HEAT AND MICROWAVE REFLUX EXTRACTION, OPTIMIZATION, AND PHYSICOCHEMICAL CHARACTERIZATION OF OLEORESINS FROM MALAYSIAN PEPPER (*Piper nigrum*)

OLALERE, OLUSEGUN ABAYOMI

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG
SUPervisor’s declaration

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor’s Signature)
Full Name: PROF. DR ABDURAHMAN HAMID NOUR
Position: PROFESSOR
Date: 1st August 2018

(Co-supervisor’s Signature)
Full Name: PROF. DATO’ DR ROSLI BIN MOHD YUNUS
Position: PROFESSOR
Date: 1st August 2018
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name: OLALERE, OLUSEGUN ABAYOMI
ID Number: PKC15013
Date: 1st August 2018
HEAT AND MICROWAVE REFLUX EXTRACTION, OPTIMIZATION, AND
PHYSICOCHEMICAL CHARACTERIZATION OF OLEORESINS FROM
MALAYSIAN PEPPER (*Piper nigrum*)

OLALERE, OLUSEGUN ABAYOMI

Thesis submitted in fulfilment of the requirements
for the award of the degree of
Doctor of Philosophy

Faculty of Chemical & Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

AUGUST 2018
ACKNOWLEDGEMENTS

My thanks go to God Almighty, the giver, protector, and sustenance of my life. This work wouldn’t have been a success without the support, guidance, and encouragement from my amiable supervisor, Prof. Dr Abdurahman Hamid Nour. I count it a great privilege and honour working under your tutelage; you acted more like a father to me than a supervisor. Also, I will like to show my appreciation to all the laboratory assistants, lecturers, advisors, and lab mates for their support in different capacities.

I am indebted to my sweet mother (Adebimpe Iyabo) and my only sister (Mrs Oladapo Funmilayo) for their unimaginable sacrifice and prayers during the course of this research work. I thank my wife Mrs Modupeola Olalere for her love and patience during the period of my rigorous lab work. My thanks go to my friends, most especially, Mrs Alara Oluwaseun, Dr Edward, Dr John Olabode, Dr Mani Malam and Dr & Dr Mrs Victor Freida Ayodele for their encouragement during those periods of great challenge.

Finally, my regards and blessing go to everyone who has contributed in one way or the other to the success of this research work. My prayer is that you will never lack help when you needed it most. Thank you all and God bless.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Research Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Research Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Scope of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Significance of Study</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Thesis Layout</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Historical Evolution of Pepper Production in Malaysia</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Market Value of Malaysian Pepper and Potential for Nutraceutical Diversification</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Pharmacological, Toxicological and Clinical Application of P. nigrum</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1 Antioxidant Activities</td>
<td>11</td>
</tr>
</tbody>
</table>
2.3.2 Gastrointestinal Activities 12
2.3.3 Anti-Inflammatory/Pain-relieving Activities 13
2.3.4 Bioavailability Enhancement 13
2.4 Conventional Heat Reflux Extraction 14
2.5 Microwave Extraction Technique 16
2.6 Factor Affecting Microwave Reflux Extraction 17
2.6.1 Dielectric Properties of the Extracting Solvents 17
2.6.2 Microwave Power and Temperature 19
2.6.3 Irradiation Time 20
2.6.4 Feed Particle Size 22
2.6.5 Hydration Duration and Solvent Type 23
2.7 Comparative Summary of the Previous Investigation on Piper nigrum Fruits 24
2.8 The Fundamental Principle of Taguchi Orthogonal Methodology 26
2.9 Correlation of Free Radicals, Total Phenolic Content and Antioxidant Activities 29
2.10 Physicochemical Characterization 30
2.10.1 Liquid Chromatography-Mass Spectrometry (LCMS-QTOF) Analysis 30
2.10.2 Inductive Coupled Plasma Mass Spectrometry (ICP-MS) 31
2.10.3 Scanning Electronic Microscopy (SEM) 32
2.10.4 Fourier Transforms Infrared Spectroscopy (FTIR) 32
2.10.5 Brunauer-Emmett-Teller (BET) 33

CHAPTER 3 METHODOLOGY 34
3.1 Materials and Reagents 34
3.1.1 Sample Collection 34
3.1.2 Sample Preparation 34
4.3.2 Statistical Analysis of Mean (ANOM) 51
4.3.3 Validation of Optimized Condition and Chi Square Statistics 54
4.4 Investigation of Parametric Effects in MRE Extraction 55
 4.4.1 Effects of Irradiation Time Variation 55
 4.4.2 Effects of Microwave Power 56
 4.4.3 Effects of Particle Size 57
 4.4.4 Effects of Feed-Solvent Ratio 58
 4.4.5 Determination of Factors and Operating Levels in MRE 59
4.5 Optimization Studies of MRE 60
 4.5.1 Determination of Optimum Condition 60
 4.5.2 Statistical Analysis of Mean (ANOM) 61
 4.5.3 Validation of Optimized Condition and Chi Square Statistics 65
4.6 Performance Index Evaluation for the Extraction Methods 65
4.7 Determination of Total Phenolic Contents 66
4.8 Antioxidant Evaluation 66
 4.8.1 Antioxidant Evaluation of Oleoresin Extracts Obtained Via HRE 67
 4.8.2 Antioxidant evaluation of oleoresin extracts obtained by MRE 68
 4.8.3 Comparative Study of Antiradical Power (ARP) 68
4.9 Physicochemical Characterization 72
4.10 Morphological Characterization 72
 4.10.1 Morphological Elucidation HRE Extracts 72
 4.10.2 Morphological Elucidation MRE Extracts 74
4.11 Estimation of Micro Structural Area and Volume Changes 75
 4.11.1 Micro Structural Surface Area and Volume Changes in BPOE 75
 4.11.2 Micro Structural Surface Area and Volume Change in WPOE 76
4.11.3 Comparative Study of Cumulative Micro Structural Changes via HRE and MRE 77

4.12 Functional Group Characterization 78
 4.12.1 Effects of HRE on Functional Group Characteristics 78
 4.12.2 Effects of MRE on Functional Group Characteristics 81

4.13 Mineral Element Profiling 85

4.14 Phenolic Compound Chemical Profiling 86
 4.14.1 Identification of Phenolic Compounds in HRE Oleoresins 86
 4.14.2 Identification of Phenolic Compounds in MRE Oleoresins 87

4.15 Summary of Heat and Microwave Heating Effects on Profiling Physicochemical Characterization 89

CHAPTER 5 CONCLUSION 91

5.1 Conclusion 91

5.2 Recommendation 93

REFERENCES 94

APPENDIX A extraction experimental set-up 108

APPENDIX B Determination of Total Phenolic Content 109

APPENDIX C LCMS-QTOF Instrumentation 111

APPENDIX D Estimation of Relative Extraction Index (REI) 112

APPENDIX E Phenolic Compounds Chemical Profiling (HRE) 113
LIST OF TABLES

Table 1.1 Taxonomical classification of black and white pepper 2
Table 2.1 Overview of various extraction techniques used in previous studies 25
Table 3.1 Specified quality of the standard pepper procured from MPB 34
Table 3.2 Coded Taguchi L9 (2^4) orthogonal design in HRE 38
Table 3.3 Coded Taguchi L9 (3^4) orthogonal design in MRE 39
Table 4.1 Extraction factors and levels 49
Table 4.2 Experimental layout using L9 orthogonal array and their responses 51
Table 4.3 Average main effects on mean response 52
Table 4.4 Confirmatory test results 54
Table 4.5 Extraction factors and levels 59
Table 4.6 Experimental layout using L9 orthogonal array and their responses 60
Table 4.7 Average mean effects 62
Table 4.8 Total phenolic and contents in fixed oil extracted 66
Table 4.9 Radical scavenging assay for black and white pepper extracts (HD) 67
Table 4.10 Radical scavenging assay for black and white pepper extracts (MRE) 68
Table 4.11 MRE Cumulative BET-Parameters from N2 adsorption-desorption isotherms 77
Table 4.12 HRE Cumulative BET-Parameters from N2 adsorption-desorption isotherms 78
Table 4.13 FTIR spectra characteristics of white pepper before and after HRE 80
Table 4.14 FTIR spectra characteristics of black pepper before and after HRE extraction 81
Table 4.15 FTIR spectra characteristics of white pepper before and after MRE extraction 84
Table 4.16 FTIR spectra characteristics of black pepper before and after MRE extraction 84
Table 4.17 Total concentration of mineral and trace elements in the extracts 85
Table 4.18 Identified phenolic compounds in black pepper via HRE 87
Table 4.19 Identified phenolic compounds in white pepper via HRE 87
Table 4.20 Identified phenolic compounds in black pepper via MRE 88
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Black and white peppercorns</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Black and white peppercorns</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Basic Heat and Mass Transfer in Conventional Heat Reflux Extraction</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Basic Heat and Mass transfer in Microwave Reflux Extraction</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Irradiation time effect in microwave extraction</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Steps in robust parametric Taguchi optimization</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Protocol in oleoresin extraction and analysis</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Extraction time variation in HRE</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Particle size variation in HRE</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Feed-solvent ratio in variation in HRE</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Illustration of optimal point determination (a) black pepper (b) white pepper</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>Black pepper HRE yield (a) Average mean effects (b) Significant contribution</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>White pepper HRE yield (a) Average mean effects (b) Significant contribution</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>White pepper HRE absorbed energy (a) Average mean effects (b) Significant contribution</td>
<td>54</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of irradiation variation in MRE</td>
<td>56</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of microwave power variation MRE</td>
<td>57</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of feed particle size</td>
<td>58</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of feed-solvent ratio variation in MRE</td>
<td>59</td>
</tr>
<tr>
<td>4.12</td>
<td>Illustration of optimal point determination (a) black pepper (b) white pepper</td>
<td>61</td>
</tr>
</tbody>
</table>
Figure 4.13 Black pepper MRE yield (a) Average mean effects (b) Significant contribution
Figure 4.14 Black pepper MRE absorbed energy (a) Average mean effects (b) Significant contribution
Figure 4.15 White pepper MRE yield (a) Average mean effects (b) Significant contribution
Figure 4.16 White pepper MRE absorbed energy (a) Average mean effects (b) Significant contribution
Figure 4.17 Comparison of the IC$_{50}$ values obtained by HRE and MRE on DPPH$^+$
Figure 4.18 Comparison of the ARP values obtained by HRE and MRE on DPPH$^+$
Figure 4.19 Comparison of the IC$_{50}$ values obtained by HRE and MRE on *OH
Figure 4.20 Comparison of the ARP values obtained by HRE and MRE on *OH
Figure 4.21 SEM-monograph in HRE (a) Black P.nigrum at pre-extraction (b) Black P.nigrum at post-extraction
Figure 4.22 SEM-monograph in HRE (a) White P.nigrum at pre-extraction (b) White P.nigrum at post-extraction
Figure 4.23 SEM-monograph in MRE (a) Black P.nigrum at pre-extraction (b) Black P.nigrum at post-extraction
Figure 4.24 SEM-monograph in MRE (a) White P.nigrum at pre-extraction (b) White P.nigrum at post-extraction
Figure 4.25 Pore distribution curve for untreated and treated BPOE
Figure 4.26 Pore distribution curve for untreated and treated WPOE
Figure 4.27 Pre-extraction FT-IR spectra of black pepper oleoresin extracts obtained via HRE
Figure 4.28 Pre-extraction FT-IR spectra of white pepper oleoresin extracts obtained via HRE
Figure 4.29 Post-extraction FT-IR spectra of black and white pepper oleoresin extracts obtained at optimized HRE conditions
Figure 4.30 Pre-extraction FT-IR spectra of black pepper oleoresin extracts obtained via MRE
Figure 4.31 Pre-extraction FT-IR spectra of black pepper oleoresin extracts obtained via MRE
Figure 4.32 Post-extraction FT-IR spectra of black and white pepper oleoresin extracts obtained at optimized HRE conditions
LIST OF SYMBOLS

\(h_1 \) Extraction time in heat reflux extraction
\(h_2 \) Feed particle size in heat reflux extraction
\(h_3 \) Feed-solvent ratio in heat reflux extraction
\(x_1 \) Irradiation time in microwave refluxation
\(x_2 \) Microwave power in microwave refluxation
\(x_3 \) Feed particle size in microwave refluxation
\(x_4 \) Feed-solvent ratio in microwave refluxation
\(y'_w \) Extraction yield from heat refluxed white pepper
\(y'_b \) Extraction yield from heat refluxed black pepper
\(y_w \) Extraction yield from white pepper microwave refluxation
\(y_b \) Extraction yield from black pepper microwave refluxation
\(y'_w(\text{av}) \) Average extraction yield from heat refluxed white pepper
\(y'_b(\text{av}) \) Average extraction yield from heat refluxed black pepper
\(y_{w(\text{av})} \) Average extraction yield from white pepper refluxation
\(y_{b(\text{av})} \) Average extraction yield from black pepper refluxation
\(Q'_w \) Absorbed energy by heat refluxed white pepper sample
\(Q'_b \) Absorbed energy by heat refluxed black pepper sample
\(Q_{t,w} \) Absorbed microwave energy by white pepper sample
\(Q_{t,b} \) Absorbed microwave energy by black pepper sample
\(Q'_{t,w(\text{av})} \) Average absorbed energy by heat refluxed white pepper sample
\(Q'_{t,b(\text{av})} \) Average absorbed energy by heat refluxed black pepper sample
\(Q_{t,w(\text{av})} \) Average absorbed microwave energy by white pepper sample
\(Q_{t,b(\text{av})} \) Average absorbed microwave energy by black pepper sample
\(a \) Values are means ±SD of triplicate runs
LIST OF ABBREVIATIONS

ANOM Analysis of Mean
ARP Antiradical Power
BPOE Black Pepper Oleoresin Extracts
HRE Heat Reflux Extraction
MRE Microwave Reflux Extraction
PI Performance Index
REI Relative Extraction Index
SFE Single Factor Experiment
SNR Signal to noise ratio
TODOE Taguchi orthogonal design of experiment
WPOE White Pepper Oleoresin Extracts