑛 + (𝑄𝑚𝑎𝑥 + 𝑄𝑚𝑖𝑛) 𝑟𝑛𝑑 3.2

𝑣 𝑙𝑜𝑐𝑖𝑡𝑦
𝑖

𝑡𝑠+1
= 𝑣 𝑙𝑜𝑐𝑖𝑡𝑦

𝑖

𝑡𝑠
+ (𝑥𝑖

𝑡𝑠 − 𝑥𝑏𝑒𝑠𝑡) 𝑄𝑖 3.3

𝑥𝑖
𝑡𝑠+1 = 𝑥𝑖

𝑡𝑠 + 𝑣 𝑙𝑜𝑐𝑖𝑡𝑦
𝑖

𝑡𝑠+1
 3.4

In Equation 3.2, the (𝑟𝑛𝑑) variable indicates a random vector that is randomly

generated within the interval [0, 1]. This random vector controls the speed and ranges of

the new generated velocity at specific time step by changing the value of 𝑄𝑖 which

controls the output of Equation 3.3. This new velocity of the virtual bat 𝑛 controls its new

location using its current location at a new time step based on Equation 3.4. Here, the

new location is referred to as the new current global solution (or the current global best).

The new current global solution is considered as the best global solution (𝑥∗)

which is to be compared in the next cycles of iteration. If there are improvements, the

solution for bat 𝑛 is then, considered as a new best global solution 𝑥∗.

54

The BA employs a local search approach (i.e. random walk) to improve the

effectiveness and efficiency of its potential solutions using Equation 3.5. During the

iteration of BA at time step 𝑡𝑠, new solutions are locally selected based on random walk

around the current best solution at that time step. If the new solution is better than the

current best, then, the new best becomes a global best solution. These new local solutions

are generated based on a random vector condition; the random vector at the time step 𝑡𝑠

for the bat 𝑛 at cycle 𝑖 must be greater than the pulse emission rate (𝑟𝑖) for the associated

bat. Mathematically, the random walk is defined as follows;

𝑥𝑛𝑒𝑤 = 𝑥𝑏𝑒𝑠𝑡 + 𝜖 𝐴𝑡𝑠 3.5

In Equation 3.5, the symbol 𝐴𝑡𝑠 denotes the average of 𝐴𝑖
𝑡𝑠 (i.e. the loudness of

bats 𝑛 at time step 𝑡s). The symbol 𝜖 drawn from [−1, 1] is a random vector that controls

the direction and strength of the random walk. To a certain extent, the BA is deemed to

be a balanced combination of swarm optimization and the intensive local search governed

by the frequency tuning ability, loudness variability, and pulse rate. Thus, for each

iteration of BA, the loudness 𝐴𝑖 and the emission pulse rate 𝑟𝑖 are updated based on

Equations 3.6 and 3.7.

𝐴𝑖
𝑡𝑠+1 = 𝛼𝐴𝑖

𝑡𝑠 3.6

𝑟𝑖
𝑡𝑠 = 𝑟𝑖

0[1 − exp (−𝛾 𝑡𝑠)] 3.7

Here, 𝛼 and 𝛾 are BA constant variables that are having a similar effect like the

cooling factor in a cooling schedule of SA algorithm in the range of (0 < 𝛼 < 1) and

(𝛾 > 0) with the exception demonstrated in Equation 3.8.

𝐴𝑖
𝑡𝑠 → 0, 𝑟𝑖

𝑡𝑠 → 𝑟𝑖
0, 𝑡𝑠 → ∞. 3.8

The 𝐴𝑖
0 and 𝑟𝑖

0 are randomly chosen from [0, 1] and the loudness 𝐴𝑖 and the pulse

emission rate 𝑟𝑖 can only be updated when there is improvement in the new solution (i.e.

the bats 𝑛 are moving towards the optimal solution).

In this section, the BA is said to be overviewed. In the next section, the details of

the BTS strategy and its algorithms that help the BA to construct t-way test suite are

presented.

55

3.2 The BTS Strategy

Generally, the BTS strategy undergoes three phases during the construction of the

mixed strength t-way test suite as shown in Figure 3.2. The three phases illustrated in

Figure 3.2 processed as follows:

Phase 1. The BTS input analysis exploits the input analyser (parser) and legal values

representation algorithm (see Algorithm 2). This phase set up the input for

the next phase.

Phase 2. The BTS interaction generation which adopts two algorithms; CTS and IET

generators (see Algorithm 3 and Algorithm 4, respectively), which are

responsible of generating the required t-tuples.

Phase 3. The BTS test suite generation (see Algorithm 5) which exploits the BA as

the core algorithm and exploits the Hamming distance selection criteria for

mixed strength t-way test suite generation.

56

Figure 3.2 The overview of BTS strategy.

These phases and their algorithms will further discuss and elaborate in the next

three sub-sections.

57

3.2.1 Input Analysis

In this phase, the input (𝐶𝐴, 𝑀𝐶𝐴, 𝑚𝐶𝐴 or 𝑚𝑀𝐶𝐴) processing is divided into two

main processes; processing the input components (parameters and their values), and

representing these components using numerical legal values. The first process starts by

receiving the input, and then, processing the input components to a set of pre-defined

variables in the memory (i.e. interaction strength (t), parameters (P) and their values (v)).

To clarify the BTS algorithms, consider the mixed-strength mixed covering array

(i.e. 𝑚𝑀𝐶𝐴 (𝑆, 2, 22 32, MC) where MC = 𝐴 (𝑆, 3, 22 31) for the first three elements) as

the running example from Chapter 2. In this 𝑚𝑀𝐶𝐴 configuration, the interaction

strength (t = 2) is considered for the overall system configuration. Then, the three-way (t

= 3) sub-strength is considered based on its corresponding parameters. The overall test

element sizes for each component are identified as test element sets (ES). Here, the

element is representing the position of a parameter with it values, that called test

component (i.e. the actual ES is ES = {E1, E2, E3, E4}). This ES is represented as a list in

the memory, which follows the elements’ indexes with their value sizes (i.e.

ES = {2, 2, 3, 3} as E1 = 2 values, E2 = 2 values, E3 = 3 values, E4 = 3 values). Figure

3.3 shows the elements and their values construction on the ES.

Figure 3.3 The illustration of the elements set based on the number of values for

each elements.

58

The next process of the first phase is the representation of these components as

Numerical Legal Values (NLV) (see Figure 3.4). These numerical legal values are

processed and converted back to their actual values in the final test suite. The system is

represented as follows:

 𝐸1 = {𝑣1, 𝑣2}, represented numerically as [1]: 1, 2.

 𝐸2 = {𝑣1, 𝑣2}, represented numerically as [2]: 1, 2.

 𝐸3 = {𝑣1, 𝑣2 𝑣3}, represented numerically as [3]: 1, 2, 3.

 𝐸4 = {𝑣1, 𝑣2 𝑣3}, represented numerically as [4]: 1, 2, 3.

 Element set (ES) = {2,2,3,3}, Main-strength (t) = 2,

Number of Element: 4, Total Number of values: 10

Result of legal values representation:

Test Element [1][2 values]: [1, 2]

Test Element [2][2 values]: [1, 2]

Test Element [3][3 values]: [1, 2, 3]

Test Element [4][3 values]: [1, 2, 3]

Figure 3.4 The illustration of the variables processed in the input analysis phase.

Considering the sub-strength configurations, the three-way interaction for the first

three test element is considered and processed as the following set; [sub-strength (t) :

indexes of the Ei in ES]. Noticeably, BTS is supporting multi-degree sub-strength

configurations (CA and MCA) based on the index of the Ei . The details of the sub-

strength configuration representation can be seen in see Figure 3.5.

 Element set (ES) = {2,2,3,3}

Sub-strength (mixed-strength) configurations:

[1] : [3:1,2,3] => (t = 3), element indexes: [1,2,3]

Figure 3.5 The illustration of the mixed-strength configrations

59

The complete processes in the input analysis is presented in Figure 3.6 (Algorithm

2, Input analyser and legal value representation).

Algorithm 2: Input analyser and legal value representation

Input: covering array notation (CA, MCA, mCA or mMCA).

Output: ES, LV, sub-strength specifications.

1: check the correctness of input;

2: define 𝑁𝐿𝑉, 𝑡, 𝑃, 𝑣;

3: define sub-strength, LV as two-dimensional set;

4: define E , ES as set;

5: process the main-strength system notation variables 𝑡, 𝑃, 𝑣;

6: If (sub- strength = true) then process the sub-strength setting each as single set,

then store each set in the sub-strength set;

7: for index (i) = 1 to 𝑃 do

8: assign 𝑃𝑖 (𝑖𝑛𝑑𝑒𝑥) to E𝑖;

9: assign 𝑃𝑖 (𝑣𝑎𝑙𝑢𝑒𝑠 𝑠𝑖𝑧𝑒) to ES;

10: End

11: NLV = 1;

12: for each value in E𝑖 do

13: define line token (LT);

14: LT(index)= E𝑖;

15: for 𝑖 = 1 to ESE𝑖 do

16: assign i to LTi;

17: End

18: append LT to LV;

19: End

20: process results and visualization;

Figure 3.6 Pseudo code of input analyser and legal value representation algorithm.

The next section elaborates the generation algorithms for the combination

elements and interaction elements are also used to handle the mixed-strength combination

and interaction elements in the most efficient possible way. This process of generation

algorithm reuse minimized the complexity of the generation process as well.

60

3.2.2 Interaction Generation

This phase involves the generation of the combination t-tuple sets (CTS), and the

interaction element tuples (IET) based on the ES that contains the elements of the

previously defined system-under-test. Here, the BTS employs a new generation approach

that reversely generates the Binary Element Set (BES). The BES is important for the

evaluation of the test cases coverage (the fitness of each test case provided by BA). This

stage involves two algorithms; the CTS and IET generators.

The first algorithm (CTS generator) generates the t-tuple sets (CTS), and after

completing the input analysis, a legal value (LV) will be generated. This legal value set

is for the generation of the element combination (EC) which is the basis of CTS. The

CTS generation starts as soon as it receives the legal value (LV) and the interaction

strength (t) value from the input analysis phase. The construction of the EC sets uses

multiple level pairing method to match all the possible element position references

together based on the defined interaction strength.

Based on the 𝑚𝑀𝐶𝐴 (running example) from the previous section, the pairing of

the Ei in ES must take place for all the Ei based on the t =2. In this case, each two of the

Ei selected together to construct the EC sets (see Figure 3.7). For the sub-strength, each

set of the EC is constructed based on the specified t=3. In this example, only one EC set

is constructed because there are only three Ei involved. The EC sets (generated pairs) for

this example are as follows:

 The two-way element set pairing output for testing the overall system;

EC 1 = {E1, E2}, represented numerically as EC [1] = 1, 2.

EC 2 = {E1, E3}, represented numerically as EC [2] = 1, 3.

EC 3 = {E1, E4}, represented numerically as EC [3] = 1, 4.

EC 4 = {E2, E3}, represented numerically as EC [4] = 2, 3.

EC 5 = {E2, E4}, represented numerically as EC [5] = 2, 4.

EC 6 = {E3, E4}, represented numerically as EC [6] = 2, 4.

 The three-way element set pairing output for the sub-strength;

EC 7 = {E1, E2, E3}, represented numerically as EC [7] = 1, 2, 3.

61

All the represented ECs are then, stored in the CTS for further processing. For

this example, there are six EC for the overall system and one for the mixed-strength in

this case (Figure 3.7). The complete steps of the CTS generator can be seen in Algorithm

3 (Figure 3.8).

Figure 3.7 The illustration of EC matching and EC in CTS.

Here, the CTS generator (Algorithm 3) has identified and constructed all the EC

(also known as t based pairs) for the involved interaction strength (the 2-way main-

strength and the 3-way sub-strength). For the 3-way sub-strength, there is only one EC in

this case; however, in the case of more Ei in the ES involving 3-way, there will be more

ECs. For instance, if the 3-way sub-strength are assumed to be involved in all Ei in ES,

there will be four ECs. The generated EC sets in the CTS serve the purpose of covering

all the t-tuple of the software-under-test. As in the next stage of this phase, a binary

element for each EC set is going to be constructed for the coverage calculation.

62

Algorithm 3: CTS generator

Input: t, ES, sub-strength specification set.

Output: CTS.

1: define EC, CTS as empty set;

2: for each E𝑖 in ES do

3: construct EC by matching E𝑖 with other E𝑖 in ES based on t degree;

4: append EC to CTS;

5: End

6: for each sub-strength specification in sub-strength do

7: get sub t value;

8: get Indexes for sub-strength E𝑖;

9: define sub-strength-EC as empty set;

10: for each (E𝑖𝑛𝑑𝑒𝑥)in Indexes do

11: select E𝑖 for E𝑖𝑛𝑑𝑒𝑥;

12: append E𝑖 to sub-strength-EC;

13: End

14: if (sub-strength-EC length = sub t)

15: append sub-strength-EC to CTS;

16: Else

17: for each E𝑖 in sub-strength-EC do

18: construct sub-strength-EC by matching E𝑖 with other E𝑖 in ES based

 on sub t degree;

19: append sub-strength-EC to CTS;

20: End

21: End

22: End

23: process results and visualization;

Figure 3.8 The pseudo code of CTS generator.

The second stage of this phase is to construct all the interaction elements tuples

based on the represented binary element for all the EC in CTS. The two processes of

generating IET and BES are combined in one algorithm to reduce the complexity of the

generation process (i.e. the generation of all the possible binary elements and the selection

of the binary elements that seems to be inefficient when done separately).

63

The IET generation starts with the selection of all the EC in the CTS and

traversing them until all the interaction elements (IE) are generated for each EC. In the

𝑚𝑀𝐶𝐴 example, there are seven EC sets that are specified based on Ei. The EC sets are

requested to generate the IE elements numerically based on the numerical legal values

represented earlier. The matching approach similar to the construction of EC in CTS was

adopted in this process. The only difference is that in IET generation, the values of the Ei

in each EC were matched. For example, the first EC in the CTS involves E1 and E2, these

elements are represented in the ES set as the first and second indexes (see Figure 3.9).

Next, the value of elements E1 and E2 are called from the legal value set, which

in this case, two values per element are involved (i.e. 1 and 2, referring to 𝑣1 and 𝑣2,

respectively). These values are cross-matched together to construct the representative IE

sets. In other words, the values for the involved elements interacted together to construct

the IE sets. In this case, E1 consists of two values (𝑣𝐸𝑖 = 2) and similar values can be

seen for E2. Thus, the number of IE sets for this EC can be calculated using Equation 2.7,

yielding 2 × 2 = 4.

The process of matching the involved Ei values is done one IE at-a-time (row by

row), with the IEs having the same ES index length. The values involved are added to

their represented Ei indexes and the “x” (Don’t care values) are represented numerically

as “-1”. For each EC, one binary element (BE) representation with the same ES length is

constructed (i.e. the BE bit length equals ES bit length), and the values of the involved Ei

in the specified EC are represented as “1”, and the “x” values as “0”. The details of this

process are illustrated in Figure 3.9. The BE element is then, stored in the BES list for

further usage in the next phase.

This process is sustained throughout all the EC until the six 2-way sets of IEs are

generated, then combined together into a single IET. The IET here, contains six sets of

IEs. The BES contains the BE representation of the six 2-way EC that generates the six

sets of IEs. In a same manner, the same process goes also for the EC that are constructed

from the sub-strength. The BE and IE for the mixed-strength configurations consists of

one IE set with three interacted Ei which also added to an IET (i.e. a one BE element to

represent the single EC for the 3-way sub-strength).

64

Figure 3.9 The construction of interaction elements and binary elements.

In the current example, there are seven groups of constructed IE sets with each

set having a number of IE rows. The number of IE elements in all the sets based on the

Equation 2.7 is as follows:

 The two-way IE’s output for the main-strength;

IE set 1 involves EC 1 = {E
1
 E2} → 2 × 2 = 4 IEs.

IE set 2 involves EC 2 = {E
1
 E3} → 2 × 3 = 6 IEs.

IE set 3 involves EC 3 = {E
1
 E4} → 2 × 3 = 6 IEs.

IE set 4 involves EC 4 = {E
2
 E3} → 2 × 3 = 6 IEs.

IE set 5 involves EC 5 = {E
2
 E4} → 2 × 3 = 6 IEs.

IE set 6 involves EC 6 = {E3 E4} → 3 × 3 = 9 IEs.

 The three-way element set pairing output for the sub-strength;

For IE set 7, EC 7 = {E
1
 E2 E3} → 2 × 2 × 3 = 12 IEs.

The total interaction elements are 49 generated IEs which can be also calculated

using Equation 2.5. Here, these 49 IEs are the sum of all the IE sets from the two groups

of main and sub-strength. The details of the full IE sets in IET are shown in Figure 3.11.

65

In this phase, the generation process constructs a dynamic multi-dimensional IET

set which has all the IE sub-sets for each EC in CTS. The use of dynamic multi-

dimensional sets in BTS is necessary to avoid the limitations of the set index limit (set

by the programming language). As the BTS is designed to fit large number of test suite

generation, the concept of dynamic multi-dimensional set allowing BTS to store each IE

set in a bigger set called, IET. In this manner, the IET set does not need any indexing (see

Figure 3.10).

Algorithm 4: IET generator

Input: t, CTS.

Output: IET, BES.

1: define IET as multi-dimensional empty set;

2: define BES as empty set;

3: define IE as empty set;

4: for each EC in CTS do

5: get the involved 𝑣𝐸𝑖 from LV that represent E𝑖 for EC;

6: define Temp as empty set;

7: construct IE by matching 𝑣𝐸𝑖 with other 𝑣𝐸𝑖 in LV based on the t degree;

8: append IE to IET;

9 construct BE for EC based on the ES index length;

10 append BE to BES;

11 End

12 process results and visualization;

Figure 3.10 The pseudo code of IET generator that includes BES generation method.

66

Figure 3.11 The illustration of the CTS, IET and BES generation flow.

67

Another important point in this generation method is the construction of the BE

(or binary equivalence) to represent each EC. The BE is important for the determination

of the test case coverage. The generation of the binary equivalence for each EC sets is

constructed using the same loop during the generation of the IEs. The BE and IE sets are

then, appended to each corresponding set. Unlike the traditional approaches such as the

GTWay (Zamli et al., 2011) where the BEs were generated before the IEs, the current

approach generates the BE in the later part of the process. The rationale for such approach

is the fact that traditional approaches of generating full table of binary equivalences has

a high complexity in case of systems with a high number of components (large number

elements of the test generation targeted domain). This is because it follows a (2𝐸 − 1)

number of elements.

In the BTS strategy, the mixed-strength interaction generation is combined with

the main process to minimize the algorithm’s complexities. A sub ES set for each mixed-

strength configurations constructed based on the indexes of the involved test elements

was used in this study. The same CTS and IET generator can be used to generate the

mixed-strength CTS and IET set respectively.

At the end of this phase, the aforementioned steps effectively generate complete

sets of IEs that covers all the possible test interactions. These IEs sets needed to be

optimized to achieve the test suite reduction. In the next sub-section, the reduction

process based on the optimization concepts of BA is elaborated.

68

3.2.3 Test Suite Generation

The BA can be used to efficiently solve several related engineering optimization

problems (Yang, 2010, 2014; Yang & Gandomi, 2012). This algorithm can improve the

solution quality because of the global and local search behaviour it implements. Here, the

BA is employed as a search engine to calculate the fitness (coverage or weight) of the

randomly generated test candidates for the proposed strategy. To achieve a minimum test

suite optimization process, the test cases need to effectively and greedily cover all the t-

way tuples, if possible, at most once.

The BA has conventionally developed on the assumption that bats can locate their

prey in complete darkness. To apply this algorithm for interaction testing, we assume that

the test candidates are bat locations in which each bat has its own possible solution

(fitness) of the targeted problem. The BA search process in the BTS provides the best

global optimum (or optimum test candidate that has the highest coverage of the t-tuples

element values) based on the number of BEs involved. This optimum test candidate

indicates the solution quality in terms of the best bat position (location) from its prey.

Bats are avoiding obstacles using echolocation, thus, different frequencies are returned

in each iteration with updated loudness and pulse emission rate.

Based on the aforementioned description of the BA, Figure 3.12 (Algorithm 5)

depicts the complete algorithm as the backbone for BTS. Unlike the standard BA

algorithm, the BTS strategy introduces the Hamming distance classifier to decide the

final suite. Specifically, the Hamming distance classifier measure two rows of (best) test

cases (as string) based on the number of values in which they differ when there is a tie

situation as far as the quality of the test cases are concerned. It is the farthest test case

that will be finally selected by the Hamming distance classifier to ensure sufficient

exploration of the search space.

Lines 1 - 5 represent the initialization process which includes the request for the

pre-processed data from the previous algorithms in the interaction generation phase (the

interaction elements tuples (IET)), and the binary elements set (BES) (constructed based

on algorithm 2 and 3 in the second phase of BTS strategy).

69

Algorithm 5: BTS test suite generation.

Input: BES, IET, objective function 𝑓(𝑥𝑖), 𝑥𝑖 = (𝑣𝐸1 , … , 𝑣𝐸𝑖).

Output: FTS

1: request BES, IET and the objective function specification;

2: define FTS as empty set;

3: define 𝑥𝑏𝑒𝑠𝑡 best test candidate;

4: initialize BA variables setting(𝑛, 𝑚𝑎𝑥, 𝑄𝑖 ∈ (𝑄𝑚𝑖𝑛 , 𝑄𝑚𝑎𝑥), 𝐴, 𝑟, 𝑡𝑜𝑙 𝑟𝑎𝑛𝑐 and 𝑡𝑠)

5: randomly Initialize BTS population(𝑛𝑖, 𝑥𝑖, 𝑣𝑖, 𝑓𝑖, 𝑄𝑖)for 𝑖 = 1, 2,… , 𝑛;

6: evaluate initial population;

7: select 𝑥𝑏𝑒𝑠𝑡 from all 𝑥𝑖
𝑡𝑠 in BTS population; \\(initial global best)

8: while (IET is not empty) do

9: while (𝑡𝑠 < 𝑚𝑎𝑥) do

10: for each bat 𝑛𝑖 in the population do

11: generate new test candidates using motion movement equations;

 𝑄𝑖 = 𝑄𝑚𝑖𝑛 + (𝑄𝑚𝑎𝑥 +𝑄𝑚𝑖𝑛) 𝑟𝑎𝑛𝑑(0,1) , \\ 𝑟𝑎𝑛𝑑 ∈ (0, 1)

 𝑣𝑖
𝑡𝑠+1 = 𝑣𝑖

𝑡𝑠 + (𝑥𝑖
𝑡𝑠 − 𝑥𝑏𝑒𝑠𝑡) 𝑄𝑖

 𝑥𝑖
𝑡𝑠+1 = 𝑥𝑖

𝑡𝑠 + 𝑣𝑖
𝑡𝑠+1

12: re-evaluate the population;

13: if (𝑟𝑎𝑛𝑑(0,1) < 𝑟𝑖) then

14: if (𝑓(𝑥𝑖
𝑡𝑠+1) > 𝑓(𝑥𝑏𝑒𝑠𝑡)) than 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑖

𝑡𝑠+1;

 (new global best from current population)

15: Else

16: generate a new 𝑥𝑖
𝑡𝑠+1 by flying randomly around 𝑥𝑏𝑒𝑠𝑡;

17: End

18: End

19: for each bat 𝑛𝑖 do \\ random walk

20: if (𝑟𝑎𝑛𝑑(0,1) < 𝐴𝑖 and 𝑓(𝑥𝑖
𝑡𝑠+1) > 𝑓(𝑥𝑏𝑒𝑠𝑡)) then

21: accept the new 𝑥𝑖
𝑡𝑠+1 as new 𝑥𝑏𝑒𝑠𝑡; \\(new global best)

22: increase 𝑟𝑖 and reduce 𝐴𝑖 using the 𝑡𝑜𝑙 𝑟𝑎𝑛𝑐 value;

23: End

24: End

25: for each bat 𝑛𝑖 do \\ Hamming distance classifier

26: if (𝑡𝑠 not equal 1 && multiple 𝑥𝑏𝑒𝑠𝑡) then

27: select 𝑥𝑏𝑒𝑠𝑡 in the current population that has the highest distance

 from 𝑥𝑏𝑒𝑠𝑡 added to FTS;

28: End

29: End

30: End

31: append 𝑥𝑏𝑒𝑠𝑡 to FTS;

32: remove the covered IE’s by 𝑥𝑏𝑒𝑠𝑡 from IET;

33: End

34: process results and visualization;

Figure 3.12 The pseudo code of test suite generation.

70

Specifically, line 2 defines a new set for BTS output in the initialization process

called the Final Test Suite set (FTS). In addition, the global best test candidate is also

defined in line 3, which are going to store the best test candidate during the iteration of

the algorithm. In line 4, the BA variables (settings); bats population size (𝑛), BA iteration

(𝑚𝑎𝑥), initial loudness (𝐴0), initial emission of pulse rate (𝑟0), tolerance and frequencies

range (i.e. minimum frequency (𝑄𝑚𝑖𝑛), maximum frequency (𝑄𝑚𝑎𝑥)) are initialized in

addition to the time step counter (𝑡𝑠).

In line 5, the BTS modelling the test candidates as bats location (𝑥𝑏𝑎𝑡 𝑖). Here, the

population is initialized based on the assumption that bats location (𝑥𝑏𝑎𝑡 𝑖) are the test

candidates. The population is constructed as sets with a number of bats (𝑛𝑖), each having

its owns location, velocity, fitness and frequency. The location of each bat are randomly

initialized as a test candidate constructed based on the decision values (𝑣𝐸𝑖) that represent

the test element in the ES. Each location represents a random test candidate (𝑥𝑏𝑎𝑡 𝑖) that

is indexed for a specified bat as shown in Figure 3.13.

Until now, the BTS iterations are yet to be started. The velocity and fitness for all

the bats in the population are still having an initial value of zero. In contrast, the frequency

(𝑄𝑖) is generated randomly in the range of 𝑄𝑚𝑖𝑛 to 𝑄𝑚𝑎𝑥 for the first iteration as the

frequency is adjusted in the next cycle of iterations. Likewise, the velocity and location

are updated for each bat in every cycle of iteration using the virtual bat movement (based

motion equations).

71

Mapping of test candidates in BA papulation

Figure 3.13 The illustration of test candidates mapping into the BA population.

In lines 6 and 7, the initial evaluation (or the evaluation of the first generation)

and the selection of the initial global best test candidate is processed. The evaluation steps

calculate the fitness of all the bats in the population and store the values in the

corresponding fitness field (column) for each specified bat in the population (Figure

3.13). Here, the test candidate (𝑥𝑏𝑎𝑡 𝑖) is evaluated using the objective function specified

earlier in Equation 2.8. The fitness is presented as the number of IEs covered by each bat.

The best test candidate with the highest coverage value (or fitness) is then, is selected and

considered as the best global bat.

To select a best global coverage in case of multiple test candidates with the same

maximum coverage and empty FTS, the Hamming distance classifier was not used in this

step to determine the bat having the highest distance from the test cases in FTS as FTS is

still empty. The first bats with the highest coverage values are selected randomly as the

best global bat as they have the same maximum coverage value.

72

As the global best is selected, the iteration is initiated in line 8 where the BTS

cycle until the IET, is empty. This consider as the stopping condition because all the test

cases that covered all the IEs in the IET is generated. During this iteration from line 8 to

line 33, the iteration for the BA time steps is cycling for all the bats as represented in line

10 to line 30. The bats here are improved in each time steps or population generation.

The process of improvement is progressing in line 11 and each bat solution is

updated based on the virtual bat movement (motion movement) using Equations 3.2 to

3.4. The improvement process of each test candidate is as follows: firstly, a new

frequency is calculated for the specified bat using Equation 3.2 based on a random

variable (rand) within the range of zero to one; secondly, a new velocity is calculated

based on the current best global test candidate (the best test candidate selected earlier),

and the new frequency using Equation 3.2; finally, a new test candidate is generated based

on the new calculated velocity and the current test candidate in the population using

Equation 3.3.

In line 12, the new test candidate is generated using the new velocity for the

targeted bat. A re-evaluation process of the generated solutions based on the objective

function is carried out (i.e. owing to the potential improvements).

Lines 13 – 17 update the test candidate using a random variable based on the

emission of pulse rate values. If the random is less than the emitted pulse rate, and the

fitness of the current bat is greater than the current global best, the test candidate considers

as a global best. In order words, a random walk (local search) for the current test candidate

will be considered. During the local search, the bat’s location (test candidate) is randomly

generated around the best global candidate.

Concerning the selection process in lines 19 to 24, a random variable is generated

but if it is less than the current loudness and the fitness of the current test candidate is

higher than the best global test candidate fitness (i.e. (𝑥𝑏𝑎𝑡 𝑖) is covering more interaction

elements), then the test candidate is considered as the new global best. The algorithm

then, increases the rate of pulse emission and reduces the loudness using the tolerance

value. This case selects the best test candidate. In the case where multiple test candidates

have similar maximum fitness, the Hamming distance classifier is called to decide which

test candidate should be selected as the global best.

73

Lines 25 – 29 represent the updating of the best global test candidate based on the

Hamming distance classifier with multiple test candidates with the same maximum

coverage value. The generation step improvement is not equalled to one (i.e. not in the

first cycle, as in this case the FTS is still empty). Here, two or more test candidates can

share multiple best with the highest fitness. To break the tie situation, the Hamming

distance classifier is adopted to select the candidate that has the farthest distance among

the best candidates with respect to the test cases in the FTS using Equations 3.9. The

distance term calculated for the test candidates with all the available test cases in FTS are

shown in Figure 3.14.

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐 (𝑑(𝑥)) =∑|𝑥𝑏𝑎𝑡𝑖 − 𝐶𝑛|
3.9

Let us assume the test candidate 𝑥𝑏𝑎𝑡 2 = {2 1 3 2} and the available test case 𝐶1

= {1 1 1 1}, here, 𝑑 (𝑥𝑏𝑎𝑡 2, 𝐶1) = 4; the next test case 𝐶2 = {2 1 1 3}, 𝑑 (𝑥𝑏𝑎𝑡 2, 𝐶2)=

3, and so on. In all these, the 𝑑 (𝑥𝑏𝑎𝑡 2) = 7. This process goes through all the best

candidates (i.e., 𝑑 (𝑥𝑏𝑎𝑡 4) = 5 and 𝑑 (𝑥𝑏𝑎𝑡 6) = 9). In this example, the best test

candidate with the highest (or farthest) distance (which is in this case 𝑥𝑏𝑎𝑡 6) is selected

accordingly (refer to Figure 3.14).

The iteration of the algorithm is contained until it satisfies the number of

generations (𝑚𝑎𝑥) specified. In each cycle of generation, the test candidate is improved

until the maximum coverage is achieved. The final best global candidate is considered as

final test case that is added to the FTS. Then, the covered IEs are removed from the IET

as shown in line 32. This process elaborated above is maintained until all the IEs in the

IET has been covered (IET became empty). The final test suite is then, displayed.

It should be noted that when there is only one best candidate satisfying the

maximum coverage, the Hamming distance classifier will not be considered (lines 15 to

18). But in the case of multiple bats with the same maximum coverage occurred, the

Hamming distance classifier is used to determine the best candidate that need to be

selected.

74

Figure 3.14 The illustration of Hamming distance classifier.

75

In a situation where the BA iteration (𝑚𝑎𝑥) has completed and the best bat has

not satisfied the maximum coverage (there are still elements in the IET), the test candidate

will be appended to the FTS. Here, the improvement process in the BTS failed to find the

minimal test suite.

The test suite generation algorithm stays in the cycling until the exit criteria are

met. When the exit criteria are met (all the involved IEs in the IET are covered) the

cycling stops and the FTS will be displayed. But on the contrary, the update and

improvement of the test candidates will be going on until all the IEs in the IEL are

covered.

In the case of mixed-strength (sub-strength), the objective function is evaluated

for its EC and the same process is undertaken. The obtained test suite for the main-

strength and the sub-strength are combined without the duplicates from the test cases in

the sub-strength test suite.

For more details, Figure 3.15 shows a simple illustration of the mechanism (or

flow) of the of test suite generation in BTS.

76

Figure 3.15 The illustration of test suite generation mechanism.

77

3.2.4 Tuning of BTS Variables

The process of the variables tuning for the BTS has been elaborated in this sub-

section. To ensure the most optimal results for the BTS with regards to the test suite size,

the control variables for the BA have to be tuned based on the test suite generation

problem. For the tuning purpose, a well-known test system (covering array) that

involving a CA (N; 2, 57) is employed. The justification for adopting this configuration

for the tuning process originates from the use of the same CA to tune many of the existing

t-way strategies (Ahmed & Zamli, 2011b; Alsewari & Zamli, 2012a; Stardom, 2001).

The process of tuning BTS is based on 20 runs (Ahmed & Zamli, 2011b; Stardom, 2001)

for the specified CA with different variables settings. The BTS has five main control

variables: {bats population size, generation, loudness, pulse rate, and tolerance}, that

control the sizes of the obtained test suite. The size and average of the final test suite sets

for the 20 runs have been recorded. Then, the results of the tuned variables are analysed

to find the settings that fit the minimum size and average of the final test suites (Figure

3.16 to Figure 3.23) (refer to Appendix B for a full detail of the variable setting execution

outputs). The five variables (bat population and generation (iteration), loudness, pulse

rate, and tolerance are executed for all the possible selected settings.

The BA setting variables are varied depending on the problem to be solved. For

instance, Yang (2014) has used the following parameters; {𝑛 = 25 to 50, 𝑚𝑎𝑥 = 10 , 𝐴𝑖

= 0.25, 𝑟𝑖 = 0.5, 𝑄𝑚𝑖𝑛 = 0, 𝑄𝑚𝑎𝑥 = 2, tolerance = 0.00001}as a default setting values for

his evaluation, while Yang and Gandomi validated BA for solving a global engineering

optimization problems using a fixed n = 20 and g = 1000 to perform 20 thousand searches

which was not necessary for testing the suite generation (Yang & Gandomi, 2012).

Yang (2014) also specified that if the loudness and pulse rate are fixed to 0 and 1,

respectively, the BA can behave as the standard PSO in this setting. On the other hand, if

these settings are fixed in the range of 0.7 to 0.9 (i.e. 𝐴𝑖 = 𝑟𝑖 from 0.7 to 0.9), the BA

basically becomes a HS as 𝑄𝑖 change is equivalent to the pitch adjustment in HS. In

another study, researchers used 𝑛 = 20, 𝐴𝑖 = 0.9, 𝑟𝑖 = 0.1, 𝑄𝑚𝑖𝑛 = 0, 𝑄𝑚𝑎𝑥 = 2 for their

evaluation of a combined economic load and emission dispatch (Rakesh et al., 2013). The

BA frequency variables were tuned in this process in a pre-specified range; the tolerance

value was pre-defined for local search use as well.

78

The first variable is bat population (𝑛) and the iterations; for the bat population

which indicates the number of bats involved in the test suite generation, this variable

controls the randomly initialized test candidates in the memory. When the number of test

candidate increases, the possibility of finding a better solution (a test candidate with

maximum IEs coverage) improves and vice versa. Yang (2010) specified that the number

of bat population can be more than 10 depending on the problem solved. Yang (2010)

also set the bat population from 10 to 40 in his simulations for finding the global optima

for several benchmarking functions (Yang, 2010). For the tuning of bat population, a set

of four values (𝑛 = {10, 20, 50, 100}) were selected.

Next, the iteration (generations (𝑚𝑎𝑥)), as name suggests, controls the

improvement of the solution for all the initialized bats (test candidates) for each cycle of

iteration. It is noticed that when the iterations variable increases, the possibility of

founding a better solution is increased and vice versa. For the tuning of the maximum

generation, we selected a set of five values (𝑚𝑎𝑥 = {10, 20, 50, 100, 200}). These bat

population and generation values appear effective for obtaining the minimum test suite.

Our experiments’ shows that the quality of the BTS solution is acceptable for these

settings. Thus, these sets were used for a full tuning execution.

The initial values of the loudness and pulse rate need to be tuned; the maximum

effectiveness of these variable are in the range of [0 – 1]. Thus, a set of five values are

selected in this range for both variables. The set contains five values (i.e. A, r = {0.05,

0.25, 0.5, 0.75, 0.95}). For the tolerance that controls the adjustment of the loudness and

pulse rate, another five values (i.e. tolerance = {0.00001, 0.0001, 0.001, 0.01, 0.1}) are

selected to fit the test suite generation.

79

Figure 3.16 The illustration of minimum sizes with 10 bats.

Figure 3.17 The illustration of sizes average with 10 bats.

80

Figure 3.18 The illustration of minimum sizes with 20 bats.

Figure 3.19 The illustration of sizes average with 20 bats.

81

Figure 3.20 The illustration of minimum sizes with 50 bats.

Figure 3.21 The illustration of sizes average with 50 bats.

82

Figure 3.22 The illustration of minimum sizes with 100 bats.

Figure 3.23 The illustration of sizes average with 100 bats.

83

Based on the empirical experiments and the results of this study shown in Figure

3.16 to Figure 3.23, the differences in the test suite slightly decreased when the bat

population and generation increases for values more than 50. The same observation

applies for loudness and pulse rate in case of the value 0.50 and tolerance value of 0.001.

Here, the solution gives less variation for the higher values (and achieved more reduction

in test sizes).

Empirically, the sizes and averages stabilized when 𝑛 = 50, 𝑚𝑎𝑥 = 200, 𝐴𝑖 =

0.25, 𝑟𝑖 = 0.05 and tolerance = 0.001. The most stable value for test suite averages =

34.75, which was around 33 test cases in most of the cases which is better minimal test

suite size than what is obtained in previous studies (Alsewari & Zamli, 2012a; Stardom,

2001) . Thus, this setting is selected for the current problem been solved.

The parameter values used for the BTS test suite generation benchmarking are as

follows: 𝑛 =50, 𝑚𝑎𝑥 = 200, 𝐴𝑖 = 0.25, 𝑟𝑖 = 0.05, 𝑄𝑚𝑖𝑛 = 0, 𝑄𝑚𝑎𝑥 = 2, tolerance = 0.001.

Here, the frequency range values were defined to the default setting for BA (as the

changing of these setting did not affect the process of test suite generation). As observed

from the experiments, the quality of the solution stabilized at this setting (BTS

consistently achieved minimal test suite sizes).

84

3.3 Prototype Implementation

The BTS strategy has been developed by using the Java programming language

with JDK 1.8. Java has been selected owing to the cross-platform support. In addition,

Java also provides rich GUI APIs that facilitates full executional testing platforms in the

future. Figure 3.24 summarizes the BTS interface and Figure 3.25 illustrates the

functional hierarchy of BTS.

Figure 3.24 The BTS prototype.

The prototype presents the actual data input and the result. Here, a test suite for a

pizza selection software is generated based on it actual inputs that represented as

𝐶𝐴(𝑆, 2, 3227). Here, the optimal test suite obtained is 10 test cases that can be stored

into a file or viewed by clicking the test suite record.

The test engineer (i.e. end user) can get FTS result in text file, that can be

integrated to a test execution mechanism. Figure 3.25 shows the functional hierarchy for

BTS including the main functionally for its four algorithms.

85

Figure 3.25 The functional hierarchy of BTS.

3.4 Summary

This chapter has provided the full details of the research design concepts of BTS

and its algorithms are presented. Additionally, a step-by-step execution of the BTS

strategy was presented in this chapter. Furthermore, the tuning and optimizing of the

variables used for the BTS test suite generation was presented. Finally, the

implementation of the BTS strategy is shown.

The next chapter will present the reports of the BTS benchmarking experiments

as well as the statistical analysis based on several real-world applications.

BTS

Input analyser

Input parser

Legal value
generator

CTS generator

t-way
combination

analyser

mixed-strength
combination

analyser

Combination
generator

IET generator

Combination
utilizer

Interaction
element

generator

Binary generator

Test suite
generator

Population
Initializer

Bat algorithm
searching

Interaction
coverage checker
(Wight checker)

Hamming
distance

calculator

Help File writer

CHAPTER 4

RESULTS AND DISCUSSION

In the previous chapter, the BTS design and implementation were illustrated and

elaborated. Furthermore, the BTS parameter settings were optimized based on an

elaborate tuning process.

This chapter presents the evaluation of BTS starting with the experimental

evaluations. The evaluations consist of the following; the characterization of the original

BA and the modified Hamming BA used in the BTS; the comparative benchmarking

experiments with well-known t-way strategies that are presented along with the necessary

statistical analysis. Finally, the chapter concludes with the summary of the major

findings.

4.1 Experimental Evaluations

The experimental evaluation of BTS is focusing on two main goals:

 to characterize the performance of BA against the implemented Hamming BA.

 to benchmark the Hamming BA against other competing approaches.

Based on the aforementioned goals, the BTS evaluation is divided into three parts.

In the first part, the size performance and the average time are reported for the BTS

variants (the original BA and the Hamming BA). The second part covers the

benchmarking of the Hamming BA against its counterparts along with the complete

distribution pattern. The best tuning values with a maximum number of iteration (200)

and population (50 bats) is adopted (refer to Chapter 3).

87

The benchmarking of BTS against the other strategies is divided into two sub-

sections. The first sub-section reports the results of BTS against other strategies for test

suite generation. This is based on previous studies published by strategies’ publications

(Ahmed et al., 2015; Ahmed et al., 2014; Ahmed & Zamli, 2011b; Ahmed et al., 2012a;

Cohen, 2004; Lei et al., 2007; Shiba et al., 2004; Wang & He, 2013; Wang et al., 2008).

The second sub-section reports the results of BTS against mixed strength supported

strategies. This is also based on previous studies published by strategies’ publications

(Ahmed & Zamli, 2011b; Ahmed et al., 2012a; Bansal et al., 2015; Cohen et al., 2003c;

Wang & He, 2013; Wang et al., 2008; Xiang et al., 2009).

As the strategies in the above-highlighted publications are not publicly available,

it is not possible to do the time performance comparison. At best, only the size

performances are considered since the size performances are not affected by computing

environments (i.e., as currant computer more powerful than the one used in the previous

strategies)

The experimental platform comprises of a PC running Windows 7, Intel i7-3770

Quad Core 3.4 GHz CPU, 4 GB RAM, and Java running environments (JRE) version 1.8.

All the obtained experimental results are compared and presented in tables together with

the benchmarked results from the other strategies’ publications. The cells marked “N/A”

(not available) indicates that the specific configurations result is not available. Likewise,

cells marked “N/S” (not supported) indicates that the specific configuration interaction

strength is not supported by the strategy. The best sizes are marked with bold cells. The

minimal average sizes are highlighted using dark cells. Whenever necessary, the minimal

execution time is marked using italic cells. For the statistical significance, all the BTS

(Size) results are based on 20 executions. the average size (Average) are reported for BTS.

The statistical analysis based on Friedman (Daniel, 1990; Laerd Statistics, 2017a)

and Wilcoxon Rank-Sum (Laerd Statistics, 2017b; Wilcoxon, 1945) will be conducted.

This is to determine the significance of the results of the undertaken work. The rationale

for adopting the Friedman and Wilcoxon Rank-Sum stemmed from the fact that the

obtained results are not normally distributed. This presented the need for a non-

parametric test. As the benchmarking experiments consider 1 x N comparison, there

could be potential significant field-wise errors which can disrupt the statistical

conclusions. For this reason, the post-hoc analysis using the Bonferonni’s Holm

88

procedure is chosen to adjust the acceptance probability. Then, the obtained results are

illustrated for the comparative benchmarking using interval plot. The benchmarking is

based on the descriptive means values with the individual standard deviation interval for

each of the strategies.

Basically, the null hypothesis (H0) for the Friedman test is that there is no

significant difference between the terms of the test suite sizes median for the results

sample at 95 % confident level. Alternatively, the alternative hypothesis (H1) is that there

is a significant difference in terms of the test suite sizes median. This means that the

results median distribution is not equal (less or greater) for the sample. As Friedman test

gives a general observation for all the results, a post-hoc test is needed to compare BTS

results with the results of each other strategy. As highlighted earlier, the Wilcoxon Rank-

Sum test is adopted as the post-hoc method.

The null hypothesis (H0) for Wilcoxon Rank-Sum test is that there is a significant

median difference between the mean pair of samples. The results are compared to other

strategies at a 95 % level of confidence level. Here, if the Wilcoxon statistic is less or

equal to the alpha (𝛼 = 0.05) with Bonferroni-holm correction, H0 will be rejected.

Alternatively, H1 will be adopted if there is a significant difference in terms of the test

suite sizes median of BTS with the other strategies. The Bonferroni-holm correction

(multiple-comparison correction) is used when several dependent or independent

statistical tests are being performed simultaneously. To avoid many spurious positives,

the alpha value needs to be lowered to account for the number of comparisons being

performed.

The Bonferroni-holm correction value is calculated based on the given alpha for

the entire set divided by the number of comparison (𝑚). This gives a critical value with

Bonferroni-holm correction 𝛼ℎ𝑜𝑙𝑚 for the tested pairs. The Bonferroni-holm correction

can be calculated using Equation 4-1.

𝛼ℎ𝑜𝑙𝑚 =
𝜶

𝑚 + 1 − 𝑘

 4.1

To perform the statistical calculations, the SPSS Statistics Software Version 22

and MiniTab 17 are used. MiniTab is used for interval plotting since SPSS cannot support

the interval plot features.

89

4.2 Experimental Results

In this sub-section, the BTS results are reported in three parts. In the first part, the

BTS variants (the original BA and the Hamming BA) size performance and the average

time results are reported. The second part reported the benchmarking of the Hamming

BA of BTS against its t-way counterparts. Then, in the third part, the Hamming BA of

BTS is benchmarked against its mixed strength counterparts. The benchmarking in this

section is done along with the complete distribution pattern for both t-way and mixed

strength interaction.

4.2.1 Characterizing BTS

This section highlights the performance of BTS with Hamming BA against the

original BA. The configuration consists of a covering array 𝑚𝐶𝐴 (𝑆, 𝑡, 37, {MC}),MC =

 𝐶𝐴 (𝑆, 3, 34) where t is varied from (2 ≤ t ≤ 6). A total of 5 experiments is defined for

characterizing BTS as follows:

 Experiment 1: 𝑚𝐶𝐴 (𝑆, 2, 37, {MC}),MC = 𝐶𝐴 (𝑆, 3, 34)), .

 Experiment 2: 𝑚𝐶𝐴 (𝑆, 3, 37, {MC}),MC = 𝐶𝐴 (𝑆, 3, 34)).

 Experiment 3: 𝑚𝐶𝐴 (𝑆, 4, 37, {MC}),MC = 𝐶𝐴 (𝑆, 3, 34)).

 Experiment 4: 𝑚𝐶𝐴 (𝑆, 5, 37, {MC}),MC = 𝐶𝐴 (𝑆, 3, 34)).

 Experiment 5: 𝑚𝐶𝐴 (𝑆, 6, 37, {MC}),MC = 𝐶𝐴 (𝑆, 3, 34)).

The obtained results are reported in Table 4.1. The best sizes are marked with

bold cells while the minimal average sizes are highlighted using dark cells. The minimal

execution time (in seconds) is marked using italic cells.

Table 4.1 The characteristic of BTS (Hamming BA against original BA).

Interaction

strength (t)

BTS with original BA BTS with Hamming BA

best worst size time (s) best worst size time (s)

Size Size Average Average Size Size Average Average

2 31 37 32.850 2.652 30 34 32.350 3.678

3 49 53 51.700 13.650 49 53 51.250 14.160

4 155 160 157.150 91.350 153 159 156.000 97.690

5 434 446 440.950 285.900 434 445 438.050 301.80

6 963 988 976.600 304.900 860 955 933.400 343.80

90

The convergence pattern in Figure 4.1 shows the converging of the worst results

of the BTS variants; Original BA and Hamming BA.

0

50

100

150

200

250

300

350

O
bj

ec
ti

ve
 F

un
ct

io
n

Iteration

Experiment 1

0

200

400

600

800

1000

1200

0 90 18
0

27
0

36
0

45
0

54
0

63
0

72
0

81
0

90
0

99
0

10
80

11
70

12
60

13
50

14
40

15
30

O
b

je
ct

iv
e

Fu
n

ct
io

n

Iteration

Experiment 2

0

500

1000

1500

2000

2500

3000

3500

0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

O
bj

ec
ti

ve
 F

un
ct

io
n

Iteration

Experiment 3

0

1000

2000

3000

4000

5000

6000

0

81
0

16
20

24
30

32
40

40
50

48
60

56
70

64
80

72
90

81
00

89
10

97
20

10
53

0

11
34

0

12
15

0

12
96

0

O
bj

ec
ti

ve
 F

un
ct

io
n

Iteration

Experiment 4

0

1000

2000

3000

4000

5000

6000

0

12
60

25
20

37
80

50
40

63
00

75
60

88
20

10
08

0

11
34

0

12
60

0

13
86

0

15
12

0

16
38

0

17
64

0

18
90

0

20
16

0

21
42

0

22
68

0

23
94

0

25
20

0

26
46

0

27
72

0

28
98

0

O
b

je
ct

iv
e

Fu
n

ct
io

n

Iteration

Experiment 5

0

50

100

150

200

250

300

350

0 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

78
0

84
0

90
0

96
0

10
20

10
80

O
b

je
ct

iv
e

Fu
n

ct
io

n

Experiment 1

Orginal BA

Hamming BA

Figure 4.1 The convergence pattern.

In Figure 4.1 the convergence pattern of the two variants of BTS. The Hamming

BA variants shows a faster convergence to the optimal test suite with less iterations, while

the original variants that uses the default BA gives less time execution. Notably,

Hamming BA variants perform better in terms of test suite sizes. Therefore, The

Hamming BA is selected for benchmarking with the existing strategies (As the minimal

test suite is concerned).

91

4.2.2 Benchmarking with Other Strategies

The BTS supports interaction strength up to six (2 ≤ t ≤ 6). This is the ideal

interaction strength for t-way testing as suggested by (Czarnecki et al., 2012; Kuhn et al.,

2010; Kuhn et al., 2015). Therefore, four experimental benchmarking sets that have the

specified interaction strength up to t = 6 are conducted. The selected benchmarking test

configurations are publicly available in the literature. In the first three experimental sets

(experimental sets 1, 2 and 3), the BTS is benchmarked against TConfig, IPOG, ITCH,

Jenny, PICT, TVG, PSTG, CS and HSS. In the experimental set 4, the BTS is compared

with the results obtained from the execution of PICT, TVG and TConfig. The selected

sets of benchmarking experiments are as follows:

 Experimental set 1: The benchmarking for test configurations with varying

interaction strengths (2 ≤ t ≤ 6)-way with fixed parameters (3 ≤ P ≤ 12) and (v =

3) each (see Table 4.2).

 Experimental set 2: The benchmarking for test configurations with varying

interaction strength (2 ≤ t ≤ 6)-way with fixed parameters (P = 7) and (2 ≤ v ≤ 5)

each (see Table 4.3).

 Experimental set 3: The benchmarking for test configurations with 4-way with

interaction strength with varying parameters (5 ≤ P ≤ 10) and fixed (v = 5) each

(see Table 4.4).

 Experimental set 4: The benchmarking for four real-world software test

configurations (𝐶𝐴(𝑆, 𝑡, 2135) , 𝐶𝐴(𝑆, 𝑡, 213252) , 𝐶𝐴(𝑆, 𝑡, 213342516181) ,

𝐶𝐴(𝑆, 𝑡, 263251)) with varying interaction strength (2 ≤ t ≤ 6)-way (see Table

4.5).

92

Table 4.2 The minimum test suite sizes for experimental set 1.

t-values P-values

Deterministic Probabilistic

TConfig IPOG ITCH Jenny PICT TVG PSTG CS HSS BTS

Size Size Size Size Size Size Size Size Size Size Average

2 3 10 11 9 9 10 10 9 9 9 9 9.7500

4 10 12 9 13 13 12 9 9 9 9 9.0000

5 14 14 15 14 13 13 12 11 12 11 11.100

6 15 15 15 15 14 15 13 13 13 14 14.300

7 15 17 15 16 16 15 15 14 15 15 15.100

8 17 17 15 17 16 15 15 15 15 15 15.600

9 17 17 15 18 17 15 17 16 17 16 16.300

10 17 20 15 19 18 16 17 17 17 16 16.700

11 20 20 15 17 18 16 17 18 17 17 17.350

12 20 20 15 19 19 16 18 18 18 17 17.650

3 4 32 39 27 34 34 34 27 28 30 27 30.100

5 40 43 45 40 43 41 39 38 39 39 41.050

6 48 53 45 51 48 49 45 43 45 33 38.300

7 55 57 45 51 51 55 50 48 50 49 50.750

8 58 63 45 58 59 60 54 53 54 52 53.150

9 64 65 75 62 63 64 58 58 59 55 57.300

10 68 68 75 65 65 68 62 62 62 59 60.750

11 72 76 75 65 70 69 64 66 66 61 63.600

12 77 76 75 68 72 70 67 70 67 65 65.950

93

t-values P-values

Deterministic Probabilistic

TConfig IPOG ITCH Jenny PICT TVG PSTG CS HSS BTS

Size Size Size Size Size Size Size Size Size Size Average

4 5 97 115 153 109 100 105 96 94 94 81 84.200

6 141 181 153 140 142 139 133 132 132 130 134.40

7 166 185 216 169 168 172 155 154 154 149 154.20

8 190 203 216 187 189 192 175 173 174 172 174.55

9 213 238 306 206 211 215 195 195 195 157 186.15

10 235 241 336 221 231 233 210 211 212 205 207.25

11 258 272 348 236 249 250 222 299 223 220 221.25

12 272 275 372 252 269 268 244 253 244 235 437.60

5 6 305 393 NS 348 310 321 312 304 310 256 279.90

7 477 608 N/S 458 452 462 441 434 436 434 438.00

8 583 634 N/S 548 555 562 515 515 515 514 517.10

9 684 771 N/S 633 637 660 598 590 597 587 592.40

10 773 784 N/S 714 735 750 667 682 670 659 663.50

11 858 980 N/S 791 822 833 747 778 753 736 738.75

12 938 980 N/S 850 900 824 809 880 809 797 848.60

6 7 921 1281 N/S 1087 1015 1024 977 960 977 896 917.80

8 1515 2098 N/S 1466 1455 1484 1402 1401 1402 1395 1399.5

9 1931 2160 N/S 1840 1818 1849 1684 1689 1684 1682 1687.4

10 N/A 2726 N/S 2160 2165 2192 1980 2027 1991 1976 2002.3

11 N/A 2739 N/S 2459 2496 2533 2255 2298 2255 2192 2237.2

12 N/A 3649 N/S 2757 2815 2597 2528 2638 2528 2503 2589.4

94

Table 4.3 The minimum test suite sizes for experimental set 2.

𝒕-values 𝒗-values

Deterministic Probabilistic

TConfig IPOG ITCH Jenny PICT TVG PSTG CS HSS BTS

Size Size Size Size Size Size Size Size Size Size Average

2 2 7 8 6 8 7 7 6 6 7 7 7.00000

3 15 17 15 16 16 15 15 15 14 15 15.0000

4 28 28 28 28 27 27 26 25 25 24 24.9000

5 40 42 45 37 40 42 37 37 35 33 35.1000

3 2 16 19 13 14 15 15 13 12 12 15 15.5000

3 55 57 45 51 51 55 50 49 50 49 50.3500

4 112 208 112 124 124 134 116 117 121 115 115.900

5 239 275 225 236 241 260 225 223 223 217 220.200

4 2 36 48 40 31 32 31 29 27 29 31 33.7500

3 166 185 216 169 168 167 155 155 155 152 154.200

4 568 509 704 517 529 559 487 487 500 482 485.900

5 1320 1349 1750 1248 1279 1385 1176 1171 1174 1153 1163.85

5 2 56 128 N/S 57 57 59 53 53 53 54 59.0500

3 477 608 N/S 458 452 464 441 439 437 435 439.550

4 1792 2560 N/S 1938 1933 2010 1826 1845 1831 1802 1813.30

5 N/A 8091 N/S 5895 5814 6257 5474 5479 5468 5417 5430.15

6 2 64 64 N/S 87 72 78 64 66 64 64 64.0000

3 921 1281 N/S 1087 1015 1016 977 973 916 914 924.550

4 N/A 4096 N/S 6127 5847 5978 5599 5610 4096 5415 5446.25

5 N/A 28513 N/S 23492 22502 23218 21595 21597 21748 21436 21371.4

95

Table 4.4 The minimum test suite sizes for experimental set 3.

P-values

Deterministic Probabilistic

TConfig IPOG ITCH Jenny PICT TVG PSTG CS HSS BTS

Size Size Size Size Size Size Size Size Size Size Average

5 773 908 625 837 810 849 779 776 751 736 741.05

6 1092 1239 625 1074 1072 1128 1001 991 990 965 972.70

7 1320 1349 1750 1248 1279 1384 1209 1200 1186 1158 1162.4

8 1532 1792 1750 1424 1468 1595 1417 1415 1358 1317 1324.6

9 1724 1793 1750 1578 1643 1795 1570 1562 1530 1508 1510.3

10 1878 1965 1750 1719 1812 1917 1716 1731 1624 1746 1763.3

96

Table 4.5 The minimum test suite sizes for experimental set 4.

t-value Real-world software Test configurations

Deterministic Probabilistic

TConfig PICT TVG BTS

Size Size Size Size Average

2 Count MCA(𝑆, 2, 2135) 15 14 15 12 12.9000

Nametbl 𝑀𝐶𝐴(𝑆, 2, 213252) 26 25 25 25 25.1500

Flex 𝑀𝐶𝐴(𝑆, 2, 263251) 18 17 19 15 16.7000

Grep 𝑀𝐶𝐴(𝑆, 2, 213342516181) 53 49 53 48 51.0500

3 Count 𝑀𝐶𝐴(𝑆, 3, 2135) 44 44 45 33 36.0000

Nametbl 𝑀𝐶𝐴(𝑆, 3, 213252) 82 79 87 75 79.2500

Flex 𝑀𝐶𝐴(𝑆, 3, 263251) 62 53 55 51 54.9000

Grep 𝑀𝐶𝐴(𝑆, 3, 213342516181) 314 289 291 270 277.950

4 Count 𝑀𝐶𝐴(𝑆, 4, 2135) 126 113 121 113 116.200

Nametbl 𝑀𝐶𝐴(𝑆, 4, 213252) 248 228 230 225 225.400

Flex 𝑀𝐶𝐴(𝑆, 4, 263251) 149 135 134 134 135.600

Grep 𝑀𝐶𝐴(𝑆, 4, 213342516181) 1458 1167 1350 1225 1229.90

5 Count 𝑀𝐶𝐴(𝑆, 5, 2135) 263 251 268 243 245.500

Nametbl 𝑀𝐶𝐴(𝑆, 5, 213252) 450 450 450 450 450.000

Flex 𝑀𝐶𝐴(𝑆, 5, 263251) 349 305 312 291 295.700

Grep 𝑀𝐶𝐴(𝑆, 5, 213342516181) 5160 4634 5288 4758 4761.00

6 Flex 𝑀𝐶𝐴(𝑆, 6, 263251) 732 654 671 612 625.400

Grep 𝑀𝐶𝐴(𝑆, 6, 213342516181) 14258 15627 17576 13983 14394.3

97

4.2.3 Benchmarking for Mixed-Strength Test Configurations

In this sub-section, the performance of BTS in terms of test suite sizes for mixed-

strength test suite generations is presented. The performance is based on well-known

standard benchmark configurations that are publicly available in the related literatures

(Ahmed & Zamli, 2011b; Alsewari & Zamli, 2012a; Bansal et al., 2015; Cohen et al.,

2003c; Xiang et al., 2009). Four different experimental sets are selected to access the

performance of the BTS. The BTS results are compared to the available results of nine

well-known t-way strategies that support mixed-strength test suite construction.

The comparative experimental sets are as follows:

 Experimental set 5: The benchmarking results of 18 different sub-strength test

configurations with uniform mCA (𝑆, 2, 315, {MC}) as main-strength (see Table

4.6).

 Experimental set 6: The benchmarking results of 13 different sub-strength test

configurations with mixed-strength mMCA (𝑆, 2, 43 53 62 , {MC}) as main-

strength (see Table 4.7).

 Experimental set 7: The benchmarking results of 11 different sub-strength test

configurations with mixed-strength mMCA (𝑆, 2, 101 91 81 71 61 51 41 31 21 ,

{MC}) as main-strength (see Table 4.8).

 Experimental set 8: The benchmarking results of 6 different sub-strength test

configurations with mixed-strength mMCA (𝑆, 2, 330102 , {MC}) as main-

strength (see Table 4.9).

The four comparative mixed-strength experimental sets (Table 4.6 to Table 4.9)

show the comparative results of BTS against ITCH (Hartman et al., 2005), IPOG (Lei et

al., 2007), TVG (Arshem, 2003), PICT (Czerwonka, 2006), SA-Mayer (Cohen et al.,

2003c), ACS-VSITs (Xiang et al., 2009), PWiseGen-VSCA (Bansal et al., 2015), VS-

PSTG (Ahmed & Zamli, 2011b) and HSS (Alsewari & Zamli, 2012a).

98

Table 4.6 The minimum test suite sizes for experimental set 5.

Test configurations Deterministic Probabilistic

𝒎𝑪𝑨 (𝑺, , 𝟓, {𝐌𝐂}) ITCH IPOG TVG PICT
SA-

Mayer

ACS-

VSITs

PWiseGen-

VSCA
VS-PSTG HSS BTS

{𝐌𝐂} Size Size Size Size Size Size Size Size Size Size Average

ᴓ 31 21 22 35 16 19 16 19 20 19 19.70

𝐶𝐴 (𝑆, 3, 33) 48 27 27 81 27 27 27 27 27 27 27.30

𝐶𝐴 (𝑆, 3, 33)2 59 30 30 739 27 27 27 27 27 27 27.70

𝐶𝐴 (𝑆, 3, 33)3 69 33 30 785 27 27 27 27 27 27 28.00

𝐶𝐴 (𝑆, 3, 34) 59 39 35 105 27 27 27 30 27 30 32.10

𝐶𝐴 (𝑆, 3, 35) 62 39 41 131 33 38 33 38 38 39 40.70

𝐶𝐴 (𝑆, 4, 34) 103 81 81 245 N/S N/S 81 81 81 81 81.00

𝐶𝐴 (𝑆, 4, 35) 118 122 103 301 N/S N/S 91 97 94 90 97.30

𝐶𝐴 (𝑆, 4, 37) 189 181 168 505 N/S N/S 158 158 159 154 155.6

𝐶𝐴 (𝑆, 5, 35) 261 243 243 730 N/S N/S 243 243 243 243 243.0

𝐶𝐴 (𝑆, 5, 37) 481 581 462 1356 N/S N/S 441 441 441 429 438.7

𝐶𝐴 (𝑆, 6, 36) 745 729 729 2187 N/S N/S 729 729 729 729 729.0

𝐶𝐴 (𝑆 ,6, 37) 1050 1196 1028 3045 N/S N/S N/A 966 902 950 963.1

𝐶𝐴 (𝑆, 3, 34),
𝐶𝐴 (𝑆, 3, 35),
𝐶𝐴 (𝑆, 3, 36)

114 51 53 1376 34 40 40 45 45 43 45.50

𝐶𝐴 (𝑆, 3, 36) 61 53 48 146 34 45 40 45 45 45 46.40

𝐶𝐴 (𝑆, 3, 37) 68 58 54 154 41 48 47 49 51 47 49.70

𝐶𝐴 (𝑆, 3, 39) 94 65 62 177 50 57 57 57 62 56 57.60

𝐶𝐴 (𝑆, 3, 315) 132 N/S 81 83 67 76 74 74 77 73 74.70

99

Table 4.7 The minimum test suite sizes for experimental set 6.

Test configurations Deterministic Probabilistic

𝒎𝑴𝑪𝑨 (𝑺, , 𝟓 𝟔 , {𝐌𝐂}) ITCH IPOG TVG PICT
SA-

Mayer

ACS-

VSITs

PWiseGen-

VSCA
VS-PSTG HSS BTS

{𝐌𝐂} Size Size Size Size Size Size Size Size Size Size Average

ᴓ 48 43 44 43 36 41 37 42 42 41 42.300

𝐶𝐴(𝑆, 3, 43) 97 83 67 384 64 64 64 64 64 64 64.100

𝑀𝐶𝐴(𝑆, 3, 4352) 164 147 132 781 100 104 120 124 116 122 125.00

𝑀𝐶𝐴(𝑆, 3, 53) 145 136 125 750 125 125 125 125 125 125 125.00

𝑀𝐶𝐴(𝑆, 4, 4351) 354 329 320 1920 N/S N/S 320 320 320 453 463.70

𝑀𝐶𝐴(𝑆, 5, 4352) 1639 1602 1600 9600 N/S N/S 1600 1600 1600 1600 1600.0

𝐶𝐴(𝑆, 3, 43),
𝐶𝐴(𝑆, 3, 53)

194 136 125 8000 125 125 125 125 125 125 125.00

𝑀𝐶𝐴(𝑆, 4, 4351),
𝑀𝐶𝐴(𝑆, 4, 5262)

1220 900 900 NA N/S N/S 900 900 900 900 900.00

𝑀𝐶𝐴(𝑆, 4, 4352) 510 512 496 2874 N/S N/S 472 472 453 456 465.70

𝑀𝐶𝐴(𝑆, 5, 4352) 2520 2763 2592 15048 N/S N/S 2430 2430 2430 2380 2409.6

𝑀𝐶𝐴(𝑆, 3, 435361) 254 215 237 1266 171 201 206 206 212 204 208.60

𝑀𝐶𝐴(𝑆, 3, 5162) 188 180 180 900 180 180 180 180 180 180 180.00

𝑀𝐶𝐴(𝑆, 3, 435362) 312 N/S 302 261 214 255 260 260 263 256 259.50

100

Table 4.8 The minimum test suite sizes for experimental set 7.

Test configurations Deterministic Probabilistic

𝒎𝑴𝑪𝑨 (𝑺, , 𝟎 𝟗 𝟖 𝟕 𝟔 𝟓 , {𝐌𝐂})
ITCH IPOG TVG PICT

SA-

Mayer

ACS-

VSITs

PWiseGen-

VSCA
VS-PSTG HSS BTS

{𝐌𝐂} Size Size Size Size Size Size Size Size Size Size Average

ᴓ 119 91 99 102 N/A N/A 92 97 94 93 96.500

𝑀𝐶𝐴 (𝑆, 3, 1019181) 765 720 720 31256 N/A N/A 720 720 720 720 720.00

𝑀𝐶𝐴 (𝑆, 3, 716151) 301 221 210 19515 N/A N/A 210 210 210 210 210.30

𝑀𝐶𝐴 (𝑆, 3, 413121) 140 91 99 2397 N/A N/A 92 97 94 94 96.000

𝑀𝐶𝐴 (𝑆, 3, 101918171) 806 772 784 22878 N/A N/A 740 742 740 735 742.10

𝑀𝐶𝐴 (𝑆, 3, 1019181),
𝑀𝐶𝐴 (𝑆, 3, 716151)

947 720 720 N/A N/A N/A 720 720 720 720 720.00

𝑀𝐶𝐴 (𝑆, 3, 1019181),
𝑀𝐶𝐴 (𝑆, 6, 716151413121)

5803 5041 5040 N/A N/A N/A N/A 5040 5040 5040 5043.2

𝑀𝐶𝐴 (𝑆, 3, 1019181),
𝑀𝐶𝐴 (𝑆, 3, 716151),
𝑀𝐶𝐴 (𝑆, 3, 413121)

968 720 720 N/A N/A N/A 720 720 720 720 720.00

𝑀𝐶𝐴 (𝑆, 4, 51413121) 237 142 123 1200 N/A N/A 120 120 120 120 120.00

𝑀𝐶𝐴 (𝑆, 5, 10191413121) 2276 2160 2160 124157 N/A N/A 2160 2160 2160 2160 2160.0

𝑀𝐶𝐴 (𝑆, 6, 716151413121) 5157 5041 5040 N/A N/A N/A 5040 5040 5040 5040 5040.0

101

Table 4.9 The minimum test suite sizes for experimental set 8.

Test configurations Deterministic Probabilistic

𝒎𝑴𝑪𝑨 (𝑺, , 𝟎 𝟎 , {𝐌𝐂}) ITCH IPOG TVG PICT
SA-

Mayer

ACS-

VSITs

PWiseGen-

VSCA
VS-PSTG HSS BTS

{𝐌𝐂} Size Size Size Size Size Size Size Size Size Size Average

ᴓ N/A 101 101 100 100 100 N/A 102 106 107 114.10

𝐶𝐴 (𝑆, 3, 320) N/A 100 103 940 100 100 N/A 105 109 105 106.40

𝑀𝐶𝐴(𝑆, 3, 320102) N/A N/S 423 423 304 396 N/A 481 450 466 473.20

𝑀𝐶𝐴(𝑆, 4, 33101) N/A 273 270 810 N/A N/A N/A 270 270 270 270.00

𝑀𝐶𝐴(𝑆, 5, 33102) N/A 2700 2700 2800 N/A N/A N/A 2700 2700 2700 2700.0

𝑀𝐶𝐴(𝑆, 6, 34102) N/A 8100 8100 N/A N/A N/A N/A 8100 8100 8100 8100.0

102

4.3 Statistical Analysis of the Experimental Results

The statistical analysis is performed using the Friedman and Wilcoxon signed-

rank test with Bonferroni-holm correction (𝛼ℎ𝑜𝑙𝑚) at 95 % confident level (i.e. 𝛼 =

0.05). Additionally, an interval plot of the obtained results (the mean) by each compared

strategies is drawn. The interval plots depict the obtained result distributions and their

means at a 95 % confidence level (or confidence interval (CI))

In this section, the statistical analysis is divided into two sub-sections. The first

sub-section considers the results of t-way benchmarking while the second sub-section

considers the results of the mixed-strength benchmarking. The strategies with N/A and

N/S results are considered incomplete and ignored samples as there is no available result

for the specified test configuration.

4.3.1 Statistical Analysis for t-way Results

The statistical analysis is reported in Tables 4.10 to 4.17. The four interval plots

for the mean distributions of individual strategy results (test suite sizes means) are also

shown in the aforementioned tables. Figures 4.1 to 4.4 shows each strategy descriptive

results’ distribution and the resulting mean values.

103

Table 4.10 Friedman test for Table 5.2.

Friedman Conclusion

Degree of freedom = 7, 𝛼 =0.05

Friedman statistic (p-value) = 8.310E-42

Chi-square value (X2) = 210.100

8.310E-42 < 0.05 (i.e. p-value < α).

Thus, reject H0 and proceed to the post-hoc test.

Note: the results for (TConfig and ITCH) are ignored.

Table 4.11 Wilcoxon signed-rank (Post-hoc) test for Table 5.2.

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦 Conclusion

BTS vs IPOG 0.0000000354 0.00714286 Reject H0

BTS vs PICT 0.0000000517 0.00833333 Reject H0

BTS vs Jenny 0.0000000520 0.01000000 Reject H0

BTS vs TVG 0.0000002934 0.01250000 Reject H0

BTS vs HSS 0.0000003324 0.01666667 Reject H0

BTS vs PSTG 0.0000004984 0.02500000 Reject H0

BTS vs CS 0.0000017114 0.05000000 Reject H0

Figure 4.2 The illustration of Table 5.2 results' intervals with CL 95%.

104

Table 4.12 Friedman test for Table 5.3.

Friedman Conclusion

Degree of freedom = 7, 𝛼 =0.05

Friedman statistic (p-value) = 6.8673E-18

Chi-square value (X2) = 96.104

6.8673E-18 < 0.05

Thus, reject H0 and proceed to the post-hoc test.

Note: the results for (TConfig and ITCH) are ignored.

Table 4.13 Wilcoxon signed-rank (Post-hoc) test for Table 5.3.

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦 Conclusion

BTS vs PICT 0.0002745713 0.00714286 Reject H0

BTS vs Jenny 0.0002876189 0.00833333 Reject H0

BTS vs TVG 0.0004377772 0.01000000 Reject H0

BTS vs IPOG 0.0016940519 0.01250000 Reject H0

BTS vs PSTG 0.0052675313 0.01666667 Reject H0

BTS vs CS 0.0089096180 0.02500000 Reject H0

BTS vs HSS 0.0701753156 0.05000000 Retain H0

Figure 4.3 The illustration of Table 5.3 results' intervals with CL 95%.

105

Table 4.14 Friedman test for Table 5.4.

Friedman Conclusion

Degree of freedom = 9, 𝛼 =0.05

Friedman statistic (p-value) = 1.2330E-5

Chi-square value (X2) = 38.836

1.2330E-5 < 0.05

Thus, reject H0 and proceed to the post-hoc test.

Table 4.15 Wilcoxon signed-rank (Post-hoc) test for Table 5.4.

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦 Conclusion

BTS vs TConfig 0.02770785 0.00555556 Retain H0

BTS vs IPOG 0.02770785 0.00625000 Retain H0

BTS vs PICT 0.02770785 0.00714286 Retain H0

BTS vs TVG 0.02770785 0.00833333 Retain H0

BTS vs Jenny 0.04639946 0.01000000 Retain H0

BTS vs PSTG 0.04639946 0.01250000 Retain H0

BTS vs CS 0.04639946 0.01666667 Retain H0

BTS vs ITCH 0.34544753 0.02500000 Retain H0

BTS vs HSS 0.34544753 0.05000000 Retain H0

Figure 4.4 The illustration of Table 5.4 results' intervals with CL 95%.

106

Table 4.16 Friedman test for Table 5.5.

Friedman Conclusion

Degree of freedom = 3, 𝛼 =0.05

Friedman statistic (p-value) = 4.6293E-8

Chi-square value (X2) = 36.988

4.6293E-8 < 0.05

Thus, reject H0 and proceed to the post-hoc test.

Table 4.17 Wilcoxon signed-rank (Post-hoc) test for Table 5.5.

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦 Conclusion

BTS vs TConfig 0.00029190 0.01666667 Reject H0

BTS vs TVG 0.00064839 0.02500000 Reject H0

BTS vs PICT 0.06063245 0.05000000 Retain H0

Figure 4.5 The illustration of Table 5.5 results' intervals with CL 95%.

4.3.2 Statistical Analysis of Mixed-Strength Results

The statistical analysis of the mixed-strength benchmarking is reported in Tables

4.18 to 4.24. Also reported in the tables along with the four interval plots of the mean

size distribution of each individual strategy results (test suite sizes). A general

observation test (Friedman test) is reported first; then, in case of a statistical significant,

107

a post-hoc test is performed. Figures 4.6 to 4.9 show each strategy’s descriptive result

distributions and the mean value.

Table 4.18 Friedman test for Table 5.6.

Friedman Conclusion

Degree of freedom = 5, 𝛼 =0.05

Friedman statistic (p-value) = 5.1268E-16

Chi-square value (X2) = 81.023

5.1268E-16 < 0.05

Thus, reject H0 and proceed to the post-hoc test.

Note: the results for (IPOG, SA-Mayer, ACS-VSITs, and PWiseGen-VSCA) are ignored.

Table 4.19 Wilcoxon signed-rank (Post-hoc) test for Table 5.6.

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦 Conclusion

BTS vs ITCH 0.00019575 0.01000000 Reject H0

BTS vs PICT 0.00019644 0.01250000 Reject H0

BTS vs TVG 0.00095345 0.01666667 Reject H0

BTS vs PSTG 0.01471359 0.02500000 Reject H0

BTS vs HSS 0.14138133 0.05000000 Retain H0

Figure 4.6 The illustration of Table 5.6 results' intervals with CL 95%.

108

Table 4.20 Friedman test for Table 5.7.

Friedman Conclusion

Degree of freedom = 5, 𝛼 =0.05

Friedman statistic (p-value) = 5.1739E-8

Chi-square value (X2) = 42.278

5.1739E-8 < 0.05

Thus, reject H0 and proceed to the post-hoc test.

Note: the results for (IPOG, PICT, SA-Mayer and ACS-VSITs) are ignored.

Table 4.21 Wilcoxon signed-rank (Post-hoc) test for Table 5.7.

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦 Conclusion

BTS vs ITCH 0.01590644 0.01000000 Retain H0

BTS vs TVG 0.123025194 0.01250000 Retain H0

BTS vs PSTG 0.235885211 0.01666667 Retain H0

BTS vs PWiseGen-VSCA 0.734402143 0.02500000 Retain H0

BTS vs HSS 0.735316691 0.05000000 Retain H0

Figure 4.7 The illustration of Table 5.7 results' intervals with CL 95%.

109

Table 4.22 Friedman test for Table 5.8.

Friedman Conclusion

Degree of freedom = 5, 𝛼 =0.05

Friedman statistic (p-value) = 4.5553E-7

Chi-square value (X2) = 37.593

4.5553E-7 < 0.05

Thus, reject H0 and proceed to the post-hoc test.

Note: the results for (PICT, SA-Mayer, ACS-VSITs and PWiseGen-VSCA) are ignored.

Table 4.23 Wilcoxon signed-rank (Post-hoc) test for Table 5.8.

Pair comparison p-value 𝛂𝐡𝐨𝐥𝐦 Conclusion

BTS vs ITCH 0.00333001 0.01000000 Reject H0

BTS vs TVG 0.067889155 0.01250000 Retain H0

BTS vs PSTG 0.10880943 0.01666667 Retain H0

BTS vs HSS 0.179712495 0.02500000 Retain H0

BTS vs IPOG 0.235885211 0.05000000 Retain H0

Figure 4.8 The illustration of Table 5.8 results' intervals with CL 95%.

110

Table 4.24 Friedman test for Table 5.9.

Friedman Conclusion

Degree of freedom = 3, 𝛼 =0.05

Friedman statistic (p-value) = 0.1277

Chi-square value (X2) = 5.690

4.5553E-7 < 0.05

Thus, retain H0, there no statistical significant

(the post-hoc test is not required in this case).

Note: the results for (ITCH, IPOG, PICT, SA-Mayer, ACS-VSITs and PWiseGen-VSCA) are

ignored.

Figure 4.9 The illustration of Table 5.9 results' intervals with CL 95%.

111

4.4 Experimental Observation and Discussion

The statistical analysis of the mixed-strength benchmarking is reported in Tables

5.18 to 5.24 along with the four interval plots of the mean size distribution of each

individual strategy results (test suite sizes). A general observation test (Friedman test) is

reported first; then, in case of a statistical significant, a post-hoc test is performed. Figures

5.6 to 5.9 show each strategy’s descriptive result distributions and the mean value.

4.4.1 Experimental Results and Statistical Analysis Observations

This section discusses the experimental results in details. Regarding the

characterizing of BTS based on the comparison of the BTS variants (original BA and

Hamming BA) reported in Table 4.1, the results of the benchmarking experiments

revealed that the Hamming BA variant of BTS achieved the best sizes for the selected

mixed covering arrays with variation of interaction strength from (2 ≤ t ≤ 6). The original

BA variant of BTS matches the best result only in two entries (when t = 3 and t = 5). The

same pattern can be seen as far as the average size is concerned. In terms of average time,

the original BTS expectedly outperforms the Hamming based BTS. This performance is

achieved owing to the overhead in implementing the Hamming distance classifier.

Concerning the convergence pattern based on the worst sizes in Figure 5.1, the

BTS with Hamming BA shows higher converging rate (generate fewer test suite with

fewer iterations) than the BTS with original BA in Experiment 1 and 5. For the other

experiments, the BTS with Hamming BA is converging faster as well.

Regarding the second part of the benchmarking experiments in sub-section 4.2.2,

the benchmarking results with other strategies (experimental sets 1 to 4 in Table 4.2 to

Table 4.5) based on the Hamming BA variant of BTS show that the probabilistic

strategies outperforms the deterministic strategies in general. From the statistical analysis

of this sub-section, Friedman test gives a statistical significance for all the involved

strategies in each experimental set (H0 is rejected). Thus, a post-hoc test is performed to

give a general observation for the median distribution of BTS against the other strategies

(Table 4.2 to Table 4.5).

112

Based on the experimental sets 1, 2 and 3 The BTS is compared to TConfig,

IPOG, ITCH, Jenny, PICT, TVG, PSTG, CS, and HSS strategies. For experimental set 1

in Table 4.2, the BTS excels in most of the test configurations with 77.5 % of the best (or

most minimum) test suite sizes (31 out of 40 entries). Clearly, the BTS contributes to 25

out of the 31 entries with new minimal test suite sizes. In these test configurations, the

BTS performed ahead of its counterparts especially when t>3. The ITCH and CS perform

well in the low interaction strength (t ≤ 3) with 10 and 8 entries (25 % and 20 of the most

minimum test suite sizes, respectively). Here, the ITCH is not capable (or do not

supported) of generating a test suite for high interactions (t ≥ 3). Similar to ITCH and CS,

the PSTG and HSS perform similarly with 4 entries each which is 10 % of the most

minimum test suite sizes. Furthermore, Jenny and TVG only report the minimum test

suite size of an entry. This is a 2.5 % of the minimal test suite sizes of the 40 entries. In

these test configurations, IPOG, TConfig, and PICT have not reported significant or

minimum test suite size for any entries.

From the statistical analysis shown in Table 4.2 (given in Table 4.10 and Table

4.11), Friedman test indicates that the null hypothesis is rejected at 95 % confidence level.

Similarly, the post-hoc (Wilcoxon signed-rank) test in Table 4.11 shows that there is a

significant difference. This is evidenced in the rejection of the null hypothesis for all

pairs. All the BTS comparison with other strategies show differences as far as the size

performance of BTS is concerned. Thus, the BTS is statistically better than other

strategies based on the median distribution.

From the interval plots shown in Figure 4.2 for Table 4.2, it is noted that BTS

manages to achieve the minimum overall average. The best performance is achieved

based on the mean distribution at 95 % confidence levels. The HSS and PSTG show

similar performance while CS is in the third rank. Jenny, TVG and PICT is ranked forth

to sixth, respectively. Finally, IPOG shows the worst overall mean distribution, hence,

having the poorest size performance. Here, TConfig and ITCH results are ignored owning

to their result completeness (not complete sample).

According to the results of experimental set 2 in Table 4.3, the BTS manages to

get the best results with a percentage entry of 60 % (12 out of 20 entries). It is interesting

to note that 10 of the 12 best result entries are new minimal test suite sizes obtained by

BTS. Similar to the observations in Table 4.2, the BTS excels in the high interaction

113

strength (t > 3). The other strategies shared the best results for 10 entries. Here, 2 of the

10 shared entries are with BTS. In these test configurations, HSS and CS perform well in

4 entries each while ITCH performed with 3 best sizes with low interaction strength (t ≤

3) followed by PSTG, IPOG and TConfig with 2 entries each. The rest of the strategies

(Jenny, PICT and TVG) give similar results. However, no best sizes are obtained for

Jenny, PICT and TVG.

Based on the statistical analysis shown in Table 4.3 (given in Table 4.12 and Table

4.13), the null hypothesis is rejected at 95 % confidence level by the Friedman test. As a

result, there is a significant difference in terms of median distribution. Likewise, the post-

hoc test indicates that the null hypothesis is rejected for all the pair compassion. The HSS

is exempted here as far as size performance of BTS is concerned. For this reason, BTS is

statistically better than other strategies in this experimental set with the exception of HSS.

The interval plot presented in Figure 4.3 for Table 4.3 shows that HSS gives the

minimum mean. The BTS comes in second and the other strategies ranked in the

following order; CS, PSTG, PICT, Jenny, TVG and IPOG (while ignoring the

contributions of TConfig and ITCH).

Considering the results shown in Table 4.4, BTS, HSS and ITCH achieve the

overall best test suite sizes. Clearly, the BTS achieves 50 % of the best sizes (3 out of 6

entries). Additionally, the obtained best sizes are the new best sizes generated by the BTS

for the system configurations (P = 7, 8 and 9 with 1158, 1317 and 1508 test cases,

respectively). The ITCH keeps the best sizes for 2 test configurations (P = 5 and 6,

recording 625 test cases for each entry) with a percentage of 33.33 %. The HSS only

gives the best result for one entry (P = 10 with 1624 test cases). For experimental set 3,

only 3 strategies were observed to be able to achieve the best sizes. The other strategies

produce acceptable results as compared to the best sizes.

In the statistical analysis presented in Table 4.4 (given in Table 4.14 and Table

4.15), Friedman test (Table 4.14) shows statistical significance at 95 % confidence level.

Hence, the null hypothesis is rejected. As a result, a post-hoc test is considered. The post-

hoc result shown Table 4.15 favors the alternate hypothesis in all the cases as far as

median distribution is concerned. There is no statistical significant result based on the

114

pair comparisons). Thus, BTS is not significantly better than the other strategies in terms

of median distribution of the sizes obtained.

From the mean distribution shown in the interval plot in Figure 4.4 for Table 4.4,

the HSS is shown to give the minimum mean. The BTS follows in the second position.

Overall, the performance of BTS is better than those of CS, PSTG, Jenny, PICT, ITCH,

TVG, TConfig, and IPOG.

In experimental set 4, the BTS is executed against three available strategies

(TConfig, PICT and TVG). Table 4.5 highlights the reported results of four real world

open source software systems (Count, Nametbl, Flex, and Grap). The BTS manages to

achieve a high size performance (best sizes) with a percentage of 88.89 % of the best test

suite sizes (16 out of 18 entries). Additionally, the BTS also contributes to 13 minimal

test suite sizes the other three entries shares with the other strategies (4-way Count and

Flex, and 5-way Nametbl software). The PICT achieves 4 best test suite sizes with a

percentage of 22.22 % (4 out of 18 system configurations for the 4-way and 5-way of

Grap software). Here, the PICT achieves 2 minimal test suite sizes. The TVG achieves 2

best sizes (4-way Flex and 5-way Nametbl software). Finally, TConfig shares one best

size with all of the strategies (5-way Nametbl software with a 450 test cases). Overall,

the BTS dominates the best results in general. Most importantly, this new experimental

set shows the size performance of BTS for real-world test suite generation.

From the statistical analysis shown in Table 4.5 (given in Table 4.16 and Table

4.17), Friedman test (Table 4.16) shows statistical significance at 95 % confidence level.

Therefore, the null hypothesis is rejected. As a result, a post-hoc test is considered. The

post-hoc analysis in Table 4.17 shows that the null hypothesis is rejected when the BTS

pair is compared with TConfig and TVG. This indicates that BTS is significantly better

than the TConfig and TVG. However, in the case of the BTS against PICT, the null

hypothesis is accepted. Thus, there is no statistically significant result based on the

comparison of BTS with PICT in terms of the median distribution of the obtained sizes.

From the illustration of the mean distribution shown in Figure 4.5 for Table 4.5,

the BTS manages to be in the first rank with the minimum overall result average. Then,

PICT, TConfig and TVG is ranked second, third and fourth, respectively.

115

Referring to the mixed-strength benchmarking experimental sets reported in sub-

section 4.2.3 (experimental sets 5 to 8 in Table 4.6 to Table 4.9), It is generally observed

that probabilistic based strategies outperforms the deterministic based strategies for both

main-strength and sub-strength generations.

From the mixed-strength test configuration (𝑚𝐶𝐴 (𝑆; 2, 315, {𝑀𝐶}),

experimental set 5) shown in Table 4.6, the BTS performs well. Here, 50 % of the best

sizes are obtained (9 out of 18 entries). The BTS manages to obtain three new minimal

test suite sizes (in the following sub-configurations;𝐶𝐴 (𝑆, 4, 35) , 𝐶𝐴 (𝑆, 4, 37) , and

𝐶𝐴 (𝑆, 5, 37)). Thus, an improvement of 16.66 % (3 out of 18 new minimum test suite)

of the total entries is achieved. For the other best sizes, the BTS shares 33.33 % with

other strategies. In these test configurations, the SA-Mayer generates the best test suite

in general with a percentage of 61.11% (11 out of 18 entries). Specifically, the SA-Mayer

in the low interaction strength achieved the best results as it only supports t up to 3 (t ≤

3). Putting the SA-Mayer aside, the PWiseGen-VSCA, HSS, and VS-PSTG produce

competitive results as well with percentages of 50 %, 44.45 % and 33.33 % best sizes.

This corresponds to 9, 8, and 6 out of 18 entries, respectively. For the ACS-VSITs, TVG

and IPOG performs similarly with 22.22 % of the best sizes obtained (4 out of 18 entries

each). The PICT and ITCH generates the worst results for the mixed-strength test

configuration.

From the statistical analysis shown in Table 4.6 (given in Table 4.18 and Table

4.19), the null hypothesis is rejected at 95 % confidence level (Friedman test in Table

4.18). Then, the post-hoc test in Table 4.19 indicates that the BTS is statistically better

than other strategies. This is based on the median distribution with the exception of HSS.

Unlike the BTS against HSS (null hypothesis accepted), the null hypothesis is rejected

for BTS against ITCH, PICT, TVG, PSTG. The contributions of IPOG, SA-Mayer, ACS-

VSITs, and PWiseGen-VSCA are ignored. Thus, the BTS is statistically better than

ITCH, PICT, TVG and PSTG based on the median distribution.

The interval plot presented in Figure 4.6 for Table 4.6 shows that the HSS gave

the minimum mean. The BTS comes in the second rank followed by the other strategies

ranked in in the following order; PSTG, TVG, ITCH and PICT. PICT performs the worst

in terms of the overall mean distribution of results.

116

From experimental set 6, the mixed-strength test configuration

𝑚𝑀𝐶𝐴 (𝑆; 2, 435362, {𝑀𝐶}) in Table 4.7, SA-Mayer, and HSS perform best with a

percentage of 61.54 %. This is the best result accounting for 8 out of 13 entries each).

The BTS, VS-PSTG, and PWiseGen-VSCA perform well with a percentage of 53.85 %

of the best test suite sizes. This corresponds to 7 out of 13 entries each. The BTS manages

to obtain a new minimal test suite size in the case of 𝑀𝐶𝐴(𝑆, 4, 4352) sub-strength

configuration with 2,380 test cases. Here, the BTS, VS-PSTG, and PWiseGen-VSCA

generate the same results for the low interaction strength (t ≤ 3). For the interaction

strength values (t > 3), the HSS and BTS outperformed all the other strategies. The TVG,

ACS-VSITs, and IPOG also generated competitive results with a percentage of 46.15 %,

30.77 % and 15.38 % of the best results, respectively. The ITCH and PICT consistently

produce the worst results for the mixed-strength test configuration.

From the statistical analysis in Table 4.7 (given in Table 4.20 and Table 4.21), the

Friedman test in Table 4.20 favoured the null hypothesis at 95 % confidence level.

However, the post-hoc test shown in Table 4.21 indicates that BTS is not statistically

better than the other strategies based on the median distribution. As a result, the null

hypothesis is retained for all the pair comparisons). The contribution of IPOG, PICT, SA-

Mayer and ACS-VSITs is ignored due to incomplete samples.

The interval plot presented in Figure 4.7 for Table 4.7 shows that HSS gives the

minimum mean. The BTS comes in the second rank and the other strategies ranked in the

following order; PSTG, PWiseGen-VSCA, TVG and ITCH.

In experimental set 7, the mixed-strength test configuration given in Table 4.8

demonstrates acceptable performance of several strategies (BTS, HSS, VS-PSTG,

PWiseGen-VSCA, TVG and IPOG) for this test generation. It is observed that these

strategies perform well with the increased number of parameter values as in the test

configuration. In the case of the mixed-strength test configuration

(𝑚𝑀𝐶𝐴 (𝑆; 2, 101 91 81 71 61 51 41 31 21, {MC})), the BTS excels in most cases with

a percentage of 81.82 % of the best results (9 out of 11 entries). Furthermore, the BTS

manages to get a new minimal test suite size for one sub-strength

(𝑀𝐶𝐴 (𝑆, 3, 101918171)). Regarding HSS and VS-PSTG, these strategies perform

equally with a percentage of 72.72 % of the best test suite sizes (8 out of 11 entries).

Similarly, PWiseGen-VSCA and TVG obtain a percentage of 63.63 % of the best sizes

117

(7 out of 11 entries). In the same manner, the IPOG generates competitive test suite size

in many sub-strength configurations with a percentage of 54.55 % of the best sizes. The

ITCH and PICT generate the poorest results in most cases with no best size obtained

among all the test configurations (with some missing results). As for SA-Mayer and ACS-

VSITs, no published results are available.

From the statistical analysis in Table 4.8 (given in Table 4.22 and Table 4.23),

Friedman test indicates that there is a significant difference at 95 % confidence level. The

null hypothesis is thereby, rejected. The post-hoc test in Table 4.23 shows that there is

only statistically significant difference in the case of BTS against ITCH. The null

hypothesis is also rejected. Nevertheless, the other pair comparisons in the post-hoc test

retain the null hypothesis. Thus, the performance of BTS is only statistically better than

that of ITCH. Here, the results of PICT, SA-Mayer, ACS-VSITs and PWiseGen-VSCA

are ignored.

The interval plots presented in Figure 4.8 for Table 4.8 show that HSS, PSTG,

TVG, IPOG and BTS is ranked first while ITCH ranks last. Here, the BTS performs in a

similar way to the other strategies in terms of mean distribution.

In Table 4.9, the results of the experimental set 8 are reported. Here, the mixed-

strength test configuration (𝑚𝑀𝐶𝐴 (𝑆; 2, 320102, {𝑀𝐶}) is benchmarked with a sub-

strength up to t = 6 (high sub-strength interaction). The BTS, HSS, VS-PSTG, SA-Mayer,

IPOG and TVG are able to obtain a percentage of 50 % of the best sizes each (3 out of 6

entries each). In fact, the BTS, HSS and VS-PSTG generate the optimal test suite size for

high interaction strength (t > 3). However, the SA-Mayer dominates the low interaction

strength (t ≤ 3). The ACS-VSITs strategy obtains with a 33.33 % of the best sizes (2 out

of 6 entries). The PICT achieves16.66 % of the best sizes (1 out of 6 entries). Regarding

PWiseGen-VSCA and ITCH, no published results are available.

From the statistical analysis shown in Table 4.9 (given in Table 4.24), the general

observation test (Friedman test) favours the alternative hypothesis at 95 % confidence

level. The null hypothesis is retained and as a result, a post-hoc test is not considered.

This is because there is no statistically significant difference between the BTS against

HSS, PSTG and TVG. The contribution of TCH, IPOG, PICT, SA-Mayer, ACS-VSITs

and PWiseGen-VSCA are ignored.

118

From the interval plots shown in Figure 4.9 for Table 4.9, the BTS, HSS, PSTG

and TVG ranks in similar manner as far as mean distribution of their overall results is

concerned.

4.4.2 Discussion

Overall, the BTS gives competitive test suite sizes in most of the test

configurations considered. The BTS manages to achieve the optimal test suite (new

minimal test suite size) in a number of test configurations as detailed in the previous sub-

section.

From the first part of the comparative benchmarking in section 4.2.1, the

Hamming BA variant achieves better results than the original BA (see Table 4.1).

However, the original BA has a lower execution time as compared to the Hamming BA

for all the specified configurations.

At a glance, the convergence pattern of experiment 2 to 4 looks similar. However,

a closer look revealed otherwise. Unlike experiment 1 and 5, the Hamming BA converges

faster (in the smallest test suite the worst-case scenario) at less iteration (see Figure 5.1).

Here, it is observed that the Hamming BA outperforms the original BA in terms of size

performance. Here, this convergence pattern works well owing to the adoption of

Hamming distance classifier. Specifically, the Hamming distance classifier improves the

exploration of Hamming BTS. The exploration roams the random search space on a

global scale (BA global search) by selecting the highest distance test case from the pool

of generated candidates when there is a tie between 2 or more test candidates. In effect,

the Hamming BTS ensures wider coverage of test cases with more diversity. On the

negative note, the exploration consumed more time and computational resources owing

to the need to compute and evaluate the Hamming distance.

Contrarily, the exploitation in both the original BA and Hamming BA focuses on

searching in a local region via exploiting the current suitable solution (through BA

random walks). The extreme exploitation tends to reject the diversified solutions and led

to local optima. It is the loudness and emission of pulse rates that controls the BA

exploitation using random walks. As no change is made in our Hamming BA as far as

119

loudness and emission of pulse rate is concerned, the implementation of the Hamming

distance classifier did not affect the exploitation.

Based on the eight experimental benchmarked experiments in Section 4.2.2 and

4.2.3, the BTS obtains competitive results in all the cases. Table 4.25 reports the

percentage of the number of best sizes (the minimal sizes) obtained by the BTS. The

number is out of the total number of benchmarked system configurations for each of the

conducted experimental sets. To be specific, the BTS achieves 68.181% of the best sizes

of published results (90 out of 132 entries). The BTS contributes 32.575 % corresponding

to 43 out of 90 best sizes (new obtained best sizes).

Table 4.25 The experimental sets observation.

Experimental

sets

Number of

Improved

best sizes by

BTS

Number of

best sizes

obtained

Total system

configurations

benchmarked

The

percentage of

the Improved

best sizes

The

percentage of

the obtained

best sizes

1 25 31 40 62.500% 77.500%

2 10 12 20 50.000% 60.000%

3 3 3 6 50.000% 50.000%

4 * 16 18 * 88.888%

5 3 9 18 16.666% 50.000%

6 1 7 13 7.6923% 53.846%

7 1 9 11 9.0909% 81.818%

8 0 3 6 0.0000% 50.000%

Total 43 90 132

*Note: Experimental set 4 is a new set of experiments. Thus, no new best is considered (i.e. no

improved best sizes as its for this study).

120

From the statistical analysis reported in Table 4.26, the BTS offers statistical

significance in 20 out of 41 cases considered (48.78 %) at 95 % confidence level.

Table 4.26 The statistical significant achieved for each experimental sets.

Experimental

Sets

Comparison to the all

Strategies

Statistical Significant

Comparison

Number of Statistical

Significant Cases

1 All strategies BTS vs IPOG 7 out of 7

BTS vs PICT

BTS vs Jenny

BTS vs TVG

BTS vs HSS

BTS vs PSTG

BTS vs CS

2 Except HSS BTS vs PICT 6 out of 7

BTS vs Jenny

BTS vs TVG

BTS vs IPOG

BTS vs PSTG

BTS vs CS

3 None (no statistical significant) 0 out of 9

4 Except PICT BTS vs TConfig 2 out of 3

BTS vs TVG

5 Except HSS BTS vs ITCH 4 out of 5

BTS vs PICT

BTS vs TVG

BTS vs PSTG

6 None 0 out of 5

7 Except TVG, PSTG,

HSS and IPOG

BTS vs ITCH 1 out of 5

8 None, Post-hoc test has not performed -

Total 20 out of 41

Referring to Table 4.26, the null hypotheses is rejected for 20 pair comparisons.

In the case of experimental set 1, all the comparisons are in favour of BTS (7 out of 7

entries). In experimental sets 2, 4 and 5, the null hypothesis is rejected except in the case

of one strategy (HSS for experimental sets 2 and 5, PICT for experimental sets 4). In

experimental set 7, only the case with ITCH showed statistical significance. In

experimental sets 3 and 6, no statistical significance is achieved (the null hypothesis is

retained in all the pair comparisons). Similarly, there is no statistical significance is

achieved in experimental set 8.

121

4.5 Summary

This chapter has presented the performance of BTS. The benchmarking of BTS

includes comparative evaluation against existing strategies as well as the corresponding

statistical analysis. The size performance of BTS achieved statistically significant results.

Building on the current content in this chapter, the next chapter will summarize

all the findings, make conclusions and remark on contributions, as well as provide a

roadmap for possible future research in this direction.

CHAPTER 5

CONCLUSION AND FUTURE WORK

The previous chapter has subjected BTS with a number of experiments in order

to establish its true performance in terms of generated test suite size. Building from all

the materials presented in the previous chapters, this chapter highlights the impact of the

results obtained and implication for future work.

5.1 Objectives Revisited

This research effort was aimed to design, implement and evaluate a t-way test

generation strategy that supports mixed-strength interaction, called Bat-inspired t-way

Strategy (BTS). The objectives of this research study were as follows:

 To design BTS strategy for constructing a mixed strength t-way test suite.

 To implement BTS as a research prototype using BA as the backbone search

engine and introduces Hamming distance classifier in order to enhance the

exploration of BA.

 To evaluate the test suite size performance of BTS against existing strategies

using well-known benchmarking case studies.

Addressing the first objective, a new t-way test suite generation strategy, called

BTS, is developed. The proposed strategy is designed to generate a minimized t-way and

mixed-strength test suite taking the BA algorithm as the basis of the study. The main key

aspect of this objective is satisfied owing to the successful implementation of BTS.

The BTS strategy generates a mixed t-way test suite, within the objective of

generating the minimal test suite that is valid and covers all the possible test

configurations up to t = 6. The BTS strategy takes on the test configurations (expressed

123

as covering array notation) for software under test. The strategy processes the test

specification requirement as notation to minimize the test suite automatically.

Concerning the second objective, BTS employs the BA as a search engine to find

the maximum covered interaction by each generated test case. BA is implemented in BTS

to support the optimal finding for the combinatorial interaction test generation. BA is also

modified to fit our implementation. Additionally, BA is enhanced using a best selection

technique through the Hamming distance classifier. Specifically, the exploration process

of BA global search is improved.

BTS provides execution scalability for test suite execution approaches. As the

data size increases rapidly based on increasing test parameters and their dependencies,

testing all the data becomes difficult and resource consuming. Addressing this limitation,

BTS provides the ability to store an optimal test suite into files for the execution process.

In this manner, test engineers can execute the testing activity without having to think

about the correctness of their test cases as BTS generated test data covers all test data,

hence, potentially saving resources and time. Furthermore, BTS generated test suite can

be easily integrated with automated test execution approaches (i.e. the output is a simple

file that lists the entire generated test cases).

As for the final objective, BTS has been successfully employed to undertake all

the experimentations given, hence, highlighting its size performance for test suite

generation. Experimentation against several well-known strategies have helped to reveal

the performance of BTS in a seamless manner. In the conducted evaluation, BTS results

are successfully compared against the available t-way test suite generation strategies.

BTS experimental results have been encouraging as many newly introduced t-way

results.

Considering the mixed-strength test configurations (i.e. system with multiple

numbers of parameter and values) and highly interacting test configurations (i.e. for t >

3), BTS often produces the optimal test suite. As for mixed-strength test suite, BTS

consistently generates the best test suite size. Overall, BTS obtained 68.181% of the best

sizes of all the benchmarked test configurations (i.e. 90 out of 132 entries) as reported in

Table 4.25. Additionally, BTS manages to improve the best sizes published in the

literature (Ahmed et al., 2015; Ahmed et al., 2014; Ahmed & Zamli, 2011b; Bansal et al.,

124

2015; Cohen, 2004; Cohen et al., 2003c; Lei et al., 2007; Shiba et al., 2004; Wang & He,

2013; Xiang et al., 2009) with a 32.575% (i.e. 43 out of 132 entries (see Table 4.2 to

Table 4.4 and Table 4.6 to Table 4.9)). Furthermore, the statistical analysis shows 48.78%

statistical significance based on the pier compression of Wilcoxon signed-rank (see Table

4.26). Therefore, this study concludes that that BTS is a useful strategy for generating t-

way and mixed-strength test suites.

In this thesis, BTS strategy is designed for test suite generation of high inputs

(highly configurable) software system. The generation method support generating high

scale input (i.e. 2100 and more) as the BTS uses the advantage of Java for memory

management to efficiently utilize the available memory for the generated search space.

The use of string interaction elements and test candidates reduce the memory needed for

high configuration system as string variable can store a lot of information that can be

parsed in the test generation process. This allows BTS to generate a test site for highly

configurable software systems.

5.2 Contribution

Summing up, based on earlier discussion, the main contribution of BTS relates to

its t-way test suite generation support. The research contribution undertaken in this

research work can be stated from different perspectives as follows:

 BTS is the first strategy that applies BA as a backbone engine to its test suite

reduction mechanism.

 BTS modified the BA algorithm by employing a selection (or best finding)

technique that improves the exploration of the BA (i.e. improving the global

random search) via the Hamming distance classifier.

 BTS contributes to a number of well-known benchmarking test configurations

published literatures with 43 new test suite sizes (see Table 4.2 to Table 4.9).

125

5.3 Future work

Given that the application of BTS presented in this study is still a prototype, an

obvious starting point for future work will be to complete the implementation to support

automated test execution and other t-way test generation types. In particular, several t-

way features needed to be included (i.e. input-output relations t-way, sequencing t-way

and constraints t-way).

Currently, BTS only addresses the automated test suite generation. Therefore, in

order to improve its applicability, there is also a need to automate as much as possible

the execution of test cases generated by BTS whenever possible. This automation could

be in the form of automatic translation of the test cases generated by BTS into actual

executable form through some forms of scripting language. Such endeavour will help

alleviate the burden of test engineers from cumbersome and manual test execution.

Providing constraints support for BTS including Software Product Line (SPL) is

one area for exploration. BTS strategy can be modified to add constraints interaction

support. The constraints interaction can be established by removing the constraints

configurations (or invalid configurations) from the IET and re-generate the test cases that

involved constraints. Expectedly, a similar reduction of test cases can be achieved.

Finally, sequence support to BTS strategy could also be explored. In some domain

implementation, sequences of input parameters do matters. Thus, it is desirable for BTS

to be able to provide sequence-based t-way test suite generation.

126

REFERENCES

Afzal, W., Torkar, R., and Feldt, R. 2009. A systematic review of search-based testing for non-

functional system properties. Information and Software Technology. 51(6): 957-976.

Ahmed, B. S., Abdulsamad, T. S., and Potrus, M. Y. 2015. Achievement of minimized

combinatorial test suite for configuration-aware software functional testing using the

cuckoo search algorithm. Information and Software Technology. 66(0): 13-29.

Ahmed, B. S., Sahib, M. A., and Potrus, M. Y. 2014. Generating combinatorial test cases using

simplified swarm optimization (SSO) algorithm for automated GUI functional testing.

International Journal Engineering Science and Technology. 17(4): 218-226.

Ahmed, B. S., and Zamli, K. Z. 2010a. PSTG: A t-way strategy adopting particle swarm

optimization. In the 4th Asia International Conference on Mathematical /Analytical

Modelling and Computer Simulation, 1-5.

Ahmed, B. S., and Zamli, K. Z. 2010b. t-way test data generation strategy based on particle swarm

optimization. In the 2nd International Conference on Computer Research and

Development, 93-97.

Ahmed, B. S., and Zamli, K. Z. 2011a. The development of a particle swarm based optimization

strategy for pairwise testing. Journal of Artificial Intelligence. 4(2): 156-165.

Ahmed, B. S., and Zamli, K. Z. 2011b. A variable-strength interaction test suites generation

strategy using particle swarm optimization. Journal of Systems and Software. 84(12):

2171-2185.

Ahmed, B. S., Zamli, K. Z., and Lim, C. P. 2012a. Application of particle swarm optimization to

uniform and variable strength covering array construction. Applied Soft Computing.

12(4): 1330-1347.

Ahmed, B. S., Zamli, K. Z., and Lim, C. P. 2012b. Constructing a t-way interaction test suite

using the particle swarm optimization approach. International Journal of Innovative

Computing, Information and Control. 8(1): 431-452.

Ali, E. S. 2014. Optimization of power system stabilizers using BAT search algorithm.

International Journal of Electrical Power and Energy Systems. 61(1): 683-690.

Ali, S., Briand, L. C., Hemmati, H., and Panesar-Walawege, R. K. 2010. A systematic review of

the application and empirical investigation of search-based test case generation. IEEE

Transactions on Software Engineering. 36(6): 742-762.

Alsewari, A. A., and Zamli, K. Z. 2012a. Design and implementation of a harmony-search-based

variable-strength t-way testing strategy with constraints support. Information and

Software Technology. 54(6): 553-568.

Alsewari, A. A., and Zamli, K. Z. 2012b. A harmony search based pairwise sampling strategy for

combinatorial testing. International Journal of The Physical Sciences. 7(7): 1062-1072.

127

Alsewari, A. A., and Zamli, K. Z. 2014. An orchestrated survey on t-way test case generation

strategies based on optimization algorithms. In the 8th International Conference on

Robotic, Vision, Signal Processing and Power Applications, 291, 255-263.

Alsewari, A. A., Zamli, K. Z., and Al-Kazemi, B. 2014. Generating t-way test suite in the

presence of constraints. In the 8th Malaysia University Conference Engineering

Technology.

Alsewari, A. A., Zamli, K. Z., and Al-Kazemi, B. 2015. Generating t-way test suite in the

presence of constraints. Journal of Engineering and Technology. 6(2): 52-66.

Ammann, P., and Offutt, J. 1994. Using formal methods to derive test frames in category-partition

testing. In the 9th Annual Conference on Computer Assurance, 69-80.

Antony, J. 2003. Design of experiments for engineers and scientists. 1st ed. India: Elsevier

Science and Technology Books.

Arshem, J. 2003. Test vector generator (TVG), Available from: http://sourceforge.net/

projects/tvg, last accessed on (November, 2016).

Bach, J. 2002. Allpairs test case generation tool, version 1.2.1, Available from:

http://www.satisfice.com/tools.shtml, last accessed on (November, 2016).

Bansal, P., Sabharwal, S., Mittal, N., and Arora, S. 2015. Construction of variable strength

covering array for combinatorial testing using a greedy approach to genetic algorithm. E-

Informatica Software Engineering Journal. 9(1): 87-105.

Bansal, P., Sabharwal, S., Mittal, N., and Arora, S. 2016. ABC-CAG: Covering array generator

for pair-wise testing using artificial bee colony algorithm. E-Informatica Software

Engineering Journal. 1(10): 9-29.

Bao, X., Liu, S., Zhang, N., and Dong, M. 2015. Combinatorial test generation using improved

harmony search algorithm. International Journal of Hybrid Information Technology.

8(9): 121-130.

Baresi, L., and Pezzè, M. 2006. An introduction to software testing. Electronic Notes in

Theoretical Computer Science. 148(1): 89-111.

Bertolino, A. 2007. Software testing research: achievements, challenges, dreams. In the Future

of Software Engineering, 85-103.

Bryce, R. C., and Colbourn, C. J. 2007. One-test-at-a-time heuristic search for interaction test

suites. In the 9th Annual Conference on Genetic and Evolutionary Computation, 1082-

1089.

Bryce, R. C., Colbourn, C. J., and Cohen, M. B. 2005. A framework of greedy methods for

constructing interaction test suites. In the 27th International Conference on Software

Engineering, 146-155.

Burnstein, I. 2006. Practical software testing. 1st ed. Chicago: Springer Science and Business

Media Inc.

128

Burr, K., and Young, W. 1998. Combinatorial test techniques: table-based automation, test

generation and code coverage. In the International Conference on Software Testing

Analysis and Review, 1-12.

Burroughs, K., Jain, A., and Erickson, R. L. 1994. Improved quality of protocol testing through

techniques of experimental design. In the International Conference on Communications,

Serving Humanity Through Communications, 2, 745-752.

Bush, K. A. 1952. Orthogonal arrays of index unity. The Annals of Mathematical Statistics. 23(3):

426-434.

Carroll, C. T. 2003. The cost of poor testing: a us government study (part 1). EDPACS: The EDP

Audit, Control, and Security Newsletter. 31(2): 1-17.

Chaudhuri, D. K. R., and Zhu, T. 1992. A recursive method for construction of designs. Discrete

Mathematics. 106(107): 399-406

Chen, S.-M., and Chien, C.-Y. 2011. Solving the traveling salesman problem based on the genetic

simulated annealing ant colony system with particle swarm optimization techniques.

Expert Systems with Applications. 38(12): 14439-14450.

Chen, W.-N., and Zhang, J. 2009. An ant colony optimization approach to a grid workflow

scheduling problem with various QoS requirements. IEEE Transactions on Systems, Man

and Cybernetics. 39(1): 29-43.

Chen, X., Gu, Q., Qi, J., and Chen, D. 2010. Applying particle swarm optimization to pairwise

testing. In the 34th Annual Computer Software and Applications Conference, 107-116.

Chen, X., Gu, Q., Zhang, X., and Chen, D. 2009. Building prioritized pairwise interaction test

suites with ant colony optimization. In the 9th International Conference on Quality

Software, 347-352.

Cheng, C.-S. 1980. Orthogonal arrays with variable numbers of symbols. The Annals of Statistics.

8(2): 447-453.

Cohen, D. M. 2011. AETG Web, Available from: http://aetgweb.argreenhouse.com/

pricing.shtml, last accessed on (November, 2016).

Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G. C. 1997. The AETG system: An

approach to testing based on combinatorial design. IEEE Transactions on Software

Engineering. 23(7): 437-444.

Cohen, D. M., Dalal, S. R., Kajla, A., and Patton, G. C. 1994. The automatic efficient test

generator (AETG) system. In the 5th International Symposium on Software Reliability

Engineering, 303-309.

Cohen, D. M., Dalal, S. R., Parelius, J., and Patton, G. C. 1996. The combinatorial design

approach to automatic test generation. IEEE Software. 13(5): 83-88.

Cohen, M. B. 2004. Designing test suites for software interaction testing. Ph.D. Thesis.

University of Auckland, New Zealand.

http://aetgweb.argreenhouse.com/pricing.shtml
http://aetgweb.argreenhouse.com/pricing.shtml

129

Cohen, M. B., Colbourn, C. J., Gibbons, P. B., and Mugridge, W. B. 2003a. Constructing test

suites for interaction testing. In the 25th IEEE International Conference on Software

Engineering, 38-48.

Cohen, M. B., Colbourn, C. J., and Ling, A. C. 2008a. Constructing strength three covering arrays

with augmented annealing. Discrete Mathematics. 308(13): 2709-2722.

Cohen, M. B., Colbourn, C. J., and Ling, A. C. H. 2003b. Augmenting simulated annealing to

build interaction test suites. In the 14th International Symposium on Software Reliability

Engineering, 394-405.

Cohen, M. B., Dwyer, M. B., and Jiangfan, S. 2007a. Exploiting constraint solving history to

construct interaction test suites. In the Testing: Academic and Industrial Conference

Practice and Research Techniques, 121-132.

Cohen, M. B., Dwyer, M. B., and Shi, J. 2007b. Interaction testing of highly-configurable systems

in the presence of constraints. In the International Symposium on Software Testing and

Analysis, 129-139.

Cohen, M. B., Dwyer, M. B., and Shi, J. 2008b. Constructing interaction test suites for highly-

configurable systems in the presence of constraints: A greedy approach. IEEE

Transactions on Software Engineering. 34(5): 633-650.

Cohen, M. B., Gibbons, P. B., Mugridge, W. B., Colbourn, C. J., and Collofello, J. S. 2003c.

Variable strength interaction testing of components. In the 27th Annual International

Computer Software and Applications Conference, 413-418.

Colbourn, C. J. 2009. CA tables, Available from: http://www.public.asu.edu/~ccolbou/src/

tabby/catable.html, last accessed on (November, 2016).

Colbourn, C. J. 2011. Covering arrays and hash families. IOS Press.

Colbourn, C. J., and Dinitz, J. H. 2006. Handbook of combinatorial designs (Discrete

Mathematics and Its Applications). 2nd ed.: Chapman and Hall CRC press.

Copeland, L. 2004. A practitioner’s guide to software test design. 1st ed. Boston: Artech House

Inc.

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., and Wąsowski, A. 2012. Cool features

and tough decisions: a comparison of variability modeling approaches. In the 6th

International Workshop on Variability Modeling of Software-Intensive Systems, 173-182.

Czerwonka, J. 2006. Pairwise testing in the real world: practical extensions to test-case scenarios.

In the 24th Pacific Northwest Software Quality Conference, 82, 419-430.

Daich, G. T. 2003. Testing combinations of parameters made easy. In the IEEE Systems

Readiness Technology Conference, 379-384.

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton, G. C., and Horowitz, B.

M. 1999. Model based testing in practice. In the International Conference on Software

Engineering, 285–294.

130

Dalal, S. R., Karunanithi, A. J., N. , Leaton, J. M., and Lott, C. M. 1998. Model-based testing of

a highly programmable system. In the 9th International Symposium on Software

Reliability Engineering, 174–178.

Daniel, W. W. 1990. Friedman two-way analysis of variance by ranks. 2nd ed. Boston: PWS-

Kent.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. 2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 6(2): 182-197.

Dias Neto, A. C., Subramanyan, R., Vieira, M., and Travassos, G. H. 2007. A survey on model-

based testing approaches: a systematic review. In the 1st ACM International Workshop

on Empirical Assessment of Software Engineering Languages, 31-36.

Dorigo, M., Birattari, M., and Stutzle, T. 2006. Ant colony optimization. IEEE Computational

Intelligence Magazine. 1(4): 28-39.

Dorigo, M., Maniezzo, V., and Alberto, C. 1989. The ant system: optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man and Cybernetics. 26(1): 1-13.

Drigo, M., Maniezzo, V., and Colorni, A. 1996. Ant system: optimization by a colony of

cooperation agents. IEEE Transactions on Systems, Man and Cybernetics. 26(1): 29-41.

Duran, J. W., and Ntafos, S. C. 1984. An evaluation of random testing. IEEE Transactions on

Software Engineering. 10(4): 438-444.

Ellims, M., Ince, D., and Petre, M. 2008. AETG vs. Man: an assessment of the effectiveness of

combinatorial test data generation UK:

Flores, P., and Cheon, Y. 2011. Pwisegen: Generating test cases for pairwise testing using genetic

algorithms. In the International Conference on Computer Science and Automation

Engineering, 2, 747-752.

Forbes, M., Lawrence, J., Lei, Y., Kacker, R. N., and Kuhn, D. R. 2008. Refining the in-

parameter-order strategy for constructing covering arrays. Journal of Research of the

National Institute of Standards and Technology. 113(5): 287-297.

Gandomi, A. H., Yang, X.-S., Alavi, A. H., and Talatahari, S. 2013. Bat algorithm for constrained

optimization tasks. Neural Computing and Applications. 22(6): 1239-1255.

Garvin, B. J., Cohen, M. B., and Dwyer, M. B. 2009. An improved meta-heuristic search for

constrained interaction testing. In the 1st International Symposium on Search Based

Software Engineering, 13-22.

Garvin, B. J., Cohen, M. B., and Dwyer, M. B. 2011. Evaluating improvements to a meta-heuristic

search for constrained interaction testing. Empirical Software Engineering. 16(1): 61-

102.

George, H. A. 2012. Constructing covering arrays using parallel computing and grid computing.

Ph.D. Thesis. Universitat Politecnica de Valencia, Spain.

131

Gherbi, Y. A., Bouzeboudja, H., and Lakdja, F. 2014. Economic dispatch problem using bat

algorithm. Leonardo Journal of Sciences. 13(24): 75-84.

Gonzalez-Hernandez, L. 2015. New bounds for mixed covering arrays in t-way testing with

uniform strength. Information and Software Technology. 59(0): 17-32.

Gonzalez-Hernandez, L., Rangel-Valdez, N., and Torres-Jimenez, J. 2010. Construction of mixed

covering arrays of variable strength using a tabu search approach. In the International

Conference on Combinatorial Optimization and Applications, 51-64.

Grindal, M., Offutt, J., and Andler, S. F. 2005. Combination testing strategies: a survey. Software

Testing, Verification and Reliability. 15(3): 167-199.

Hartman, A., Klinger, T., and Raskin, L. 2005. WHITCH: IBM intelligent test configuration

handler IBM Haifa and Watson Research Laboratories: September.

Hartman, A., and Raskin, L. 2004a. Combinatorial test services, Available from:

https://www.research.ibm.com/haifa/projects/verification/mdt/tools.html, last accessed

on (August, 2016).

Hartman, A., and Raskin, L. 2004b. Problems and algorithms for covering arrays. Discrete

Mathematics. 284(1): 149-156.

Haslinger, E. N., Lopez-Herrejon, R. E., and Egyed, A. 2013. Improving casa runtime

performance by exploiting basic feature model analysis. Arxiv Preprint Arxiv:1311.7313.

Hass, A. M. 2008. Guide to advanced software testing 2nd ed. Norwood: Artech House Inc.

Hegazy, O., Soliman, O. S., and Salam, M. A. 2015. Comparative study between FPA, BA, MCS,

ABC, and PSO algorithms in training and optimizing of LS-SVM for stock market

prediction. International Journal of Advanced Computer Research. 5(18): 35.

Huang, S., Cohen, M. B., and Memon, A. M. 2010. Repairing GUI test suites using a genetic

algorithm. In the 3rd International Conference on Software Testing, Verification and

Validation, 245-254.

Inc., S. T. 2014. SmartTest - pairwise testing tool (Smartware Technologies Inc.), Available from:

http://www.smartwaretechnologies.com/smarttestprod.htm, last accessed on (July,

2016).

Jia-Ze, S., and Shu-Yan, W. 2012. Generation of pairwise test sets using a novel DPSO

algorithm. Springer.

Kaner, C., Falk, J., and Nguyen, H. Q. 1999. Testing computer software. 2nd ed. New York:

Dreamtech Press.

Katherine, A. V., and Alagarsamy, D. K. 2012. Conventional software testing vs. Cloud testing.

International Journal of Scientific and Engineering Research. 3(9): 1-5.

https://www.research.ibm.com/haifa/projects/verification/mdt/tools.html
http://www.smartwaretechnologies.com/smarttestprod.htm

132

Khalsa, S. K., and Labiche, Y. 2014. An orchestrated survey of available algorithms and tools for

combinatorial testing. In the 25th International Symposium on Software Reliability

Engineering, 323-334.

Khan, K., and Sahai, A. 2012. A comparison of BA, GA, PSO, BP and LM for training feed

forward neural networks in e-learning context. International Journal of Intelligent

Systems and Applications. 4(7): 23.

Khatun, S., Rabbi, K. F., Yaakub, C. Y., Klaib, M. F., and Ahmed, M. M. 2011. PS2Way: An

efficient pairwise search approach for test data generation. In the International

Conference on Software Engineering and Computer Systems, 99-108.

Klaib, M. F. 2009. Development of an automated test data generation and execution strategy

using combinatorial approach. Ph.D. Thesis. Universiti Sains Malaysia, USM.

Klaib, M. F., Zamli, K. Z., Isa, N. A. M., Younis, M. I., and Abdullah, R. 2008. G2Way – a

backtracking strategy for pairwise test data generation. In the 15th Asia-Pacific Software

Engineering Conference, 463-470.

Klaib, M. F. J., Al-batah, M. S., and Rasras, R. J. 2015. 3-way interaction testing using the tree

strategy. Procedia Computer Science. 65(1): 845-852.

Krishnan, R., Krishna, S. M., and Nandhan, P. S. 2007. Combinatorial testing: Learnings from

our experience. ACM Software Engineering Notes. 32(3): 1-8.

Kuhn, D. R., Dolores, R. W., and Gallo, A. M. 2004. Software fault interactions and implications

for software testing. IEEE Transactions on Software Engineering. 30(6): 418-421.

Kuhn, D. R., Kacker, R. N., and Lei, Y. 2010. Practical combinatorial testing. NIST Special

Publication. 1-75.

Kuhn, D. R., Lei, Y., and Kacker, R. 2008. Practical combinatorial testing: beyond pairwise.

IEEE IT Professionals. 10(3): 19-23.

Kuhn, D. R., NIST, R. N. K., and NIST, Y. L. 2015. Combinatorial coverage as an aspect of test

quality. Crosstalk. 28(2): 19-23.

Kuliamin, V. V., and Petukhov, A. 2011. A survey of methods for constructing covering arrays.

Programming and Computer Software. 37(3): 121-146.

Laerd Statistics, W. 2017a. Friedman test in SPSS statistics, Available from:

https://statistics.laerd.com/spss-tutorials/friedman-test-using-spss-statistics.php, last

accessed on (January, 2017).

Laerd Statistics, W. 2017b. Wilcoxon signed-rank test using SPSS statistics, Available from:

https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics

.php, last accessed on (January, 2017).

Lehmann, E., and Wegener, J. 2000. Test case design by means of the CTE XL. In the 8th

European International Conference on Software Testing, Analysis and Review, 1-10.

133

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., and Lawrence, J. 2007. IPOG: A general strategy for

t-way software testing. In the 14th Annual IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems, 549-556.

Lei, Y., and Tai, K. C. 1998. In-Parameter-Order: a test generation strategy for pairwise testing.

In the 3rd IEEE International Symposium on High-Assurance Systems Engineering 254–

261.

LI, J., XING, D., and ZHAO, Y. 2013. Combinatorial test suite generation of variable strength

based on harmony search. Journal of Network and Information Security. 4(2): 177-188.

Lopez-Herrejon, R. E., Ferrer, J., Chicano, F., Egyed, A., and Alba, E. 2016. Evolutionary

computation for software product line testing: An overview and open challenges.

Springer.

Mahmoud, T., and Ahmed, B. S. 2015. An efficient strategy for covering array construction with

fuzzy logic-based adaptive swarm optimization for software testing use. Expert Systems

with Applications. 42(22): 8753-8765.

Mala, D. J., and Mohan, V. 2009. ABC tester-artificial bee colony based software test suite

optimization approach. International Journal of Software Engineering. 2(2): 15-43.

Malaiya, Y. K. 1995. Antirandom testing: getting the most out of black-box testing. In the 6th

International Symposium on Software Reliability Engineering, 86-95.

Mandl, R. 1985. Orthogonal latin squares: an application of experiment design to compiler

testing. Communications of The ACM. 28(10): 1054-1058.

Mao, C., Yu, X., and Chen, J. 2012. Swarm intelligence-based test data generation for structural

testing. In the 11th International Conference on Computer and Information Science, 623-

628.

McCaffrey, J. D. 2009a. Generation of pairwise test sets using a genetic algorithm. In the 33rd

Annual IEEE International Computer Software and Applications Conference, 1, 626-

631.

McCaffrey, J. D. 2009b. Generation of pairwise test sets using a simulated bee colony algorithm.

In the International Conference on Information Reuse and Integration, 115-119.

McCaffrey, J. D. 2009c. Pairwise testing with QICT Microsoft Developer Network Magazine

(Vol. 24, pp. 28-35): Microsoft.

McCaffrey, J. D. 2010. An empirical study of pairwise test set generation using a genetic

algorithm. In the 7th International Conference on Information Technology: New

Generations, 992-997.

McMinn, P. 2004. Search‐based software test data generation: a survey. Software Testing,

Verification and Reliability. 14(2): 105-156.

134

Meng, X., Gao, X., and Liu, Y. 2015. A novel hybrid bat algorithm with differential evolution

strategy for constrained optimization. International Journal of Hybrid Information

Technology. 8(1): 383-396.

Myers, G. J., Sandler, C., and Badgett, T. 2011. The art of software testing. 3rd ed. Hoboken:

John Wiley and Sons.

Naik, K., and Tripathy, P. 2008. Maturity models: Software testing and quality assurance: Theory

and practice. Citado John Wiley and Sons Online Library

Nasser, A., Alsariera, Y. A., Alsewari, A. A., and Zamli, K. Z. 2015. A cuckoo search based

pairwise strategy for combinatorial testing problem. Journal of Theoretical and Applied

Information Technology. 82(1): 154-162.

Nasser, A. M., Alsariera, Y. A., Zamli, K. Z., and AlKazcmi, B. 2014. Late acceptance hill

climbing based strategy for addressing constraints within combinatorial test data

generation. In the 7th Edition of Asia Software Testing Conference, 7 (1).

Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B., and Alba, E. 2009. Mocell: a cellular genetic

algorithm for multiobjective optimization. International Journal of Intelligent Systems.

24(7): 726-746.

Nguyen, T. T., and Ho, S. D. 2016. Bat algorithm for economic emission load dispatch problem.

International Journal of Advanced Science and Technology. 86(1): 51-60.

Nie, C., and Leung, H. 2011. A survey of combinatorial testing. ACM Computing Surveys. 43(2):

11.

Nursimulu, K., and Probert, R. L. 1995. Cause-effect graphing analysis and validation of

requirements. In the Centre for Advanced Studies on Collaborative Research Conference

46.

Othman, R. R., Zamli, K. Z., and Syed Mohamad, S. M. 2013. t-way testing strategies: a critical

survey and analysis. International Journal of Digital Content Technology and Its

Applications. 7(9): 222-235.

Pallas, D. 2003. Jenny test tool, Available from: http://www.burtleburtle.net./bob/math/

jenny.html, last accessed on (April, 2016).

Pan, J. 1999. Software testing. Dependable Embedded Systems, 5(1), 1-14. Available from:

http://www.ece.cmu.edu/~koopman/des_s99/sw_testing doi:10.1.1.103.7121

Pendharkar, P. C. 2010. Exhaustive and heuristic search approaches for learning a software defect

prediction model. Engineering Applications of Artificial Intelligence. 23(1): 34-40.

Petke, J. 2015, Constraints: The future of combinatorial interaction testing. Paper presented at

the 8th International Workshop on Search-Based Software Testing.

Qi, R.-Z., Wang, Z.-J., and Li, S.-Y. 2016. A parallel genetic algorithm based on spark for

pairwise test suite generation. Journal of Computer Science and Technology. 31(2): 417-

427.

135

Rabbi, K., Khatun, S., Yaakub, C. Y., and Klaib, M. 2011. EPS2Way: An efficient pairwise test

data generation strategy. International Journal of New Computer Architectures and Their

Applications. 1(4): 1099-1109.

Rabbi, K., Mamun, Q., and Islam, M. R. 2015. An efficient particle swarm intelligence based

strategy to generate optimum test data in t-way testing. In the 10th Conference on

Industrial Electronics and Applications, 123-128.

Rabbi, K. F., Beg, A. H., and Herawan, T. 2012. MT2Way: A novel strategy for pair-wise test

data generation. Springer.

Rahman, M., Othman, R. R., Ahmad, R. B., and Rahman, M. M. 2015. A meta heuristic search

based t-way event driven input sequence test case generator. International Journal of

Simulation, Systems, Science and Technology. 15(3): 65-71.

Rakesh, H. V., Aruna, S. B., and Raju, T. D. 2013. Combined economic load and emission

dispatch evalution using bat algorithm. Indian Streams Research Journal. 3(5): 1-8.

Ramesh, B., Mohan, V. C. J., and Reddy, V. V. 2013. Application of bat algorithm for combined

economic load and emission dispatch. International Journal of Electricl Engineering and

Telecommunications. 2(1): 1-9.

Rodrigues, D., Pereira, L. A. M., Nakamura, R. Y. M., Costa, K. A. P., Yang, X.-S., Souza, A.

N., and Papa, J. P. 2014. A wrapper approach for feature selection based on bat algorithm

and optimum-path forest. Expert Systems with Applications. 41(5): 2250-2258.

Rodriguez-Cristerna, A., and Torres-Jimenez, J. 2012. A simulated annealing with variable

neighborhood search approach to construct mixed covering arrays. Electronic Notes in

Discrete Mathematics. 39(1): 249-256.

Rodriguez-Cristerna, A., Torres-Jimenez, J., Gómez, W., and Pereira, W. C. A. 2015.

Construction of mixed covering arrays using a combination of simulated annealing and

variable neighborhood search. Electronic Notes in Discrete Mathematics. 47(1): 109-

116.

Roper, M. 2002. Software testing. 3rd ed. California: Encyclopedia of Physical Science and

Technology Academic Press.

Sabharwal, S., Bansal, P., and Mittal, N. 2015. Construction of strength two mixed covering

arrays using greedy mutation in genetic algorithm. Information Technology and

Computer Science. 10(1): 23-34.

Sabharwal, S., Bansal, P., and Mittal, N. 2017. Construction of t-way covering arrays using

genetic algorithm. International Journal of System Assurance Engineering And

Management. 8(2): 264-274.

Sabharwal, S., Bansal, P., Mittal, N., and Malik, S. 2016. Construction of mixed covering arrays

for pair-wise testing using probabilistic approach in genetic algorithm. Arabian Journal

for Science and Engineering. 71(8): 2821-2835.

136

Schroeder, P. J., Bolaki, P., and Gopu, V. 2004. Comparing the fault detection effectiveness of

n-way and random test suites. In the International Symposium on Empirical Software

Engineering, 49–59.

Senthilnath, J., Kulkarni, S., Benediktsson, J. A., and Yang, X.-S. 2016. A novel approach for

multispectral satellite image classification based on the bat algorithm. IEEE Geoscience

and Remote Sensing Letters. 13(4): 599-603.

Sharma, M., and Chandra, S. 2010. Automatic generation of test suites from decision table -

theory and implementation. In the 5th International Conference on Software Engineering

Advances, 459-464.

Sherwood, G. 1994. Effective testing of factor combinations. In the 3rd International Conference

on Software Testing, Analysis and Review.

Sherwood, G. 2003. TestCover, Available from: http://testcover.com/index.php, last accessed on

(April, 2016).

Sherwood, G. B., Martirosyan, S. S., and Colbourn, C. J. 2005. Covering arrays of higher strength

from permutation vectors. Journal of Combinatorial Designs. 14(3): 202-213.

Shiba, T., Tsuchiya, T., and Kikuno, T. 2004. Using artificial life techniques to generate test cases

for combinatorial testing. In the 28th Annual International Conference on Computer

Software and Applications, 72-77.

Song, A., Li, M., Ding, X., Cao, W., and Pu, K. 2016. Community detection using discrete bat

algorithm. IAENG International Journal of Computer Science. 43(1): 37-43.

Srinivas, N., and Deb, K. 1994. Muiltiobjective optimization using nondominated sorting in

genetic algorithms. Evolutionary Computation. 2(3): 221-248.

Stardom, J. 2001. Metaheuristics and the search for covering and packing array Master. Thesis.

Simon Fraser University, Canada.

Sthamer, H. H. 1995. The automatic generation of software test data using genetic algorithms.

PhD. Thesis. University of Glamorgan, Pontyprid, Wales.

Sureja, N. M. 2012. New inspirations in nature: a survey. International Journal of Computer

Applications and Information Technology. 1(3): 21-24.

Taha, A. M., Mustapha, A., and Chen, S.-D. 2013. Naive bayes-guided bat algorithm for feature

selection. The Scientific World Journal. 2013(1): 1-9.

Tai, K. C., and Lei, Y. 2002. A test generation strategy for pairwise testing. IEEE Transactions

on Software Engineering 28(1): 109-111.

Timaná-Peña, J. A., Cobos-Lozada, C. A., and Torres-Jimenez, J. 2016. Metaheuristic algorithms

for building covering arrays: A review. Revista Facultad De Ingeniería. 25(43): 31-45.

Torres-Jimenez, J., and Rodriguez-Tello, E. 2012. New bounds for binary covering arrays using

simulated annealing. Information Sciences. 185(1): 137-152.

http://testcover.com/index.php

137

Tseng, C.-W., Mitra, S., Davidson, S., and McCluskey, E. J. 2001. An evaluation of pseudo

random testing for detecting real defects. In the 19th IEEE on VLSI Test Symposium, 404-

409.

Tung, Y.-W., and Aldiwan, W. S. 2000. Automating test case generation for the new generation

mission software system. In the Aerospace Conference 1, 431-437.

Wang, S., Ali, S., and Gotlieb, A. 2013. Minimizing test suites in software product lines using

weight-based genetic algorithms. In the 15th Annual Conference on Genetic and

Evolutionary Computation, 1493-1500.

Wang, Z., and He, H. 2013. Generating variable strength covering array for combinatorial

software testing with greedy strategy. Journal of Software. 8(12): 3173-3181.

Wang, Z. Y., Xu, B. W., and Nie, C. H. 2008. Greedy heuristic algorithms to generate variable

strength combinatorial test suite. In the 8th International Conference on Quality

Software, 155-160.

Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin. 1(6): 80-

83.

Williams, A. W. 2000. Determination of test configurations for pair-wise interaction coverage.

In the 13th International Conference on the Testing of Communicating Systems, 57-74.

Williams, A. W., Ho, J. H., and Lareau, A. 2003. TConfig test tool, Available from:

http://www.site.uottawa.ca/~awilliam, School of Information Technology and

Engineering (SITE), University of Ottawa, Ottawa, Ontario, Canada, last accessed on

(April, 2016).

Williams, A. W., and Probert, R. L. 1996. A practical strategy for testing pair-wise coverage of

network interfaces. In the 7th International Symposium on Software Reliability

Engineering, 246-254.

Williams, A. W., and Probert, R. L. 2002. Formulation of the interaction test coverage problem

as an integer program. In the 14th International Conference on Testing of Communicating

Systems, 283-298.

Xiang, C., Qing, G., Ang, L., and Daoxu, C. 2009. Variable strength interaction testing with an

ant colony system approach. In the Asia-Pacific Software Engineering Conference, 160-

167.

Xiang, L. Y., Alsewari, A. A., and Zamli, K. Z. 2015. Pairwise test suite generator tool based on

harmony search algorithm (HS-PTSGT). NNGT International Journals on Artificial

Intelligence. 2(1): 62-65.

Yang, X.-S. 2010. A new metaheuristic bat-inspired algorithm. Springer.

Yang, X.-S. 2014. Nature-inspired optimization algorithms (chapter 10 – bat algorithms). 1st ed.

Boston: Elsevier Science Publishers Inc.

http://www.site.uottawa.ca/~awilliam

138

Yang, X.-S., and Gandomi, A. H. 2012. Bat algorithm: A novel approach for global engineering

optimization. Engineering Computations. 29(5): 464-483.

Yilmaz, C., Cohen, M. B., and Porter, A. 2006. Covering arrays for efficient fault characterization

in complex configuration spaces. IEEE Transactions on Software Engineering. 31(1):

20–34.

Younis, M. I., and Zamli, K. Z. 2009a. ITTW: t-way minimization strategy based on intersection

of tuples. In the IEEE Symposium on Industrial Electronics and Applications, 1, 221-

226.

Younis, M. I., and Zamli, K. Z. 2009b. RTS: Reverse tracking strategy for pairwise testing. In

the Conference on Software Engineering and Computer Systems.

Younis, M. I., and Zamli, K. Z. 2010a. MC-MIPOG: A parallel t-way test generation strategy for

multicore systems. ETRI Journal. 32(1): 73-83.

Younis, M. I., and Zamli, K. Z. 2010b. MIPOG: A parallel t-way minimization strategy for

combinatorial testing. Ph.D. Thesis. Universiti Sains Malaysia, USM.

Younis, M. I., and Zamli, K. Z. 2011. MIPOG-An efficient t-way minimization strategy for

combinatorial testing. International Journal of Computer Theory and Engineering. 3(3):

388-397.

Younis, M. I., Zamli, K. Z., and Isa, N. A. M. 2008a. Generating pairwise combinatorial test set

using artificial parameters and values. In the 3rd International Symposium on

Information Technology, 3, 1654-1661.

Younis, M. I., Zamli, K. Z., and Isa, N. A. M. 2008b. IRPS: An efficient test data generation

strategy for pairwise testing. In the 12th International Conference on Knowledge-Based

Intelligent Information and Engineering Systems, 493-500.

Younis, M. I., Zamli, K. Z., Klaib, M. F. J., Soh, Z. H. C., Abdullah, S. A. C., and Isa, N. A. M.

2010. Assessing IRPS as an efficient pairwise test data generation strategy. International

Journal of Advanced Intelligence Paradigms. 2(3): 90-104.

Yu, L., Kacker, R., Kuhn, D. R., Okun, V., and Lawrence, J. 2008. IPOG/IPOG-D: efficient test

generation for multi-way combinatorial testing. Software Testing Verification and

Reliability. 18(3): 125-148.

Yu, L., Kacker, R., Kuhn, D. R., Okun, V., and Lawrence, J. 2009. IPOG/IPOD: Efficient test

generation for multi-way software testing. Journal of Software Testing, Verification, and

Reliability. 18: 125 -148.

Yu, Y. T., Ng, S. P., and Chan, E. Y. K. 2003. Generating, selecting and prioritizing test cases

from specifications with tool support. In the 3rd International Conference on Quality

Software, 83-90.

Zabil, M. H. M., and Zamli, K. Z. 2013a. Adopting bees algorithm for sequence-based t-way test

data generation. In the International ICIC Express Letters, 7.

139

Zabil, M. H. M., and Zamli, K. Z. 2013b. Implementing a t-way test generation strategy using

bees algorithm. International Journal of Advances in Soft Computing and Its

Applications. 5(3): 116-126.

Zabil, M. H. M., Zamli, K. Z., and Othman, R. 2012. Sequence-based interaction testing

implementation using bees algorithm. In the IEEE Symposium on Computers and

Informatics, 81-85.

Zamli, K. Z., Alkazemi, B. Y., and Kendall, G. 2016. A tabu search hyper-heuristic strategy for

t-way test suite generation. Applied Soft Computing. 44(1): 57-74.

Zamli, K. Z., Alsewari, A. R., and Al-Kazemi, B. 2015. Comparative benchmarking of constraints

t-way test generation strategy based on late acceptance hill climbing algorithm.

International Journal of Software Engineering and Computer Systems. 1(1): 15-27.

Zamli, K. Z., Klaib, M. F., Younis, M. I., Isa, N. A. M., and Abdullah, R. 2011. Design and

implementation of a t-way test data generation strategy with automated execution tool

support. Information Sciences. 181(9): 1741-1758.

Zekaoui, L. 2006. Mixed covering arrays on graphs and tabu search algorithms. Master. Thesis.

University of Ottawa, Canada.

140

APPENDIX A

THE RUNNING COMMAND-LINE FOR BTS

BTS adapts special command-lines for advance used through a command prompt

execution. These command-line has been designed for simplicity and to enable a faster

process of the specify software inputs specifications. Additionally, the variables for BTS

and operating environment as well.

Table A.1 The command-line specifications for BTS.

Command Specifications

-d -d <main-strength (t): Elements-values (ES)>

-m -m <sub-strength (t): indexes of the involved elements>

-r -r <number of executions>

-n -n <bat papulation size>

-i -i <number of iteration (𝑚𝑎𝑥)>

-l -l <loudness value>

-p -l <emission of pulse rate value>

-t -t <tolerance value>

-h -h <Hamming distance limit>

Table A.2 Examples of command-line specifications for BTS.

Command Specifications Example

-d –d <2:5,5,5,5>

The specification for 4 elements each has 5 values for 2-way.

-m –m <3:1,2,3#3:2,3,4>

The specification for the first three elements from the above-mentioned

example with 3-way sub-strength and the last three for another 3-way sub-

strength.

Notice: all the indexes specified in BTS are started from 1 to N for simplicity

and test engineers’ convenience. We did not follows the default indexing method

in programing, which starts from zero.

-r -r <20>

This command used for the sake of this research results to run the

benchmarking for 20 times.

-n -n <50>

-i -i <100>

-l -l <0.5>

-r -r <0.25>

-t -t <0.0001>

-h -h <10>

141

Figure A.1 The BTS advance user prototype.

142

APPENDIX B

BTS TUNING DATA

Table B.1 Full details of BTS tunning sizes and their averages.

Bat population size 10

Loudness Pulse Rate Tolerance

Iteration

10 20 50 100 200

Size Average Size Average Size Average Size Average Size Average

0.05 0.05 0.00001 38 39.85 37 37.95 35 36.85 35 36.40 35 36.10

0.0001 37 39.30 37 37.90 36 36.90 36 36.85 34 36.10

0.001 38 39.30 37 38.05 36 36.95 34 36.10 35 36.25

0.01 38 40.00 36 37.70 35 36.80 35 36.30 34 35.80

0.1 38 39.75 36 37.90 36 37.05 35 36.20 34 35.80

0.25 0.00001 38 39.70 36 37.90 36 36.90 35 36.30 35 35.80

0.0001 38 39.55 36 37.90 35 36.50 35 36.30 34 35.60

0.001 38 39.70 36 37.70 36 37.00 35 36.60 35 36.25

0.01 38 39.30 37 37.90 35 36.20 35 36.25 35 36.10

0.1 38 39.55 36 37.75 35 36.65 35 36.40 35 35.90

0.5 0.00001 38 39.20 36 37.90 35 36.70 35 36.20 35 36.15

0.0001 38 39.80 35 37.50 35 36.50 35 36.25 34 35.80

0.001 38 39.70 36 37.80 36 36.95 35 36.35 34 35.80

0.01 37 39.30 37 37.70 35 36.60 35 36.45 35 36.15

0.1 37 39.30 36 38.20 35 36.50 35 36.30 35 36.20

0.75 0.00001 37 39.40 36 37.60 36 36.80 35 36.50 35 36.20

0.0001 37 39.75 37 37.90 35 36.95 35 36.35 35 36.05

0.001 38 39.75 36 37.90 35 36.50 35 36.40 35 36.10

143

0.01 38 39.40 36 37.80 36 37.00 35 36.35 35 36.15

0.1 36 39.00 36 38.00 36 36.75 35 36.60 35 36.35

0.95 0.00001 38 39.45 35 37.75 34 36.90 35 36.05 35 35.95

0.0001 38 39.55 36 37.65 35 36.70 35 36.60 35 36.20

0.001 37 39.20 36 37.60 35 36.65 34 36.35 35 36.00

0.01 38 39.40 36 38.10 36 37.00 35 36.35 34 36.15

0.1 38 39.35 36 38.00 35 36.90 35 36.30 35 36.00

0.25 0.05 0.00001 38 39.55 36 37.95 35 36.55 35 36.55 35 36.25

0.0001 38 39.40 37 38.10 35 36.65 35 36.45 35 36.15

0.001 38 39.25 36 37.95 35 36.65 35 35.95 35 36.10

0.01 37 39.50 36 37.95 36 36.85 34 36.10 35 36.10

0.1 37 39.30 37 38.35 36 37.05 35 36.55 34 35.65

0.25 0.00001 37 39.25 36 37.95 36 36.90 34 35.95 34 35.70

0.0001 38 39.45 35 37.35 34 36.65 35 35.95 35 35.85

0.001 38 39.25 37 38.15 35 36.90 35 36.25 35 36.00

0.01 38 39.40 36 37.75 36 36.65 35 36.45 35 36.25

0.1 38 39.80 36 37.70 36 36.90 34 36.10 34 36.15

0.5 0.00001 37 39.35 36 37.70 35 36.85 34 36.10 35 36.10

0.0001 38 39.30 37 38.10 35 36.65 35 36.40 35 35.95

0.001 38 39.70 36 38.05 35 36.80 35 36.35 34 35.85

0.01 38 39.75 36 37.70 35 36.75 35 36.35 35 36.25

0.1 38 39.70 36 38.00 35 36.70 35 36.20 35 36.10

0.75 0.00001 38 39.40 36 38.00 35 36.60 35 36.35 34 36.05

0.0001 37 39.40 36 38.00 35 36.60 35 36.15 35 36.10

0.001 37 39.40 35 37.60 34 36.70 35 36.30 35 36.05

0.01 38 39.50 36 38.20 36 36.95 34 36.20 35 36.35

0.1 38 39.70 36 37.85 35 36.75 35 36.40 34 35.95

144

0.95 0.00001 38 39.50 35 37.85 36 36.55 35 36.45 34 35.65

0.0001 38 39.65 36 38.10 35 36.75 34 36.30 35 35.80

0.001 38 39.50 37 38.20 35 36.70 35 36.35 35 36.00

0.01 38 39.35 37 38.05 35 36.70 34 35.90 35 35.90

0.1 38 39.50 37 37.70 35 36.80 35 36.10 35 36.10

0.5 0.05 0.00001 38 39.40 37 38.30 36 36.80 35 36.10 35 36.05

0.0001 38 39.85 36 37.85 35 36.75 35 36.45 35 36.30

0.001 38 39.35 36 37.85 36 37.00 34 36.00 35 35.95

0.01 38 39.70 37 38.10 36 36.60 35 36.40 35 35.95

0.1 38 39.75 36 37.95 34 36.80 34 36.15 34 35.80

0.25 0.00001 38 39.70 36 37.75 36 36.65 35 36.05 34 35.85

0.0001 37 39.35 36 37.70 35 36.70 34 36.30 35 36.10

0.001 38 39.55 36 38.10 34 36.80 35 36.30 35 36.05

0.01 38 39.50 36 38.00 36 36.70 35 36.50 35 35.85

0.1 39 39.65 36 37.85 35 36.75 35 36.75 35 36.25

0.5 0.00001 38 39.65 36 37.80 35 36.60 35 36.40 34 35.75

0.0001 38 39.65 36 37.75 36 36.75 35 36.05 34 35.55

0.001 36 39.50 37 38.25 35 36.65 35 36.35 34 36.05

0.01 38 39.30 36 38.00 35 37.05 35 36.40 35 36.15

0.1 37 39.25 37 37.90 35 36.65 35 36.45 35 36.00

0.75 0.00001 38 39.65 36 37.65 36 36.55 35 36.30 35 36.00

0.0001 38 39.55 36 37.85 36 37.05 35 36.20 35 36.10

0.001 38 39.30 37 37.95 36 37.05 35 36.30 35 36.10

0.01 38 39.30 36 37.80 36 37.20 34 36.10 33 35.75

0.1 38 39.00 37 37.85 35 36.85 35 36.30 35 36.15

0.95 0.00001 38 39.60 37 37.80 35 36.90 35 36.55 34 36.00

0.0001 37 39.55 36 37.95 36 37.15 34 36.50 35 36.10

145

0.001 38 39.60 37 38.05 35 37.15 35 36.40 35 36.25

0.01 37 39.50 37 37.95 36 36.85 34 35.90 35 36.35

0.1 38 39.40 36 37.75 36 36.70 34 36.05 35 36.00

0.75 0.05 0.00001 38 40.00 37 37.85 35 36.95 35 36.15 35 35.85

0.0001 38 39.05 36 37.75 36 36.80 35 36.15 35 36.15

0.001 37 39.20 37 38.00 35 36.50 35 36.35 35 36.10

0.01 38 39.45 36 37.80 35 36.90 35 36.25 34 35.90

0.1 38 39.35 36 38.20 36 36.95 35 36.55 35 36.15

0.25 0.00001 38 39.70 36 37.80 35 36.85 35 36.25 35 35.95

0.0001 38 39.40 36 37.75 35 36.45 35 36.10 35 36.25

0.001 37 39.65 37 37.80 36 36.95 35 36.65 35 36.05

0.01 38 39.20 36 37.75 35 36.60 35 36.10 35 35.90

0.1 38 39.80 36 37.70 35 36.65 35 36.20 36 36.30

0.5 0.00001 38 39.45 36 37.65 36 36.55 36 36.60 35 36.05

0.0001 37 39.95 36 37.80 35 36.85 35 36.00 34 35.55

0.001 38 39.20 37 37.75 35 36.80 35 36.10 35 36.15

0.01 38 39.60 37 38.15 35 37.00 35 36.25 35 36.05

0.1 38 39.60 36 37.90 35 36.55 35 36.35 35 36.05

0.75 0.00001 38 39.40 36 37.80 36 36.85 35 36.40 35 36.05

0.0001 38 39.60 37 38.10 35 36.35 35 36.15 34 35.90

0.001 38 39.40 37 38.25 36 36.90 35 36.15 35 36.00

0.01 38 39.50 37 38.15 36 36.65 35 36.65 34 35.80

0.1 38 39.80 37 38.20 36 36.60 34 36.05 34 35.95

0.95 0.00001 37 39.40 35 38.00 35 36.35 34 36.45 34 35.95

0.0001 38 39.05 36 37.75 35 36.75 35 36.10 35 36.20

0.001 38 39.30 36 37.55 35 36.75 35 36.20 34 35.75

0.01 37 39.75 37 37.75 35 36.65 35 36.20 34 36.05

146

0.1 38 39.65 36 37.85 35 36.65 35 36.10 34 35.75

0.95 0.05 0.00001 38 39.50 36 37.60 36 36.85 34 36.15 35 36.20

0.0001 38 39.30 36 37.55 36 36.60 35 36.30 35 36.00

0.001 38 39.60 36 37.85 36 36.90 35 36.55 35 35.75

0.01 38 39.60 37 37.85 36 36.85 34 36.30 34 35.75

0.1 37 39.15 37 37.85 35 36.70 35 36.45 35 35.90

0.25 0.00001 37 39.15 36 37.95 35 36.95 34 35.95 35 35.90

0.0001 37 39.35 37 37.90 36 36.75 35 36.35 35 36.15

0.001 37 39.40 36 37.55 36 37.05 35 36.20 33 35.70

0.01 36 38.95 36 38.00 35 36.55 35 36.25 35 36.05

0.1 38 39.55 36 37.75 35 36.50 35 36.20 35 36.05

0.5 0.00001 38 39.85 36 37.80 35 36.90 35 36.35 35 36.40

0.0001 37 39.35 36 38.00 35 36.75 35 36.65 35 35.75

0.001 38 39.45 37 37.80 36 37.05 35 36.30 33 36.00

0.01 38 39.35 36 37.50 35 36.70 35 36.20 35 35.95

0.1 38 39.20 36 38.05 35 37.00 34 36.20 35 36.25

0.75 0.00001 38 39.10 36 37.65 36 36.85 35 35.90 35 35.85

0.0001 37 39.25 37 38.30 36 36.85 35 36.40 35 36.00

0.001 37 39.60 36 37.90 36 36.75 34 36.15 35 36.00

0.01 37 39.65 36 37.90 35 36.70 35 36.25 35 36.15

0.1 38 39.65 36 37.70 35 36.90 34 36.10 34 35.85

0.95 0.00001 38 39.60 37 37.65 36 37.00 35 36.35 35 36.40

0.0001 37 39.35 37 37.80 36 37.05 35 36.70 34 35.80

0.001 36 38.90 38 38.45 35 36.50 35 36.30 35 36.00

0.01 38 39.30 36 38.00 35 36.80 34 36.00 35 35.90

0.1 38 39.65 36 37.80 36 36.80 35 36.15 35 36.20

147

Bat population size 20

0.05 0.05 0.00001 37 37.75 36 37.05 35 36.20 34 35.95 34 35.60

0.0001 37 38.00 36 36.80 35 36.20 34 35.80 34 35.85

0.001 36 37.55 35 36.50 35 36.20 34 35.55 34 35.45

0.01 37 38.10 35 36.75 35 35.95 33 35.60 34 35.60

0.1 36 37.65 35 36.85 36 36.70 33 35.70 34 35.75

0.25 0.00001 36 37.70 36 36.75 35 35.85 35 36.05 35 35.90

0.0001 37 38.10 36 36.90 34 36.25 35 35.90 34 35.80

0.001 36 37.85 35 37.10 35 36.05 35 35.95 33 35.55

0.01 37 37.75 36 37.00 35 35.80 35 35.95 35 35.60

0.1 36 37.60 35 36.65 34 36.00 35 35.70 35 35.80

0.5 0.00001 36 37.75 36 36.65 35 35.90 34 35.75 34 35.65

0.0001 37 38.00 35 36.55 35 36.40 35 35.95 34 35.70

0.001 36 37.60 36 36.95 34 35.90 34 35.60 34 35.50

0.01 36 37.45 35 36.50 34 36.05 34 36.15 34 35.75

0.1 36 37.55 35 36.55 35 36.00 34 35.70 34 35.65

0.75 0.00001 36 37.80 36 36.70 34 35.85 34 36.15 33 35.60

0.0001 36 37.50 35 36.60 35 36.25 35 36.10 34 35.40

0.001 36 37.90 35 36.75 35 36.65 35 36.05 34 35.65

0.01 37 37.95 35 36.85 35 36.25 34 35.90 35 35.90

0.1 36 37.55 35 36.35 35 35.75 34 35.70 34 35.75

0.95 0.00001 36 38.10 35 36.70 35 36.10 34 35.75 34 35.75

0.0001 36 37.70 36 36.85 35 36.10 34 35.60 34 35.70

0.001 37 37.80 35 36.55 35 36.30 34 35.80 34 35.90

0.01 36 38.05 35 36.70 35 36.15 34 35.70 34 35.50

0.1 36 37.80 35 37.00 34 35.80 34 35.60 35 35.65

0.25 0.05 0.00001 35 37.45 35 36.65 35 36.00 34 35.55 34 35.75

148

0.0001 36 37.40 36 36.90 35 36.10 34 35.95 34 35.35

0.001 37 38.10 35 36.50 34 36.15 35 36.00 35 35.85

0.01 36 38.00 35 36.90 34 36.00 35 35.50 34 35.75

0.1 36 37.75 34 37.05 35 36.05 34 35.95 34 35.45

0.25 0.00001 36 37.75 35 36.65 34 36.00 35 35.75 32 35.55

0.0001 36 37.90 35 36.65 35 36.15 35 35.95 33 35.75

0.001 36 37.40 35 37.05 35 36.45 35 36.05 34 35.40

0.01 36 37.65 35 36.60 33 36.00 35 36.10 34 35.70

0.1 36 37.90 36 36.90 35 35.75 34 35.80 34 35.75

0.5 0.00001 36 37.60 35 36.95 35 35.95 35 36.00 34 35.70

0.0001 37 37.95 36 37.05 35 36.20 34 35.70 35 36.05

0.001 36 37.60 35 36.70 35 35.95 35 35.50 34 35.45

0.01 36 37.80 35 36.85 34 35.90 34 35.95 35 35.65

0.1 36 37.55 35 36.60 35 36.20 33 35.60 35 35.80

0.75 0.00001 36 37.55 36 36.80 35 36.25 34 35.80 34 35.30

0.0001 36 37.75 35 36.65 35 35.90 34 35.65 34 35.70

0.001 36 37.75 35 36.75 34 35.95 35 35.85 34 35.75

0.01 35 37.65 35 36.80 35 36.20 35 36.00 34 35.25

0.1 36 37.70 35 36.80 34 35.80 34 36.05 33 35.45

0.95 0.00001 37 38.10 34 36.55 35 36.35 34 35.95 35 36.00

0.0001 36 37.95 35 36.65 35 35.90 34 35.85 34 35.40

0.001 36 37.55 35 36.75 35 35.95 34 35.65 34 35.45

0.01 36 37.70 35 36.50 34 36.10 34 35.85 34 35.70

0.1 36 37.90 35 36.75 34 35.60 35 36.00 35 35.45

0.5 0.05 0.00001 36 37.70 35 36.55 34 36.00 35 35.85 34 35.40

0.0001 36 37.80 35 36.75 35 36.10 33 35.55 34 35.60

0.001 36 37.65 36 36.60 34 36.10 34 35.80 33 35.65

149

0.01 37 38.35 35 36.95 35 36.15 35 36.00 33 35.70

0.1 36 37.50 36 36.90 35 36.15 34 35.75 35 35.60

0.25 0.00001 35 37.80 35 36.70 35 35.90 35 35.75 34 35.35

0.0001 36 37.55 35 36.60 34 36.00 34 36.10 34 35.60

0.001 36 37.70 35 36.65 35 35.90 34 35.50 34 35.70

0.01 37 38.25 36 37.05 35 36.25 35 36.05 34 35.50

0.1 36 37.90 36 36.60 34 35.65 34 35.80 34 35.30

0.5 0.00001 36 37.70 35 36.75 35 36.10 33 35.50 35 35.85

0.0001 36 37.45 35 36.40 35 36.00 34 35.65 33 35.65

0.001 36 37.45 35 36.65 34 36.05 34 35.65 34 35.45

0.01 37 38.05 35 36.90 35 36.10 35 35.75 35 35.85

0.1 36 37.75 35 36.85 35 36.25 35 35.70 34 35.75

0.75 0.00001 37 37.90 36 36.80 35 36.15 35 35.85 35 35.85

0.0001 37 37.80 36 36.60 35 35.80 34 35.70 33 35.55

0.001 37 37.80 35 36.35 35 36.00 35 35.85 34 35.55

0.01 36 37.95 35 36.40 35 36.20 34 35.60 34 35.75

0.1 37 37.70 35 36.90 35 35.85 35 36.00 35 36.00

0.95 0.00001 37 38.20 35 36.60 35 36.35 34 35.55 34 35.50

0.0001 36 37.65 35 36.60 35 36.35 34 35.70 34 35.45

0.001 36 37.80 35 36.75 34 35.95 34 35.65 34 35.25

0.01 36 37.80 36 36.90 34 35.80 35 35.65 34 35.70

0.1 36 37.75 35 36.70 34 36.05 33 35.40 34 35.95

0.75 0.05 0.00001 36 37.65 35 36.70 34 35.80 34 35.75 34 35.25

0.0001 37 37.85 35 36.75 35 35.85 35 35.95 34 35.55

0.001 37 37.80 36 36.60 35 35.90 33 36.10 34 35.65

0.01 36 37.85 35 36.75 35 36.05 34 35.70 34 35.70

0.1 37 37.65 35 36.60 34 36.00 34 35.75 33 35.50

150

0.25 0.00001 37 38.00 35 36.45 35 36.05 33 35.80 35 35.90

0.0001 36 37.95 35 36.70 35 35.75 34 35.90 34 35.60

0.001 37 37.90 36 36.90 35 36.00 35 35.70 35 35.80

0.01 36 37.60 35 36.35 34 36.00 34 35.85 35 35.65

0.1 36 37.70 36 36.85 35 36.35 34 36.00 33 35.45

0.5 0.00001 36 37.60 35 36.65 34 36.20 35 35.80 34 35.90

0.0001 36 37.90 35 36.55 35 36.20 34 35.95 34 35.95

0.001 37 37.65 35 36.50 35 36.15 35 35.65 34 35.65

0.01 37 37.90 35 36.60 34 36.20 33 35.95 34 35.70

0.1 36 38.15 36 37.10 35 36.35 34 35.55 34 35.65

0.75 0.00001 36 37.70 36 36.80 34 36.10 34 35.80 35 35.70

0.0001 36 37.60 36 36.80 35 36.00 35 35.70 34 35.75

0.001 36 37.80 35 37.05 32 35.80 35 35.75 34 35.55

0.01 37 37.70 35 36.80 35 35.90 33 35.90 35 35.80

0.1 36 37.65 34 36.25 35 36.25 35 35.65 33 35.30

0.95 0.00001 36 38.05 36 36.65 35 36.40 34 35.75 33 35.60

0.0001 36 37.40 35 36.55 34 36.00 34 35.30 34 35.60

0.001 36 38.00 35 36.70 34 36.00 35 35.50 34 35.40

0.01 36 37.30 35 36.85 33 35.80 35 35.65 34 35.65

0.1 36 37.55 35 36.45 35 36.10 35 35.90 34 35.80

0.95 0.05 0.00001 36 37.60 35 36.60 34 36.20 34 35.95 35 35.55

0.0001 36 37.70 36 36.80 35 36.25 34 35.45 33 35.50

0.001 35 37.45 35 36.80 35 36.05 33 35.70 35 35.60

0.01 37 37.80 35 36.45 33 35.95 34 35.75 34 35.40

0.1 36 37.55 35 36.65 35 36.10 34 36.10 34 35.75

0.25 0.00001 36 37.80 35 36.55 35 36.20 35 36.00 34 35.70

0.0001 36 37.70 36 37.00 35 36.20 34 35.65 33 35.30

151

0.001 36 37.70 35 36.40 35 36.00 35 36.10 35 35.75

0.01 36 37.75 35 36.45 35 36.15 34 35.75 34 35.55

0.1 35 38.00 36 36.65 34 36.05 35 35.85 33 35.05

0.5 0.00001 36 37.60 34 36.45 33 35.70 33 35.80 34 35.65

0.0001 37 37.90 35 36.85 34 35.90 35 35.80 34 35.75

0.001 36 37.55 35 36.80 35 35.95 34 35.90 34 35.70

0.01 37 37.85 34 36.70 35 36.00 35 35.75 35 36.00

0.1 35 37.65 35 36.50 35 36.15 34 35.75 34 35.65

0.75 0.00001 37 37.70 35 36.60 34 35.95 34 35.85 35 35.65

0.0001 36 37.55 35 37.00 35 35.95 34 35.85 33 35.65

0.001 36 37.55 36 36.85 35 36.00 34 35.90 34 35.90

0.01 36 37.65 35 36.40 34 35.80 34 35.70 35 35.80

0.1 36 37.95 35 36.50 35 36.10 34 35.75 34 35.35

0.95 0.00001 36 37.65 36 36.90 34 36.00 34 35.55 34 35.75

0.0001 36 37.40 35 36.45 35 36.05 35 35.85 34 35.65

0.001 37 37.85 35 36.90 35 35.90 35 35.90 32 35.45

0.01 36 37.60 35 36.50 35 36.05 34 35.60 33 35.60

0.1 35 37.45 35 36.65 35 36.00 35 35.80 34 35.25

Bat population size 50

0.05 0.05 0.00001 34 36.35 35 35.85 34 35.55 34 35.65 33 35.15

0.0001 35 36.30 35 35.75 33 35.45 34 35.50 34 35.35

0.001 34 36.55 34 35.75 34 35.85 34 35.60 33 35.40

0.01 35 36.55 35 35.75 34 35.85 34 35.50 33 35.15

0.1 35 36.30 34 35.80 34 35.60 35 35.60 34 35.35

0.25 0.00001 35 36.35 35 36.00 34 35.75 34 35.95 35 35.90

0.0001 35 36.50 34 35.60 35 35.90 34 35.40 34 35.40

0.001 35 36.45 34 35.70 34 35.70 34 35.55 34 35.20

152

0.01 35 36.25 35 36.10 35 35.85 33 35.35 33 35.50

0.1 35 35.95 34 35.90 34 35.40 35 35.55 34 35.40

0.5 0.00001 35 36.55 35 36.15 34 35.70 33 35.80 34 35.45

0.0001 35 36.25 35 35.95 34 35.65 34 35.45 34 35.15

0.001 35 36.15 34 36.00 35 35.90 35 35.70 34 35.35

0.01 35 36.55 34 35.80 34 35.35 33 35.40 34 35.50

0.1 35 36.00 35 35.65 34 35.85 34 35.60 34 35.35

0.75 0.00001 35 36.60 35 36.05 34 35.35 34 35.50 34 35.35

0.0001 34 36.15 35 35.95 34 35.55 34 35.75 34 35.55

0.001 35 36.35 34 35.60 34 35.50 34 35.40 34 35.35

0.01 35 36.35 34 35.80 34 35.80 34 35.20 34 35.50

0.1 35 36.40 35 35.85 33 35.60 33 35.45 35 35.75

0.95 0.00001 35 36.55 35 36.20 34 35.70 34 35.30 34 35.35

0.0001 35 36.30 35 35.95 34 35.85 34 35.55 33 35.40

0.001 35 36.55 35 35.90 35 35.55 34 35.55 34 35.40

0.01 34 36.55 34 36.05 34 35.55 34 35.60 35 35.70

0.1 35 36.25 33 35.50 34 35.25 33 35.40 34 35.55

0.25 0.05 0.00001 35 36.30 34 35.55 34 35.55 33 35.55 34 35.35

0.0001 35 36.60 34 35.50 34 35.70 34 35.45 34 35.20

0.001 35 36.20 35 36.05 34 35.65 34 35.65 33 34.75

0.01 35 36.50 34 35.65 34 35.55 35 35.70 34 35.45

0.1 35 36.35 34 35.75 35 35.50 34 35.55 34 35.55

0.25 0.00001 35 36.40 35 36.15 35 35.90 33 35.50 34 35.55

0.0001 35 36.35 35 35.75 34 35.55 33 35.40 32 35.25

0.001 35 36.20 35 35.95 33 35.45 34 35.45 34 35.35

0.01 34 36.45 35 36.10 34 35.90 34 35.50 34 35.40

0.1 35 36.45 35 36.25 35 35.80 34 35.65 35 35.70

153

0.5 0.00001 35 36.05 34 35.75 34 35.60 34 35.55 34 35.55

0.0001 35 36.35 35 36.05 35 35.90 34 35.50 34 35.45

0.001 35 36.40 34 35.70 35 35.85 34 35.45 34 35.10

0.01 35 36.35 35 35.70 34 35.35 35 35.55 34 35.70

0.1 35 36.30 35 35.60 34 35.45 33 35.35 34 35.35

0.75 0.00001 34 36.10 35 35.85 34 35.35 33 35.30 34 35.45

0.0001 35 36.25 35 36.05 35 36.10 34 35.35 33 35.50

0.001 35 36.45 34 36.05 34 35.50 34 35.55 34 35.40

0.01 35 36.20 35 35.50 34 35.35 34 35.40 34 35.65

0.1 35 36.20 34 35.90 32 35.15 35 35.50 34 35.40

0.95 0.00001 35 36.35 34 35.80 34 35.70 34 35.65 34 35.50

0.0001 35 36.10 34 35.55 35 35.55 34 35.80 34 34.95

0.001 33 36.25 34 36.15 34 35.95 34 35.70 33 35.40

0.01 35 36.15 35 35.90 35 35.75 33 34.90 34 35.60

0.1 35 36.30 34 35.90 34 35.75 34 35.20 33 35.20

0.5 0.05 0.00001 35 36.35 34 35.60 33 35.45 33 35.50 34 35.40

0.0001 35 36.35 35 36.05 34 35.55 35 35.80 34 35.35

0.001 34 36.45 35 36.20 34 35.65 33 35.45 34 35.80

0.01 35 35.85 35 36.05 34 35.85 33 35.20 35 35.80

0.1 35 36.50 35 35.75 35 35.55 33 35.55 33 35.40

0.25 0.00001 36 36.65 34 35.90 34 35.70 34 35.70 34 35.45

0.0001 35 36.45 35 35.85 34 35.50 34 35.75 34 35.55

0.001 35 36.45 35 35.85 34 35.60 34 35.30 34 35.45

0.01 34 36.20 35 35.70 35 35.55 34 35.20 34 35.15

0.1 35 36.40 34 35.80 34 35.65 34 35.25 34 35.55

0.5 0.00001 34 36.15 34 35.75 34 35.65 34 35.45 33 35.40

0.0001 34 36.00 34 35.70 34 35.70 34 35.70 33 35.35

154

0.001 35 36.35 35 35.85 33 35.60 34 35.65 34 35.45

0.01 35 36.50 35 35.70 34 35.60 35 35.80 34 35.20

0.1 35 36.20 35 36.05 33 35.65 34 35.55 34 35.15

0.75 0.00001 35 36.35 34 36.20 34 35.55 34 35.70 34 35.45

0.0001 35 36.50 34 35.55 34 35.55 33 35.45 34 35.30

0.001 35 36.35 34 35.80 34 35.70 34 35.25 33 35.25

0.01 36 36.30 35 35.85 34 35.45 34 35.30 33 35.25

0.1 35 36.25 35 36.15 34 35.45 34 35.30 34 35.40

0.95 0.00001 35 36.40 35 35.95 34 35.75 34 35.75 34 35.40

0.0001 35 36.45 34 36.15 35 36.00 34 35.60 34 35.50

0.001 35 36.10 35 35.85 34 35.45 35 35.70 34 35.65

0.01 35 36.30 34 35.85 34 35.55 35 35.60 34 35.45

0.1 36 36.50 35 35.55 34 35.55 35 35.75 34 35.75

0.75 0.05 0.00001 35 36.65 34 35.85 34 35.50 33 35.25 33 35.55

0.0001 35 36.50 35 35.70 34 35.60 33 35.40 34 35.35

0.001 35 36.55 35 35.70 34 35.65 34 35.60 34 35.45

0.01 35 36.40 34 35.65 34 35.55 34 35.50 34 35.25

0.1 35 36.35 33 35.75 34 35.65 34 35.45 34 35.30

0.25 0.00001 35 36.45 34 35.75 34 35.70 33 35.20 34 35.40

0.0001 35 36.55 35 36.15 33 35.40 34 35.25 33 35.25

0.001 35 36.50 35 35.85 33 35.60 34 35.30 34 35.35

0.01 35 36.20 34 35.65 34 35.55 35 35.60 34 35.45

0.1 35 36.15 35 36.10 34 35.65 34 35.30 34 35.40

0.5 0.00001 35 36.55 34 35.70 35 35.60 34 35.60 34 35.30

0.0001 36 36.30 35 36.10 35 35.70 34 35.75 33 35.40

0.001 35 36.15 34 35.50 34 35.70 34 35.30 34 35.35

0.01 34 36.30 35 35.95 34 35.45 33 35.55 34 34.95

155

0.1 35 36.25 34 35.80 33 35.00 34 35.45 34 35.40

0.75 0.00001 34 36.25 35 36.15 34 35.55 35 35.60 33 35.10

0.0001 35 36.05 33 35.80 34 35.60 34 35.45 34 35.35

0.001 35 36.35 34 35.90 34 35.55 34 35.25 34 35.25

0.01 34 36.40 34 35.85 33 35.70 34 35.50 34 35.35

0.1 35 36.45 35 36.05 34 35.35 34 35.80 34 35.75

0.95 0.00001 35 36.05 34 35.95 34 35.35 33 35.45 34 35.60

0.0001 34 36.40 34 36.15 35 35.90 34 35.75 34 35.65

0.001 35 36.35 34 35.75 34 35.80 34 35.10 33 35.00

0.01 34 36.45 35 35.80 34 35.45 34 35.45 34 35.40

0.1 35 36.25 35 36.10 33 35.10 33 35.50 34 35.45

0.95 0.05 0.00001 35 36.35 35 35.65 34 35.45 34 35.15 34 35.60

0.0001 34 36.45 34 35.65 34 35.40 35 35.55 34 35.30

0.001 35 36.20 34 35.75 34 35.30 33 35.70 34 35.35

0.01 35 36.35 35 35.80 35 35.50 35 35.65 34 35.70

0.1 34 36.15 34 35.70 34 35.30 33 35.25 34 35.25

0.25 0.00001 35 36.45 35 36.05 33 35.70 34 35.45 34 35.65

0.0001 35 36.35 34 35.75 34 35.40 34 35.25 35 35.35

0.001 35 36.05 35 35.35 34 35.60 35 35.55 34 35.35

0.01 34 36.00 34 35.90 34 35.25 34 35.45 34 35.35

0.1 35 36.40 34 35.95 34 35.55 33 35.15 34 35.45

0.5 0.00001 34 36.15 34 35.55 34 35.55 33 35.45 34 35.35

0.0001 35 36.50 34 35.85 34 35.55 34 35.65 34 35.65

0.001 34 36.05 34 35.60 34 35.55 34 35.60 34 35.60

0.01 35 36.15 35 35.70 33 35.45 35 35.65 33 35.05

0.1 35 36.15 34 35.85 34 35.45 34 35.70 34 35.30

0.75 0.00001 35 36.20 34 35.80 33 35.35 34 35.05 33 35.35

156

0.0001 35 35.90 34 35.75 35 35.85 33 35.15 34 35.45

0.001 35 36.25 35 35.90 35 35.90 34 35.30 34 35.65

0.01 35 36.35 35 35.70 34 35.65 34 35.45 34 35.45

0.1 34 36.10 34 35.80 35 35.60 34 35.30 33 35.25

0.95 0.00001 35 36.30 35 36.20 34 35.20 34 35.60 35 35.75

0.0001 35 36.40 35 36.00 34 35.85 34 35.30 34 35.20

0.001 34 36.70 34 35.80 35 35.60 35 35.65 33 35.20

0.01 35 36.50 33 35.70 35 35.75 34 35.20 34 35.80

0.1 35 36.40 34 35.90 33 35.55 34 35.45 34 35.55

Bat population size 100

0.05 0.05 0.00001 34 35.30 34 35.45 33 35.35 34 35.15 34 35.10

0.0001 35 36.00 34 35.30 34 35.25 34 35.35 33 35.35

0.001 35 36.20 34 35.70 34 35.55 34 35.40 33 35.15

0.01 35 35.95 34 35.70 34 35.30 34 35.55 34 35.35

0.1 34 36.15 34 35.50 34 35.40 34 35.30 33 35.15

0.25 0.00001 34 35.75 34 35.45 34 35.55 34 35.45 34 35.45

0.0001 35 35.75 34 35.40 35 35.45 34 35.65 35 35.65

0.001 34 35.70 35 35.75 33 35.00 34 35.85 32 35.30

0.01 35 35.75 33 35.45 34 35.45 34 35.50 34 35.45

0.1 34 36.00 34 35.40 34 35.25 34 34.90 33 35.30

0.5 0.00001 34 35.90 34 35.45 33 35.30 34 35.35 34 35.45

0.0001 35 35.80 34 35.50 35 35.50 35 35.80 34 35.25

0.001 34 35.30 34 35.50 34 35.20 33 34.95 34 35.25

0.01 34 35.60 35 35.80 34 35.50 35 35.80 34 35.45

0.1 34 36.00 34 35.30 35 35.50 34 35.35 34 35.35

0.75 0.00001 35 35.75 34 35.35 34 35.45 34 35.75 33 35.25

0.0001 34 35.75 34 35.75 34 35.90 34 35.40 33 35.25

157

0.001 35 35.90 34 35.50 34 35.35 33 35.35 34 35.35

0.01 35 35.75 35 35.75 34 35.45 34 35.45 34 35.30

0.1 34 35.75 34 35.45 34 35.35 34 35.05 34 35.55

0.95 0.00001 34 35.80 34 35.35 34 35.45 34 35.40 34 35.30

0.0001 34 35.85 34 35.75 34 35.30 33 35.35 34 35.25

0.001 34 35.65 34 35.70 34 35.35 34 35.50 33 35.30

0.01 35 35.90 34 35.60 34 35.45 34 35.55 34 35.35

0.1 35 35.90 34 35.65 33 35.30 34 35.60 34 35.60

0.25 0.05 0.00001 34 35.75 34 35.65 33 35.10 34 35.15 34 35.40

0.0001 34 35.90 34 35.75 34 35.60 33 35.25 33 35.10

0.001 34 35.60 35 35.80 34 35.40 33 35.00 34 35.40

0.01 34 35.65 34 35.65 35 35.85 34 35.45 33 35.35

0.1 35 36.10 35 35.75 34 35.45 33 35.00 33 35.10

0.25 0.00001 34 35.75 34 35.80 34 35.60 34 35.70 34 35.50

0.0001 34 35.95 33 35.25 34 35.75 33 35.20 33 35.55

0.001 34 35.50 33 35.25 34 35.30 34 35.60 34 35.60

0.01 34 35.95 34 35.70 34 35.70 34 35.45 33 35.30

0.1 35 35.70 35 35.65 34 35.30 34 35.30 33 35.00

0.5 0.00001 35 35.55 35 35.55 33 35.50 35 35.55 35 35.70

0.0001 35 35.95 34 35.85 34 35.05 33 35.25 34 35.35

0.001 35 36.00 33 35.50 34 35.45 34 35.70 34 35.40

0.01 34 35.55 34 35.60 34 35.45 34 35.40 34 35.55

0.1 34 35.80 34 35.75 33 35.20 34 35.35 33 34.95

0.75 0.00001 35 36.10 35 35.90 35 35.65 33 35.35 34 35.40

0.0001 34 35.70 34 35.30 34 35.35 33 35.50 35 35.45

0.001 35 35.90 34 35.15 34 35.60 34 35.25 33 35.35

0.01 34 35.60 35 35.55 34 35.35 35 35.50 34 35.45

158

0.1 34 35.80 34 35.80 33 35.20 35 35.60 34 35.25

0.95 0.00001 34 35.60 34 35.80 35 35.85 34 35.40 33 35.30

0.0001 34 35.85 34 35.65 34 35.15 35 36.00 34 35.10

0.001 33 35.65 32 35.15 34 35.30 33 35.50 33 35.40

0.01 34 35.80 35 35.70 33 35.05 34 35.45 34 35.00

0.1 35 35.55 35 35.70 34 35.40 34 35.60 33 35.60

0.5 0.05 0.00001 34 35.65 34 35.75 34 35.25 34 35.40 34 35.20

0.0001 35 36.00 34 35.35 34 35.15 33 35.20 34 35.50

0.001 34 35.80 34 35.35 34 35.70 34 35.45 34 35.55

0.01 35 35.80 33 35.15 34 35.50 34 35.55 34 35.25

0.1 35 35.75 34 35.60 33 35.45 34 35.65 34 35.25

0.25 0.00001 34 35.80 34 35.50 34 35.55 34 35.30 33 35.20

0.0001 35 36.05 34 35.35 34 35.35 34 35.40 34 35.15

0.001 33 35.75 34 35.45 35 35.55 34 34.90 34 35.80

0.01 35 36.10 34 35.40 34 35.75 34 35.35 33 35.30

0.1 35 35.85 34 35.30 35 35.45 34 35.40 33 35.10

0.5 0.00001 34 35.60 34 35.80 35 35.40 34 35.30 34 35.10

0.0001 35 35.80 35 35.40 34 35.50 35 35.50 35 35.60

0.001 34 35.95 33 35.45 34 35.15 34 35.35 34 35.25

0.01 35 36.10 34 35.35 34 35.75 33 35.25 34 35.70

0.1 35 35.90 35 35.50 35 35.65 33 34.90 33 35.15

0.75 0.00001 34 35.80 34 35.55 33 35.50 34 35.55 34 35.45

0.0001 35 36.05 34 36.10 34 35.65 34 35.10 35 35.75

0.001 34 35.80 33 35.35 34 35.50 34 35.40 34 35.50

0.01 34 36.10 34 35.75 34 35.45 33 35.20 34 35.45

0.1 35 36.05 33 35.80 34 35.80 34 35.45 33 34.95

0.95 0.00001 34 35.80 33 35.25 34 35.30 33 35.35 34 35.45

159

0.0001 34 35.75 34 35.35 34 35.70 34 35.35 34 35.05

0.001 35 35.95 34 35.40 34 35.25 34 35.30 34 35.45

0.01 34 35.85 34 35.50 34 35.35 34 35.25 33 35.35

0.1 35 36.00 34 35.90 35 35.65 34 35.40 34 35.30

0.75 0.05 0.00001 35 35.90 34 35.60 34 35.50 35 35.50 34 35.35

0.0001 34 35.75 35 35.65 34 35.55 34 35.60 34 35.50

0.001 34 35.80 34 35.70 34 35.25 33 35.35 33 35.00

0.01 34 35.60 34 35.30 33 35.45 34 35.50 34 35.15

0.1 34 35.60 34 35.35 35 35.80 35 35.80 34 35.45

0.25 0.00001 34 35.85 33 35.50 33 35.35 34 35.20 34 35.20

0.0001 34 36.10 34 35.40 33 35.20 34 35.40 34 35.45

0.001 34 36.00 34 35.45 33 35.40 34 35.30 33 35.45

0.01 34 35.95 34 35.70 35 35.25 34 35.35 33 35.45

0.1 35 35.95 34 35.35 34 35.55 34 35.15 34 35.25

0.5 0.00001 34 35.65 32 35.65 34 35.45 34 35.45 33 35.10

0.0001 35 36.10 34 35.70 33 35.50 34 35.30 34 35.25

0.001 35 35.95 35 35.85 34 35.45 34 35.25 34 35.50

0.01 35 35.60 33 35.50 33 35.35 35 35.55 34 35.50

0.1 34 35.50 34 35.95 33 35.40 35 35.75 35 35.65

0.75 0.00001 35 35.65 34 35.30 35 35.30 34 35.35 34 35.30

0.0001 34 35.75 35 35.60 35 35.30 33 35.30 34 35.50

0.001 35 35.65 34 35.70 33 35.30 34 35.30 34 35.35

0.01 34 35.95 33 35.30 33 35.40 34 35.70 34 35.25

0.1 34 35.70 33 35.20 33 35.20 34 35.45 34 35.35

0.95 0.00001 35 36.05 34 35.70 33 35.30 35 35.80 33 35.40

0.0001 35 35.90 33 35.60 35 35.60 35 35.45 33 35.25

0.001 34 35.95 34 35.40 33 35.30 33 35.40 34 35.35

160

0.01 35 35.85 34 35.70 34 35.65 34 35.75 34 35.55

0.1 34 35.70 34 35.50 34 35.40 34 35.35 34 35.55

0.95 0.05 0.00001 34 35.50 34 35.65 34 35.45 34 35.35 34 35.05

0.0001 34 35.85 35 35.65 34 35.45 33 35.25 34 35.45

0.001 34 35.65 34 35.50 34 35.60 35 35.65 34 35.50

0.01 35 35.95 34 35.55 33 35.75 34 35.30 33 35.45

0.1 34 35.70 35 35.65 34 35.50 34 35.50 33 35.25

0.25 0.00001 34 35.60 34 35.45 33 35.10 32 35.10 33 35.30

0.0001 33 35.50 34 35.45 33 35.30 33 35.25 35 35.70

0.001 34 35.35 34 35.55 33 35.40 33 35.30 33 35.60

0.01 35 35.75 34 35.80 33 35.25 34 35.45 34 35.50

0.1 34 35.95 34 35.50 34 35.80 34 35.70 34 35.65

0.5 0.00001 35 35.65 34 35.35 34 35.40 34 35.20 34 35.40

0.0001 35 35.70 34 35.45 34 35.45 34 35.15 33 35.30

0.001 34 35.85 34 35.55 34 35.45 34 35.25 33 35.55

0.01 35 35.95 34 35.60 34 35.15 34 35.35 33 35.45

0.1 35 36.25 34 35.80 33 35.45 35 35.45 34 35.50

0.75 0.00001 33 35.60 34 35.80 34 35.20 34 35.70 33 35.55

0.0001 33 35.55 34 35.60 33 35.45 34 35.40 33 35.20

0.001 35 35.85 34 35.35 33 35.35 34 35.55 34 35.65

0.01 34 35.80 33 35.30 35 35.65 34 35.50 35 35.75

0.1 35 36.00 35 35.55 33 35.50 34 35.60 34 35.45

0.95 0.00001 34 36.00 34 35.50 33 35.00 34 35.65 35 35.45

0.0001 34 35.70 34 35.80 33 35.05 33 35.30 34 35.55

0.001 35 35.85 34 35.50 34 35.35 33 35.15 34 35.50

0.01 33 35.70 34 35.50 34 35.70 34 35.70 33 35.20

0.1 35 36.15 35 35.70 33 35.65 34 35.20 34 35.35

161

APPENDIX C

THE LIST OF PUBLICATIONS AND AWARDS

SELECTED PUBLICATIONS:

Yazan A. Alsariera, Hammoudeh S. Alamri, Abdullah M. Nasser, Mazlina A. Majid, and Kamal

Z. Zamli. 2014, "Comparative performance analysis of bat algorithm and bacterial

foraging optimization algorithm using standard benchmark functions." In the 8th

Malaysian Software Engineering Conference (MySEC2014), 295-300.

Abdullah M. Nasser, Yazan A. Alsariera, Kamal Z. Zamli, and B AlKazcmi. 2014, “Late

acceptance hill climbing based strategy for addressing constraints within combinatorial

test data generation”. In the 8th SOFTEC Asia 2014 Conference (SOFTEC2014), 12-16.

Yazan A. Alsariera and Kamal Z. Zamli. 2015, “A bat-inspired strategy for t-way interaction

testing”, Journal of Advanced Science Letters, American Scientific Publishers, 21(7),

2281-2288.

Yazan A. Alsariera, Mazlina A. Majid, and Kamal Z. Zamli. 2015, “A bat-inspired strategy for

pairwise testing”, Journal of Engineering and Applied Sciences, ARPN, 10(18), 8500-

8506.

Kamal Z. Zamli, Yazan A. Alsariera, Abdullah B. Nasser, and Abdul Rahman A. Alsewari. 2015,

“On adopting parameter free optimization algorithms for combinatorial interaction

testing”, ARPN Journal of Engineering and Applied Sciences, ARPN Pakistan, 10(19),

8987-8994.

Yazan A. Alsariera, Mazlina A. Majid, and Kamal Z. Zamli. 2015, “SPLBA: An interaction

strategy for software product line system configuration using bat-inspired algorithm”, In

the 4th International Conference on Software Engineering and Computer Systems

(ICSECS2015), 148-153.

Yazan A. Alsariera, Mazlina A. Majid, and Kamal Z. Zamli. 2015, “An interaction testing case

study using bat-inspired t-way strategy”, In the 8th SOFTEC Asia 2015 Conference,

(SOFTEC2015), 1-4.

Abdullah B. Nasser, Yazan A. Alsariera, AbdulRahman A. AlSewari, Kamal Z Zamli. 2015. “A

cuckoo search based pairwise strategy for combinatorial testing problem. A cuckoo

162

search based pairwise strategy for combinatorial testing problem”, Journal of Theoretical

and Applied Information Technology (JATIT), 82(1), 154-162.

Abdullah B. Nasser, Yazan A. Alsariera, AbdulRahman A. AlSewari, Kamal Z Zamli. 2015,

“Assessing optimization based strategies for t-way test suite generation: The case for

flower-based strategy”, In the International Conference on Control System, Computing

and Engineering (ICCSCE2015).

Yazan A. Alsariera, Abdullah M. Nasser, Kamal Z. Zamli, 2016, “Benchmarking of bat-inspired

interaction testing strategy”. International Journal of Computer Science and Information

Engineering, 7(1), 71-79.

Yazan A. Alsariera, Hammoudeh S. Alamri, Alaa A. Al-Omoush and Kamal Z. Zamli. 2017, “A

real-world test suite generation using the bat-inspired t-way Strategy”, In the 10th

SOFTEC Asia 2017 Conference, (SOFTEC2017), 38-43.

AWARDS

Best paper award, 2014. In the Malaysian Software Engineering Conference (MYSEC 2014).

Gold medal, 2015, In the Creation, Innovation, Technology and Research Exposition

(Citrex2015), Universiti Malaysia Pahang (UMP).

Gold medal, 2015, In the International Conference and Exposition on Inventions by Institutions

of Higher Learning (PECIPTA15).

	ACKNOWLEDGEMENTS
	ABSTRAK
	ABSTRACT
	TABLE OF CONTENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Overview of Software Testing
	1.2 Research Motivation
	1.3 Problem Statements
	1.4 Research Aim and Objectives
	1.5 Research Scope
	1.6 Operational Framework
	1.7 Thesis Organization

	CHAPTER 2 LITERATURE REVIEW
	2.1 The Test Case Design Strategies
	2.1.1 Random Testing
	2.1.2 Equivalence Class Partitioning
	2.1.3 Boundary Value Analysis
	2.1.4 Cause and Effect Graphing (CEG)
	2.1.5 Interaction Sampling

	2.2 The Mathematical Notations for t-way Test Suite Generation
	2.3 A Problem Definition Model for t-way Test Suite Generation
	2.4 Formal Definition for t-way
	2.5 The Existing t-way Strategies
	2.5.1 Deterministic t-way Test Suite Generation Strategies
	2.5.1.1 Greedy Strategies

	2.5.2 Probabilistic t-way Test Suite Generation Strategies
	2.5.2.1 Greedy Strategies
	2.5.2.2 Evolutionary Strategies
	2.5.2.3 Simulated Annealing Strategies
	2.5.2.4 Harmony based Strategies
	2.5.2.5 Stochastic Hill Climbing Strategies
	2.5.2.6 Tabu Strategies
	2.5.2.7 Swarm Strategies

	2.5.3 The Observation of the Highlighted t-way Strategies
	2.5.4 The Justification of the Adoption of BA

	2.6 Summary

	CHAPTER 3 RESEARCH METHODOLOGY
	3.1 The Original BA Algorithm
	3.2 The BTS Strategy
	3.2.1 Input Analysis
	3.2.2 Interaction Generation
	3.2.3 Test Suite Generation
	3.2.4 Tuning of BTS Variables

	3.3 Prototype Implementation
	3.4 Summary

	CHAPTER 4 RESULTS AND DISCUSSION
	4.1 Experimental Evaluations
	4.2 Experimental Results
	4.2.1 Characterizing BTS
	4.2.2 Benchmarking with Other Strategies
	4.2.3 Benchmarking for Mixed-Strength Test Configurations

	4.3 Statistical Analysis of the Experimental Results
	4.3.1 Statistical Analysis for t-way Results
	4.3.2 Statistical Analysis of Mixed-Strength Results

	4.4 Experimental Observation and Discussion
	4.4.1 Experimental Results and Statistical Analysis Observations
	4.4.2 Discussion

	4.5 Summary

	CHAPTER 5 CONCLUSION AND FUTURE WORK
	5.1 Objectives Revisited
	5.2 Contribution
	5.3 Future work
	REFERENCES
	APPENDIX A THE RUNNING COMMAND-LINE FOR BTS
	APPENDIX B BTS TUNING DATA
	APPENDIX C THE LIST OF PUBLICATIONS AND AWARDS

