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ABSTRAK 

Peranti mudah alih telah menjadi satu bahagian penting dalam kehidupan seharian kita. 

Walaubagaimanapun, masa yang terhad pada bateri mengurangkan masa operasinya. 

Untuk menangani masa yang terhad pada bateri, pemunggahan pengiraan (computational 

offloading) digunakan untuk melepaskan tugas intensif daripada peranti mudah alih ke 

pelayan jauh bagi melaksanakan tugas itu dari jauh dan menjimatkan hayat bateri. Rangka 

kerja pemunggahan pengiraan berdasarkan penghijrahan Virtual Machine (VM), aplikasi 

keseluruhan penghijrahan atau tahap kaedah  (method level) tradisional pemunggahan 

adalah sumber yang intensif dan memakan masa. Pembahagian yang dinamik pada 

aplikasi, pelaksanaan tugas pada pelayan awan, panggilan perkhidmatan oleh SOAP dan 

tiada penentu mekanisme untuk parameter yang telah ditetapkan, mengubahkan rangka 

kerja tahap kaedah pengiraan (method level computational) menjadi tidak cekap untuk 

penjimatan tenaga. Dalam usaha untuk menangani kekurangan rangka kerja tahap kaedah 

pengiraan pemunggahan (method level computational offloading), rangka kerja tahap 

kaedah yang ringan (lightweight method) telah dicadangkan. Empat komponen yang 

berbeza digunakan dalam rangka kerja yang dicadangkan bagi menghapuskan kelemahan 

rangka kerja yang dibangunkan sebelum ini. REST digunakan untuk panggilan 

perkhidmatan yang berasaskan JSON dan  ia menghapuskan SOAP yang berasaskan 

XML. Oleh sebab itu, REST adalah satu pendekatan ringan. REST juga mengurangkan 

saiz data komunikasi sehingga 100% berbanding dengan panggilan perkhidmatan SAOP. 

Pelayan tumpang (Surrogate server) dikonfigurasikan pada jarak hop tunggal yang 

mengurangkan RTT dan seterusnya mengurangkan penggunaan kuasa. Aplikasi itu 

dibahagikan di peringkat tahap kaedah (method level) yang sama dengan rangka kerja 

tahap kaedah sebelumnya tetapi pembahagian berlaku di peringkat kod sumber statik. 

Satu mekanisme khusus untuk pemilihan parameter yang telah ditetapkan adalah penting 

untuk dipertimbangkan sebelum setiap offload. Parameter yang telah ditetapkan terdiri 

daripada tahap bateri, jenis rangkaian dan masa pelaksanaan telah mengesahkan 

penjimatan tenaga semasa pemunggahan. Rangka kerja yang dicadangkan telah 

dilaksanakan dalam persekitaran pengkomputeran awan mudah alih yang sebenar. Masa 

Pelaksanaan dan Penggunaan Tenaga oleh Pelaksanaan Tempatan dan Pemunggahan 

Secara Tradisional ditanda aras untuk menyiasat dan mengesahkan pelaksanaan rangka 

kerja tahap kaedah ringan (lightweight method level) yang dicadangkan. Prototaip 

dibangunkan dengan tiga komponen REST-Offload, Pelaksanaan Tempatan dan 

Traditional-Offload serta ia diuji dalam persekitaran awan mudah alih sebenar untuk 

Masa Pelaksanaan dan Penggunaan Tenaga. Hasilnya telah menunjukkan bahawa 

penyelesaian yang dicadangkan telah mengurangkan penggunaan sumber pada peranti 

mudah alih. REST-Offload adalah amat berguna jika dibandingkan dengan kedua-dua 

Pelaksanaan Tempatan dan kaedah Pemunggahan Tradisional. Ia mengurangkan kira-

kira 50%  Masa Pelaksanaan dan kira-kira 38%  Penggunaan Tenaga. 
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 ABSTRACT 

Mobile devices have become an integral part of our daily lives. However, the restricted 

battery timing curtails longer operational hours. To tackle the limited battery timing issue, 

a technique, computational offloading is used. In computational offloading, the intensive 

tasks are offloaded from mobile devices to remote server in order to execute the task 

remotely and save battery life. Computational offloading frameworks/models based on 

VM migration, whole application migration, or traditional method level offloading are 

resources intensive and time consuming. The dynamic partitioning of application, 

execution of task at cloud server, service call by Simple Object Access Protocol (SOAP) 

and no defined mechanism for predefined parameters, make the previous method level 

computational frameworks/models inefficient for energy saving. In order to address the 

inefficiencies of previous method level computational offloading frameworks/models, a 

lightweight method level computational offloading model is proposed. Four distinct 

components are deployed in the proposed model which eliminates the shortcomings of 

previously developed frameworks/models. A Representational State Transfer (REST) 

based technique developed for calling the remote services which is based on JSON 

instead of XML, and hence is lightweight. REST also reduces the size of communication 

data at approximately 100% as compared to SAOP service call. Surrogate server is 

configured at a single hop distance which reduces the RTT and ultimately reduces the 

power consumption. The application is partitioned at method level by a novel dynamic 

technique in source code, which counters the inefficiencies of existing partitioning 

techniques. A mechanism for selection of predefined parameters is defined. These 

parameters are important to consider before each offload. The predefined parameters 

consist of battery level, network type, and execution time which affirms the energy saving 

during offloading. The proposed framework is implemented in the real mobile cloud 

computing environment. Execution time and energy consumption of both local execution 

and traditional offloading are benchmarked in order to investigate and validate the 

performance of the proposed lightweight method level model. The prototype is developed 

with three components which are REST-Offload, Local Execution and Traditional-

Offload and then tested in real mobile cloud environment for Execution Time and Energy 

Consumption. The result of this research indicates that the proposed solution diminishes 

resources utilization. The REST-Offload is significantly useful compared to both Local 

Execution and Traditional Offloading methods. It reduces about 50% Execution Time 

and approximately 38% Energy Consumption. 
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  CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

This chapter presents the theoretical framework and motivations for the proposed 

research. It discusses the problem statement, states the objectives and describes the 

methodology used for the proposed research. The chapter is divided into six sections. 

Section 1.2 highlights the motivations for the proposed research by explaining the 

importance of the proposed work and significance of the proposed solution. Section 1.3 

discusses the problem background. Section 1.4 states the problem statement. Section 1.5 

discusses the research question. Section 1.6 highlights the research objectives. Section 

1.7 summarizes the research scope. Section 1.8 outlines the layout of the thesis. 

 

1.2 Motivation 

 

Current smartphone evolved from Personal Digital Assistants (PDAs) and Cell 

Phones and gradually being enhanced capabilities with each coming year. The rapid 

growth of Smart Internet Devices (SIDs), especially smartphones in terms of swelling 

functionalities such as graphics, high speed processing, storage capacity, and sensing 

features, has led to the device being the first choice of communication tool for people 

across generations. Moreover, the explosion of smart mobile applications such as 

YouTube, Facebook, Twitters, Google Maps and a wide range of other functionalities 

such as sensors, cameras, navigators, sounds and text editors has been the factors of 

mobile device being an integral part of our daily lives.  
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Furthermore, Smartphone usage has experienced significant growth in the recent 

years.   The latest survey conducted by Cisco in 2015 shows that the mobile-connected 

devices are more than the population of people on earth and by the current pace the 

increase will be 1.5 mobile devices per capita in 2019 ("Cisco Visual Networking Index: 

Global Mobile Data Traffic Forecast Update 2014–2019 White Paper," 2015). Despite 

the numbers and increasing popularity of Smartphones, there is always a tension remains 

in between the increasing demands for Smartphone features (market demand) and 

Smartphone performance.  

 

The modern mobile devices comprise features such as advance displays, high 

processing speed, network adapters (Wi-Fi, 3G, 4G), powerful data storage, advanced 3D 

graphics which reflects Moore’s Law “the integrated circuits double every two years”. 

Conversely, the practice of all these features boosts the energy depletion of the portable 

devices. The functionalities and extra features are burdening the resources-constrained 

mobile device especially on limited battery power, while the battery improvement 

remained historically slow, curtails the operational time of mobile devices to few hours.  

 

Consistent with Moore’s law, the capacity of mobile battery hardly doubles in a 

decade (Mack, 2011). The improvement of battery technologies cannot keep pace with 

the rapid growth of energy demand required by the new power-hungry mobile 

applications.  Also, due to emerging high computational intensive applications,  for 

instance,  speech recognizers, natural language translators, online video games, and 

wearable sensors in the mobile computing environment coupled with increased user’s 

expectations, while battery life, limited processing and storage memory remain a big 

challenge (Shiraz et al., 2013).    

 

To sum up, mobile devices have turned to an integral part of our daily lives due 

to mobility, convenience and convergence; however, the operational time of mobile 

devices especially of smartphones curtail to few hours only due to the diverse 

functionalities such as, natural language translation, playing games, browsing, 

audio/video, touch screen and sensing features. In spite of all the recent advancements, 

mobile devices are still low potential computing devices due to the limitation in CPU 

speed, memory capacity and battery power (Bheda & Lakhani, 2013). Besides, in 

pervasive computing, smartphones have brought a new rich user experience, but the 
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hardware performance is still inadequate due to limited capacity, thus restraining potential 

applications too. Therefore, the battery of SIDs in particular smartphones needs 

improvement, as the explosion of new mobile applications, multiple sensors and wireless 

interfaces drain battery swiftly. 

   

1.3 Problem Background  

 

Cloud computing, as a rich pool of computing resources facilitates to augment 

the computing capabilities and energy constraints of resource-limited mobile devices 

by providing a leased infrastructure, platform and software applications as services. 

Mobile devices thus utilize the served cloud resources to replenish the limitation of 

processing and energy hassles. The process where mobile devices approach cloud 

resources through mobile cloud applications is termed as Mobile Cloud Computing 

(MCC). Furthermore, researchers have been attempting to curtail the battery consumption 

by adopting different techniques either on the application side or on hardware (managing 

resources) side. Amongst many other proposed solutions, the technique utilized to 

minimize the computational load of mobile devices is to offload the complex tasks to a 

remote server for processing (Son & Lee, 2017; Wolski et al., 2008) and is called 

computational offloading. The concept of computational offloading is not new (Yang et 

al., 2008a). This concept dates back to the concepts of load balancing in the early 70s 

once used in distributed systems. 

 

However, always offloading to remote servers is not energy saving (Kumar & Lu, 

2010). If the computation required is low or if data needed to be exchanged is large whilst 

the available bandwidth is small, then execution of the task at mobile device is energy 

efficient rather than offloading the task. In order to reduce Round Trip Time (RTT) and 

save mobile’s resources (energy, processing time) while accessing the resources of 

cloud servers, the compact size, mobility nature and wireless access medium of mobile 

devices always requires a lightweight (easy to execute locally or required less 

computations) framework or model to process the computational intensive tasks faster. 

Thus, computational offloading can be energy efficient only if all the necessary 

parameters are considered and a lightweight communication procedure is adopted. It is 

argued that the current computational offloading solutions for MCC are similar 

extensions of the traditional computational offloading frameworks and models for mobile 
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computing (MC). Additionally, the current approaches of computational offloading are 

computational heavy and resources hungry. An offloading approach can be efficient only 

if it considers the required Computation “C”, the size of Data to be exchange “D” and the 

available Bandwidth “B”, while most of the approaches previously proposed are 

resources intensive, as they failed to encompass the three basic parameters (Kumar & Lu, 

2010). The three basic parameters, C, D and B, are the backbones for any computational 

offloading model to surface efficient results. Unfortunately, all the three parameters are 

avoided partially or fully to design the computational offloading frameworks (Griera 

Jorba, 2013). For instance, if there is no any mechanism to deal with the huge size of data 

to be exchanged both sides (transmitting and receiving), it will hit the power more, due 

to longer communication time. Similarly, if the required computation “C” is small enough 

then it is better to process locally rather than to offload while if the available bandwidth 

“B” is limited then the offloading time increases, which ultimately hits the battery life. 

 

Some of the recent research techniques proposed for computational offloading 

(Chun et al., 2010; Cuervo et al., 2010; Lu et al., 2011; Moghimi et al., 2012)  need 

runtime migration of computational tasks and configuration of ad-hoc resources 

platforms. Additionally, most of these techniques are time consuming (increased 

execution time) and resource intensive (occupy CPU for longer time) which ultimately 

drain power. The concept proposed by Sathan (2009) is named as context-aware 

computational offloading, where embedded sensors (additional sensors) are deployed to 

gather contextual information before making an offloading decision. It must be noted that 

using sensors itself is a power intensive process. Furthermore, in case of any sensor 

failure, the system needs to restart and restore itself to the last working state, thus is a 

time consuming and power draining process too.   

 

In addition, the utilization of cloud resources in traditional offloading 

frameworks/models takes place at VM level, application level, task level, class level and 

method level. Several of the traditional computational offloading frameworks/models 

have developed outsourcing running instances of mobile applications (Cuervo et al., 

2010; Huang et al., 2010). The method of outsourcing running instances to remote servers 

incorporates additional costs of running application’s states saving on mobile devices and 

then reconfiguration of application based on the saved states on remote services. This 

whole process requires additional mobile resources. Moreover, continuous 



5 

synchronization is needed for the management of runtime distributed platforms between 

mobile devices and remote servers; as a result, the mobile device needs to be in active 

state which is ultimately a power consuming process. VM level computational offloading 

is an example of outsourcing running instances to remote servers. Offloading based on 

VM level involves extra computation at local device. This is due to the process of creating 

an instance of the virtual machine on mobile device; and then pausing the running 

application and creating a state file. The file needs to save the memory states of the 

application); then to encapsulate the state file into VM instance and offload application 

with state file to remote computing environment (Shiraz et al., 2013). This whole process 

increases computation at the mobile device by using maximum resources for a long time. 

In addition to that, the transfer of state file along with the application encapsulated into 

VM also increases the size of data to be exchanged, which ultimately increases RTT. 

Furthermore, runtime transmission of data files and binary codes of the application used 

in some of the traditional approaches increase the data transmission overhead in wireless 

network medium. It causes longer RTT which ultimately drains power at local device 

(Kosta et al., 2012).  

 

Similarly, offloading basis on class level, task level, and application level 

increases size of the communication data because every application has some lightweight 

methods that can be processed locally, while the heavy methods can be offloaded and 

hence executed remotely. Subsequently, if the whole application migrates for processing 

remotely, it also offloads the lightweight methods and thus increases the communication 

data size. Likewise, class level offloading migrates the whole class along with the 

lightweight methods and task level offloading sends the whole task to remote servers, 

which requires delegating the lightweight methods also, for the completion of the task. 

Thus, the traditional offloading frameworks and models utilize maximum resources of 

the mobile device prior to offloading and therefore, increases the size of communication 

data during offloading, which is a computational and resources intensive process. In 

addition, extra resources management is needed to handle offloading whilst adopting the 

VM migration or the whole application migration. Amongst the previous proposed 

computational offloading approaches, one such approach is a method level computational 

offloading approach, which has to counter the huge size of data communication. This 

approach in computational offloading reduces the size of communication data “D” 

partially to the smallest offload-able unit (method) which precisely divides application 
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into light and heavy methods. Hence, it reduces the unnecessary components of 

application to offload. However, the dynamic partitioning of application at method level, 

remote processing of the application, and huge size of data carrier files, cause additional 

computations at mobile device, as a result, turns the traditional computational offloading 

models to resources intensive for mobile devices. 

 

1.4 Problem Statement 

  

The approaches available in literature use VM (Virtual Machine) deployment and 

management, which are resource intensive in terms of overhead transfer and consumes 

extra battery (Chun et al., 2011; Satyanarayanan et al., 2009). The computational 

offloading approach based on VM migration is amongst the cloud based application 

processing mechanisms, which takes in encapsulation of mobile application in VM 

instance and delegates the instance to cloud node. The challenging part of computational 

offloading based on VM migration is the heavyweight resource intensive method which 

requires additional mobile’s computing resources to manage and deploy VM at remote 

server node (Shiraz et al., 2013).  In order to decrease communication data size “D” the 

concept of method level was developed, where the delegation of intensive parts is based 

on “methods”, the smallest unit of application. Only the intensive methods are identified 

to be either runtime or compile time, and then the methods annotated as “light” are 

processed locally while the methods annotated as “heavy” are delegated for remote 

processing.   

                                                                                             

The three most recent researchers used the concept of method level offloading: 

Rim (2006) used DiET, Kosta (2012) developed ThinkAir, and Shiraz (2013) developed 

EECOF. All of the research works mentioned minimized the offload-able part to the 

smallest unit but the process of partitioning application into methods adopted is either 

time consuming or resources intensive. For instance, Rim (2006) used DiET as a slim 

code generator, which takes offload-bale source code as input and generator byte codes 

to reduce the size of data to communicate. DiET itself is a process of capturing mobile’s 

resources for longer time due to generating byte codes; as a result, it hits the battery 

power. The concept used by Kosta (2012) and Shiraz (2013), is the dynamic partitioning 

of applications into methods. The partition of application at runtime (dynamic) requires 

the application to be genius enough to decide based on the previous offloaded pattern or 
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context gathered about the surrounding execution environment and divide the application 

into light and heavy parts. The process of dynamic partitioning causes additional 

computation at mobile device. Moreover, utilizing cloud resources and services used by 

Kosta (2012) and Shiraz (2013) for augmenting efficiency of mobile devices in terms of 

execution time and battery life hits by the long run RTT of distant cloud. Hence, the previous 

computational offloading solutions based on the dynamic partitioning techniques and then 

offloading the intensive tasks to distant cloud are not fully effective in making 

computational offloading an energy saving solution; as it causes additional computations 

and increases the size of data to be transferred and received. The focus of this research is 

to address the overhead local execution, the size of data to reduce for transmitting as well as 

to address the long run RTT of distant cloud by proposing a new lightweight method level 

computational offloading model.  

 

Summing up, the traditional frameworks/models are not successful enough in 

minimizing the transfer load (data size), since it generates additional computation 

overhead due to dynamic partitioning, runtime migration and states file transfer. 

Consequently, computational offloading becomes an energy intensive and time-

consuming solution. In addition, the delegation of intensive tasks to cloud server increases 

RTT due to multi-hop distance, which ultimately affects the results in terms of reducing 

battery consumption. Hence, by computational intensive procedure of traditional 

offloading frameworks/models, the offloading of complex tasks to distant cloud servers 

is not always energy saving. Therefore, the proposed offloading solution takes place by a 

dynamic partitioning of application at method level, which also carries some static 

features in order to reduce the overhead computations. By using the novel partitioning 

technique, the computational intensive methods will be identified during compile time 

before taking an offloading decision and then executing the methods at surrogate machine 

connected at a single hop distance.  

 

1.5 Research Questions   

 

1. How to increase the performance of existing applications partitioning techniques 

for the purpose of reduction of computations and handling of the dynamic network 

changes?  

2. How does cloud server/surrogate machine affect RTT?  
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3. What are the possible offloading methods that reduce the communications data 

size? 

 

1.6 Goal and Objectives 

 

The goal of this study is to develop a model for power efficiency of mobile devices 

through lightweight method level computational offloading. In order to achieve the goal, 

the research objectives are identified as:  

 

1. To develop a novel dynamic application partitioning method for the reduction of 

computations and handling of the dynamic network changes. 

2. To design the cloud server/surrogate machine for the execution of intensive tasks 

in order to reduce long run RTT. 

3. To develop and evaluate a lightweight offloading method for reduction of 

communication data size. 

 

1.7 Scope of Research 

 

The scope of the work is to develop a model for addressing the limitations of 

mobile devices, especially the limited battery timing. The research is limited to android 

devices produced after 2015 owing to the fact that the device under test (DuTs) used in 

this research are manufactured in 2015 onwards.  

 

Furthermore, different OS generally requires different approaches to tackle the 

limitation issues of mobile battery. Android is Linux-based, comparatively open source 

and is more PC-like than iOS. The interface and basic features are generally more 

customizable from top to bottom. However, iOS is completely different in features and 

uniform in design, which runs by apple device only. Android is the world’s most 

commonly used platform and used by many different phone manufacturers. Both android 

and iOS have their own play stores (Google Play or Apple App Store) which possess their 

own compatible applications only. Therefore, due platform differences, feature and 

application differences, both the platforms require different approaches to tackle the 

issues in limitations.  This study is limited to android OS as the experiments are planned 

http://data.diffen.com/Linux
http://www.diffen.com/difference/Mac_vs_PC
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to be conducted with android OS only and therefore it will not be applicable for Symbian 

and IOS. 

 

The communication medium will be Wi-Fi and 4G for offloading the intensive 

task for remote processing. 3G is excluded as it has a limited bandwidth communication 

medium which is energy intensive rather energy saving. The model will be developed to 

test two parameters only, which are Execution Time (ET) and Energy Consumption (EC).  

Both the parameters ET and EC are inter-related as, if ET increases, it increases the EC 

too. The efficiency of devices will always be measured by considering these two 

parameters.  

  

1.8 Thesis Organization 

 

This thesis is divided into six chapters.  

 

Chapter 1: Introduction: This chapter introduces the theoretical framework and 

motivation for the proposed research. It discusses the problem statements, states the 

objectives, scope and describes the methodology used for the proposed research as well 

the thesis layout. Chapter 2: Literature Review: This chapter presents the epistemology 

of mobile cloud computing and reviews the state-of-the-art in application offloading for 

mobile cloud computing.  It classifies current offloading frameworks / models on the basis 

of thematic taxonomy and compares current offloading models on the basis of significant 

parameters. The challenges to traditional offloading models and issues in cloud-based 

application processing for MCC are also identified. Chapter 3: Methodology: This chapter 

consists of the research methodology carried out to achieve the research goal. It is starting 

from the analysis of the problem (gaps analysis) and then designing of the research 

question and research objectives. The next phase of this chapter includes the model 

designing and implementation. The implemented model is then to test in real mobile cloud 

environment, while the last phase presents the comparative analysis of the proposed 

model.  

 

Chapter 4: Design and Implementation: This chapter proposes REST-Offload 

lightweight computational offloading model for delegating computational intensive task 

of mobile applications. It explains the model and proposed algorithms for computational 
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offloading. It gives details of different predefined parameters taken in account before 

offloading any task. Chapter 5: Results and Discussion. This chapter discusses the 

collected results with comparison with the traditional offloading systems and of local 

execution. It reports the tools used to collect data with special emphasis on computational 

intensity and of power consumption. Chapter 6: Conclusion: concludes the thesis with a 

commentary on the review of the research objectives. It highlights the outcomes of the 

research work cum the importance of the proposed solution. It states the limitations and 

suggests guidelines for future research. 
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CHAPTER 2 

                                                 

LITERATURE REVIEW 

 

2.1 Overview 

 

This chapter presents a review of the theoretical framework for Mobile Cloud 

Computing (MCC) that has been developed for saving energy of mobile devices. The 

chapter is organized into 9 sections. Section 2.2 gives a detailed background of Mobile 

Computing. Section 2.3 comprises different approaches adopted to augment mobile 

resources. This is followed by Section 2.4 which discusses limited battery problem of 

mobile devices and presents a taxonomy of mobile device’s battery augmentation 

techniques. Meanwhile, Section 2.5 provides an analysis of CPU Clock time, Execution 

Time and Power Consumption. Next is Section 2.6 which provides the definition, detailed 

background and the hypothesis of computational offloading. Section 2.7 then discusses 

previous research works focusing on efficiency of limited resources of mobile devices 

and compares these frameworks based on a few defined parameters while Section 2.8 

provides a review of current computational offloading frameworks as well as a 

comparative analysis of frameworks and establish a connection with the proposed 

solution. Section 2.9 presents analytical analysis of Method Level Computational 

Offloading Frameworks. Finally, section 2.10 concludes the chapter. 

 

2.2 Background 

 

This section discusses the background of cloud computing (CC), mobile 

computing (MC) and mobile cloud computing (MCC). Furthermore, it discusses the 

different approaches adopted to augment battery life of SIDs. This section also critically 

analyses the traditional computational approaches. 
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2.2.1 Mobile Computing (MC) 

In 1990s, ideas of ubiquitous computing (i.e., mobile computing) were defined as 

technologies that would bring human computer interaction to an absolutely new level. 

The pervasive nature of smartphones has been proposed by Mark Weiser (1991) with the 

concept of  ubiquitous computing as noted by (Saha et al., 2003) “After the mainframe 

era, where people used to share a single machine, personal computers where one-to-one 

human computer interactions took place, the next era will be ubiquitous computing  (the 

era of calm technology) where the technology will disappear”.  Weiser (1991) had hoped 

for a world to be created where people could use and interact with computers without 

thinking about them (psychologically disappeared). Ubiquitous computing has provided 

a complete freedom from the mental presence to experience the rich number of services 

using the internet. 

 

Mobile computing has progressed rapidly and become one of the powerful trends 

in the development of IT, commerce and industrial field. It has revolutionized, how 

people work and deal with their daily lives. In addition, with the development of wireless 

technology like WiMAX, Ad Hoc Network, Wi-Fi, 3G and 4G, users could surf internet 

much easier and would not be limited by any physical link with a static position or place 

as before. Thus, mobile devices have been accepted by an increasing number of people 

as their first choice for communication, at work and for entertainment in their everyday 

lives. The transmission of data without the connectivity of any physical link is one of the 

basic features of mobile computing. This has given rise to the increasing number of users 

of mobile computing.  

 

Gartner, which is a famous  analytical and consulting firm, predicted that by 2013, 

mobile devices would replace PCs to be the  most common web access tools in the top 

ten strategic technology trends and by 2015, the firm predicted that smartphones would 

dominate over 80% of the mobile phone mature markets (Orlando, October 8, 

2013). Furthermore, Business Insider's (BI) Intelligence (2015) had anticipated that the 

use of smartphones at a global scale would have significantly increased from 5% in 2009 

to 22% by the end of 2013, that is, an increase of nearly 1.3 billion smartphones within 

four years.  

 

https://intelligence.businessinsider.com/welcome?utm_source=House&utm_medium=Edit&utm_term=MPENCHART&utm_content=link&utm_campaign=BIIMobile
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Mobile computing is defined by Wikipedia as “mobile computing is a form of 

human computer interaction, while the computer is expected to be transported during 

normal usage”. There are three main components which collectively form mobile 

computing, namely, the hardware, the software and the communication (Qi et al., 2012). 

Hardware refers to the actual mobile device (e.g., smartphone and laptop or their 

components) whereas software refers to the number of applications running in the mobile 

device, such as the antivirus, internet browsers and games. Meanwhile, communication 

includes the setup of the mobile networks, protocols and the delivery of data between the 

devices. Figure 2.1 shows a framework of mobile computing. The central processors in 

the mobile network receive user request through Base Station and pass it to the servers 

for the required services. In response, the servers release the desired services and the 

central processors deliver services back to the user. 

 

2.2.2 Cloud Computing (CC) 

 

In the history of computing, a stepwise evolution can be seen from mainframe 

computing until cloud computing (CC). The feature of unlimited availability of resources 

makes CC a superior distributed computing model than grid computing. CC provides the 

ultimate solution of keeping pace with the development of technology and that is the 

magic of Moore’s Law (Qi & Gani, 2012). Since 2007, CC has become popular and most 

Figure 2.1 Framework of Mobile Computing 
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significantly researched topic.  Due to the different perspective of numerous developers 

and organizations, it is difficult to define cloud computing in a distinct way.  

 

Consulting Firm Accenture has set a useful, brief definition of CC as “the dynamic 

provisioning of IT capabilities (hardware, software, or services) from third parties over a 

network” (Adrees et al., 2016). According to the convention set by the National Institute 

of Standards & Technology (NIST):  

 

Cloud Computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management efforts or service provider interaction (Mell 

et al., 2011).  

 

The main objective of the Cloud Computing Model is to increase the capabilities 

of client devices by augmenting the proficiencies of the device’s own resources through 

accessing cloud infrastructure and software instead of possessing them. In CC, the 

services provided by the service providers over internet are commoditized like traditional 

utilities such as water, electricity and telephone. Consumers avail the resources on 

demand fashion and they pay as they use (Buyya et al., 2009).   

 

Amazon Web Services (AWS), Google Apps Engine, Aneka and Microsoft Azure 

are examples of public utility computing which are delivered at low cost by the Cloud 

providers (e.g., Google, Amazon and Salesforce). AWS allows infrastructure and 

software as services, which enable users to manage virtualized resources in Cloud 

datacentre. This decreases the hardware and software costs and the extra efforts of an 

organization in providing services. AWS also allows the utilization of Simple Storage 

Services (S3), the unlimited storage capacity for personal data in cloud datacentre by 

online file storage web services. The computation is performed on the data by Elastic 

Cloud Computing or EC2 (Kristensen, 2007). It was believed that Amazon S3 had a 

reputed storage of more than two trillion objects as of April 2013 ("Aamazon S3," March 

14, 2006).  

 

http://en.wikipedia.org/wiki/Online_file_storage
http://en.wikipedia.org/wiki/Web_service
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Meanwhile, Google Apps Engine provides a unique powerful application 

development platform in cloud data centres. The well-known development tools like Java 

and Python are used by Apps Engine for the independent development of applications 

(Chun et al., 2013).  As for Microsoft, its Windows Azure is an open and extensible cloud 

computing platform for the development, deployment and operation of applications and 

services in datacentre. Azure offers a simple, widespread, and a powerful platform for the 

designing of web applications and services (Windows Azure, 2010). 

 

The service-oriented Cloud Commuting model basically consists of four layers. 

These layers are Data Centres, Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS) and Software as a Service (SaaS), as shown in Figure 2.2.  The cloud physical 

resources are the hardware resources in datacentres. To access the physical resources, 

virtual machines are installed. Hypervisor (middleware) is used to access the physical 

resources (Hardware) and is responsible for the placement and management of virtual 

machines. Both layers consist of physical resources and virtual resources which fall in the 

category of IaaS. The third layer, namely, PaaS, comprises the application hosting 

platform, which provides a cloud programming environment and monitoring tools such 

as admission control, QoS negotiation and pricing and billing. The fourth layer, SaaS, 

consists of all the cloud applications running on virtual machine instances in a complete 

secluded form. 

 

 

Figure 2.2 Service-Oriented Layered Architecture of Cloud Computing 
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2.2.3 Mobile Cloud Computing (MCC) 

 

The CEO of Google Eric Schmidt was reported to have anticipated this in 2010 

as: “based on Cloud Computing services development, mobile phones [would] become 

increasingly complicated and [would] evolve to [become] a portable super computer” (Qi 

& Gani, 2012).  Aepona defines MCC as “a new distributed computing paradigm for 

mobile applications whereby the storage and the data processing are migrated from the 

SID’s to resources rich and powerful centralized computing data centres in computational 

clouds” (Shiraz et al., 2013). The terms resource rich and resource scarce are used for 

static computers and mobile devices, respectively. The mobile device was initially 

considered for limited use. The lightweight and mobility features have turned the device 

into a computing tool that is resources limited. Therefore, the performance of a mobile 

device is restricted by its limitations. These limitations, as noted by Satyanarayanan et 

al., (1996), are the mobility features of the device’s inherent problems such as low 

connectivity, resource scarceness and finite energy. The comparison in development of 

the resources capacity of mobile devices and static computers is presented in a series of 

five-year gaps from 1997 until 2016 as shown in Table 2.1.   

 

To deal with the low capability issues of devices, CC has turned out to be a ruling 

model which efficiently overcomes the resource scarceness problems by remote 

computation and utility services. Hence, by offloading and remote computation technique 

 

Table 2.1 A five-year-gap comparison of advancement between Static Servers and 

Mobile Devices (19972016) 

 

Year Static Servers Mobile Devices 

 
Processer Speed Memory Processor Speed Memory 

1997 Pentium I 266 MHz 256MB Palm Pilot 16 MHz 512 KB 

2002 Itanium 1 GHz 512MB BlackBerry 5810 133 MHz 1 MB 

2007 Core 2 3.0 GHz (2 core) 1GB Cortex A8 600 MHz 256 MB 

2012 Xeon X3 3.1 GHz (4 Cores) 2 GB Samsung Galaxy 

S3 

1.4 GHz 

(4 cores) 

1 GB 

2016 Intel Core 

i7 

3.9 GHz (4 cores) 8GB Samsung Galaxy 

Note 7  

1.6 GHz 

(8 cores) 

4 GB 
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CC addresses the techniques, CC addresses the inherent issues of mobility using the 

remote resources, provided by the service providers. The big players in the list of service 

providers are Google, Amazon, Apple, Facebook, and Yahoo. The Cloud providers offer 

such infrastructure where both the processing and data storage exist outside of the mobile 

device termed as mobile cloud.  Thus, mobile cloud computing (MCC) is a novel model 

which encompasses CC, MC and Networking.   

 

Figure 2.3 shows a framework of mobile cloud computing (MCC). The model 

framework composed of mobile computing (MC) and cloud computing (CC) are bridged 

by Internet. The mobile devices are connected to a network which establishes and controls 

the connection between the networks and mobile devices through base stations such as 

BTS, access points, and satellite (Dinh et al., 2013). The user request is then processed 

and forwarded by central processors to the servers; providing network services. Finally, 

the requests are transferred to cloud through internet and the cloud controller process the 

requests and provides the desired services to subscribers.  

 

2.3 Approaches for Augmenting Mobile Resources 

 

There are four main approaches used to augment mobile resources. The 

approaches are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A Typical Framework of Mobile Cloud Computing 
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i. Generation of New Hardware Resources; 

ii. Slow Execution of Program; 

iii. New Applications for Resource Constrained Devices; and, 

iv. Hardware and Software Management Techniques. 

 

2.3.1 Generation of New Hardware Resources  

  

 The root cause of limited battery timing is the very slow development of battery 

technology. This had been anticipated by Moore (1965, 1975) decades ago who stated 

that “the development of battery technology hardly doubled in a decade”. In order to 

tackle limited battery capacity issue, the following two possible approaches should be 

considered. 

 

2.3.1.1 Need of a New Generation Semiconductor Technology 

 

 The current semi-conductor technology has made the transistors smaller. In other 

words, the transistors consume less power. Nevertheless, due to the smaller size, more 

transistors are needed to achieve functionalities and produce better performances. Thus, 

increasing the number of transistors is actually a burden on the power source of a mobile 

device which ultimately consumes more energy (New Semiconductor Research, 2014). 

 

2.3.1.2 Replenish Resources (Battery) by External Action  

 

Human movements and solar light (e.g., nanotechnology) are some of the possible 

alternate replacements of the existed mobile’s battery in future. These new technologies 

may perhaps overcome the issues of limited power of the mobile devices. 

 

2.3.2 Slow Execution of Program  

 

With the increase of the CPU speed, battery consumption would significantly 

increase, that is, if the processor Clock Speed doubles, the speed of the power 

consumption would become nearly octuple (Kumar et al., 2010). 
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2.3.3 New Applications for Resources-constrained Devices 

 

Another approach to augment mobile resources is to rewrite new applications for 

resource-constrained mobile devices. This approach may seem impractical, costly and 

pushes towards ad-hoc applications (Dinh et al., 2013).  

 

2.3.4 Hardware and Software Management Techniques 

 

Numerous approaches had been used in the past to curtail the power consumption 

of SIDs. A few of the very basic approaches are geared towards managing the computing 

resources of SIDs by optimising the operating systems and software tools in a way that 

will consume limited power. Some of the hardware and software management techniques 

are briefly explained in this section. Any of the approaches explained in this section can 

be adopted to reduce power consumption of mobile devices.  

 

2.3.4.1 Avoid Wasting Energy    

 

Waste of energy can be reduced by avoiding unnecessary processing, better 

management of resources and setting the components on standby or sleep mode 

(Balasubramanian et al., 2009; Vallina-Rodriguez et al., 2013).  

 

2.3.4.2 Reduce Resources Requirement   

 

Context-aware mobile applications need to be developed. Such mobile 

applications could make the device be aware enough of when and what to process and 

when as well as what not to process in order to reduce the unnecessary use of mobile 

resources.  

 

2.3.4.3 Fidelity Adaptation 

 

Fidelity adaptation manages the compromise between resources consumption and 

application quality. Although fidelity adaptation technique deteriorates the quality of 

results, it allows the execution of applications when there is no other solution to run the 

application in standard mode. 
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2.3.4.4 Cyber Foraging/ Computational Offloading 

 

In this technique, the execution of programs is eliminated altogether and the heavy 

computations are sent to remote servers. If the mobile device utilizes its own local 

resources solely to perform executions of the complex applications, this will drain its 

battery faster and in some cases, the execution is even not possible for some kinds of 

application due to limited processing speed. By computational offloading, the load can 

be eliminated to augment the device’s own resources. 

 

Numerous researchers have attempted and achieved success up to some extent in 

saving the power consumption of the mobile device’s battery. This literature review 

focuses on the last option, that is, utilization of powerful resource of cloud (Cloudlet) 

instead of local limited resources of mobile device.  In this way, the burden is not solely 

carried by the mobile device. Rudenko et al., (1998) was the first to introduce the term 

remote executions which are different from the traditional Client-Server architecture, 

where a thin client always migrates computational tasks to a server in the same local 

network. By contrast, in remote executions, the offloading process is accomplished with 

the computing devices which are outside of the immediate computing environment. 

Satyanarayanan et al., (2001) presented the concept of remote executions by accessing 

nearby available machines (i.e., the surrogates) to execute complicated computation on 

behalf of handheld devices. Although useful, Satyanarayanan et al., (2009) work does not 

put sufficient focus on power saving issues. Satyanarayanan et al., (2001) termed such 

type of computing as Cyber Foraging or Surrogate Computing. In this way, the local 

execution of the entire complex task is eliminated.  Figure 2.4 shows the possible ways 

of augmenting the mobile resources.   



21 

Mobile’s Resources Enhancing Approaches

Execute Program 

Slowly

Reduce Resources 

Requiremtn

Fidelity Adaptation

Cyber Foraging

Replenish Battery by 

Human Movement / 

Solarlight

New Semi-Conductor 

Technologies

Generating High End 

Resources

H/w & S/w 

Management

New Apps for Resource 

Constrained Devices

Reducing Clock Speed 

will reduces power 

consumption

Develop new 

application for each 

device according to 

design of the device

Offloading to remote 

servers

Develop Context-Aware 

OS and Applications

 

   

2.4 Taxonomy of Mobile Device Battery Augmentation Techniques 

 

Battery is an element that permits the mobility as a luxury feature in the first place. 

Hence, focus should obviously be on the improvement of energy usage in order to prevent 

mobile device from becoming stationary due to low bandwidth and resource-hungry 

applications.  

 

Most of the mobile devices use Lithium-ion batteries (Rodriguez & Crowcroft, 

2003). These batteries are comparatively better power sources available in all brands and 

models of mobile devices. Nevertheless, battery technology has shown that the only 

substitute left to solve the issue of limited power of mobile devices is by reducing the 

power consumption at hardware level and designing more power-efficient operating 

systems and applications. Ongoing research conducted by hardware manufacturers and 

OS designers has led to some new solutions using augmentation techniques at different 

levels such as Hardware, Wireless technology, Operating System and Applications 

(Rodrigues & Crowcroft, 2003). Figure 2.5 shows the taxonomy of smartphone’s battery 

augmentation at different levels. 

 

Figure 2.4 Mobile’s Resources Enhancing Approaches 
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Figure 2.5 Taxonomy of Mobile Device Battery Augmentation Techniques 

 

2.4.1 Hardware Level Augmentation 

 

The first step in hardware level augmentation is to enhance the capabilities of 

mobile local resources such as high speed multi-core processors, storage and long lasting 

batteries (Wang et al., 2011). However, the development in battery technology is 

unfortunately not progressing at the same speed as that of the processors and storage while 

it is the only un-restorable resource which cannot be renewed without the help of any 

external resource (A.D, Jan, 2013). Many efforts have been made since 1990s to replenish 

energy from different sources such as human movement,  wireless radiation and solar 

energy, which are not adequately effective to minimize energy deficiency (Abolfazli et 

al., 2012). However, this is presently still being researched. Similarly, large screen and 

data storage also increase the power consumption due to additional weight and size 

(Perrucci et al., 2011). Large data storage and retrieval have been proven to be power 

hungry. Hence, memory increase contributes to faster draining of the battery.  
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2.4.2 Software Level Augmentation 

 

Software level augmentation of smartphone batteries consists of three main 

categories, namely, energy aware operating system, conservation of local resources and 

reduction in resources requirement.  

 

2.4.2.1 Energy Aware Operating Systems 

 

Two kinds of programs run in the mobile device, namely, the operating system 

(OS) and the applications. A question now arises, that is, which one should be responsible 

for energy management. Some of the researchers have suggested the application level 

energy management is the best approach as noted by Liu et al., (2005). However, this 

approach lacks of the main entity responsible for monitoring and supervising the 

resource’s consumptions by other applications (Rodrigues & Crowcroft, 2003).  

 

On the other hand, some researchers prefer the OS to monitor and manage energy 

resources. Considering OS alone to be responsible for  energy management, this solution 

may lead to a problem of scalability; hence, there are researchers who have suggested a 

hybrid model (Vallina-Rodriguez & Crowcroft, 2013) in which both the applications and 

the OS should be aware of the resources utilization and supervision. Examples of such 

OS are Odyssey and Ecosystem.    

 

Normally, the OS must be made aware of the application’s energy demand and 

the available energy level until the next charging facility. Moreover, new programs, 

scheduler, models and energy measurement tools should be developed in order to reduce 

energy consumption and support software level energy measurement. Some of the OS 

level techniques proposed for power utilization are Hard Disk Management, CPU 

scheduling, Screen blanking.  

 

2.4.2.2 Conservation of Local Resources 

 

In 1990s, the best way to conserve the local resources of mobile devices was to 

reduce the workload on the local resources. Later on, the concept of remote execution, 

remote storage and fidelity adaptation were introduced to conserve local resources. 



24 

a. Remote Execution  

  

Remote execution is a process involved to transfer the executable codes, control, 

computational data or any compute intensive application through a network to any local 

server machine called the surrogate where the execution of computational task takes 

place. The results are then transferred back to the handheld Client. 

 

The remote execution concept was presented to divide the load of local resources 

with the remote stationary devices. Rudenko et al., (1998) had first introduced the idea of 

remote execution to save workload of the local restricted resources and conserve mobile 

energy. The same idea was introduced by Satyanarayanan et al., (2001) in a broader way 

and proposed the concept of remote executions. This concept was not only used for 

conserving the power, storage, and processing efficiency of the device but also to enable 

the execution of computational intensive mobile applications which might not be possible 

to be processed locally. The technique of remote execution is known as process offloading 

or cyber foraging. The term cyber foraging was first introduced by Satyanarayanan  for 

augmenting the computing potentials of resource-constrained devices by exploiting the 

potential of rich-computing resource devices available in the local environment 

(Satyanarayanan, 2001). The rich-computing local devices are termed as the surrogates.  

 

The Aura Project at Carnegie Mellon University presented the concept of two 

techniques, namely, cyber foraging and fidelity adaptation, which seemed promising in 

terms of substantial power saving (Garlan et al., 2002) .In the scenario of cyber foraging, 

the surrogates can be used by data staging or by computing the surrogates. Data Staging 

is the technique used with the surrogates to get rid of the long latencies (long RTT or 

Round Trip Time), If the mobile device itself to request for web data situated far away 

from handheld device, and then wait for the distant file to receive, the surrogate machine 

will prefetch the data from distant server in advance, in order to reduce RTT. This 

increases the user’s response time and more importantly, the high latency which causes 

power consumption.   

 

In this case, the surrogates are used to fetch data for mobile device by data staging. 

Mobile client send request to surrogates for the distant file. The surrogate fetches the file 

and Client device retrieves the file from nearby surrogates. This will reduce the RTT as 
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well as the power consumption. If the data staging technique is coupled with some 

predictable software, then it will let the surrogate to pre-cache all the files which the client 

device needs to use next. This will be more effective in terms of RTT and power 

consumption. By using the technique of computing the surrogate, the client device 

requests to the nearest surrogates for computation on its behalf. In this scenario, if the 

Client device detects that its own battery level is not adequate to perform the computation 

locally, it will send computational intensive file to the surrogates and will obtain the 

results back on its screen. Research has revealed that remote execution is highly effective 

in reducing  power consumption of mobile devices (Flinn et al., 2002). 

 

b. Remote Storage 

 

The outsourcing of data storage at third location, somewhere in the local network 

or remote clouds, enhances the storage capacity of handheld devices. A number of remote 

accessible file storage services are available in the cloud which extend the storage 

capabilities by providing off-device storage services. Examples of such services are 

Amazon S3 ("Aamazon S3," March 14, 2006),  Dropbox  (Balan et al., 2004) and Google 

Docs (Flinn et al., 1999). The online storage services (remote storages) not only provide 

the facility of unlimited storage space but also ensure the safety and reliability of data 

storage. Thus, the remote storage, especially the cloud storage services, boosts the limited 

storage capacity of mobile devices and enables the mobile users to store and access any 

kinds of data anywhere in the cloud and retrieve the data from anywhere by using a web 

browser. The writing of data to the local storage and the retrieval of data will consume 

more power as compared to remote storage of such data.  Thus, it is power-efficient to 

manage big data for remote storage which does not need to be accessed too often. As a 

result, battery energy can be reserved adequately. 

 

c. Fidelity Adaptation    

 

The cyber foraging can be effective if the surrogate devices are available but what 

will happen when there is no access to any surrogate device in the surroundings? This 

raises some concerns such as how the Client devices will minimize the load to reduce 

battery power. Fidelity adaptation is a technique that will work in such circumstances. 

Balan et al., (2004) have defined fidelity as “the trade-off between the application’s 
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quality and power consumption”. For example, if a client device is in a video call and 

experiences a sudden power drop to a lower level, the video will automatically shut down 

while the voice call still continues.  

 

The concept of fidelity, with regard to this adaptation technique, involves the 

release of CPU load and bandwidth. The runtime parameters can be modified so that an 

application can still be used by the user but in lower quality in order to reserve power, 

bandwidth and computational resources (Flinn & Satyanarayanan, 1999). For instance, a 

user watching a full colour video from the server will experience an automatic change in 

display from full colour to black and white when the bandwidth drops. Many approaches 

(Flinn & Satyanarayanan, 1999; Lara et al., 2011) have used both cyber foraging and 

fidelity adaptation to enhance the device’s local resources and achieve better 

performance. 

 

2.4.2.3 Reduction in the Local Resources Requirement 

 

There are indeed numerous software developers. However, many of these 

software developers do not have comprehensive knowledge of energy-constrained handy 

systems such as those embedded in smartphones and personal digital assistants (PDAs). 

As a result, many mobile applications consumes an unreasonably huge amount of power. 

To augment the capabilities of mobile resources along with manufacturing the high-end 

hardware devices, a parallel development of resource-efficient application plays a vital 

role. This approach focuses on the design phase of software development to form energy-

efficient applications. 

 

a. Wireless Interface and Protocol Optimization 

 

Among the other components of the mobile devices which contribute to power 

consumption, the wireless interface has a greater impact than that of any other component. 

A total of 10% of the overall power consumption in laptops is caused by the wireless 

interface while in case of smartphones, this ratio reaches up to 50% of the overall 

consumption (Kravets et al., 2000). Mobile devices nowadays are equipped with several 

air interfaces such as GSM, Wi-Fi, 3G and 4G. Hence, it is vital to manage these 

interfaces either manually or by resources-aware applications to stop the excessive 
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draining of power. Although all the wireless interfaces provide a flexible choice for 

communication and saving energy, however, the existing communication protocols such 

as UDP and TCP do not give any advantages. For example, a communication which is 

established with 3G connection will last either until the session ends or until the interface 

becomes unavailable anymore even though the device is close to a better interface in 

terms of speed, energy saving and communication (Rahman et al., 2013).  

 

 New technologies in cellular networks such as 4G LTE have been introduced to 

reduce the cost per transmission as compared to the previous standards (Frattasi et al., 

2006). In all the available interfaces of mobile devices, Wi-Fi is more power-efficient if 

it stays in continuous data transmission for larger data (Balasubramanian et al., 2009). 

The only time Wi-Fi drains the battery is the idle time or scanning of Access Point (AP) 

to connect. Therefore, a common solution has been suggested by researchers (Bertozzi et 

al., 2003) to explore transport protocols optimization for IEEE 802.11 networks in order 

to reduce the energy depletion of IEEE 802.11 standards with very little overhead. The 

study conducted by Bertozzi et al., (2003) was based on the transport protocol which 

tackled flow control of data to regulate the network traffic. This played an important role 

in predicting the workload of the network interface. Further evidence has shown that 

tuning parameters in the protocol would form the activity profile of the network interface 

and make it more energy-efficient.  

 

b. Resource Aware Applications 

 

In order to protect smartphones from energy depletion, it is vital to understand the 

need of power consumption of the hardware components and also of the software 

installed. Many software developers have limited understanding of energy-constrained 

portable systems such as those embedded in smartphones and PDAs. As a result, quite a 

number of smartphone applications consume enormous amount of power unnecessarily 

(Zhang et al., 2013). Thus, better understanding of the power consumption of individual 

mobile components (e.g., CPU, Memory, Wireless Interface and Screen) would 

contribute to reduction in significant amount of energy and development of better energy 

aware systems. For instance, in cases which the available air interfaces are 2G and 3G, a 

resource-aware application is needed to exploit 2G for voice communication and 3G for 

FTP services because of their different energy consumption needs (Perrucci et al., 2011). 
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The memory and computational intensive applications are also considered power 

hungry. The compute intensive applications engage CPU for a long time to process 

complicated data thus directly affecting the battery of the mobile device. Both the increase 

in computational intensive applications and increasing memory size of mobile devices 

lead us to more power consumption (Perrucci et al., 2011). 

 

c. Cloud-Mobile Applications 

 

Cloud mobile applications are identical to Web-based applications. The main 

similarity in both the applications is that they run on external servers instead of the client 

device itself. They require a browser on the client device to access them (Claybrook). 

Moreover, they both are designed for different operating systems and multiple mobile 

devices unlike native applications, which are designed for specific operating system and 

single device model only.  

 

Native mobile applications are restricted by capacity of the battery and processing 

efficiency of mobile devices, which ultimately disrupt the speedy progress of these 

devices. The concept of cloud computing bridges this gap by offering cloud-mobile 

applications which have the capabilities of connecting the cloud servers for processing 

with the remote storage. The new concept of cloud and mobile agreement has generated 

this new era of rich cloud-mobile applications which are intended to curtail smartphones’ 

resource consumption by utilizing rich cloud resources without changing the quality. 

Therefore, the development of cloud-mobile applications accelerates code execution by 

offloading  computational intensive data to the cloud server and thus decreasing the 

overall execution time without using the mobile resources (Kumar & Lu, 2010).  

 

Efforts have been made by numerous researchers for designing perfect 

cloudmobile application to leverage the Cloud resources for mobile devices. For 

example, Lu et al., (2011) have developed an architecture for rendering the mobile screen 

to the cloud environment. In screen rendering the remote code execution takes place and 

online data are stored. On the one hand, the cloudmobile applications architecture helps 

mobile devices to augment the limited resources of mobile devices. On the other hand, 

the remote execution of intensive task by the traditional mobile application does not 

support the development of applications that incorporate the cloud features (Othman et 

http://searchcloudapplications.techtarget.com/definition/mobile-cloud
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al., 2014). Therefore, the new mobile cloud application development is essential to 

augment mobile resources by remote processing.  

 

The migration of resource-hungry and interactive portion of the screen for 

execution in cloud will certainly decrease the power consumption due to minimized 

computational burden of the local CPU and GPU. A similar effort made by Chun et al., 

(2010), that is, the CloneCloud service, using the smartphone's internet connection to 

communicate with a full image (clone) of itself that exists in remote servers in the cloud. 

In order to execute intensive tasks, the CloneCloud is required to offload data to the server 

which possesses the clone of the device. Figure 2.6 shows the CloneCloud framework.  

 

2.5 An Analysis of CPU Clock Time, Execution Time and Power Consumption  

 

By developing cloud mobile applications, it is possible to utilize maximum 

resources of remote servers and minimize the workload of local devices. By offloading 

tasks, the CPU engagement (CPU execution time) will decrease. According to 

Perrucci et al., (2011), the power consumption of CPU is directly proportional to the 

complexity of the instruction (workload of the CPU). To manage complex calculations 

and make possible execution of complex task locally, CPU clock speed can be increased 

to get maximum throughput. The processor performance can be assessed simply by 

calculating the number of operations per given time. That is, the Throughput “T” of CPU 

can be obtained as: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Clone-Cloud Framework 

http://berkeley.intel-research.net/bgchun/clonecloud/
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Throughput (T) = Operations / Time (S) 

 

In terms of application, the throughput of processor can be plotted into three main 

categories as follows: 

 

i. Maximum Throughputs (Tm), for real time applications (spreadsheet updates, 

navigations, spell check, scientific calculations and for audio/video calls) as they 

would be required to response very quickly, in which the throughput should be 

maximum. 

ii. Normal Throughputs (Tn), for applications running in the background not affected 

by the delay, as they need to be processed in fractions, in which the processor 

throughput can be normal or low.  

iii. Zero Throughputs (T0), in which processor can be idle and no throughput is 

desired.  

 

The Maximum Throughputs (Tm) can only benefit to the process which are 

computational intensive and requires to have low latencies. The processes which are 

running in the background and of high latency cannot benefit from Maximum Throughput 

(Tm). 

 

The increase of CPU clock speed or Throughput (Tm) reduces the execution time 

and make possible local execution but it directly hits the battery life, as by Kumar et al., 

(2011), when a processor’s clock speed doubles, the power consumption nearly octuples. 

If the clock speed is reduced by half, the execution time doubles, but only one quarter of 

the energy is consumed. Although CPU performance proliferate whenever the execution 

time decrease (Ramanathan, 2008) i.e.   

 

                                           𝑃𝑐𝑝𝑢 =
1

𝐸𝑇
              2.1 

 

where 𝑃𝐶𝑃𝑈 is the performance of CPU, while 𝐸𝑇 is the execution time of a task. 

Additionally, execution time decreases if Cycle per Instruction (CPI) or Frequency (F) 

increases, 
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                                 𝐸𝑡 =  
1

𝑓
         2.2 

 

From Equation 2.1 and Equation 2.2  

 

                                            
1

𝑓
  =  

1

𝑃𝑐𝑝𝑢
     or     𝑓 =  𝑃𝑐𝑝𝑢           2.3 

 

Equation 2.3 shows that the increase of CPU frequency will increase the 

performance. Although increasing CPU frequency improves the CPU performance to 

some extent, the increasing frequency of the CPU needs more power to operate. Hence, 

this will affect the battery power. To support extensive range of workloads efficiently, 

the modern CPUs are capable of adjusting their clock rate dynamically. For example, 

when the CPU is idle, it adjusts the clock rate to the lower speed and allows the voltage 

to be lower too. The lower voltage assists in reducing the CPU power consumption. Thus, 

fewer CPU Cycles (Frequency) means that the CPU requires less power and produces 

less heat.  

 

However, there are two basic dilemmas. The energy-conscious design of the 

portable systems is vital without compromising performance (i.e., the CPU). A parallel 

work needs to minimize the workload of the battery while at the same time improve the 

CPU speed to handle the most challenging and most demanding applications. Thus, in 

order to maximize the total computation per battery life, the energy consumption per 

operation should be minimized. Furthermore, to prolong battery life, operations need to 

be reduced per battery life. This has been done using numerous techniques adopted in the 

past. One such technique is to offload the intensive computational activity of mobile 

device to a remote server. The server will then process the complex task on behalf of 

mobile device and send the result back to mobile. 

  

2.6 Computational Offloading (Cyber Foraging) 

 

The term computational offloading is also defined by the terms code offload or 

cyber foraging. The process of transferring some computer processing tasks to remote 

servers in order to discharge the execution load of task from mobile devices is called 

computational offloading.  
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2.6.1 Energy-saving Computational Offloading  

 

Researchers in the past have agreed that computational offloading will always not 

be power-efficient (Kumar et al., 2012; Satyanarayanan, 2001; Satyanarayanan et al., 

2009; Shiraz & Gani, 2014).  Thus, the following two questions need to be answered 

before adopting computational offloading as a solution:  

 

i. What is the optimum condition for computational offloading? 

ii. What factors need to be addressed before starting computational offloading? 

 

Kumar et al. (2012) have addressed this by evaluating the mentioned questions using the 

mathematical formula as:    

 

                           𝑃𝐶 ×
𝐶

𝑀
 − 𝑃𝐼  ×  

𝐶

𝑆
−  𝑃𝑇𝑅 × 

𝐷

𝐵
                  2.4 

 

where:  

C  is the number of instructions to be offloaded, 

S & M  are the speed instruction/ second of server and mobile device respectively, 

PC  Mobile power consumption (watts), 

PI   Mobile idle power consumption (watts), 

PTR – Mobile power consumption during transmission, 

D  Data in bytes to be exchanged, 

B  Network bandwidth. 

 

If the server speed considered is F times faster than mobile speed, then: 

 

                               𝑆 = 𝐹 × 𝑀                                       2.5 

 

And by substituting Equation 2.4 in Equation 2.5, the formula can be rewritten as follows: 

 

                              
𝐶

𝑀
 ×  𝑃𝐶  ( 

𝑃𝐼

𝐹
) −  𝑃𝑇𝑅 × 

𝐷

𝐵
                           2.6 
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In this regard, the values M, Pi, Pc, and PTR are constant, and if Equation 2.6 

provides a positive number, then offloading will reduce the power consumption of mobile 

device. The formula will provide a positive number if 
𝐷

𝐵
 is sufficiently small (i.e., B is 

sufficiently large) and F is sufficiently large. In other words, if the bandwidth and server 

speed are sufficiently large, then offloading will reduce the power consumption.  The 

relationship between B, D and C is important to predict whether or not to offload tasks. 

For instance, in large computation C, if communication data D is smaller and bandwidth 

B is large enough, then offloading will be beneficial; otherwise, for small C and low 

bandwidth B, it is useful to avoid offloading and process data locally. The relationships 

between B, D and C are illustrated in the Figure 2.7. 

 

Computational offloading is a worthy solution to augment the resources 

limitations of mobile devices. However, this approach also has several limitations. Firstly, 

to accomplish the process of offloading some surrogates should be accessible and willing 

to share their own resources with others (PDAs, Mobile Devices) via wireless networks. 

Secondly, through cyber foraging, the security of confidential data cannot be guaranteed. 

Thirdly, cyber foraging is applicable only to the tasks which are transferable and not 

applicable to some tasks which are not transferable. In addition, offloading of small tasks 

may not be beneficial due to extra communication overhead or changing of network 

topology that may affect the offloading process too.  Fourthly, computation offloading to 

multiple surrogates may cause the issue of load balancing.  
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Figure 2.7 Relationship between B, D and C 
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In addition, to improve the efficiency of remote execution the required data needs 

to offload only in order to reduce communication overhead. Finally, the dynamic 

allocation of resources on demand generate the issues of synchronization and resuming 

(releasing) which ultimately causes latency. A good understanding of all the related issues 

is crucial to keep in mind before making the cyber foraging practical and useful. 

 

2.6.2 Metrics of Computational Offloading  

 

It is necessary to take into account certain metrics which are influencing the 

process of computational offloading, such as context specification, mobile and surrogate 

specifications, network specification as well as application specification. Figure 2.8 

illustrates the computational offloading decision which is influenced by metrics that need 

to be considered. If there are no surrogates available in the surrounding to offload the 

complex computation, then fidelity adaption, which is the process of trade-off between 

quality and speed or quality and power consumption, would be considered. User can 

manually specify the low quality for better speed and this will reduce battery drainage. 

Furthermore, wireless networks have different type of features and bandwidths.  Hence, 

a mobile device can connect and communicate through any kinds of available network 

such as Wi-Fi, 3G, and Wi-MAX. Therefore, computational offloading decision is 

strongly influenced by the different bandwidth of different networks. 

 

 

 

 

 

 

 

 

                                                                  

  

 

                                                                                                                                                 

Figure 2.8 Metrics of Computational Offloading (Fernando et al., 2013; Dinh et al., 

2013)  
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Moreover, mobile and surrogate devices have different types of CPU, speed, 

available memory, and storage capacity. If a mobile device does not have enough speed 

or storage memory, then offloading is a better option to utilize. For computational 

offloading, a few pre-identified parameters need to be considered first. Application type 

is a key metric which needs to be checked prior to offloading decision. If the application 

is processor-intensive or complex to compute locally, then offloading will be more useful.   

Meanwhile, other elementary metrics such as user QoS requirement, availability of local 

resources, SLA and network availability described in a sample flow of mobile application 

execution are shown in Figure 2.9.   

 

The flow chart depicts four processes of mobile application to be executed. If a 

mobile device is capable of running the task, it will be executed locally; otherwise, it will 

be offloaded to the remote servers. If all the available options go false, then application 

execution request will be killed.  The issues related to offloading are the efficiency and 

dynamism of offloading under changing environments (Dinh et al., 2013). For example, 

the mobility or movement of the user of the mobile device will affect the bandwidth. This 

raises some concern about which strategy should be adopted to offload applications.  
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Figure 2.9 Execution Flow of Traditional Computational Offloading (Abolfazli et al., 

2012) 
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In the case of static offloading, the application will be partitioned for offloading 

at compile time regardless of environmental changes and user context. Redenko et al., 

(1998) have noted that static offloading is not always an energy-efficient approach. If the 

size of intensive task is small enough, then offloading will consume more energy than the 

energy consumed in local processing due to the communication cost. For instance, if the 

size of intensive task is 500KB, then offloading the same task for remote execution will 

use about 5% of the battery of the mobile device while local execution of the same size 

of code will consume approximately 10% of the battery in computation. In this case, 

offloading can save a significant amount of energy (i.e., 50%). Conversely, if the size of 

codes is 250KB, then the efficiency reduces up to 30%. Thus, if the size of codes to be 

executed is small, the offloading will consume more battery than that of the local 

execution of the same task. 

 

Computational offloading decision for mobile devices can be extremely tricky as 

it is not easy to decide whether or not to offload and which portions of the application’s 

codes need be to be offloaded in order to improve energy efficiency. Moreover, diverse 

wireless access technologies require different amount of energy and also support 

dissimilar data transfer rates. These factors need to be considered prior to offloading 

decision.  

 

Hence, to overcome these issues, the dynamic offloading techniques are used. As 

suggested by Kumar and Lu (2010), these techniques will decide at runtime whether or 

not to offload and which portions of the application to be offloaded based on energy 

consumption. The optimal partitioning of program takes place on the basis of trade-off 

between computation cost and communication cost.  

 

Additionally, several other solutions have been proposed for the optimal 

application partitioning. According to Messer et al., (2002), if a device becomes resource-

constrained at runtime and accepts that it can beneficially use nearby resources, it then 

automatically and transparently offloads part of the service to the nearby devices and 

configures the device to provide the services as a surrogate machine. Messer et al., (2002) 

have therefore proposed a dynamic shared distributed environment, that is, in case no 

remote server becomes available, then the load can be shared with other surrogate servers.         
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2.6.3 Taxonomy of Cyber Foraging/ Computational Offloading 

 

In this section, based on the available information of the existing computational 

offloading systems, a cyber-foraging or computational offloading taxonomy is presented. 

The most significant repetitive features such as offload type, surrogate type, offloading 

scale, solver locations, code availability, offloading granularity, data availability and 

parameter of decision of computational offloading systems are used to classify and 

discuss the taxonomy. Figure 2.10 illustrates cyber foraging taxonomy and is briefly 

discussed in the following subsections.  

 

2.6.3.1 Offloading Types 

 

Offloading can occur either at start time referred to as static offloading or at 

runtime called as dynamic offloading (Murarasu et al., 2009). During static offloading, a 

middleware or programmer partitions the program before execution. Thus, at runtime, the 

system identifies which portions of the program should be offloaded. However, due to 

the expanded uniformity of network environments and the surrogates, static offloading 

cannot ensure the best partitioning for all probable situations which could be beneficial. 

Spectra (Flinn et al., 2001; Flinn et al., 2002) and Chroma (Balan et al., 2003); Balan et 

al., 2007) are the examples of most important works in which partitioning occurs before 

program execution.  
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By contrast, dynamic offloading starts to offload tasks when the required 

resources for offloading are insufficient. Dynamic offloading techniques were used by 

Gu et al., (2004) in their research. This type of offloading partitions the program 

according to the availability of resources at runtime. This approach makes offloading 

decisions based on existing conditions and therefore, is beneficial and more flexible. Such 

approach however causes more overheads on the system.  

 

2.6.3.2 Surrogate Types 

 

Cyber foraging can be further categorized by the surrogate types. The surrogates 

can be either static computers or mobile devices. Generally, most of the cyber foraging 

approaches use static computers as surrogates (Su et al., 2005; Satyanarayanan et al., 

2009) while others use mobile surrogates (Begum et al., 2010). Although powerful 

stationary computers or surrogates are suitable for offloading, in case which no surrogates 

become available or in circumstances such as changing network topology, user 

preferences may direct a cyber-foraging system to choose a mobile surrogate for 

offloading instead.   

 

2.6.3.3 Offloading Granularity 

 

If the surrogate device does not have the required application, then there is a need 

to offload some of the related parts of the application from the mobile device to the 

surrogate. The process of offloading parts or the whole of the application is called 

offloading granularity. In the cyber foraging approach, if some parts of the application 

are offloaded, this is referred to as fine-grain. In their work, Flinn et al., (2002) used this 

fine-grain method while other researchers such as Murarasu and Magedanz (2009) and 

Satyanarayanan et al., (2009) offloaded the whole program which is referred to as coarse-

grain. In fine-grain strategy only the parts which are needed can be offloaded and it leads 

to adequate energy saving. This strategy is suitable for a highly mobile environment, 

because mobile devices move in the environment and the probability of network 

disconnection increases due to load and unavailability of wireless signals. 
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2.6.3.4 Offloading Scale 

 

The selection of surrogate devices to offload CPU intensive parts off applications 

is called offloading scale. Offloading scale differs in different cyber foraging or 

offloading approaches. The cyber foraging system either selects a single surrogate from 

the pool of available surrogates to offload a task and then obtains the result back (Flinn 

et al., 2002), or in some other cases as noted by Kristensen et al., (2008), the cyber 

foraging system uses multiple surrogates to offload a task. Offloading scale using 

multiple surrogates to offload a task is beneficial. This is because it deals with the 

mobility nature of mobile devices. Moreover, fault tolerance can also be increased by 

parallel offloading to multiple surrogates which will also facilitate the latency control 

(Zhang et al., 2010). 

 

2.6.3.5 Data Availability 

 

To perform an execution of a task, some of the related information such as input 

data need to be available in the execution environment. The assumptions and tactics about 

data availability can be defined in three cases. The first case refers to a condition in which 

data are already available on the surrogate and there is no need to transfer anything from 

the mobile device to the surrogate (Kristensen, 2010b). For example, suppose two tasks 

A and B are running in mobile device and the A’s output is the required B’s input. If a 

surrogate has executed task A, then it has the B’s input and it will not need data migration 

from mobile.  

 

In the second case, information is missing with the surrogate and transfer is 

needed from a mobile device to surrogate (Balan et al., 2003) whereas in the third case, 

the necessary information is fetched from another surrogate (Su et al., 2005). This third 

case strategy can work more efficiently if the required data is fetched from the Internet. 

Additionally, the forecasting and context-aware information can help to improve this case 

to provide information prior to execution such as user’s location, bandwidth or internet 

availability. It also foresees the next availability of internet in advance to transfer 

necessary information before starting to run the next task. 
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2.6.3.6 Parameter Decision 

 

The main goal of cyber foraging or computational offloading is to cope with the 

resource constraints of mobile devices. Therefore, several matrices must be kept in mind 

before considering cyber foraging as a solution to augment a mobile device’s local 

resources. The most essential factors that could be considered for offloading are energy 

consumption, memory storage, responsiveness and input/ output (I/O). 

 

a. Energy Consumption 

 

One of the key constraints of mobile devices is the limited power storage. As the 

mobile device’s energy cannot be replenished by itself, this is the reason why many 

researches considered energy consumption or battery power as a parameter for taking an 

offloading decision (Flinn et al., 2002). 

 

b. Memory Storage 

 

The applications which are memory intensive usually cannot be run on mobile 

devices and all such applications entails to offload. Consequently, many of the researchers 

considered the local memory and storage of mobile device  as an effective parameter 

before offloading (Ou et al., 2006). 

 

c. Responsiveness 

 

The execution time of a computational intensive application can be decreased by 

offloading if the processing power or the CPU speed of the mobile device is significantly 

lower than that of the static computers. Many researchers considered the response or 

execution time and latency as the main parameter which could affect the offloading 

decision. 

 

d. Input/ Output (I/O) 

 

Sometimes, input / output (I/O) devices are considered for the improvement of 

quality. For example, when there is a need to play a movie on a larger screen, use bigger 
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speaker for playing music or use distant printing. Some previous works focused on 

augmenting the I/O as an effective parameter in offloading decision. 

 

2.6.3.7 Solver Location 

 

The unit, which is responsible for taking offloading decision, is called a solver. 

This parameter is considered by many researchers as a location of solver. Normally, every 

mobile device has its own solver and can play the role of decision maker itself. However, 

in some works such as Cuervo et al., (2010), the solver was not located in the mobile 

device. For example, MAUI generates a call graph of application to execute. The call 

graph may possible obtained the accurate partition to execute while it may sometime 

miscalculate the partitioning and offloading decision due to insufficient pre-defined 

parameters. It is therefore significant to have a solver which may take a precise decision 

for offloading the remote executable tasks.   

 

2.6.3.8 Application Partitioning 

 

As the computational complexity of application processing as well as the 

resources of computational network increases, logic dictates to distribute a centralized 

programme into components and execute each component parallel in order to reduce load, 

share resources and make the processing efficient.  The term application partitioning 

refers to breaking down the application into components in distributed application 

frameworks while the components preserve the semantic of applications. Current 

Distributed Applications Frameworks comprise dividing runtime applications in two 

different ways, either static partitioning or dynamic partitioning.  

 

a. Static Partitioning 

 

The concept of computational offloading has been introduced with static 

offloading where the application used is partitioned once in compile time or runtime and 

the static parts of the application are then offloaded to the remote server. In their work, 

Satyanarayanan et al., (2009) primarily partitioned applications into two parts, namely, 

the user interface part which stayed in the mobile device, and the resource-intensive or 

compute-intensive parts delegated to the remote servers. Meanwhile, in their research, 
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Dou et al., (2010) developed Misco in which the application was statically partitioned 

into two parts, namely, the Map and the Keys. The Map function was then applied to the 

set of input data which produced the intermediary <” Key, values”> pairs. All such pairs 

were then grouped into a number of partitions. Whole pairs in a single partition were then 

passed to the reduce function which then produced the final results.  

 

b. Dynamic Partitioning 

 

In the dynamic partitioning approach, the algorithms used to dynamically partition 

an application continuously monitor the available resources for SIDs. During the 

processing of the application at runtime, the resources are allocated to each component 

for processing. The concept of dynamic partitioning is developed in contrast to static 

partitioning where resources are allocated to components once in compile time or runtime 

as opposed to the dynamic approach in which resources are allocated to each task in a 

sophisticated way. Current dynamic computational offloading frameworks are used to 

exercise the dynamic application partitioning approach.  The works of Goyal et al., 

(2004), Chun et al., (2009) and Zhao et al., (2010) Yang et al., (2013) are examples of 

the current distributed application computational offloading frameworks which used 

dynamic application partitioning approach in their studies.  

 

2.7 Related Works 

 

In order to achieve energy efficiency during application processing, the whole 

focus of researchers would be to execute the intensive tasks as quickly as possible and 

then allow the platform to go into sleep state. For this purpose, a multithreading concept 

had been used in the past to allow the applications be executed in multiple parts using 

multiple cores of the processor concurrently. As soon as the execution finishes, the free 

cores in the processors go into idle mode and then into sleep mode (Metri et al., 2014).  

After the era of mobile cloud computing has started, the concept of computational 

offloading becomes familiar with vigour. The computational load has migrated to the 

remote servers for processing in order to free the mobile device’s processor from the local 

workload.  
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2.7.1 Previous Research on Enhancing Mobile Efficiency 

 

For the last few decades, numerous researcher has attempted different techniques 

to delegate the resource-intensive parts of the applications to remote servers in order to 

minimize the load of the local resources. In this regard, two approaches are commonly 

used (Cuervo et al., 2010).  

 

The first approach relies on programmers specifying how to partition a 

programme, and which parts of a programme need to be remote and how to adjust the 

programme partitioning scheme with the frequently changing network environment 

(Balan et al., 2002; Balan et al., 2007). This approach leads to saving adequate energy 

because it is fine-grained. The application can then be offloaded in sub-parts only if the 

remote execution is beneficial in terms of energy, processing and storage.  

 

The second approach involves the migration of the entire process (Balan et al., 

2002) or OS (Virtual Machines) (Chun et al., 2010) to the cloud instead of to the sub-

parts. This approach excludes burden on programmers for instance application does not 

need to be partitioned and the entire process or system is automatically loaded to the 

remote servers. A review of some typical research projects is presented next in this 

section.  

 

This review begins with a discussion of CloneCloud. It was introduced in 2011 

by Chun et al., (2010). The Clone is an image of a mobile device residing on a virtual 

machine in cloud. In contrast to the smartphone, a Clone is in rich hardware, networks 

and software environment close to energy-efficient resources. This condition is more 

suitable for the execution of complicated task. The main method used is virtual machine 

migration which offloads the application’s execution blocks from resource-constrained 

mobile devices to rich resources pool Cloud flawlessly and partly. The CloneCloud 

system either fully or partly offloads the smartphone based execution to a dispersed 

environment. The CloneCloud architectural framework is shown in Figure 2.11 (A). Each 

smartphone’s task is divided into five different execution blocks. The blocks are divided 

on resource-intensive basis. The blocks which are more power hungry are then passed to 

the cloud for processing. The energy-intensive blocks appear in coloured green in the 

diagram as shown in Figure 2.11 (B).    
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Once the execution of these blocks are completed, the output is then passed from 

CloneCloud to the smartphone. A face tracking application is taken as a test by Chun et 

al., (2011) with and without CloneCloud and the result showed that CloneCloud had taken 

1 second to process the task while the smartphone had taken 100 seconds to process the 

same. Another advantage of CloneCloud System is the reservation of battery life, as 

Smartphones do not need to process complicated tasks.  

 

Nevertheless, this approach has its disadvantages such as the handover delay and 

bandwidth limitation. Because the speed of data transmission is known to be inconsistent, 

the CloneCloud System will therefore not be responsive whenever the user moves to a 

signal blind area. Furthermore, the data that stream from the mobile device to the distant 

server is also not consistent; hence, data stream needs to be optimized for speedy process 

of flow and thus reducing RTT (Yang et al., 2013). On the basis of CloneCloud, Zhang 

et al., (2011) have introduced an elastic application framework to enhance the 

performance of resource-constrained devices by dynamic execution configuration of 

application according to the device current status. This framework divides an application 

into a range of multiple components called weblets. It offers a dynamic adaptation nature 

of weblet execution configuration and a cost model is provided to adjust the execution 

pattern; however, this framework needs a mechanism for exchanging of weblets between 

the mobile devices, as the communication channel of the mobile devices may be changing 

(e.g., from 3G to GPRS or Wi-Fi). Another challenge is a media channel or high speed 

bandwidth is needed to ensure that the communication between weblets is reliable.   

Figure 2.11 CloneCloudArchitectural and System Framework (Chun et al., 2010)  
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Although both of the approaches are energy-efficient for mobile devices, the 

response time for data transmission between cloud and mobile devices is slow, especially 

when the bandwidth is low. Thus, for light weight applications which can be deployed 

locally in a smartphone, it cannot be justified to offload all the applications to the cloud. 

Lu et al., (2011) have made the presentation of Virtualized Screen in the cloud possible. 

In this approach, the screen rendering moves from the mobile device to the cloud as a 

service and is brought as an image to the client device for interactive display. They enable 

thin-client devices to enjoy various compute-intensive and graphically-rich services in 

the cloud.  

 

Furthermore, screen virtualization does not mean offloading the whole rendering 

task to the cloud but to make offloading decision on the basis of matrices such as local 

device resources efficiency, network condition, traffic condition, response time, screen 

resolution. In this regard, part of the smartphone’s screen is virtualized in the cloud which 

contains a collection of data using display image, audio, video, key board input, and text-

contents. The light weight part of an application is deployed locally to process which 

effectively diminish the power consumption. As such, Lu et al., (2011) have suggested 

that the framework for screen rendering should be partially done in the cloud and partially 

in the mobile device. Consequently, they sought to resolve network bandwidth obstacles 

and curtail energy consumption.  The challenge in remote screen rendering is that the 

real-time and high-fidelity processing of the remote execution of the screen is affected by 

low bandwidth. The low bandwidth and the offloading to a distant cloud server for 

execution impede the optimal performance of mobile applications (Ahmed et al., 2015). 

 

In order to solve the issue of bandwidth delay between the mobile device and the 

cloud, Satyanarayanan et al., (2009) have presented the concept of Cloudlet which is a 

Micro Cloud configured in the middle of the mobile device and the Cloud. The author 

argued that even though Cloud Computing is the finest solution for resource-constraint 

devices, the long WAN latency impedes its performance. The rapid changing of the 

computing environment causes changes in the bandwidth access between the mobile 

device and the cloud. This leads to different kinds of delay, especially when mass data 

need to be transferred and processed. The occurrence of such delays will then be 

experienced by the user. Unfortunately, the bandwidth delay is totally unavoidable 

because of firewall filtering or data checking which are inevitable for security. To 
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overcome the problem, virtual machine (VM) technology is used to provide instantaneous 

customized services. Figure 2.12 shows a Cloudlet, which is a resource-rich computer or 

cluster of computers, installed in a coffee shop to provide rapid customized services to 

the client devices using VM technology through a high bandwidth to mobile users.   

 

Compared to the distant Cloud, Cloudlet exists in a single hop distance, which 

provides the fastest processing and transmission bandwidth to the connected devices. In 

case where no Cloudlet exists in the surrounding, the mobile devices will then access the 

resources of a distant cloud or in the worst case scenario, the mobile devices will use their 

own local resources to handle the execution of applications. The main challenge in this 

approach is the compatibility issue related to applications running in Smartphones which 

are rapidly improving. This is because the VM based Cloudlet might not possess such a 

wide range of compatible applications. 

  

A slightly similar approach has been introduced by Canepa et al., (2010), namely, 

the ad-hoc mobile cloud framework, which is a virtual cloud computing platform. 

Canepa et al., (2010) have discussed communities which are built of mobile devices 

where the mobile devices become capable of executing shared tasks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12  Cloudlet Architectural Framework (Satyanarayanan et al., 2009) 
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The framework proposed by Canepa et al., (2010) allows a small portion of the 

task to be executed locally while the rest is delegated to the nearest mobile device 

available in the same vicinity already running the same task. The concept of ad-hoc 

mobile cloud framework presented by Canepa et al., (2010) consists of five basic 

components such as application manager, resource manager, context manager, P2P 

component, and offloading manager.  Each of these five basic components will be 

described briefly. 

 

First and foremost, the application manager, is responsible for the starting and the 

stopping of an application at loading time. It also modifies the application to take in 

features according to the current context needed for offloading such as RPC support and 

proxy creating.   

 

Secondly, the resource manager is in-charge of the application profiling and 

monitoring of resource in a local device. For each application to execute, a profile is 

created to keep record of all of the remote devices which are needed to build a virtual 

cloud. The application profile is then checked by the application manager every time an 

application is executed in order to determine whether or not an instance of the required 

virtual provider needed to be created.  

 

The third basic component is the context manager. It is responsible for the 

synchronisation of contextual information getting from context widgets and makes them 

available for other process. Context manager consists of three sub-components: 1) Context 

widget, which is responsible for handling communication with the sources of context 

information; 2) Context manager, which receives new context from the available 

information; and, 3) Social manager, which keeps record of several types of relationship 

between users.  

 

The fourth and the fifth basic components are the P2P component and the 

offloading manager. P2P component is responsible for informing the context manager of 

joining a new device in the vicinity or leaving away status of an old device.  Meanwhile, 

the offloading manager handles the offloading task to the neighbouring device for 

execution. It also accepts tasks from the other remote devices and process the tasks 

accordingly. This approach would certainly save energy; however, the pervasive nature 
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of nodes needs to have an adopting access mechanism from the neighbouring device. 

Hence, a mechanism for dealing with the energy consumed in extra computation for 

making decisions is needed.  

 

The biggest challenge to mobile devices is distributed computing. In such 

computing, new class of applications are needed to react to the rapidly occurring changes. 

Schilit (1994) introduced the term context-awareness in distributed computing (i.e., 

ubiquitous computing). Applications should be aware of the environment they are running 

in and adapt to the changes according to the context. The mobile devices can manage their 

resources in a better way when devices are aware of the contextual computing in the 

pervasive environment. For example, GPS is used in Smartphone devices to detect 

locations, but it drains the battery of the mobile devices more than other components. The 

context aware approach will keep the GPS usage in schedule to trigger whenever it is 

needed or otherwise the GPS will be turned off.   

 

Zhuang et al., (2010) had first developed a framework for location sensing based 

on the contextual information which is energy-efficient as compared to GPS. Kim et al., 

(2011) then developed Wi-Fi Sense system to sense the environment using low power 

sensors and previous recorded data in order to predict the best available network interface 

for communication, and to turn on Wi-Fi interface on demand fashion to save battery life.  

 

Meanwhile, Herrmann et al., (2012) have proposed a system, namely, the 

Dynamic Power Management (DPM), to avoid the unnecessary sensing of distributed 

sensing application. This system uses the context knowledge to adapt to the behaviour of 

applications. According to the current user’s context, the system starts, suspends and 

changes the sampling rate of application used for collecting sample in a sensor network.  

 

In addition, context-aware battery management architecture for mobile devices 

(CABMAN) has been proposed (Ravi et al., 2008). On the basis of user’s current context, 

if the system detects a charging opportunity, it will then warn the user that the device’s 

battery may be running out of power.  The system works on the proposed algorithms for 

processing user’s location and call-logs for making some of the predictions.  
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By using the embedded sensors of the mobile device, Moghimi et al., (2012) have 

presented a middleware context-aware power management system. Fuzzy inference is 

used in this system for extracting the high level context from the low level context, which 

provides near to accurate results of the user context. The system proposed by 

Moghimi et al., (2012) consists of the sensors, the context detection block (CDB) and the 

power manager as shown in Figure 2.13.    

 

The system receives raw sensing data from the embedded sensors. CDB works as 

an inference unit, which extracts the high level context from the low level sensing context. 

This eliminates the possibility of an application retrieving the same context for the second 

time. The power manager is placed in between the CDB and the applications. It receives 

the sensing variables registered by the respective applications and tune them by some 

defined rules to deliver context-aware energy-efficient performance. This results in 10-

50% lower power consumption of the system. The challenges of this system are to expand 

the context variables and adopt a dynamic way of distinguishing the high level context 

from the low level context.    

 

 

 

 

Figure 2.13 Context-Aware Power Manager 

 

 

 

 



50 

To make the user interaction limited and build a smart environment, Sathan et al., 

(2009) have proposed a context-aware lightweight energy-efficient framework 

(CALEEF). CALEEF consists of seven components as shown in Figure 2.14. Using this 

approach, the smartphone needs to be intelligent enough to decide when to access or to 

execute the application on the basis of high level contextual information. For example, if 

the user is in a meeting room, the context-aware mobile device will sense the environment 

and reject all unimportant calls.   

 

First Component: Context Acquisition Context acquisition acts as a mediator between an 

application and its operating environment. At data acquisition layer, specific widgets are 

developed in order to capture different kinds of information. This layer releases the 

applications from the issues relating to context sensing by tying the sensor with a single 

interface. This way it makes independent application design for the method of context 

sensing. The context widget will continuously update the context encoder with context 

information. The context information is then sent to the context service provider for the 

storage and dissemination of the context to the consumers.  

 

 

Figure 2.14 CALEEF Architectural Framework   (Sathan et al., 2009) 
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Second Component: Context Manager Context manager is responsible for the conversion 

of context data received from sensors to the context information that will be provided to 

application for further action. This component is further divided into two sub-

components, namely, the context interpreter and the context encoder. The context 

interpreter does context processing by logical reasoning; as a result, the high level context 

is derived from the low level context. It also resolves context conflicts. The context 

encoder, as the name suggests, encodes the context information using Ontology Web 

Language (OWL) and then passes it to the context logger for record. 

  

Third Component: Interface Engine The interface engine performs reasoning on stowed 

facts. Using the past and current context information, it defines how an application should 

change its behaviour accordingly.  

 

Fourth Component: Context Logger The context-aware applications may change their 

behaviour using the past context along with the current context. For this reason, the 

previous context is encoded and stored in the context history that may be queried by the 

applications later whenever needed. The context logger is made up of the context 

knowledge base and the context history. The context knowledge base provides a set of 

API’s for the components of other services to query, modify, add, delete the context 

information.  

 

Fifth Component: Context Provider The context provider is responsible for keeping 

record of the context consumers. This component will always trigger the record it keeps 

whenever new context information is obtained. 

 

Sixth Component: Directory Services The directory services register the sensors’ 

information of the surrounding and keep record of the sensors’ attributes such as refresh 

rate, spatial information, and correctness. By using this mechanism, CALEEF selects the 

sensor that is most suitable for receiving context data. 

 

Seventh Component: Context Consumers Context consumers consumes different kinds of 

context information and adapt to their behaviour accordingly. It is done by either listening 

to the context provider for new context information or querying it to receive updates. The 

main feature of CALEEF is context reasoning. High level implicit context can be derived 
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from low level explicit context. Application confidently uses the high level context 

information to change their behaviour.  

 

The challenging issue in CALEEF framework is, in case there is a failure in any 

sensor or component, the system needs to restart and restore itself to the last working state. 

Some researchers have utilized cloud resources using the contextual approach to 

minimize local resources operation. For example, Xiao et al., (2011) proposed a 

framework CasCap (Cloud-assisted Context-aware Power Management). In their work, 

the cloud resources for processing, storage, and networking were utilized to provide an 

efficient and low cost power management of mobile devices. CasCap consists of three 

main components, namely, mobile devices, internet services and clones. Mobile devices 

in CasCap have the following five components: resource manager, context manager, 

scheduler, policy manager and communicator. 

 

The first component, namely, resource manager runs in the background and is 

responsible for monitoring the device’s resource consumption. It also collects the 

contextual data from sensors such as the GPS and the accelerometer. The second 

component is the context manager. It generates the contextual information on the basis of 

the data collected by the resource manager from the sensors and uploads the context 

information to the cloud. A crowed-context monitors service in the cloud which receives 

the contextual information from context manager of the mobile devices and other network 

elements and then queries on them to get meaningful context information.  

 

The third component is the scheduler. This component is responsible for keeping 

track of the changes in the context and then adapts to the mobile devices according to the 

changes. Meanwhile, the fourth component is the policy manager which stores all the 

policies that are made to govern the process of the CasCap framework. These policies are 

specific rules and actions that should be taken by the device itself or by the internet Cloud 

whenever a specific change occurs in the context information. Finally, the communicator 

is the component which is responsible for providing the wireless communication facility 

between the mobile device and the cloud for sharing the policies and the context 

information and for using internet services.  
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The findings of a study conducted by Xio et al., (2011) are significant in terms of 

the main features of CasCap such as the monitoring of crowed-sources context, functional 

offloading to the cloud and the adaptation as services. Tis research first time considered 

the third party services to be part of the development and the deployment of power 

management services. The system still needs to resolve the challenges in the migration of 

radio stream from one proxy to another whenever the user moves. A filter process is also 

needed for context information stored in the cloud. This is because after some time, the 

stored context information might become invalid. 

 

All of the discussed approaches have resulted in different solutions at different 

levels to minimize the power consumption of handheld devices. The two most popular 

solutions are, either by conserving battery life through resource management or by 

offloading (i.e., migrating load to cloud servers). Singular solution by simply adopting 

job migration to the cloud or only through resource management alone cannot provide an 

adequate power-saving solution as both approaches have their own limitations. The 

different approaches reviewed are summarised in Table 2.2. 
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Table 2.2 Analysis of the Previous Research Work on Resources Augmentation of 

Mobile Devices 

Focus / Purpose Framework Method Outcomes / Results Limitations / Future 

Work 

Reduce Mobile 

Resources Labour 

CloneCloud  

 

Chun et al. 

(2010) 

Offloading 21.2x speedup smartphone 

device application processing 

Protect battery life by remote 

application execution 

Handover delay and 

bandwidth limitation 

Dynamic 

application 

execution  

Weblet 

 

Zhang et al. 

(2011) 

Elastic 

application 

configurati

on  

Performance enhanced by 

dynamic adaptation nature of 

complicated tasks. 

Quick and dynamic access of 

application reduces the local 

resources operation and save 

battery life 

Mechanism need for 

exchanging weblets between 

devices, with changing 

communication channels  

(3G to GPRS or Wi-Fi) 

Reduce Mobile 

Resources labour 

Interactive 

Screen Remote 

system 

 

Lu et al. (2011) 

Screen 

Virtualizati

on in Cloud 

Thin-client devices to enjoy 

various compute-intensive and 

graphically rich services in 

cloud. 

Reduces local resources 

operations & conserve battery 

life 

For real time and high 

fidelity processing the 

remote execution of screen 

might affected by low 

bandwidth 

Solve the issue of 

bandwidth delay 

b/w mobile device 

and cloud 

Cloudlet 

Balan et al. 

(2001) 

Offloading 

(Cyber 

Foraging) 

Cloudlet exist in a single hop 

distance, provide the fastest 

processing and transmission 

bandwidth to the connected 

devices 

Provides the rapid customized 

services to the client devices by 

using VM technology through 

a high bandwidth. 

Applications compatibility 

issues  

Reduce Mobile 

Resources labour 

Virtual Cloud 

Computing 

Platform 

 

Hureta-Canepa 

et al. (2010) 

Offloading 

(Remote 

Execution) 

The pervasiveness of mobile 

devices, creating a cloud 

among the devices in the 

vicinity, allowing them to 

execute jobs between the 

devices. 

The pervasive nature of 

nodes needs to have an 

adopting access mechanism 

from neighbour. Also a 

mechanism for dealing the 

energy consumed in extra 

computation for making 

decisions.  

Resource 

Management 

PARCTAB 

System 

 

Ali et al. (2015) 

Context-

aware 

Computing 

Developed unique set of 

context-aware application 

which enhances the operation 

of applications by 

communication and context 

information. 

PARCTAB depends on small 

cell wireless communication, 

thus combines portability with 

information about context. 

PARCTAB system has very 

limited use when 

disconnected from a 

network. 

Resource 

Management 

Location 

Sensing 

Framework 

 

Zhuang et al. 

(2010) 

Context-

aware 

Computing 

Reduce GPS usage up to 95 % 

while increase battery life up to 

75 %` 

As compare to GPS, the 

proposed system cannot 

provide accurate location 

sensing in some cases. 
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Table 3.2 Continued  

Resource 

Management  

WiFisense 

System 

 

Kim et al. 

(2011) 

Context-aware 

Computing 

Increases Wi-Fi usage for 

various scenarios. 

Save energy consumption 

for scanning by up to 79 % 

while reduces false 

triggering by up to 4.3 % 

The accelerometer is unable to 

provide the accurate 

movement information 

without any location base 

sensor. 

Resource 

Management 

Context-aware 

DPM 

 

Herrmann et al.  

(2012) 

Context-aware 

Computing 

The tested technique on a 

real system shows that it 

can extend smartphone 

battery life by 5x. 

The context detection using 

sensor is an extra cost that the 

system has to pay to gain the 

context knowledge. 

Resource 

Management  

CABMAN 

 

Ravi et al. 

(2008b) 

Context-aware 

Computing 

Predict next charging 

opportunity on the basis of 

developed prediction 

algorithm. 

Accurate battery life 

prediction based on a 

discharge speedup factor. 

Save battery life for crucial 

applications  for instance 

Telephony 

For those users who spent a 

very high entropy routine, the 

prediction al- gorithms may 

not work very well.  

As many users charge phones 

in their cars while driving, in 

such condition it is not always 

possible to consider location 

prediction for charging 

availability. 

Resource 

Management 

Context Aware 

Power Manager 

 

Moghimi et al. 

(2012) 

Context-aware 

Computing 

Fuzzy inference used to 

provide high level context. 

The results show reduction 

in energy 13-50% for 

periodic applications, and 

for streaming applications 

18- 36%. 

Need to expand the context 

variables and adopt a dynamic 

way of determining high level 

context from low level 

context.    

Resource 

Management 

CALEEF 

 

Sathan et al. 

(2009) 

Context-aware 

Computing 

Reduces the cost and 

complications of 

developing context-aware 

applications by a shared 

context model of 

distributed software 

components. 

It also get context from a 

widespread range of 

sources rather than sensors 

only that are rooted in the 

local environment. 

It enables knowledge 

sharing among applications 

entities. 

The need of autonomic 

service-oriented Computing 

ideas for developing context-

aware service frameworks.  

In case of sensor or any 

component failure need the 

system to restart and restore 

itself to the last working state.  

 

Resource 

Management + 

Offloading 

CasCap 

 

Xiao et al. 

(2011) 

Context-aware 

Computing 

CasCap comprise of 

crowd-sourced context 

monitoring, function 

offloading, and adaptation 

as service. 

For the third party service 

providers the frame work 

provide a fresh way to 

develop and deploy power 

management services. 

The system still needs to 

resolve the challenges in 

migration of radio stream from 

one proxy to another 

whenever the user moves. 

  

Need a filter process for 

context information stored in 

the cloud as after some time 

the stored context information 

might become invalid.  
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Chun et al., (2010) have used the concept of cloning mobile device in distant cloud 

to process computational intensive tasks migrated away from mobile device; however, 

the mobility features and low or interrupting bandwidth issues sometimes cause delay in 

the services. Moreover, synchronization with the clone device each time increases Round 

Trip Time (RTT).  

 

Meanwhile, Lu et al., (2011) have presented a concept of the screen rendering 

instead of migrating the whole task to the distant cloud. Lu et al., (2011) have introduced 

Virtualized Screen in the cloud to overcome the bandwidth delay issues. In this approach, 

the screen rendering moves from the mobile device to the cloud as a service and is brought 

as an image to the client device for interactive display. In this approach, part of the 

smartphone’s screen is virtualized in the cloud which contains collection of data using 

display image, audio, video, key board input, and text-contents.  

 

Similarly, Balan et al., (2002) had earlier presented the concept of Cloudlet, which 

is a Micro Cloud configured in the middle of mobile device and the Cloud. They argued 

that even though Cloud Computing would be the finest solution to overcome limitation 

of resource constraint devices, the long WAN latency may impede its performance. The 

rapidly changing computing environment would alter the bandwidth access between the 

mobile device and the cloud thus leading to different kinds of delay, especially when mass 

data would need to be transferred and processed. The presence of such delays would be 

detected by users. This approach has shown that a Cloudlet, which is a resource-rich 

computer or cluster of computers installed, provides the rapid customized services to the 

client devices by using Virtual Management (VM) technology through a high bandwidth. 

In comparison to the distant cloud, the Cloudlet, which is situated in the nearest distance, 

provides the fastest processing and transmission bandwidth to the connected devices. In 

case there is no Cloudlet that exists in the surrounding, the mobile devices will then access 

the resources of the distant cloud or in the worst case scenario, the mobile devices will 

use their own local resources to handle the execution of applications. The main challenge 

in this approach is the compatibility issue related to applications running in Smartphones 

which are rapidly improving. This is because the VM base Cloudlet might not possess 

such an immense range of compatible applications. 
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Likewise, the approaches such as those adopted by Balan et al., (2002), Chun et 

al., (2010), and Lu et al., (2011) encompasses the issues of low bandwidth and excessive 

offloading, while in particular circumstances the mobile device can locally process the 

task easily. For this reason, to make the user interaction limited and build a smart 

technique, Sathan et al., (2009) have proposed a context-aware lightweight energy-

efficient framework (CALEEF). The limitation of this approach is the deployment and 

then the failure of the sensor which causes disconnection of the whole service. In case of 

sudden failure of the system, an automatic mechanism needs to restate the system to the 

previous state.  Past researchers have used the concept of context-awareness to make a 

precise decision at the time of offloading remote executable parts of different applications 

(Ravi et al., 2008a, Kim et al., 2011, Xiao et al., 2011, Herrmann et al., 2012, Moghimi 

et al., 2012). The major issues in context-aware approaches are the use of extra sensors 

and filtration of high level context information from low level sensed context input. 

 

2.8 Review of Computational Offloading Frameworks 

 

By nature of the computational offloading, its frameworks are mainly divided into 

several main categories. These frameworks will be explained in this section. 

 

2.8.1 Whole Application Migration Frameworks 

 

In this approach of computational offloading frameworks, the entire application 

is offloaded to remote servers for processing. The Application Migration offloading 

Frameworks are used to exclude the partitioning and granularity overhead at mobile 

device; however, offloading the entire application is sometimes communication- or 

bandwidth- intensive due to the limited available bandwidth. Furthermore, delegating 

components of the application to resourceful servers which are, by contrast, lightweight 

and easy to process locally, causes delay and consequently drains the battery’s power. A 

few past research works that were based on the whole application migrations are a study 

conducted by Chun et al., (2004) and also another study conducted by Chun and Maniatis 

(2010).  
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2.8.2 Virtual Machine (VM) Level Migration Frameworks 

 

Virtual machine (VM) level migration frameworks fall into the second category 

of computational offloading frameworks where a VM instance of each SID is required to 

be created on the server which serves as a shared infrastructure. The advantage of VM 

migration frameworks is that a single surrogate can run a number of VM instances with 

a complete isolation and security; therefore, these frameworks are less vulnerable to 

security concerns. The adverse side of these frameworks is the deployment of template 

based virtualized approach which is resource-intensive and highly time-consuming for 

VM deployment. This approach is used by many researchers such as Goyal et al., (2004), 

Satyanarayanan et al., (2009), Chun et al., (2010) and Wang et al., (2011).  

 

2.8.3 Method Level Migration Frameworks 

 

In method level migration, the computational intensive methods of a running 

application are marked as heavy methods and lightweight methods. Different terms have 

been used in research for both heavy and lightweight. Some research works have referred 

to heavy methods as intensive methods or computational intensive methods (Ewens et al., 

2001). These methods involve heavy computations required to offload for execution.  

 

By contrast, lightweight methods are methods which do not involve heavy 

computations and can be processed locally. The term lightweight is used by many 

researchers in their studies such as Shiraz et al., (2013), Shiraz et al., (2014) and 

Shuja et al., (2015). To partition the application into lightweight and heavy methods, the 

heavy methods are symbolized as computational-intensive using specific keywords. The 

whole burden of partitioning the application in local and remote methods is placed on the 

developer.  

 

The concept of method level migration was introduced after the migration at class 

level. After the concept of class level migration which had been used by Gu et al., (2004), 

Yang and Liotta (2006) developed a concept in which the whole class was identified as 

intensive and migrated to the remote severs. This concept would be secure and easy to 

implement. However, the only disadvantage would be a class may contain many methods 
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including methods which would be easy to process locally and therefore would be 

illogical to offload such methods to the non-computational-intensive remote servers. 

  

By contrast, at method level, the computational-intensive methods are offloaded 

only during which the rest can be executed locally. As a result, it eliminates the process 

of lightweight methods having to wait for execution while remote execution is in process. 

Meanwhile, Rim et al., (2006) and Cuervo et al., (2010) have used the method level 

migration. In their research, Rim et al., (2006) employed the technique to reduce the code 

size in the mobile device by transformation method and used Distributed Execution 

Transformer (DiET) to generate slim codes for heavy methods. The mobile device would 

download the modified bytecodes and execute the application computation at the server. 

 

The traditional offloading approach refers to the existing and recent research 

works. In the literature, the term traditional offloading has been used in many research 

works. For instance, Wu et al., (2013) and Shiraz et al., (2014) have used the same term. 

In the present research, the term traditional offloading has been used with the intention of 

simulating the traditional offloading porotype which would be compared based on 

efficiency with the proposed model. Thus, traditional offloading frameworks from 2004 

until 2015 are critically examined in this literature review in relation to power efficiency 

of mobile devices. Table 2.3 summarises the traditional computational offloading 

frameworks on the basis of computational offloading nature, type of offloading, 

granularity, application partitioning and offloading scales.      
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  Table 2.3 Comparative Review of Computational Offloading Frameworks 

  

Framework Application 

Partitioning 

Migration 

Level 

Offloading 

Type 

Remote 

Server Type 

Offloading 

Scale 

Offloading 

Granularity 

Focus 

Offloading Inference Engine 

(Gu et al., 2004)  

Dynamic Class level Static Surrogate Single Fine-grained Memory 

Management 

Roam System  

(Chu et al., 2004)  

Dynamic Application 

Level 

Dynamic Cloud Server n/a Coarse-

grained 

System for 

Heterogeneous 

devices 

DiET 

(Rim et al., 2006)  

Static  Method Level  Static 

Computer 

Cloud Server  Multiple Fine-grained  Save Battery 

Offloading Toolkit 

(Ou et al., 2006)  

Static Class Level Static Surrogate   Single   Fine-grained  Reduce 

Complexity of 

Partitioning 

 IDP 

(Xian et al., 2007)  

Static Task Level Static  Surrogate  Single   N/a  Save Battery 

 mPlatForm 

(Gorackzko et al., 2008)  

Dynamic  Task Level  n/a n/a  Multiple Fine-grained Energy Saving 

 n/a 

(Huerta et al., 2008)  

Dynamic Tasks  level n/a n/a Single   Fine-grained Reduce Execution 

time 

WishBones 

(Newton et al., 2009)  

Static  n/a Dynamic  n/a Multiple Fine-grained High-rate Data 

processing 

CloudLet 

(Satyanarayanan et al., 2009)  

n/a VM level Dynamic Surrogate single Coarse-

Grained 

Reduce Complexity 

Mobile Service Cell  

(Liu et al., 2009) 

n/a n/a Dynamic Surrogate Multiple n/a Reduce Complexity 

Scavenger 

(Kristensen, 2010) 

Static n/a Dynamic Surrogates Multiple Fine-grained Energy saving & 

Augmenting CPU 
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       Table 2.3     Continued 

 

Framework Application 

Partitioning 

Migration 

Level  

Offloading 

Type 

Remote 

Server Type 

Offloading 

Scale 

Offloading 

Granularity  

Focus 

 Cuckoo 

(Kemp et al., 2010) 

Dynamic  Method Level Dynamic  Cloud Server Single Fine-grained Reduce Energy 

Consumption 

 MAUI 

(Cuervo et al., 2010)  

Dynamic  Method Level  Static  Surrogate Single  Fine-grained  Energy Saving 

N/a 

(Chun et al., 2010) 

Dynamic Application 

Level 

Dynamic Cloud Server n/a Coarse-

Grained 

App. Partition 

Problem 

 CloneCloud 

(Chun et al., 2011) 

Dynamic  Thread Level  Dynamic Cloud Server Single  Coarse-grained Saving Energy 

SociableSense 

(Rachuri et al., 2011) 

 Static Task Level  Static  Cloud 

Server  

Single  Fine-Grained  Social Behavior  

 ThinkAir 

(Kosta et al., 2012) 

 Static Method Level Dynamic Cloud Server Multiple n/a Energy and 

execution time 

reduction 

 DCOF 

(Shiraz et al., 2014)  

 Dynamic Method Level  Dynamic  Cloud 

Server 

 n/a  Fine-grained  Energy and 

offloading cost 

reduction 

 EECOF 

(Shiraz et al., 2015) 

 Dynamic Task Level   Dynamic  Cloud 

Server 

 Multiple n/a  Reduce complexity 

and energy 

Code Offloading 

(Flores et al., 2015) 

Dynamic Code Level Dynamic n/a n/a Fine-grained Energy Saving 

MCC Offloading 

(Shuja et al., 2016) 

Static Process State 

Migration Level 

Dynamic Cloud Server n/a n/a Reduce Overhead 
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The study conducted by Goyal and Carter (2004) is based on dynamic offloading 

to the static computers (i.e., the surrogates) in close proximity, utilized the computing 

resources nearby. It is a simple client server environment where a mobile device requests 

to utilize the server’s resources for processing and the surrogate computers provide the 

resources on demand.  Goyal’s framework supports VM migration for remote processing 

and falls in the category of virtualization approaches. The framework is good for privacy 

and security due to local availability. It also involves low latency due to limited hop 

proximity. Conversely, the deployment template of virtual machine each time with each 

offload is resource-intensive and time-consuming (Wang et al., 2011). 

 

To overcome the issues of virtual machine deployment, VMbase cloudlet 

framework had been proposed by Satyanarayanan et al., (2009). In this framework, 

instead of deploying the template of virtual machine, the image of running applications 

would be migrated to the Cloudlet, which is a local server or cluster of servers at single 

hop proximity. In the proposed work, the mobile device acted as a thin client, utilizing 

the server’s resources through user interface. The actual processing of application takes 

place at the remote server. For customization of services, extra hardware resources are 

involved in implementing the framework. The cloning of mobile application each time 

with a fluctuated bandwidth is resource-intensive as well as time-consuming. It also leads 

to issues of security and privacy.    

 

A more recent approach of Chun et al., (2010) proposed the migration of clone 

virtual machine image for cloud-augmented execution. The approach adopted by 

Chun et al., (2010) differed from those adopted by Goyal & Carter (2004) and 

Satyanarayanan et al., (2009), that is, proposing three different types of offloading 

algorithms for different types of applications. Chun et al., (2010) works resembles to 

Cloudlet in terms of migrating the virtual machine image. A simple synchronizing 

approach is used to reduce the application’s dynamic transmission overhead. Clone cloud 

approach implements a simple partitioning method of executing applications in two main 

parts. The user interface which is less computational-intensive processed locally while 

the heavy tasks are offloaded for remote execution. The critical part of the Clone cloud 

approach is migrating the execution environment from the mobile device to the remote 

server, which implicates the issues of access control, privacy and security. It also involves 

in the complications management of mobile resources and of VM deployment. 
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Furthermore, in the system virtualization approach, sometimes the size of the VM image 

to be transferred over Wi-Fi/ Cellular networks is within the range of gigabytes (Shuja et 

al., 2016). In addition, some of the approaches used the concept of migrating the entire 

application for processing to the remote servers such as those used in studies conducted 

by Liu et al., (2009), Lai et al., (2010), Hung et al., (2012) and Liu et al., (2012).  

 

On the one hand, the approach of migrating the entire application is useful as it 

eliminates the partitioning and managing local resource’s overhead at the local device.  It 

does not need to take any smart decision. Instead, it simply has to offload the whole 

application and thus reduces the complexity of the mobile device. However, it is 

bandwidth-intensive and time-consuming because in the fluctuating bandwidth, 

offloading unnecessary parts of an application is illogical. Each application has some 

activities which can easily be processed at the local device while offloading of such 

activities causes communication overhead. 

 

The offloading frameworks proposed for computational offloading based on 

system and application virtualization simply causes unnecessary overhead during 

offloading attempt to the remote servers (Shuja et al., 2016).  Thus, by evaluation and 

also complex procedure adopted in virtualizing the running states of machine to the 

remote cloud, it is considered resource-intensive as well as a time-consuming process.  

 

Many other researchers have proposed the method level computational offloading 

approach and claimed to have eliminated the complexity of partitioning and of 

unnecessary offloading as well as management overhead. The method level 

computational offloading concept was once used by Rim et al., (2006) to reduce the code 

size at the mobile device by transformation method and used Distributed Execution 

Transformer (DiET) to generate slim codes for heavy methods. The mobile device then 

downloaded the modified bytecodes and executed the application computation with the 

server. This whole transformation of codes would be heavy to process. It would also 

generate slim codes each time with each offloading method and thus rendering the method 

as time-consuming as well as resource-intensive.  

 

Meanwhile, Cuervo et al., (2010) had earlier presented MAUI, which is an 

energy-aware offloading system enabling fine-grained strategy during offloading to 
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remote infrastructure. In MAUI, offloading of application code to the remote server takes 

place at the method level. The ultimate goal of MAUI is to reduce energy consumption 

of the mobile device. This framework dynamically partitions the application into local 

and remote methods which are annotated by the developer using special annotation 

symbols. Consequently, the MAUI profiler determines the remote methods which are 

then offloaded to remote server. In terms of energy consumption, it has been established 

that offloading is not always beneficial. 

 

Thus, with each time offloading, the MAUI Profiler and MAUI solver are 

invoked. If the remote server is available, then the optimization framework decides 

whether or not the intensive components should be offloaded. Once the process of 

offloading method ends, MAUI profiler gathers information as a context which is then 

used to better predict any future computational offloading calls.  

 

Furthermore, the MAUI solver works to find the remote location where the 

offloading methods are executed. The MAUI profiler works as an input provider for 

MAUI solver. The authors have established that as the Round Trip Time (RTT) increases, 

the energy cost linearly increases almost for all the networks, including the same network 

type. It has also been concluded that high bandwidth (BW) technology and low RTT 

latency make computational offloading more preferable to attempt over Wi-Fi instead to 

offload over 3G which carries very low and inconsistent bandwidth. 

 

In addition, it has been concluded that offloading codes to a cloud server residing 

at the distant cloud with Wi-Fi drains more energy than the same offloading to a server 

nearby at single hop distance. The concept of local server by the name of surrogates or 

cloudlet which was first used by Satyanarayanan et al., (2009) has motivated the present 

researcher to reach a decision to use a nearby server rather than a remote cloud distant 

server for offloading the resource-intensive components of mobile applications. The goal 

of using any offloading techniques would be to minimize the local resources consumption 

and offloading overhead while using the MAUI profiler in this work would need extra 

resources such as CPU and energy itself to evaluate the individual method calls. 

 

Similarly, Kosta et al., (2012) have proposed ThinkAir, which is a concept of 

offloading at method level with integration of multiple VM images delegation to the cloud 
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server. The focus of executing parallel processing of intensive method codes at multiple 

virtual machine at the same time is to achieve energy efficiency of mobile devices. 

Kosta et al., (2012) have concluded that using a memory hungry tool for image 

combination shows that during processing, each application can send request to many 

virtual machines of high computational power simultaneously in order to complete its 

own complex delegated computations. This approach is beneficial in offloading and 

complex computation of delegated components.  

 

Nevertheless, the involvement of many virtual machine images altogether is a 

compute-intensive and resource-intense process itself for the local device and results in 

local mobile device overhead.  In addition, the method level computational offloading 

approach has been used in many studies by other researchers such as Dynamic 

Compilation and Method Execution by Chen at el., (2004), Cuckoo by Kemp et al., 

(2010), and Distributed Computational Offloading Framework (DCOF) by Shiraz et al., 

(2014). However, general quantitative analysis in all the computational offloading 

approaches is still missing. Furthermore, user requirements such as delay-tolerance 

threshold have yet to be considered. Although the static partitioning and method level 

computational offloading minimize the overhead, still there must be a proper resources 

management tool to predict offloading cost precisely and manage the whole process of 

offloading efficiently. 

 

2.9 Analytical Analysis of Method Level Computational Offloading Frameworks 

 

This section presents an analytical analysis of the three recently developed method 

level computational offloading frameworks.  With respect to the offloading techniques, 

the following aspects are critically reviewed and then analysed: partitioning, remote 

execution environment and reduction in communication data size. Chen et al., (2004) 

have used the concept of Java-based wireless communication where the mobile devices 

are leveraged with cross platform compatibility. The mobile device can work as a 

personal computer and can communicate to any kind of platform or member of the 

network family.  
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Table 2.4 Summary of Method Level Computational Offloading Frameworks 

  

The focus of Chen et al., (2004) research was to improve client-server 

collaboration by offloading computational task to the remote server for execution. In their 

research, they used dynamic partition of application at runtime, which is a resource-

intensive process (Shiraz et al., 2014). It needs to have an additional component act as an 

inference engine. This component decides at runtime based on the previous execution 

pattern or contextual information gathered by a sensor, to partition application. Any 

additional hardware (sensor) will consume more power. In addition, the deployment of 

inference engine needs additional computational at mobile device which is a resources 

intensive approach. As a result, more power is consumed.  

 

Furthermore, it has been established from the previous research works that calling 

the remote server through SOAP-based offloading techniques and using mobile networks 

(3G and 4G) would consume more power and would be resources-intensive. SOAP 

supports XML as a data carrier which is crowed wordy and increases mark-up overhead 

based on the analysis carried out in this research. It needs longer time to read as more 

data presented and therefore more time is needed to parse (Nurseitov et al., 2009).  

 

Moreover, 3G is used as a communication medium which is a low bandwidth 

network. In fact, some features of the existing works can securely offload the tasks for 

remote executions. However, this may also incur additional computations which will 

make the framework resource-intensive for mobile computing. 

Framework Partition Service 

Call 

Comm. 

Medium 

Remote 

Server 

Predefine 

Parameter 

Mechanism 

Data Size Reduction Contribution 

Dynamic 

Compilation 

and Method 

Execution 

(Chen et al., 

2004) 

Dynamic SOAP 3G/4G Cloud 

Server 

No Data compression         

(ejava.util.zip) 

Save energy 

Cuckoo 

(Kemp et al., 

2010) 

 

Dynamic SOAP 

(RPC) 

Wi-Fi Cloud 

Server 

No n/a Save energy 

 

DCOF 

(Shiraz, 

Gani, et al., 

2014) 

Static SOAP 

(RPC) 

Wi-Fi Cloud 

Server 

No Deployment of SaaS 

model and remote 

services 

Reduce data 

size and save 

energy 
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There is no any mechanism defined for considering the predefined conditions such 

as which network to consider as a communication medium before making an offloading 

decision. If a distant cloud server is configured as a remote execution environment, then 

it will increase RTT (Abolfazli et al., 2014). To reduce the size, an additional data 

reduction technique is defined. In order to reduce the communication data size during 

communication between the client device and the cloud sever, a data compression 

approach is used. This is done to reduce the communication data size in order to optimize 

communication energy process.  

 

As the data compression and decompression also incur some amount of energy, 

there are compression tiers introduced both on the client and the server device. The data 

are compressed into GZIP format through java.util.zip package before being sent through 

wireless medium. The receiving data are decompressed at the client device before 

proceeding to the same to application. Consequently, the energy to be consumed in 

compression and decompression overlaps with the operations of sending and receiving to 

minimize the consumption.   

 

The present research has fallen into the category of the first few approaches 

employed to save energy through computational offloading. From these approaches, two 

main conclusions can be made. Firstly, a low bandwidth network such as 3G is energy-

draining. Secondly, the service call made through SOAP, which is an old technique of 

calling remote services, takes longer time to parse and read. In addition, it also causes 

extra baggage of communication during offloading, which turns into heavy process.  

 

In this regard, Kemp et al., (2010) have presented a better concept in terms of 

reducing RTT using a good bandwidth medium; however, Kemp et al., (2010) have used 

a distant cloud server for remote execution of intensive tasks same as adopted by Chen et 

al., (2004).  Furthermore, Kemp et al., (2010) have dynamically partitioned the 

application at method level which has led to RTT and resources-draining issues.  

 

Moreover, the mobile network mediums (i.e., 3G and 4G) are replaced by a Wi-

Fi. There is no any mechanism defined for data compression or data reduction at the client 

device before offloading. As the dynamic partitioning of application is a resources-

intensive procedure (Shiraz et al., 2014), therefore DCOF has used the concept of static 
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partitioning to reduce the energy consumption during runtime partitioning of application. 

Additionally, SaaS model of cloud computing facilitates to provide software as a service, 

which is then approaches by the client device to utilize. 

 

Meanwhile, Shiraz et al., (2014) have deployed the SaaS model of cloud 

computing at the cloud server to reduce the overhead during offloading. This overhead is 

the key reason which sometimes increases RTT using a limited bandwidth medium. The 

SaaS model and remote services are configured at the cloud server which reduces the 

burden of client devices to offload portions of the application alongside of intensive 

computational data. This is due to the fact that if the remote services do not possess the 

complete operational codes of the application, then SaaS model of the cloud computing 

will assist in configuring the execution before executing the offloaded tasks.  

 

Distributed Computational Offloading Framework (DCOF) is resources-intensive 

due to the SOAP call. Shiraz et al., (2014) had configured a distant cloud server as a 

remote execution environment similar to that of the previous two research works.  

Nevertheless, there is no mechanism defined for including predefined parameters to 

consider prior to the offloading decision.   

 

The development in computational offloading solutions started in the year 2004, 

during which the whole application was offloaded for remote executions. In that year, 

Chun et al., (2004) presented a Roam System in which the whole application was 

delegated to the remote server for execution. It was soon realised that, instead of 

offloading the whole application, only the intensive parts should be offloaded because 

this could reduce the size of communication data.  

 

The concept of application partitioning such as DiET was developed by 

Rim et al., (2006). Further, DiET was used to execute the task at a single remote server 

which was then modified to a concept of using multiple remote servers. This concept was 

developed for faster execution by concurrent processing of the task at multiple servers. 

Goraczko et al., (2008) applied the concept of multiple servers in their mPlatForm work.  

 

As the distance of the remote server execution effect RTT, a novel of concept of 

Cloudlet was developed by Satyanarayanan et al., (2009) to reduce hop distance which 
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would then reduce the RTT. Satyanarayanan et al., (2009) presented the concept of VM 

and brought the cloud closer to the execution environment. The VM was used to bring 

automation in the partitioning and increase compatibility of the offloaded task executions. 

Execution of the whole application was dynamically partitioned and offloaded with a VM 

which then increased the additional computation in mobile device.  

 

The new concept was later developed in the year 2010 to reduce the additional 

computation. Kemp et al., (2010) applied the same concept of VM with partitioning 

application at method level. The method level partitioning concept was used by many 

other researchers in their works, such as MAUI, ThinkAir, and DCOF. This level of 

partitioning at method level is the partitioning of application at the smallest unit (level). 

It minimizes the chances of offloading the unnecessary tasks (components) and hence 

reduces computation “C” as well as size of communication data.   

 

More recently, the concept of code level offloading developed which is going 

counter the intensive operation procedure of the VM level. Shiraz et al., (2015) applied 

the code level offloading concept in the research ECOF. Code level offloading somehow 

exclude the VM deployment from offloading which further reduce the operational and 

computational overhead prior offloading.  

 

However, as for the present research was concerned, the three existing method 

level frameworks were studied and critically analysed either in terms of either the 

intensity of local computing or remote execution. All the selected frameworks 

partitioning application at method level were used to reduce the size of data and delegate 

the computational-intensive tasks for executions only.   

 

Based on the comparison of the three recent research works, it can be concluded 

that computational offloading would be effective only if the three basic parameters B, C 

and D are considered. Kemp et al., (2010) considered method level computational 

offloading; nevertheless, their research lacked the mechanism for reducing the size of 

communication data. Later, Shiraz et al., (2014) adopted the method level computational 

offloading using the static approach to partition application at method level. However, 

the cloud server was considered as a remote execution environment, whereas the long run 

RTT during offloading to the cloud server would drain the power. The mechanism for the 
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selection of predefined parameters was also lacking in their research.  Therefore, the 

traditional computational offloading frameworks (VM level), Class Level, Task Level 

and also the method level offloading frameworks would be resources-intensive if the 

basic three parameters in the design the framework are not considered.  

 

  It can be concluded from the literature review that the previous computational 

offloading frameworks have not been fully successful in making computational 

offloading an energy-saving solution. The techniques adopted either by whole application 

level migration or by virtual machine level migration are computational-intensive. They 

involve utilizing maximum resources which ultimately makes offloading a resources-

intensive procedure. The method level computational offloading techniques adopted is 

partially an effective approach by offloading the smallest unit (method) for remote 

execution. However, the dynamic partitioning and offloading to distant cloud increase 

RTT and consume more resources of mobile devices. Therefore, the previous research 

which worked on method level offloading have not been fully battery-saving.  In addition, 

to make the process of computational offloading beneficial, it is necessary to consider all 

the limited resources, limited bandwidth and compact size of mobile as well as the battery 

before designing the frameworks. Furthermore, the same mechanism for considering 

predefined parameters has been missing in the previous research works.  To deploy the 

computational offloading application, all the necessities need to be fulfilled in order to 

make the process lightweight for the mobile cloud computing environment.   

 

2.10 Summary 

 

This chapter has reviewed and discussed the concept of mobile computing, cloud 

computing, and mobile cloud computing. It has explained the limitations especially the 

battery power limitations of mobile devices supported by studies conducted worldwide. 

It has further discussed the best possible approaches for augmenting the limited resources 

of mobile devices. It has analyzed the taxonomy of battery augmentation techniques and 

further explained the different techniques which can be implemented by researchers and 

users to curtail battery consumption.  

 

It is also argued that the current computational offloading frameworks for Mobile 

Cloud Computing are the equivalent extensions of traditional computational offloading 
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frameworks for ubiquitous computing (i.e., mobile computing). Further, details of the 

computational offloading have been explained and discussed with all possible matrices 

and taxonomies which may influence the process of computational offloading. The 

review continues with an analysis of the previous research works based on all of the 

parameters and matrices as well as their efficiency in terms of their results. It has been 

concluded that the current approaches of computational offloading are heavyweight and 

deficient of addressing the limitations of mobile resources.  

 

In the final part of the review, the focus has been made on discussing the 

computational offloading frameworks based on method level computational offloading. 

In this regard, three most recent method level offloading frameworks have been selected 

and thoroughly discussed. These frameworks have been critically analyzed based on the 

parameters (partitioning technique, remote execution environment, service call, data 

reduction and mechanism for selection of predefined parameters). It is argued that any of 

the three mentioned method level computational offloading frameworks are resources-

intensive. As a result, power consumption of mobile devices has not been successfully 

reduced significantly. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Overview 

 

This chapter presents the research methodology adopted to achieve the goal of the 

research which is “A model for power efficiency of mobile devices through lightweight 

method level computational offloading”. The chapter is divided into four main sections. 

Section 3.2 includes the research approach adopted. Section 3.3 highlights the research 

phases carried out to reach the target. Section 3.3 is further divided into sub sections: Sub-

section 3.3.1 consists of the planning phase. Sub-section 3.3.2 includes the analysis 

(Problem Analysis), design (The Model, Operational Logic of Model Components, 

Application Execution Logic and Proposed Algorithm) and implementation phases. Sub-

section 3.3.3 describes the evaluation phase of the research. Sub-section 3.3.4 provides 

the comparative analysis while the last section 3.4 summarises the chapter. 

 

3.2 Research Approach 

 

Before proposing any solution, it is important to understand the power 

consumption first in terms of “where and how the power consumes” in any modern 

mobile device. A thorough investigation of power consumption of different mobile 

applications and system components of the target devices will be organized by conducting 

experiments to determine which mobile application and system component drains power 

the most. Once the power draining mobile applications and system components are 

identified, then the basic causes will be taken into account as predefined parameters for 

developing the model.  
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RESEARCH FLOWCHART
INTENSIVE READING FROM LEADING JOURNALS

                   Power Consumption Analysis of Mobile Devices(20 articles)
     Augmentation Techniques of Power Efficiency in Mobile Devices (20 article)

  Study of Computational Offloading Frameworks (40 articles)

                               Literature Review
 Dependency on Mobile Devices
 Limited Battery Life
 Battery Augmentation Approaches
 Analysis of Existing Computational Offloading Approaches
 Analysis of Method Level Computational Offloading 

Approaches

       Research Questions

 How to increase the performance of existing applications 
partitioning techniques for the purpose of reduction of 
computations and handling of the dynamic network 
changes? 

 How cloud server/surrogate machine affect RTT? 
 What are the possible offloading methods which  reduce 

the communications data size?

Problem Statement
 The existing application partitioning techniques are 

resources intensive
 Existing offloading techniques increases RTT and 

Computations 
 Offloading task to distant cloud increases RTT  

Methodology
 Gaps identified and analysis conducted.
 A lightweight method level Offloading Model proposed.
 Maximum predefined parameters and REST included to 

make offloading efficient in limited bandwidth.
 A middle layer installed near to IEEE 802.11 AP to reduce 

offloading distance to  single hop.
 The proposed model simulated and tested.
 Comparative analysis conducted to find out the efficiency.

Experiment Setup and Evaluation of Result
 Developed a Prototype Application for Local Processing and 

Remote Processing to Test the Execution Time and Power 
Consumption for a specific Time Slot. 

 The Prototype Application run for 30 different 
Computational Intensities at local and remote locations. 
Compared the Execution time and Power Consumption of 
both to get offloading efficiency. 

Objectives

 To develop a novel dynamic application partitioning 
method, for reduction of computations and handling of the 
dynamic network changes.

 To design the cloud server/surrogate machine for the 
execution of intensive tasks to reduce long run RTT.

 To develop and evaluate a lightweight offloading method 
for reduction of communications data size.

Design
 The model designedBased on the three new components. 

REST-offloading, novel dynamic partitioning and single hop 
surrogate in the existing offloading models. 

Motivation
 Mobile devices are increasingly becoming the crucial part of 

daily life while the limited power capacity of battery and 
embedded new features with coming year of available 
battery not let the device to operate for longer hours. 

RESEARCH GOAL
The development of a new Lightweight Method Level Model in 

order to address the intensive computational procedure of 

existing method level computational offloading frameworks

 

 

Figure 3.1 Research Flowchart  

 

Additionally, the traditional computational offloading frameworks/models 

emphasis on computational intensive mobile applications using different techniques at 

different granularity levels, thus implicates a mechanism which is resource intensive. The 

word traditional been inherited from the previous research works where it refers to the 

existing computational offloading methods (Shiraz et al., 2014). In traditional offloading 

the application profiling and partitioning at runtime utilizes maximum resources of SIDs, 
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as a result, the Turnaround Time (TT) and Energy Consumption (EC) costs of 

applications increases.  

 

The focus of this research is to reduce both, in order to achieve maximum 

throughput in minimum time along with curtailing the extra battery drain. The proposed 

method level computational offloading model is inspired by the concept once used in 

code transformation method (Rim et al., 2006). Rim (2006) partitions application at 

method level and offloads the heavy parts for remote execution; while a code 

transformation technique used at mobile device for reducing the code size by DiET 

(Distributed Execution Transformer) to generate slim codes for heavy methods. The DiET 

generator of slim code is an additional computational load on mobile device with each 

offload.   

 

This research intents to use REST (Representational State Transfer) which is an 

architectural style of World Wide Web and communicates over HTTP protocol, instead 

of slim code concept or sending whole executable codes direct to a server. REST was 

developed by Roy Thomas Fielding (Fielding, 2000). REST was initially developed to 

restructure the Web Applications while REST not been used as a carrier protocol in 

mobile computing for offloading purposes.  Subsequently, this research eliminates the 

necessity of generating slim codes for reducing the size of data as well as, replaces XML 

with JSON as a data carrier file which is comparatively more lightweight and fast parsing 

than XML. Normally in the past researches, SOAP (Simple Object Access Protocol) has 

been used to establish client server connection for transmission of data between Web 

Applications. The reason of using REST instead of SOAP is the portability, simplicity 

and lightweight nature. Hence, REST is more lightweight against DiET, SOAP and RPC 

(Giorgio et al., 2010).  

 

Furthermore, to reduce the delegation of computational intensive tasks to cloud 

server which resides at multi-hop distance; a middle layer solution is proposed which was 

first presented by Satyanarayanan et al., (2009) and used by Magurawalage et al., (2014). 

Offloading any computational intensive task direct to a distant cloud always result in a 

long run RTT which is resource intensive. In order to reduce the distance, Satyanarayan 

et al., (2009) used the concept of Cloudlet, which is a small cloud in the nearest computing 
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environment. Normally, the Cloudlet concept presented by Satyanarayan et al., (2009) 

were to install in the nearest café, library, coffee shop or any public place.  This research 

used a similar concept with further addition of a single hop where any personal computer 

(PC) connected to IEEE 802.11 access point acts as a cloudlet layer in between the client 

device and the cloud infrastructure. The cloudlet layer serves as a confined service in a 

faster communication approach of client device to offload. Again, on top of the middle 

layer, an algorithm was proposed in order to define maximum parameters before taking 

any offloading decision, such as to check network type and network bandwidth, thus, 

eliminates the issues of limited bandwidth and size of data to be offloaded. It will also 

consider an offloading decision, to either offload to the local cloud (cloudlet) or to execute 

the task using mobile device’s resources.   

 

The proposed algorithm encompasses the user preferences, applications 

requirement and maximum predefined parameters for a precise offloading decision. 

Application requirements contain the nature of application such as real-time, fidelity 

adaptive and intensive parts in terms of computation and communication. User predefined 

parameters comprise of reliability and secure offloading while predefined parameters 

include current battery level, type of network available, execution time and most 

importantly, the available network bandwidth. 

 

The proposed model will be developed and then will be evaluated in the 

simulation environment using SDK (Software Development Kit), Java and REST/SOAP 

APIs along with Glassfish Server. A prototype application named REST-Offload, 

Android-Local and Traditional-Offload will be simulated for testing the intensity of 

applications in terms of computation both on local and offloaded time. The Local 

Execution component of the prototype application will be designed to execute the whole 

application locally. Traditional offloading component will be designed using the SOAP 

offloading techniques, the cloud server for remote execution and the application will be 

partitioned dynamically based on the existing techniques.   

 

Furthermore, while offloading, each offload will be tested and the intensity of 

application will be analyzed in terms of resources utilization (battery consumption) and 

the Execution Time of application at mobile device and at remote server. The analysis 
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will be considering all three scenarios (Local Execution, REST-Offload and Traditional-

Offload). Accordingly, the power consumption of mobile device will be tested while 

executing the tasks locally as well as when offloading task to remote servers for 

execution. With 30 different computational intensities starting from 160x160-450x450, 

the Execution Time and Energy Consumption will be tested on all three scenarios. Each 

intensity will be tested 20 times for validation purposes. For further measurement of 

precisions, the value of sample mean for each experiment will be calculated which is 

signified with 99% confidence interval for the sample space of five values. The 

lightweight nature of the proposed computational model will be tested and validated by 

the comparison of REST-Offload results of computational intensive tasks execution 

against the benchmarks. 

 

3.3 Research Phases 

 

By onion approach, peeling the layers one after another, the research is carried out 

in few fundamental phases, which are presented in Figure 3.2. Starting from the planning 

phase, the research proceeds to analysis phase processes which are reviewing articles, 

identifying gaps, designing research questions and defining objectives. The analysis 

design and implementation phase consist of analysis of problem, designing the model and 

proposing algorithm for pre-defined parameters. It also includes the implementation of 

model and selection of dataset. The last phase consists of the evaluation and testing of the 

model.  
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Collection and Carrying out Literature Review 

Define the Research QuestionsIdentify and Define Gap

Identify  Problems

Determine Aims and Objectives

Planning Phase

Propose algorithm for 
Predefined Parameters

Designing of  Light Weight 
Framework

Analysis of Problem

Analysis, Design and Implementation 
Phase

Test Developed Framework ConclusionAnalysis of the Results

Evaluation Phase

Implementation of Framework

Selection of Data Set

Comparative Analysis

Compare The Framework with 
related works

Execution Time and Power 
Consumption

 

Figure 3.2 Operational Model
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3.3.1 Planning Phase 

 

The planning phase is the starting phase of the research which consists of many 

sub-phases including the literature review. In the literature review, the main problems are 

identified first before precisely identifying the research gap.  A total of 80 articles closely 

related to the title of the research, published between 2009 and 2016 collected from 

different standard journals indexed in ISI and Scopus are critically reviewed. The total 

articles are divided into two groups. One group of articles were discussing the problem 

in general and consists of about 60 articles which were reviewed for understanding the 

background of problem. After understanding the overall problem of insufficient capacity 

of mobile battery power, the researcher investigated other problems and their possible 

solutions. In addition to that, the researcher sought to identify other research approaches 

that had been used in addressing the problem in the past. The second group of 20 articles 

investigated the specific gaps identified in the first group of articles reviewed. In this 

second group of articles, the different research frameworks and models based on 

computational offloading developed in the near past were studied critically and then 

compared and analysed in order to identify the research gap. 

 

At the completion of review stage, it is observed that the previously proposed 

models on computational offloading are unnecessarily complex to configure and heavy 

to operate while utilizing maximum resources of the mobile device; which ultimately 

causes additional consumption of power. Furthermore, traditional computational 

offloading models that focus on computational intensive mobile applications using 

different techniques at different granularity levels, implicates a mechanism which is 

resource intensive. The application profiling and partitioning at runtime utilizes 

maximum resources of SIDs, as a result, the turnaround time and energy consumption 

cost (ECC) of applications increases. The focus of this research is to reduce both 

(execution time and energy consumption), in order to achieve maximum throughput with 

minimum time along with curtailing the extra battery drain. Moreover, the existing 

models have not precisely considered the three basic parameters (available bandwidth B, 

size of data D and the computation required C) which are important for any computational 

offloading model to produce efficient results.   
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Based on the shortcomings of existing computational offloading models, the 

research questions which were not yet completely answered by the previous research 

works were identified. Further to that, to answer the research questions, the goal of the 

research and objectives of the research were determined.  The goal of the research is to 

develop a model in order to minimize the additional computation at mobile device by 

offloading the computational intensive tasks. However, the proposed model must avoid 

the additional computation of application partitioning which has not been addressed in 

the existing computational offloading frameworks/models. Furthermore, the size of data 

exchange between mobile device and the remote execution counterpart must be reduced 

in order to minimize RTT. If RTT is reduced, it will reduce the power consumption 

(Kumar et al., 2011).  

 

3.3.2 Analysis, Design and Implementation Phase 

 

In this phase of the research, the problem was analyzed first. Based on the 

observation of problem analysis, the model was designed and then implemented through 

simulation in order to test its efficiency against traditional computational offloading 

frameworks/models.  

 

3.3.2.1 Analysis of the Problem 

 

The analysis phase consists of analysis of problem which determines the design 

adopted in this study. The traditional offloading solutions (VM Level, Whole Application 

Level and Method Level) which involved in dynamic runtime migration of the resource 

intensive components of mobile applications create resources management overhead 

(Hung et al., 2012). Enormous computational offloading frameworks and models used 

dynamic application partitioning and profiling techniques (Giurgiu et al., 2009; Cuervo 

et al., 2010; Chun et al., 2011; Shiraz et al., 2014). All the traditional computational off- 

loadings are focused on how to partition runtime application, how and where to offload 

the intensive parts. However, the offloading models have failed to consider the additional 

cost of runtime migration of offloading parts.  It has been analyzed that the traditional 

offloading models with offloading intensive parts through dynamic partitioning to distant 

cloud are resources intensive; as a result, the execution time and energy consumption 
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increases. The resource intensive problem of traditional offloading analyzed in terms of 

Execution Time (ET) and Energy Consumption (EC) as: 

   

I. Analysis of the Energy Consumption (EC) Cost 

 

The energy consumed using traditional computational offloading techniques 

during runtime computation offloading is denoted by Total Energy consumption (ET) in 

Joules (J). The total energy consumption (ET) is equal to the energy consumed in saving 

the data states of running instance of application to offload, energy consumed in runtime 

component offloading, energy consumed for uploading the remote executable methods to 

remote server, energy consumed in idle time waiting for results to come and energy 

consumed in returning the result data (download result) files to mobile device. Therefore, 

the total energy consumption for each component of mobile application offloaded at 

runtime to remote server is given by the following equation:   

 

                        ET = ES+ EM+ EUP + EI + EDW                                             3.1 

Where, 

 

ES- Energy consumed in saving running app states: represents energy consumed in saving 

the running instances of the mobile application.   

EM- Energy consumed in component Migration (EM): represents the energy consumed 

during offloading intensive component of mobile application. 

EUP- Energy consumed in Uploading preferences (EUP) represents energy consumed in 

uploading the data file (which is known as preferences file) to remote server node at 

runtime.   

EDW- Energy consumed in Downloading result file (EDW): represents energy consumed 

in downloading the resultant data file to mobile device.   

As there are several components of each application to offload that may be 

intensive, then, let E denotes the finite set of total energy consumption for runtime 

offloading all the intensive components of mobile application to remote server. Then E 
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can be calculated as: Lets ECa represents the cost of energy consumption for runtime 

offloading a single component of the mobile application. Whereas a=1, 2… n.   

 

∴  E= {EC1, EC2,…, ECn 

  

As ECA denotes the energy consumption of a single component which is a positive real 

number, hence, by using the set builder notation ECA is represented as:   

 

E = {ECa: ECa ∈  R ˄ ECa > 0}        Where a=1, 2,…,n 

 

The energy consumption of a single component belongs to the set of real numbers 

and is greater than 0. Next, the total energy consumption of a runtime offloading 

application is equal to the sum of energy consumption cost of all the instances a=1, 2,…, 

n. Let β denotes the total energy consumption of the runtime application offloading of all 

the instances ECa, where a=1,2,…, n. 

Therefore, β is represented as follow:    

   

β = (EC1+ EC2 +…+ ECn)     ⟹   ∀  ECa ∈ E ˄ |E| ≥1    where a=1, 2,…,n 

 

By using the summation notation, the total energy consumption cost β of runtime 

computational offloading of mobile application is represented in Equation 3.2 as bellow:  

 

                       β =  ∑ E𝐶𝑎
𝑛
𝑎=1      ⟹  ∀  ECa ∈ E ˄ |E| ≥1                               3.2 

 

Equation 3.2 describes that for all the ECa’s which denotes the energy consumption 

of each  component at runtime offloading, belongs to the set of total energy consumption 

E and cardinality of set E must be greater than or equal to 1. E is the set of energy 

consumption cost of the components of the mobile application which are offloaded at 

runtime. The precondition validates that E is a non-empty set.  One component (EC1) of 

Equation 3.2 was considered to be evaluated and analyzed for energy consumption. 
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Table 3.1 Energy Consumption Cost EC1 of Offloading Matrix Multiplication 

Service in Traditional Computational Offloading 

 

This component carries 30 different computational intensities (160x160-450x450) 

with the increase of 10 in each higher intensity. The Energy Consumption Cost (EC1) of 

runtime computational offloading of the Matrix Multiplication service was calculated 

using Equation 3.1. The Energy consumption results of traditional computational 

offloading techniques are displayed in Table 3.1. The lowest and highest intensities are 

given as sample while the results of intensities in between are presented in Table A.1 in 

Appendix A. 

 

The size of a matrix shows the dimensions of matrices which are going to be 

multiplied. The Energy consumption cost in Joule (J) indicates the mean energy 

consumption of a sample space of 20 values in each experiment. In order to know 

variations in the values of sample space, the standard deviation (SD) is calculated. The 

confidence interval column shows the range of the sample mean calculated of the whole 

sample, 20 values in each experiment with 99% confidence. Figure 3.3 displays the 

energy consumption of matrix multiplication during runtime offloading in traditional 

offloading techniques.  

 

 

 

 

 

 

 

 

 

Figure 3.3          EC cost of matrix multiplication in traditional offloading 

Matrix 

Size 

Energy Consumption Cost (J) Standard 

Deviation 

(SD) 

Confidence 

Interval CPU (J) LCD (J) Wi-Fi (J) Total 

consumption (J) 

160x160 3.9 1.4 2.5 7.72 0.420714 7.8(+/-)0.966 

450x450 78.4 7.9 15.2 102.08 8.517159 101.5(+/-)1.388 
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It shows that as the size of matrices increase, the complexity increases and as the 

complexity increase the energy consumption cost also increase. Based on all the collected 

results as displayed in Table A.1 Appendix A, the energy consumption cost of matrices 

160x160 offloaded at runtime is 7.72 J which is approximately equal to energy 

consumption of matrices 180x180 and 200x200. It shows that the runtime offloading 

component is not much complex to process and hence consumes an average 10J. As the 

complexity increases with the size of matrices such as 260x260 and so on until 440x440, 

the energy consumption cost reaches up to 80 J.  The total percentage of increase in energy 

consumption between 160x160 and 440x440 is about 1300%. The analysis of results 

shows that using traditional offloading that works on runtime computational offloading 

with virtual machine migration or whole application migration are energy intensive 

because they need much energy to manage resources and to handle calculations.  

 

II. Analysis of Execution Time (ET) Cost 

 

The time consumed by traditional computational offloading frameworks/models 

during runtime computation offloading is evaluated by Time Cost (TC) in Joules (ms). 

The total time cost (Tc) is equal to the time consumed in saving (TS) the data states of 

running instance of application to offload, time required in runtime component offloading 

(TO), time required for uploading the remote executable methods to remote server (TU), 

time required in idle time waiting for results to come and time for returning the result 

(download) data files (TD) to mobile device. Therefore, the total time consumption for 

each component of mobile application offloaded at runtime to remote server is given by 

Equation 3.3 as:   

 

                                 TC = TS + TO + TU + TD       3.3 

 

As there are many components denoted as intensive and needed to offload, let T 

denotes the finite set of total time consumption for a runtime offloading all the intensive 

components of mobile application to a remote server. Then T can be calculated as: 

 

Let TCa represents the cost of time for runtime offloading a single component of the 

mobile application, where a=1, 2… n   
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∴ T= {TC1, TC2,…, TCn} 

 

As TCA denotes the time consumption of a single component which is a positive 

Real number. Hence, by using the set builder notation TCA is represented as:  

  

T = {TCa: TCa ∈  R ˄ TCa > 0}        Whereas, a=1, 2,…,n 

 

The time consumption of a single component belongs to the set of real numbers 

and is greater than 0.  Next, the total time consumption of a runtime offloading application 

is equal to the sum of time consumption cost of all the instances a=1, 2,..., n. Let ϒ denotes 

the total time consumption of the runtime application offloading of all the instances TCa, 

whereas a=1, 2…., n. Therefore, ϒ is represented as:     

  

ϒ = (TC1+ TC2 +…+ TCn)     ⟹   ∀  TCa ∈ T ˄ |T| ≥1    whereas a=1,2,…, n. 

 

By using the summation notation, the total time consumption cost of runtime 

computational offloading of mobile application is represented in Equation 3.4 as follow:  

 

                            ϒ =  ∑ T𝐶𝑎
𝑛
𝑎=1   ⟹  ∀  TCa ∈ T ˄ |T| ≥1                              3.4 

 

Equation 3.4 describes that for all the TCa’s which denotes the time consumption 

of each component at runtime offloading, it belongs to the set of total time consumption 

T and cardinality of set T must be greater than or equal to 1. T is the set of the time 

consumption cost of the components of the mobile application which are offloaded at 

runtime. The precondition validates that T is non empty set.  One component of Equation 

3.4 (TC1) considers and the time consumption cost of the component (offloading matrix 

multiplication component) of the prototype application at runtime offloading is evaluated 

for 30 different computational intensities (160x160 to 450x450).   

 

The prototype application developed consists of one component; matrices 

multiplication services. This service gets two random matrices as an input from the user 

then offloads the matrices and performs the multiplication operation at server which is a 

computational intensive operation. The prototype application is developed using SOAP 

as a carrier protocol while application partitioned at method level and then migrated to  
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Table.3.2 Time Consumption Cost TC1 of Offloading Matrix Multiplication Service 

in Traditional Computational Offloading 

 

 

remote cloud servers for processing. By runtime computational offloading with the 

traditional approaches, multiplying matrices are evaluated for 30 different computational 

offloading intensities 160x160 to 450x450 with the increase of size 10 with each intensity. 

The total Execution Time (TET) and total Energy consumption (ET) are evaluated by 

offloading the service components of mobile application at runtime. Table.3.2 shows the 

Execution Time of the component Matrix Multiplication during runtime offloading. The 

result displays highest and lowest intensities as samples while the complete results of all 

30 intensities are given in Table B.1 Appendix B. The attribute of matrix dimensions 

shows the size of matrices to be multiplied and the time consumption cost in milliseconds 

(ms) indicates the mean time consumption of a sample space of five values in each 

experiment. To know the variation in the values of sample space, standard deviation (SD) 

is calculated. The confidence interval column shows the range of the sample mean 

calculated of the sample five values in each experiment with 99 % confidence. Figure 3.4 

displays the time consumption of matrix multiplication during runtime offloading in 

traditional offloading techniques.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 ET cost of matrix multiplication in traditional offloading 
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It shows that, as the size of matrices increases, the complexity increases and as 

the complexity increases, the time consumption cost also increases. While offloading, the 

execution time cost increases with the increase of uploading data size (matrix size). It also 

increases due to saving the running states of application each time. The time consumption 

cost of matrices 160x160 offloading at runtime is 9608ms which is approximately equal 

to time consumption of matrices 180x180 and 200x200. It shows that the runtime 

offloading component are not much complex to process and hence consume an average 

10000 ms. As the complexity increases with the size of matrices such as 260x260 and so 

on until 440x440, the time consumption cost reaches up to 189,523 ms.  

 

The analysis of entire results shows that by using traditional offloading techniques 

based on virtual machine migration, the whole application migration and dynamic method 

level migration to cloud servers are time consuming. It involves much time to manage 

resources and handle calculations. The distant cloud execution increases RTT which 

causes extra battery drain.  Further to that, the analysis of problem phase surfaces the 

causes of why traditional computational offloading is resource intensive and it helps in 

designing the proposed offloading model of this research.  

 

3.3.2.2 Designing of the Lightweight Model 

 

After the complete analysis of problem which is “runtime migration of 

computational intensive tasks to distant cloud (cloudlet) are resources intensive”, the 

observation is tabulated in analysis phase. Based on the observation of analysis phase, a 

model for power efficiency of mobile devices through a new lightweight method level 

computational offloading is designed. The real experimentation devices have been 

selected to implement the model. This selection was made to observe the real battery 

consumptions. There is a possibility to script the mobile battery in the existing CloudSim 

tool, however, modifying CloudSim for the battery consumptions might change the 

parameters and may affect the accuracy of the results. Therefore, the use of CloudSim 

has been avoided. The test setup is adopted from the literature where most of the previous 

research works conducted the experiments in the similar way using real device. The setup 

consist of Mobile device, Remote Computing Device, Network Device and Simulations 

as shown in Table 3.3. The rest of the details on designing the proposed new lightweight 

method level computational offloading model is provided in Section 4.3, Chapter 4. 
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Table 3.3  Test Setups of Previous Research Works 

 

Research Works Mobile Component Computing 

Component 

Network Component 

Cuevro et al., 

(2010) 

Mobile Device Maui Server Wi-Fi & 3G 

ThinkAir et al., 

(2012) 

Mobile Device Cloud Server Wi-Fi 

Shiraz et al., 

(2015) 

Mobile Device 

(Smartphone) 

Cloud Server Wi-Fi (radio type 802.11 g) 

Shuja et al., 

(2016) 

Mobile Device 

(Smartphone) 

Cloud Server Wi-Fi 

 

3.3.2.3 Implementation Phase 

 

Once the completion of designing phase completed, the model is then developed 

and evaluated in the simulations environment using SDK (Software Development Kit), 

Java and REST/SOAP APIs along with Glassfish Server. Three components of the 

prototype application have been developed. SOAP-Offload is developed to analyze the 

results of traditional computational offloading in terms of execution time (ET) and Energy 

Consumption (EC) based on method level offloading to remote cloud servers. The 

Android-Local is developed to collect results of the computations performed pure locally 

at mobile device while REST-Offload is developed based on the proposed model to 

identify the ET and EC of intensive components at surrogate. Matrix multiplication in 

mathematics is considered one of the computational intensive (computational complex) 

calculations. Matrix multiplication was selected, in order to test the three developed 

porotype components for ET and EC, to analyze the performance (ET and EC) of each 

scenario. 

 

3.3.3 Evaluation Phase 

 

The significance of the proposed model is evaluated by simulating in real mobile 

cloud computing environment. A prototype application Android-Local, Android-Soap, 

and REST-Offload is developed for android mobile devices, in order to test different 

computational intensities in all three scenarios.  The execution performance of application 
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is conducted in reference with execution time of application (response time) and power 

consumption during execution. A process of evaluation was organized in order to test the 

model. The dataset selected are of 30 different computational intensities of matrix 

multiplication starting from 160x160 to 450x450. Each intensity was tested five times for 

validation purposes. For further measurement of precisions, the value of sample mean for 

each experiment was calculated which is signified with 99 % confidence interval for the 

sample space of five values. The lightweight nature of the proposed computational model 

was tested and validated by the comparison of REST-Offload results of computational 

intensive tasks execution using traditional offloading frameworks/models and of local 

execution at mobile device. Furthermore, to measure the efficiency of the model, the 

percentage efficiency equation has been used. This equation calculates the percentage 

efficiency in execution time and power consumptions against the local and traditional 

computational offloading. The equation used is:  

 

Y= P% * X        3.5 

 

Where, Y is the first variable referred to the execution time and energy consumptions 

while X referred to the parameters of local and traditional offloading. All the empirical 

results were collected by conducting experiments with (DUTs) of two different vendors 

Samsung Galaxy A5 and ASUS Zenfone5. By the same comparison, the significance of 

the proposed solution is proved in this research. The experimental setup has been 

elaborated here, along with the tool used in these experiments, techniques for collection 

of data and statistical techniques used for operating the collected data for meaningful 

results.  

 

3.3.4 Comparative Analysis  

 

In order to justify the results of the proposed lightweight method level 

computational offloading model, the recent research work, closely related to the proposed 

model was selected. The commonalities of all the selected models are stated based on the 

design of the model. Further, all the differences of the models are tabulated and discussed. 

At the end, the results of the proposed method level offloading model then compared to 

the benchmarking data collected from the previous research works, individually with the 

results of each selected model in terms of ET and EC. Likewise, the percentage efficiency 
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of each model was compared and contrasted against each other. At the end, efficiency of 

the proposed model drawn against all the three approaches in terms of ET and EC. 

 

3.4 Summary 

 

This chapter was designed to state the methodology adopted for achieving the goal 

of the research. The goal of the research is to design and develop a framework for power 

efficiency of mobile devices through lightweight method level computational offloading. 

Starting from the planning phase of the research, the research carried out into analysis 

into analysis phases.   

  

Based on the outcome from the analysis phase the model was designed. The 

designed model is then implemented by developing a porotype application in real mobile 

cloud computing environment. In the evaluation phase the data set was selected for testing 

and evaluation purpose. In the last phase of the research (Comparative Analysis) the 

results of REST-Offload are comparatively analysed with the three most recent method 

level computational offloading frameworks/models. Based on the analysis results the 

efficiency in terms of EC and ET obtained. 
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CHAPTER 4 

 

DESIGN AND IMPLEMENTATION  

 

 

4.1 Overview 

 

This chapter presents the proposed lightweight method level computational 

offloading model in order to address the heavy procedural issues of traditional 

computational offloading approaches. The chapter is divided into six sections. Section 

4.1 gives an introduction to the chapter. This is followed by Section 4.2 which discusses 

the relationship between computational offloading and execution time. Then, Section 4.3 

describes the proposed lightweight method level computational offloading model while 

Section 4.4 explains the operational logic of the proposed model and presents the 

proposed computational offloading algorithm. Meanwhile, Section 4.5 provides details 

of implementation, evaluation of the proposed model, and also includes data gathering 

procedures of the experiments conducted. Finally, Section 4.6 concludes the chapter.  

.  

4.2 Computational Offloading and Execution Time 

 

The mobility of mobile devices and the changing network bandwidth have led the 

traditional computational offloading frameworks or models to employ the heavyweight 

procedure for processing of the intensive components of mobile applications. Due to the 

limited feature and fundamental limitations in wireless networks, lightweight 

computational offloading models would be needed in order to achieve the best possible 

results. The traditional computational offloading basically works in three parts, namely, 

initialization of offloading, offloading of intensive task to remote servers and execution 

of the task at remote server. During the first phase, the network information, availability 

of servers and contextual information would be gathered by using sensors. Then, during 
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the second phase, VMinstance would be created in the local mobile device where the 

application partitioning and migration of the VM instance would take place. Altogether, 

this whole process of three phases would be a heavyweight computational intensive 

process itself and could not produce potential results. Thus, a lightweight method level 

computational offloading model was proposed to address the limited computational 

performance of mobile device and limited bandwidth of transmission. In this chapter, the 

architecture of the proposed solution is modeled and the operating procedures are 

explained. Compared to the traditional offloading frameworks or models, the proposed 

lightweight computational offloading model would result in an efficient gain in the 

performance of mobile devices. Compared to local execution, the execution time of the 

applications would significantly be reduced. Therefore, this would directly affect battery 

consumption and its life. 

 

The turnaround time (TT) of an application to offload is very important to be 

considered before making the offloading decision. It has been claimed that a longer TT 

would affect the battery (Kumar, 2011). In addition to that, the applications such as speech 

recognition, natural language translation and image manipulation would need to have real 

time processing. Only the spontaneous processing for all the real time systems would 

render the system to be a useful tool.  Numerous past studies have claimed that 

computational offloading would lead to saving considerable amount of the battery life 

while reducing the TT. In principle, while processing offloading to remote servers, the 

mobile device resources would need to be free of computational load. However, it should 

be kept in mind that mobile device would need to use sufficient amount of energy during 

activities such as establishing a connection with remote server, sending a request, waiting 

until a task would be completed and obtaining the result back and then closing the 

connection.   

 

The whole process starting from establishing a connection to remote servers until 

closing the connection after completion would take a significant amount of time (Kumar 

et al., 2011). The longer the TT, the poorer the performance of CPU would be. In addition, 

the fluctuating lower bandwidth would cause lengthier TT while transmitting huge 

amount of data. The relationships between TT, communication bandwidth, amount of 

data to be exchanged, mobile speed, server speed, and energy consumption are illustrated 

in Figure 4.1. An increase in TT would increase battery consumption; thus, if the total 
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energy consumption during the whole process is less than the amount needed by the 

mobile device to consume on its own execution, then offloading would be effective.  

 

4.3 The Model 

Traditional computational offloading models have adopted different approaches 

for computational intensive mobile applications using different techniques at different 

granularity levels. This would implicate a resource intensive mechanism. A middle layer 

solution was presented for the first time by Satyanarayanan et al. (2009) and the same 

solution was also used by Magurawalage et al., (2014). Offloading any computational 

intensive task direct to a distant cloud would eventually result in resource intensive due 

to long run RTT. 

ServersMobile Device

DT  + DRTM TS

BT + BR

           TM- Time taking in processing at Mobile

           TS- Time taking in processing at Server

           DT- Data need to transmit

           DR- Data need to receive

           BT- Transmission bandwidth

           BR- Receiving bandwidth

By a general fact, 

TM > TS (Server Speed is always high than Mobile's 

Speed)

 

Now, offloading will be effective only if

TM > RTT whereas,

 

RTT = DT / BT + DR / BR + TS

TOffload

 

Figure 4.1 Computational Offloading and Execution Time/Turnaround Time 
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 In order to reduce the distance to a single hop, a cloudlet layer would be used and 

installed next to IEEE 802.11 access point, in between the client devices and its cloud 

infrastructure. This cloudlet layer would serve as a confined service which is in the fast 

approach to client device for offloading the task.  

 

The single hop surrogate is the modified concept of existing cloudlet. The hop 

distance would affect RTT. This had been analyzed by Aiguo et al. (1998) who stated in 

their findings as shown in Table 4.1 that if hope count increased, the packets would have 

to go through many routers. At each router, the packets would have to consume a certain 

amount of time to be routed for the next router and this would be repeated continuously 

until reaching the destination. Thus, at each router, packet delay would occur and this 

would increase the overall delay as the hop count increased. Figure 4.2 illustrates the 

conceptual diagram of a mobile device that is connected to remote the servers through 

single hop, limited multi-hop and unlimited multi-hop.  

 

The multi-hop which consists of unlimited hops is the initial concept where the 

distant cloud server has to serve as a remote computer. The cloudlet concept has brought 

the cloud closer to the computing environment and reduced RTT (Satyanarayanan et al., 

2009). The last one which is a single hop, is the modified concept of this research which 

is presented to bring the computing to a single hop and reduce RTT further.   

 

Table 4.1 The Hop-Count and Average Delay 

 

Region Average Hop Count Average Delay 

WEST 10.7 33.6ms 

Mountain 13.7 60.2ms 

Central-East 14.4 94.8ms 

East 15.5 99.3ms 
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Figure 4.2 Mobile device connection to remote servers through single hop, limited 

multi-hop and unlimited multi-hop 

 

Furthermore, in traditional offloading models, offloading takes place at VM level, 

application level, task level and method level. All the three levels, namely, the VM level, 

the application level and the task level would involve extra computation in the local 

device and would therefore be resource intensive. In the proposed solution, offloading 

would take place at the method level where computational intensive methods would be 

identified before taking offloading decision. This concept was once used by Rim et al., 

(2006) to reduce the code size in the mobile device by transformation method and 

developed Distributed Execution Transformer (DiET) to generate slim codes for heavy 

methods. The mobile device would download the modified bytecodes and execute the 

application computation with the server.  

 

This whole transformation of codes involves heavy processing and generates slim 

codes each time with each offloading method; thus, this would be time consuming as well 

as resource intensive.  In the proposed lightweight method level model, REST 

(Representational State Transfer) which is an architectural style of World Wide Web 

communicating over HTTP protocol was used instead of the slim code concept or sending 

whole executable codes directly to the sever. Normally in the past solutions, Simple 
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Object Access Protocol (SOAP) had been used to establish client service connection and 

transmit data. Instead of SOAP, REST was used because of its portability and lightweight 

as well as simple nature.   

 

On top of the middle layer, an algorithm was proposed for the purpose of taking 

decision, and offloading either to the local cloud (cloudlet) or executing the task using 

the mobile device’s resources. The proposed algorithm encompasses user’s preferences, 

application’s requirement and maximum predefined parameters in order to take useful 

offloading decision precisely. Application’s requirement includes the nature of the 

application such as real-time, fidelity adaptive and intensive parts in terms of computation 

and communication. User predefined parameters comprise of reliability and secure 

offloading while predefined parameters include current battery level, type of network 

available, execution time and most importantly, available network bandwidth.  

 

Figure 4.3 shows the architectural diagram of the proposed light weight method 

level computational offloading model. Every computational offloading approach in the 

present study consists of the following three main components: the mobile component, 

the server component and the communication medium. Each main component has many 

sub-components. The novel aspect of the proposed model is the combination of the 

concepts from the two previous offloading frameworks or models. The first concept 

revolves around the cloudlet where a middle layer is deployed between a mobile device 

and the cloud infrastructure in order to reduce the distance of delegating tasks to a server 

at single hop distance referred to as a cloudlet layer by Satyanarayanan et al., (2009).  

 

There are a several reasons why the cloudlet is used instead of cloud. The main 

reason is the cost. If the mobile client has internet access and uses it, this would incur 

certain amount of cost and if the client is connected to a local server with an available 

Wi-Fi network, this would eliminate such cost. 
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Figure 4.3 Model of RESTOffload 

 

Latency is the second fundamental reason why the cloudlet is used. Despite 

connection of the network bandwidth to the internet has been rapidly increasing over the 

past few decades, the issue of latency has not been addressed equally rapidly and 

convincingly.  In this regard, latency causes inappropriate cloud computing in certain 

cases such as in real-time processing, considering that response time is very crucial.  

 

Bandwidth is the third most important reason. Although mobile internet speed is 

increasing with each coming year, it is still very slow compared to the speed of locally 

connected WLAN networks. This reduces the effectiveness of cloud computing in special 

cases such as in data intensive situations like speech recognition, natural language 

translation and image manipulation.  Hence, the model of the proposed solution consists 

of these three main components: 1) Mobile Component; 2) Server Component; and, 3) 

Communication. 
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4.3.1 Mobile Component 

 

Mobile component of the model is deployed to the mobile device. This component 

of the model is capable of processing application. The application processing would first 

start in the mobile device if the complexity of application is less than the value of 

predefined conditions (Execution Time, Battery Level and Available Network). Mobile 

components usually consist of the following sub-components.  

 

4.3.1.1 Application Profiler 

 

Application profiler is the essential component of any offloading system which 

drives the automatic evaluation of resources during offloading. Computational offloading 

models employ various kinds of application profiler. This is because the kind of 

application profiler to be used depends on its function, for instance, dynamically 

evaluating the availability of resources such as RAM, battery level, network availability 

and types of networks. Therefore, for evaluating different kinds of information, different 

profilers were used. The application profiling components in the proposed model was to 

evaluate maximum resources before taking an offloading decision. These application 

profiling components determine the feasibility of application partitioning and tasks 

offloading. Based on the information collected by the application profiler, a decision 

would be made either to execute task locally, offload the task or terminate the task. In 

RESTOffload model, the application profiler operates along with the execution manager 

to dynamically switch between local execution and remote execution based on the 

evaluated information regarding the battery, the network and the execution time.  

  

4.3.1.2 Local Execution 

 

Mobile application component of the proposed model consists of local execution 

and offloading. Local execution component encompasses the complete executable codes 

and could process the application completely. Local execution of the application is always 

the first priority to try during processing. This is due to the variation in the communication 

bandwidth and the uncertainty of available surrogate servers which would sometimes fail 

to provide efficiency in terms of power and performance. Additionally, the offloading of 

application parts, which are easy to process locally, would put transmission overhead. 
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This would ultimately cause loss of power and loss of performance.  The offloading of 

executable codes would be beneficial only if the energy needed to consume during 

offloading is less than the energy consumption of the mobile device to process tasks using 

its local processing resources.   

  

4.3.1.3 Application Partitioning 

 

The first step before offloading is application partitioning. It divides the 

application into non-offloadable (local) and offloadable components. Non-offloadable 

means that the components are to be held in the mobile device for local execution while 

offloadable means that the components migrate to server for execution.  

 

Application can be partitioned either dynamically or statically. In the dynamic 

partition of the application, one additional component, that is, the inference engine, needs 

to be installed for inferencing the offloading decision based on the contextual information 

collected by the application, the mobile device, the remote server and the network load 

(Shiraz et al., 2013; Akherfi et al., 2016). The inference engine would also need to read 

loads of the mobile device’s resources (i.e., memory, and CPU) and available battery 

level. All this information could be collected either from the sensors or the previous 

execution pattern. The inference engine then evaluates the information and takes a precise 

decision. Compared to static partitioning, dynamic partition takes more precise decision 

at runtime to avoid offloading of unnecessary component. However, due to the 

involvement of inferencing component sensors and the continuous changes of execution 

pattern due to dynamic changes, dynamic partition utilizes more resources of the mobile 

device thus rendering it a resources intensive approach (Shiraz et al., 2014).   

 

In order to counter the intensiveness of dynamic partitioning of the application, 

the static partitioning approach is used. Nevertheless, both the approaches have their pros 

and cons.  In case of the static partitioning, the additional computation is eliminated in 

the mobile device by eliminating the inference engine and the sensors. The programmers 

would annotate intensive components through a special Application Programming 

Interface (API) as an offloadable component (Akherfi et al., 2016).  In the static 

partitioning approach, the decision of the partitioning is made at compile time (design 

time).  
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4.3.1.4 Novel Dynamic Partitioning in Source Code 

 

In order to avoid the complexity in terms of resources utilization and execution 

time of previously used partitioning techniques, the partition of application at source code 

was proposed in RESTOffload. Partitioning of application can be either be static or 

dynamic. Both types of technique would have some intrinsic limitations. Static 

partitioning takes place at compile time through manual annotation of intensive methods. 

This would reduce the computations “C”; however, it would not be able to cope with the 

changes occurring in the execution environment due to the mobility of the users moving 

from one location to another.  

 

By contrast, the dynamic partitioning automates the partitioning of the 

applications. This type of technique would be able to cope every dynamic change of the 

execution environment; however, the pattern of execution would change each time with 

every new change in the network. Thus, the computation in the mobile device would 

increase and hence, would be resource intensive.  

 

The proposed novel dynamic technique carries some static features, along with its 

ability to cope with the dynamic changes in the execution environment.  To cope with 

such dynamic changes, an algorithm was deployed for the selection of execution 

parameters prior to offloading. Hence, by combining the positive features of both the 

static and the dynamic approaches, the novel approach would be able to overcome the 

lacks of both static and dynamic approaches. Therefore, the novel approach would be 

more effective in reducing the RTT and energy consumption. The novel dynamic 

technique proposed based on the analysis conducted for both the existing application 

partitioning techniques. 

 

Moreover, the heavy methods are statically annotated as the remote methods at 

compile time by using the symbol @Web Method. This component is the sub-component 

of the Offload Monitors and is responsible for dividing the application into offloadable 

and local executable tasks. The component also distinguishes the offloadable methods 

from the local methods at compile time. Thus, the complexity of the dynamic partitioning 

and the static partitioning would be reduced as special APIs are used. All the local 
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executable tasks are then processed locally while all the offloadable tasks are transferred 

to the server for further processing. 

 

4.3.1.5 Execution Manager 

 

This component consists of the complete execution environment. It controls and 

monitors the whole environment of the application process. It scrutinizes and utilizes the 

whole system thus making the execution of the application possible and smooth. If the 

user was in the proximity of the surrogate servers, it would monitor and provide 

connectivity as an option to the mobile user. Execution manager also monitors to exhaust 

the option of local processing first. If the application processing at local device is complex 

enough, then the predefined condition would be read and the resources for offloading 

would be monitored. If during remote execution the network was interrupted or services 

were no more available, then execution would be switched from remote execution to local 

execution. Finally, execution manager would stay active for collecting the processed 

result from the remote server and terminate the process.  

 

4.3.1.6 Offload Trigger and Result Trigger 

The Offload Trigger component is responsible for triggering the offload process 

once the partitioning of application is completed. Normally, the SOAP offload trigger had 

been used in past studies. SOAP offload supports the XML file to trigger with offload for 

carrying data from the client device to the remote servers. With the analysis of SOAP 

testing, as a carrier protocol, it has been observed that SOAP is heavy to execute and 

complex to parse. Although SOAP- and XML-based offloading is considered as more 

secure compared to the RPC-, RIC- and REST-based offloading, communication data 

would be increased. Hence, this would increase computations in the mobile device.   

 

Therefore, to reduce the size of data during communication at both sides between 

the mobile device and the remote server, a new lightweight offloading technique referred 

to as the REST-offloading technique was proposed, based on the analysis carried out 

involving many different offloading protocols. This new technique combined REST, 

JSON and WSDL to perform offloading.  Normally, XML and JSON had been used as 

solutions in many different problems in past studies.  In the present study, a technique 
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based on the combination of REST, JSON and WSDL was proposed to reduce 

complexity, computations and size of communication data.  The intention of using REST 

and JSON in this study was influenced by the low computing ability of the mobile device. 

This technique would reduce the size of communication data and eliminate the 

computations as well as RTT.  Furthermore, REST is simple to write because of HTTP 

and some CRUD (Create, Read, Update, and Delete) operations. Nevertheless, REST is 

also less secure as compared to SOAP. This is because REST has inherited the security 

from the underlying transport while SOAP defines its own WS-Security (Web services 

Security).  

 

4.3.1.7 RESTOffload Trigger and REST Result Trigger 

 

A RESTOffload Trigger component was added in the RESTOffload model. 

This component is the sub-component of Offload Monitor and is responsible for 

transferring the control of execution of the intensive tasks identified by the partitioning 

part to the remote servers. The RESToffload receives the component at the server side 

and is responsible for receiving the incoming intensive tasks which would further transfer 

the tasks to Offload Execute Component. After executing the task, the REST Result 

Trigger component was activated and the result was sent back to the client device. 

Deploying RESTOffload Trigger and REST Result receiver would not only execute the 

offloading processes but also provide a lightweight medium of carrying data from the 

device to the remote server. REST eliminates the heavy XML exchanging files between 

the client device and the remote server (i.e., the surrogate at one hop distance) which 

would ultimately reduce the size of communication data.   

 

4.3.1.8 Resources and Offload Monitor 

 

This component controls and monitors the offloading process from the start of 

establishing a connection until the termination of the connection. It checks the availability 

of the network and a surrogate willing to share its resources. Then, it establishes a 

connection and allow the RESTOffload Trigger to transfer the computational intensive 

task to the remote servers.   
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4.3.1.9 Middleware 

 

Remote execution of mobile application in RESTOffload model needs a 

middleware, that is, the sources bridging the client device and the remote services. It 

provides access to remote services in order to execute intensive tasks delegated by the 

mobile device. Middleware would keep hiding the complications between the client 

device and its remote counterpart. RESTOffload makes a transparent remote execution 

available in the environment through middleware and allows the client device 

approaching the services using REST as a carrier protocol. Web Services Description 

Language (WSDL) was used as a middleware to advertise the remote services. WSDL 

supports XML format, that is, a hardware and software independent tool used to store and 

transport data between network devices.  

 

4.3.1.10 Synchronizer 

 

The synchronizer component keeps the client side and the server side parts of the 

application intact. It also keeps the sending and receiving of offloadable data over the 

bandwidth synchronous to avoid missing and interrupting any sequence of data. The basic 

role of the synchronizer component is to act as a coordinator between the client device 

and the server. It also monitors the communication overhead and ensure the smooth 

transmission and reception of communication bandwidth. 

 

4.3.2 Server Component 

 

Server component of the model consists of a physical server (surrogate) 

configured with glassfish server. The server component of the model was deployed on 

configured glassfish server to entertain all the computational intensive tasks received 

from the mobile device. The server component also consists of sub-components similarly 

identical to the sub-components of the mobile component. Hence, the description will not 

be repeated in this section. The RESTOffload model was configured with a surrogate 

server.  
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4.3.2.1 Surrogate Server 

 

The geographical distance between the mobile device user and the cloud service 

provider plays a vital role to measure the latency rate. Previously, cloud servers had been 

used for the execution of the computational intensive tasks. In order to the reduce long 

run RTT, cloudlet was used to bring the distant cloud to a single hop distance. In the 

proposed RESTOffload model, a surrogate server was configured to be connected at a 

single hop to the access point. This would reduce the distance, which in turn would reduce 

RTT as well as lead to the PC or the laptop in the working environment becoming a 

powerful remote execution machine for mobile applications.     

 

4.3.3 Communication 

 

The third component of proposed model is the communication medium. The role 

of communication is as important as the role of high speed CPU required to be at the 

remote execution environment. If the bandwidth of the available communication medium 

was not good, the uploading and downloading process would consume more time and it 

would ultimately affect the battery (Kumar et al., 2011). Therefore, it is essential to 

consider the type of communication medium in order to ensure that the uploading and 

downloading process would be fast during offloading.   

 

4.4 Operational Logic  

 

This section consists of operational logic of the RESTOffload model, operational 

logic of the execution of applications and the proposed algorithm deployed for the 

consideration of pre-defined parameters. 

 

4.4.1 Operational Logic of RESTOffload Model 

 

Figure 4.4 shows the operation of different components of the RESTOffload 

Model. Mobile application was deployed for execution on the mobile device. The 

application is capable of executing a task locally as well as at the remote server node. 

During execution, the application profiler would continuously monitor resources such as 
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battery level, execution time of a task and network bandwidth of the mobile device and 

would then profile the resources. After completion of the profiling resources, the first 

attempt of any mobile application would be to execute the task locally in order to 

eliminate the remote execution time and avoid resource consumption in remote 

processing.  
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Figure 4.4 Operational Logic of RESTOffload Model 
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If the application was already complex enough, or if it was not be possible to 

execute at local device, then the predefined conditions for remote execution would be 

checked. If the conditions have been met, then resources monitoring for remote 

processing would start to search for the availability of a remote server (i.e., a surrogate) 

and then establish a connection to the remote server. If the conditions have not been met, 

then local processing would be checked again. If the local execution was not possible, 

then execution would be turned back to the first step of mobile application and 

subsequently stop further processing. If the condition has been satisfactory based on the 

defined values, then resources monitoring would take place and the middleware 

component would be activated to check the available services.  Similarly, it would allow 

the application component to employ static partition application into lightweight parts 

and computational intensive parts where both will start execution concurrently.    

 

If a component of a mobile application is lightweight, ten component would be 

proceeded for local processing. After completion of the local processing the result would 

be sent back to the mobile application.  Otherwise, if a component is not lightweight, then 

it would be passed to the RESTOffload Trigger component, which would then activate 

the synchronizer and offload the components (i.e., methods) to the surrogate for 

execution. At the completion of the remote execution of the application, the results are 

triggered back to the mobile execution manager components. This would consequently 

lead to the combination of both the result of the local execution and that of the remote 

execution. Finally, the combined results would be displayed.  

 

 4.4.2 Application Execution Flow in RESTOffload Model 

 

The flowchart in Figure 4.5 shows the details of the interaction of the components 

in the proposed lightweight method level model in leveraging the services of the remote 

server node. The Client side application of the model is executed on the mobile device 

while the server side application is deployed to the remote server node.  Whenever the 

Client side application needs the services of the surrogate server, it would activate the 

offload trigger and delegate the computational intensive task denoted as heavy method to 

the server.  
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In the online scenario, the client application utilizes the services provided by the 

remote server while in the offline scenario, the client application is capable of using its 

own local resources to process the task. The distinct procedure in the proposed solution 

was adopted to avoid unnecessary load in the runtime prediction and extra management 

of resources by using VM migration or whole application delegation. In this regard, the 

application partitioning is reduced to a simple two-step process. A novel dynamic 

approach used here, which will statically partition the application at method level and 

denote heavy method as offloadable method and delegate it to the counterpart at runtime.  

Clearly, in the proposed algorithm, all the predefined parameters would be firmly checked 

before complex tasks are offloaded to the remote server.  

 

However, remote task execution while being connected to the 3G network was 

excluded. This is because 3G, which is a low bandwidth network, would fluctuate 

according to the mobility of the mobile application user from one location to another. 

Using an unreliable network for establishing connection to the remote server would yield 

inefficient results. The battery level should also be checked before starting the offloading 

task. A battery operating at critical level during offloading task to the remote server could 

turn the device off and would subsequently discard the offloading task. The most 

important parameter would be to predict the complexity of the task or the method to 

offload. A predictive algorithm would load on the limited available resources of the 

mobile device.  
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Figure 4.5 Execution Flow of the Mobile Application in Proposed Model 

 Additionally, an algorithm was proposed to encompass all the predefined 

parameters identified after a thorough investigation of power consumption of a modern 
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mobile device. The thorough investigation of the power consumption was conducted for 

both the application and the system components in order to identify the power draining 

factors. These factors are important to include which possibly alters the offloading results. 

For instance, checking the network type and network bandwidth would thus eliminate the 

issues of limited bandwidth and size of data to be offloaded. The proposed algorithm 

would also consider an offloading decision, that is, whether to offload the task to the local 

cloud (cloudlet) or to execute the task using the mobile device’s resources. In short, the 

proposed algorithm would encompass the user preferences, applications requirement and 

maximum predefined parameters for a precise offloading decision. Application 

requirements would include the nature of the application such as real-time, fidelity 

adaptive and intensive parts in terms of computation and communication. User predefined 

parameters would comprise reliability and secure offloading while predefined parameters 

would include the existing battery level, the type of network available, the execution time 

and most importantly, the available network bandwidth. 

 

The proposed lightweight method level model was first designed with the 

deployment of supplementary components to address the intensive partitioning issues of 

the traditional offloading methods and to counter the heavy parsing issues of previously 

developed frameworks and models. Further, the proposed method level computational 

offloading model has been inspired by the concept which had once been used in code 

transformation method by Rim et al., (2006) who had partitioned the application at 

method level and offloaded the heavy parts for remote execution. This had reduced the 

size of communication data and led to a reduction of RTT. However, the code 

transformation technique used by Rim et al., (2006) in mobile devices for reducing the 

code size via Distributed Execution Transformer (DiET) was a heavy process which 

caused computational overhead.  

 

The DiET generator of slim code is a supplementary computational load on the 

mobile device with each offload.  Hence, in designing the proposed model, instead of 

using the slim code concept or sending whole executable codes directly to the server, the 

present study aimed to deploy Representational State Transfer (REST), which is an 

architectural style of World Wide Web that communicates over HTTP protocol. REST 

was first developed by Roy Thomas Fielding (Fielding, 2000) and was initially developed 

to re-structure the Web Applications as none of the past researchers had used REST as a 
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carrier protocol in mobile computing for offloading purpose.  Subsequently, the present 

research aimed to eliminate the need to generate the slim code for reducing the size of 

communication data by using REST as a carrier protocol because of its advantage of being 

lightweight compared to DiET, SOAP and RPC (Giogrio et al., 2010).  

 

In addition, using REST protocols instead of SAOP for communication carriers 

would eliminate XML file transfer. This would support the JSON format, thus eliminating 

the extra baggage of data to delegate. As a result, the transmission data “D” would be 

reduced, which would then reduce the Turnaround Time. This would ultimately save 

battery. Normally in past research, Simple Object Access Protocol (SOAP) had been used 

to establish client service connection for transmission of data between Web Applications. 

The reasons for using REST instead of SOAP are due to the portability, simplicity and 

also the lightweight nature of REST.  

 

Furthermore, to reduce the delegation of computational intensive tasks to the 

cloud server residing at multi-hop distance, a middle layer solution had been proposed 

first by Satyanarayanan et al., (2009) and later used by Magurawalage et al., (2014). 

Offloading any computational intensive task directly to a distant cloud would always 

results in a long run RTT which is resource intensive. In order to reduce the distance, 

Satyanarayan et al., (2009) had used the concept of Cloudlet, which is a small cloud in 

the nearest computing environment. Hence, the present research used a similar concept. 

A further addition of a single hop was made in the present study where a PC would be 

connected to IEEE 802.11 access point as a cloudlet layer in between the client device 

and the cloud infrastructure. This cloudlet layer would serve as a confined service in a 

fast approach for the client device to offload.  

 

4.4.3 Proposed Algorithm for the Selection of Pre-defined Parameters 

 

It is an established fact that, offloading in any circumstances, is always not 

energy-efficient and involves burden of calculations over resource constrained devices. 

Chapter 2 of this thesis has discussed details of when and how to offload. The focus of 

the proposed model is to avoid any further load in terms of computations over mobile 

device. A predefined time slot used by deployed an algorithm for completing execution 

of a task at local scenario is shown in Figure 4.6. While processing any task locally, if the 
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predefined time slot was knocked out, the control would be passed to the remote server 

with a message to compute the specific heavy method at the server node. 

 

This algorithm would guide the Offload Monitor to verify all the predefined 

conditions and ensure that the right decision of offloading would be made. The flow of 

execution of the offloading task is given in the flowchart in Figure 4.6. The basic steps of 

the proposed algorithms are given in algorithm 1 as follows:  
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Figure 4.6 Flow of the Selection of Predefined Parameters 
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Step1. Attempt local execution first. If the execution time exceeds the predefined 

threshold value, then go to Step 2.   

Step 2. Check all the predefined parameters such as battery level, network connection, 

network type and execution time.  

 

Algorithm 1: Computational Offloading Service 

1:      procedure OFFLOADINGSERVICE (ET, BL, NT, NS)  

         ET-Execution Time, BL-Battery Level, NT- Network Type, NS- Network Status 

2:      Read: ET, BL, NT, NS; 

3:               Run: Local-execute();  

4:               if ET > Threshold Value then;          // Predefined Parameter 2 seconds 

5:                  trigger offload monitor; 

6:               end if 

7:      if BL < critical Value  then                         // Predefined parameter of critical battery 

8:               write: " battery critical"; 

9:               local-execute();  

10:              end; 

11:     else if 

12:              NS == connected then 

13               check network type:   

14:              if NT == Wi-Fi or 4G then              // 3G excluded because of limited bandwidth 

15:                   Trigger-offload(); 

16:              else 

17:                   Local-execute(); 

18:              end if; 

19:    else 

20:              Kill-request (); 

21:              end if;  

___________________________________________________________________________ 

 

Step 3. If all the predefined parameters meet, then trigger-offload is activated to search 

the remote server.  

- Establish a connection to the remote server and start offload, 

- Return result back to handheld device. 

Step 4. If any of the above defined conditions is false, then resume local execution and 

end.  

Step 5. If the local execution is not possible, then kill the request and end.  

 

The response time of an application varies from application to application. For all 

the real-time systems such as GPS, natural language translators and online games, the 
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response should always be crispy.  In the proposed algorithm, an execution deadline has 

been defined with a threshold value which would be entertained for the local execution 

to attempt first. If the deadline threshold value has been met and execution has not yet 

been completed, then Execution Monitor would be activated and the offloading process 

would take place. The threshold value in the proposed algorithm would be 3000 ms (3s) 

which is considered as the lowest response time (Ferreira et al., 2011; Izaki, 2000). The 

threshold value would vary for different applications and could be selected solely based 

on the complexity of application and available resources. Hence, 3000 ms was selected 

as the threshold value for testing purpose through the developed prototype application.   

 

The prototype application was developed to test a single component of an 

intensive task; therefore, the threshold value was kept minimum. Moreover, the real-time 

systems would need to have a spontaneous response whereas the response time for 

applications such as editors could be up to 20003000 ms. Furthermore, the critical level 

of battery would also vary for different manufacturers mobile devices as well as 

researchers. For example, the critical battery level for the iPhone is about 6%. For iPhone, 

once the mobile device drains the whole battery, it would not turn on until the recharge 

percentage of battery level reaches up to 6%. Similarly, for all Samsung devices, the 

critical battery level starts from 5%. In the present research, 3% was considered the 

critical level because the percentage would vary between 1 and 6% for different mobile 

devices. Offloading in such a critical level would most likely result in the mobile device 

turned off thus discarding the whole efforts during offloading. In both cases, if the 

predefined parameters have not been satisfactorily met, offloading tasks to the remote 

servers should be avoided and local execution should be attempted. In any case in which 

the local execution would not be possible, the request should be turned down. 

 

4.5 Evaluation of the Proposed Model 

 

The significance of the proposed model was evaluated by simulating it in real 

mobile cloud computing environment. A prototype application for Android mobile 

devices was developed in order to test different computational intensities.  The execution 

performance of application was conducted with reference to the execution time of the 

application (i.e., response time) and power consumption during the execution. All the 

empirical results were obtained from simulations using 30 different intensities with a 
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sample space of 20. The experiments conducted with Device under Tests (DUTs) from 

two different vendors, namely, the Samsung Galaxy A5 and the ASUS Zenfone 5. To 

validate the resultant values, a sample mean was calculated for the sample data and for 

further measurements of error estimation, the standard deviations were used. With 99% 

confidence interval, all the empirical results were then compared to the benchmarking 

data collected from the local execution of mobile device as well as the findings of 

previous studies.  

 

Moreover, the findings of a study conducted by Shiraz et al., (2014) have also 

been considered as a second benchmark for the proposed lightweight method level 

offloading.  Both comparisons have indicated the significance of the proposed solution in 

the present research. The following sections will elaborate the experimental setup, the 

tool used in these experiments, the techniques for data collection and statistical techniques 

employed in the analysis of the collected data in order to obtain meaningful results.  

 

4.5.1 Experimental Setup 

 

The experimental emulation environment in the present study was set up as 

illustrated in Figure 4.7. The setup composed of the remote surrogate machine and mobile 

client devices. The surrogate machine used 32-bit Microsoft Windows 10 Professional 

operating system (OS) with Intel® Core™ i7-3770 Processor @ 3.40 GHz speed and 

4.0 GB RAM capacity. A D-Link wireless Wi-Fi modem/ Access Point with a physical 

layer data rates of 54 Mbps was used to connect the remote server machine with the 

mobile devices.  

 

To test the developed prototype applications, the experiment setup was developed 

in Wi-Fi wireless network of radio type 802.11g, the surrogate machine and two different 

brands of Client mobile devices, namely, the Samsung Galaxy A5 and the ASUS Zenfone 

5. The Samsung Galaxy A5 was operating using the Android 5.0.2 (Lollipop) OS with 

Quad Core Cotex-A53 Processor @ 1.2 GHz and 16 GB memory on 2300 mAh battery. 

Meanwhile, the ASUS Zensfone 5 was running on the same Android v5.0.2 (Lollipop) OS 

with 1.2 GHz Processor and 2 GB RAM but Dual Core instead of Quad Core and only 8 

GB instead of 16 GB memory as well as slightly less 2110 mAh battery capacity. Mobile  
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Figure 4.7 The Environment of Experimental Offloading Scenario 

 

device accessed the wireless network via Wi-Fi wireless network connection of radio type 

802.11g, with the available physical layer data rates of 54 Mbps.   

 

Two components of the proposed model were developed, namely, one for the 

Client side that was used in the mobile device, and the other for the surrogate servers. The 

surrogate machine was configured for the provisioning of services utilizing Software as 

a Service (SaaS) and Infrastructure as a Service (IaaS) models of cloud computing. The 

Server side application was deployed by configuring a Glassfish server at the surrogate 

using Web Services Application tools in Eclipse. Android Developers (Java-based 

Android Software development tool kit) was deployed for the development of the Client 

side application in Intellij IDE 15 Community environment. Android Debug Bridge 

(ADB) plugin was used to develop the prototype Android application. 

 

The traditional computational offloading models had used KSOAP libraries in 

prototype development which is an XML-based messaging protocol. SOAP is 

conceptually more difficult and more heavyweight as compared to REST. The aim of the 
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current work was to develop a lightweight Android application model which could be 

easily managed and should reduce the heavy processing steps during migration of data. 

SOAP-based applications would be harder to develop and configure as well as heavy in 

size. SOAP is the older form of providing communication environment to client devices 

which communicate with its remote server counterparts.  

 

By contrast, REST is an architectural style used to design a system which solves 

the common issues occurring during communication which was developed by Roy 

Thomas Fielding in his PhD research (Fielding, 2000). The aim of implementing REST 

in the present study was to ensure fast performance, reliability, lightweight and 

extensibility. REST was used in the development of the prototype application to access 

the preconfigured services deployed to the configured Glassfish server.  To monitor the 

execution time/ turnaround time, a stopwatch Time Left was used.  

 

Meanwhile, for energy consumption of different computational intensities, Power 

Tutor, which is a power estimating tool, was used in the first attempt. Power tutor is a 

built-in power estimating tool available at Android Play Store. Power Tutor acquires the 

battery discharge curve for each discrete component of the mobile device using built-in 

battery voltage sensor. It determines the energy consumption state of each component and 

application. Additionally, it also performs a regression to obtain the power mode.  

However, as it was designed initially for a specific model (brand) of a mobile device, this 

power estimating tool would not always be profiling the accurate energy consumption of 

every mobile device. Therefore, Monsoon Power Monitoring Tool, which is a hardware 

power estimating device, was used. This device provides a strong power estimating 

solution for any kinds of mobile device powered by Lithium-ion or Li-ion batteries at 4.8 

volts or lower. 

 

Figure 4.8 is a screenshot of the graph of power consumption measured by the 

Monsoon Power Monitor application tool. Most of the Android developers have failed to 

consider the limited battery timing of the mobile devices during the designing process of 

the application. Consequently, mobile applications have consumed enormous amount of 

power and would drain the limited battery capacity in just a few hours. To measure the 

power consumption of each individual application, numerous software estimating tools 

have been used but all the tools would run on the devices and collects power data and  
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Figure 4.8 A Screenshot of the Monsoon Power Monitor Application Tool 

then store it locally. This would ultimately use CPU cycles and result in inflating power 

reading. The most popular devices such as the Samsung Galaxy and Nokia smartphones 

could not report the power consumption of an application accurately even with the help 

of software estimating tools. An off-target hardware tool would be needed to measure the 

power consumption of such devices.   

 

Therefore, the Monsoon Power Monitor application was used to help Android 

developers create mobile applications with better battery life. The Monsoon Power 

Monitor application provides the popular off-target power consumption estimation. It also 

is capable of measuring the current, voltage and power and then connected to a special 

Monsoon Power Application (Computer Software) which gives control over power data 

and collect and display the data in the form of a graph.  

 

 Figure 4.9 gives the experimental scenario of Monsoon Power Monitor for power 

consumption used in the laboratory environment. The power monitor device was 

connected with a PC using the backside USB port. The mobile device could either be 

connected to the Auxiliary port, Main port or USB out port on the front side. In the  



117 

        

(A)                                                                     (B) 

Figure 4.9 Use of the Monsoon Power Monitor in the Experiments for Power 

Consumption Readings  

 

experiments, two mobile devices, namely, the Samsung Galaxy A5 and the ASUS Zenfone 

5 were used to estimate power consumption. Both mobile devices were connected to the 

USB port on the front side because the battery was not removable. Therefore, the only 

way to connect was via the USB port as shown Figure 4.9 (A). In the case of the ASUS 

Zenfone 5, the main port was used as the battery had been removed and a connection was 

provided to the main port of the Power Monitor as shown in Figure 4.9 (B). Each time 

when the prototype application ran locally or remotely while mobile device was 

connected to the power monitor device, the readings of consumption were recorded.  

 

4.5.2 Prototype Applications 

 

The proposed model was implemented by developing a prototype Android 

application. The prototype application composed of two components, namely, the service 

provider called RESTOffload Service and the service consumer called Android-Local. 

The service provider component was installed and configured at the remote server while 

the service consumer component was deployed to the Client device (i.e., the mobile 

device). The prototype application was designed for computational intensity of generating 

two random matrices of type integer.  Both the matrices were multiplied and then the 

resultant matrix was obtained. As matrix multiplication is a computational intensive task, 

hence it was selected to be implemented in the experiments. The matrix multiplication 

logic of the prototype application was tested for 30 different computational intensities by 

varying the matrices length between 160 x 160 and 450 x 450.     
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4.5.3 Data Collection and Data Processing 

 

Three different types of testing scenarios were used in the experiments for data 

collection. In the first scenario, data were collected by testing the prototype application 

in the local mobile devices both on the Samsung Galaxy A5 and the ASUS Zenfone 5. 

Meanwhile, in the second scenario, the traditional computational offloading logic was 

implemented and the computational intensive tasks were offloaded to the remote servers 

on both mobile devices. Finally, in the last scenario, the logic of the proposed lightweight 

computational offloading was implemented and the execution of task offloaded to the 

surrogate servers was tested. In all of the three scenarios, the aim was to analyse the 

prototype application for execution time or turnaround time and energy consumption of 

both mobile devices while executing the task.  

 

The experiments considered a sample space of 20 values and for each scenario, 

the experiments were evaluated 20 times of each computational intensity. In this regard, 

the sample size (i.e., n = 20) and a sample mean (i.e., x̅  of n = 20) were calculated for 

each computational intensity. Standard deviation (SD), which showed the variation in the 

execution time as well as in energy consumption while running each intensity, was 

calculated. The Central Limit Theorem states that as the sample size increases, the 

sampling distribution of the sampling means approaches to a normal distribution. 

Therefore, the sample, n = 20, was considered and about 99% of the sample means fell 

within 2.58 of the standard deviation of the population mean. Hence, the confidence 

interval calculated showed the range of the sample mean of 20 values in each experiment 

with 99% confidence. The prototype application developed for mobile devices composed 

of a computational intensive component, that is, the matrices multiplication service. This 

was evaluated on the basis of two parameters execution time in milliseconds (ms) and 

energy consumption in Joules (J). The empirical data were gathered for each 

computational intensity. The intensities that ranged from 160 x 160 to 450 x 450 which 

increased with the increase size of 10 with each intensity, were calculated. The whole 

data were then tabulated. For all the three scenarios, the total Execution Time (TET) and 

total Energy consumption (ET) were evaluated.  

 

Meanwhile, the confidence interval was calculated for each sample intensity. 

Confidence interval is the range of values of sample statistic which is likely to contain 

http://www.statisticshowto.com/probability-and-statistics/normal-distributions/
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the value of an unknown population parameter. Data sampling may have sampling error 

that is, the sample mean calculated could differ from its population mean. Therefore, to 

signify the correctness of the calculated sample value, the interval estimate of each sample 

was calculated. A certain percentage of the sample values may contain the parameter of 

an unknown population. The percentage of such confidence interval having the 

population value is called the confidence level. Confidence interval is a range which 

estimates the true population value for a statistic. There was a margin of error, E, which 

existed and this showed the probability of not occurring mean value in the whole the 

population value. If E denotes the error estimation for 99% confidence interval, then it is 

calculated by the following equation:  

 

                    E =      2.58 * ( 𝜎
√𝑛⁄  )                                          5.1 

In Equation 5.1, 𝜎 denotes the standard deviation in the calculated sample values 

and n denotes the size of the sample space. The confidence interval for each sample mean 

of the collected sample data was calculated with 99% confidence interval by using the 

following equation:  

 

                               Confidence Interval =    x̅ ± 𝐸                                           5.2 

 

The following section will explain data collected in experiments in all the three 

scenarios in real-time mobile computing environment.  The data were collected and then 

manipulated in the first scenario such as by executing the application in the local mobile 

device. The results (i.e., Execution Time and Energy Consumption) were tabulated. In 

the second scenario, the application was delegated to the remote servers using traditional 

computational offloading techniques. In the third scenario, data were collected and 

tabulated using the proposed lightweight computational offloading method.   

  

4.5.4 Data Collected by Executing Application in Local Mobile Devices 

 

 In this scenario, the developed prototype application was executed in the local 

mobile devices in order to assess the Execution Time or Turnaround Time in milliseconds 

(ms) and Energy Consumption in Joules (J).  The prototype application was run with 

different computational intensities. As the matrices multiplication is a computational 
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intensive task, a prototype was developed to multiply two randomly generated matrices 

ranged between 160 x 160 and 450 x 450. Each computational intensity varied from the 

previous one with an addition of 10. The 30 different computational intensities were 

selected and each intensity was run 20 times for validation purpose. Table 4.2 and Table 

4.3 show the sample execution time for lowest and highest intensities of the prototype 

application in the local mobile devices both for the Samsung Galaxy A5 and the ASUS 

Zenfone 5, respectively.  

 

Two matrices were randomly generated in the mobile devices and multiplied with 

each other. Then, the resultant matrix was displayed on the screen of each mobile device. 

The time consumed while generating the two random matrices, the time for processing 

the computational task using mobile resources and the time of the display of the resultant 

matrix on the screen of the mobile devices were all collectively referred to as the 

execution time.  

 

As mentioned earlier, the prototype was run for 30 different computational 

intensities between 160 x 160 and 450 x 450 with the constant jump of 10 in each 

intensity. The statistical computation was done in the experiments in order to justify the 

result for whole population. In this regard, each intensity was iterated 20 times which 

showed the size of the sample. The mean turnaround time was calculated for each sample, 

which is the point estimator for whole population.  

 

 

Table 4.2 Local Execution Time of Prototype Application for Samsung Galaxy A5 

 

 

Table 4.3 Local Execution Time of Prototype Application for ASUS Zenfone5 

 

Matrix 

Size 

Sample mean of ET of 

Local Execution (ms) 

SD of ET %RSD of ET Confidence Interval 

160x160 11071 346.53 3.13 11071(+/-)800 

450x450 111799 4434.77 3.97 111799(+/-)10234 

Matrix 

Size 

Sample mean of ET of 

Local Execution (ms) 

SD of ET %RSD of ET Confidence 

Interval 

160x160 13240 207.36 1.57 13240(+/-)478 

450x450 118460 230.22 0.19 118460(+/-)531 
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In addition, the standard deviation was calculated to show the variation in the 

execution time while evaluating the experiments of each intensity that were conducted 20 

times for each sample space. The percentage (%RSD) for each of the 30 computational 

intensities was calculated for each sample space which showed the percentage difference 

in the execution time of each experiment. The 99% confidence interval was calculated 

for the sample space of each intensity which showed the degree of uncertainty in the 

turnaround time for the whole population. Table 4.4 and Table 4.5 show the sample 

energy consumption for lowest and highest intensities of the prototype application in the 

local mobile devices both for the Samsung Galaxy A5 and the ASUS Zenfone 5, 

respectively.  

 

The porotype ran for 30 different computational intensities and the energy 

consumption costs of each time execution of discrete intensity were recorded. The same 

intensity was iterated for a sample size 20, which is a point estimator for the energy 

consumption of any size sample or whole population. The standard deviation calculated 

for each sample space showed the variation in energy consumption while %RSD 

calculated for each sample space showed the percentage difference in energy 

consumption of each experiment. The 99 % confidence interval was calculated for all 

computational intensities, which determined the degree of uncertainty in each sample 

space.  

 

Table 4.4 Energy Consumption of Prototype Application for Samsung Galaxy A5 

through Local Execution 

 

 

Table 4.5 Energy Consumption of Prototype Application for ASUS Zenfone 5 

through Local Execution 

  

Matrix 

Size 

Sample mean of EC of 

Local Execution (J) 

SD of EC %RSD of 

EC 

Confidence 

Interval 

160x160 4.58 0.249 5.44 4.58(+/-)1 

450x450 45.4 0.158 0.35 45.4(+/-)0 

Matrix 

Size 

Sample mean of ET of 

Local Execution (J) 

SD of EC %RSD of EC Confidence 

Interval 

160x160 5.54 0.30 5.35 5.54(+/-)0 

450x450 48.4 0.51 1.06 48.4(+/-)1 
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4.5.5 Data Collected by Offloading Application using Traditional Offloading 

Techniques 

 

In this scenario, the developed prototype application was offloaded by traditional 

offloading techniques to the remote servers in order to assess the Execution Time or 

Turnaround Time in milliseconds (ms) and Energy Consumption in Joules (J).  The 

prototype application ran with different computational intensities. As the matrices 

multiplication was a computational intensive task, a prototype was developed to multiply 

two randomly generated matrices that ranged between 160 x 160 and 450 x 450 in the 

mobile devices and sent to the remote servers for executing the multiplication task, which 

is a computed intensive task for mobile devices. The resultant matrix was sent back to the 

mobile device and displayed at the user interface. Each computational intensity varied 

from the previous one with an addition of 10. The prototype ran with total of 30 different 

computational intensities. For validation purposes, statistical analyses were performed on 

the data by selecting a sample of 20 values to verify the results for whole population.  

 

Table 4.6 and Table 4.7 present the results of the sample total Turnaround Time 

or Execution Time of the prototype application offloaded for execution to the remote 

severs using traditional computational offloading techniques both for the Samsung 

Galaxy A5 and the ASUS Zenfone 5, respectively. In the experiments, each of the 

computational intensity was evaluated 20 times and the mean execution time of sample 

size 20 was calculated.   

 

Table 4.6 ET of Prototype Application Execution through Traditional Offloading 

for Samsung Galaxy A5 

 

Table 4.7 ET of Prototype Application Execution through Traditional Offloading 

for ASUS Zenfone 5 

Matrix 

Size 

Sample mean of ET 

of Local Exe. (ms) 

SD of ET %RSD of ET Confidence 

Interval 

160x160 9608 535.78 5.58 9608(+/-)1236 

450x450 189523 2089.39 1.10 189523(+/-)4822 

Matrix 

Size 

Sample mean of ET of 

Trad.  Offloading (ms) 

SD of ET %RSD of ET Confidence 

Interval 

160x160 11280 164.32 1.46 11280(+/-)379 

450x450 152520 238.75 0.16 152520(+/-)550 
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 The sample mean is the point estimator for the whole population. The standard 

deviation (SD) calculated for each sample size showed the variation in execution time or 

turnaround time in the sample size of each intensity. The %RSD calculated for each 

sample showed the percentage difference in turnaround time or execution time of each 

experiment. The confidence interval 99% was calculated for each computational intensity 

which showed the degree of uncertainty in each sample size.  

 

 Table 4.8 and Table 4.9 show the sample energy consumption costs while 

processing the prototype application using the traditional computational offloading 

techniques for both the Samsung Galaxy A5 and the ASUS Zenfone 5, respectively. In the 

experiments, each of the computational intensity was evaluated 20 times and the mean 

energy consumption of sample size 20 was calculated.  

 

 The sample mean is the point estimator for the whole population. The standard 

deviation SD calculated for each sample size, shows the variation of energy consumption 

in the sample size of each intensity. The %RSD calculated for each sample showed the 

percentage difference in energy consumption of each experiment. The 99% confidence 

interval was calculated for each computational intensity which showed the degree of 

uncertainty in each sample size. 

 

 

Table 4.8 EC of Prototype Application Execution through Traditional Offloading 

for Samsung Galaxy A5 

 

 

Table 4.9 EC of Prototype Application Execution through Traditional Offloading 

for Asus Zenfone 5 

 

 

Matrix 

Size 

Sample mean of EC of 

Trad. Offloading (J) 

SD of EC %RSD of EC Confidence 

Interval 

160x160 7.72 0.421 5.45 7.72(+/-)1 

450x450 102.08 0.602 0.59 102.08(+/-)1 

Matrix 

Size 

Sample mean of EC of 

Trad. Offloading (J) 

SD of EC %RSD of EC Confidence 

Interval 

160x160 8.56 0.36 4.26 8.56(+/-)0 

450x450 102.74 0.15 0.15 102.74(+/-)0 
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4.5.6 Data Collected by Offloading Application using RESTOffload Method 

 

In this scenario, the developed prototype application was offloaded by the 

proposed Rest-Offload method to the remote servers in order to assess the Execution Time 

or Turnaround Time in milliseconds (ms) and Energy Consumption in Joules (J).  The 

prototype application ran with different computational intensities. As the matrices 

multiplication was a computational intensive task, a prototype was developed to multiply 

two randomly generated matrices that ranged between 160 x 160 and 450 x 450 in the 

mobile devices and sent to the remote servers for executing the multiplication task which 

is a computed intensive task for mobile devices. The resultant matrix was then sent back 

to mobile devices and displayed at the user interface. Each computational intensity varied 

from the previous one with an addition of 10. The total 30 different computational 

intensities were run. For validation purposes, statistical analysis were performed on the 

data by selecting a sample of 20 values to verify the results of whole population data.  

 

Similarly, Table 4.10 and Table 4.11 show the sample turnaround time of 

prototype application using the proposed lightweight computational offloading 

RESTOffload method. The time consumed while generating the two random matrices, 

the time for offloading the matrices to the surrogate servers, the time for processing the 

computational task at server and the time of to obtain the resultant matrix back on the 

screen of the mobile devices were all collectively referred to as the Turnaround time or 

Execution time. 

 

Here, each intensity was calculated for the iterated five times which showed the 

size of the sample. The mean turnaround time was calculated for each sample, which is 

the point estimator for the whole population. The SD calculated showed the variation in 

the turnaround time while evaluating the experiment of each intensity 20 times of each 

sample space. The %RSD calculated for each sample showed the percentage difference 

in the turnaround time of each experiment. The 99% confidence interval was calculated 

for the sample space of each intensity which showed the degree of uncertainty in the 

turnaround time for the whole population.  
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Table 4.10 ET of Prototype Application Execution through RESTOffload Method 

using Samsung Galaxy A5 

 

Table 4.11 ET of Prototype Application Execution through RESTOffload Method 

using ASUS Zenfone 5 

 

 Likewise, Table 4.12 and Table 4.13 show the sample energy consumption cost 

of prototype application using the proposed lightweight computational offloading 

RESTOffload method. The energy consumption during the generation of the two 

random matrices, the energy consumption during the offloading of the matrices to the 

surrogate servers, the energy consumption for processing the computational task at the 

server and the energy consumed during reception of the resultant matrix back on the 

screen of the mobile devices were all collectively referred to as the energy consumption 

cost. Each intensity was calculated for the iterated five times which showed the size of 

the sample. 

   

Table 4.12 Energy Consumption Cost of Prototype Application Execution through 

RESTOffload using Samsung Galaxy A5 

 

Table 4.13 Energy Consumption Cost of Prototype Application Execution through 

RESTOffload using Asus Zenfone5 

  

Matrix 

Size 

Sample mean of ET of 

RESTOffload (ms) 

SD of ET %RSD of ET Confidence 

Interval 

160x160 7418 222.86 3.00 7418(+/-)514 

450x450 49587 274.23 0.55 49587(+/-)633 

Matrix 

Size 

Sample mean of ET of 

RESTOffload (ms) 

SD of ET %RSD of ET Confidence 

Interval 

160x160 7780 164.32 2.11 7780(+/-)379 

450x450 61520 178.89 0.29 61520(+/-)412 

Matrix 

Size 

Sample mean of EC 

of RESTOffload (J) 

SD of EC %RSD of EC Confidence 

Interval 

160x160 3.48 0.1 2.88 3.48(+/-)0 

450x450 25.35 0.12 0.48 25.35(+/-)0 

Matrix 

Size 

Sample mean of EC 

of RESTOffload (J) 

SD of EC %RSD of EC Confidence 

Interval 

160x160 4.64 0.29 6.21 4.64(+/-)0 

450x450 28.32 0.30 1.07 28.32(+/-)0 
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 The mean energy consumption cost was calculated for each sample, which is the 

point estimator for the whole population. The standard deviation (SD) calculated showed 

the variation in energy consumption while evaluating the experiment of each intensity 20 

times of each sample space. The percentage (% RSD) calculated for each sample showed 

the percentage difference in the energy consumption cost of each experiment while 99 % 

confidence interval was calculated for the sample space of each intensity which shows 

the degree of uncertainty in energy consumption for the whole population.  

 

4.6 Summary 

 

 The proposed new lightweight method level computational offloading model was 

designed in this Chapter. The proposed model was developed in the real mobile cloud 

environment. A prototype application with three components Local Execution (Android-

Local), Traditional Offloading (Android-SOAP) and RESTOffload was developed. All 

three components were executed and the prototype application was evaluated in the real 

mobile cloud environment.  

 

The experimental data were collected in three different scenarios. In addition, a 

computational offloading algorithm was proposed to avoid the unnecessary 

computational load over mobile devices. It also stopped the unwanted processing and 

uncertain computational offloading attempt. In other words, it simply reduced the 

computational load and management hurdles of resource limited mobile devices. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

5.1 Overview 

 

This chapter presents the analysis and discussion of experimental results 

collected in Chapter 4. The chapter is organized as follows. Section 5.2 presents the 

Local Execution experimental results in terms of Energy Consumption (J) and 

Execution Time (ms). Section 5.3 presents the results in terms of energy consumption 

(J) and execution time (ms) while processed the prototype application at remote servers 

by offloading through traditional computational offloading techniques. Section 5.4 

presents the discussion of experimental results in terms of energy consumption (J) and 

execution time (ms) while executing the prototype application at surrogate server using 

the proposed lightweight REST-Offload method. Section 5.5 consist of execution time 

comparison of all three scenarios. Section 5.6 comprises energy consumption cost 

comparison of all three scenarios. Section 5.7 discusses results against benchmark in 

terms of Execution Time and Energy Consumption. Section 5.8 discusses comparison of 

different mobile devices for ET and EC. Section 5.9 gives efficiency comparison of ET 

and EC against others. Section 5.10 provides comparative analysis. Section 5.11 

discusses threats to validity while section 5.12 summarises the chapter. 

 

5.2 Analysis of Application Execution at Local Mobile Device 

 

The prototype application executed at local mobile devices both on Samsung 

Galaxy A5 and ASUS Zenfone5, in order to estimate the ET in milliseconds (ms) and 

EC in Joules (J). The experimental results of both the devices presented in Table 4.2, 

4.3, 4.4 and 4.5 of Chapter 4 are going to analyse further in this section.
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The results gathered by executing task locally are considered benchmark for the 

proposed solution. Here, the prototype application consists of generating two random 

matrices at local mobile device which are then multiplied with each other and displayed 

the resulted matrix. The prototype application ran for 30 different computational 

intensities, started from 160x160 to 450x450 with the increase of 10 in each following 

computational intensity. It is observed from the experimental results that the ET/TT of 

executing the application at local mobile devices varies between different computational 

intensities.  

 

Figure 5.1 shows the ET in milliseconds (ms) against the multiplication of 

different matrix sizes, executed on local mobile device Samsung Galaxy A5. The mean 

ET of processing application carrying the intensity 160x160 for a sample space of 20 is 

equal to 11,701 ms, with 99 % confidence interval 11701 (+/-) 800 ms which shows the 

range of possible ET between 12,501 ms and 10,901 ms. The variation in ET 

determined by calculating SD for each intensity of sample space 20 which is 346.53 ms 

for 160x160.  

 

Similarly, the ET of computational intensity 170x170 is equal to 8024 ms with 

12,675(+/-)807 ms while the SD for sample space 20 is equal to 349.76ms.  By a close 

observation the ET pattern increases with an approximate one second with each higher 

intensity. The ET of computational intensity 450x450 reached up to 111,799 ms with a 

SD value 4434 ms and of confidence interval 111,799 (+/-) 10,234 ms.  

 

 

 

 

 

  

 

 

 

 

Figure 5.1 Execution Time (ms) of Matrix Multiplication in Local Mobile Device 

Samsung Galaxy A5 
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Figure 5.2 Execution Time (ms) of Matrix Multiplication in Local Mobile Device 

ASUS Zenfone5 

 

Similarly, Figure 5.2 shows the ET in milliseconds (ms) against the 

multiplication of different matrix sizes, executed on local mobile device ASUS 

Zenfone5. The mean ET of processing application carrying the intensity 160x160 for a 

sample space of 20 is equal to 13,240 ms, with 99 % confidence interval 13240 (+/-)478 

ms which shows the range of possible ET between 13,718 ms and 12,762 ms. The 

variation in ET determined by calculating SD for each intensity of sample space 20 

which is 207.36 ms for 160x160.  

 

The ET of computational intensity 300x300 is equal to 45,700 ms with 45,700 

(+/-)672 ms while the SD for sample space 20 is equal to 291.55ms.  With a similar 

increase to a higher intensity the execution time (ET) pattern increases with 

approximate 2-3 seconds. The ET of computational intensity 450x450 reaches up to 

118,460 ms with a SD value 230.22 ms and of confidence interval 118,460 (+/-)531 ms.  

 

Similarly, in the second part of this section, the Energy Consumption (EC) 

analysed for both the devices, while executed the task locally.  The EC in Joules (J) of 

executed the prototype application at local mobile devices are presented in Table 4.3 

and Table 4.4 of Chapter 4. Figure 5.3 shows the EC in Joules (J) against the 

multiplication of two random matrices of different sizes at Samsung Galaxy A5. It is 

observed that the EC varying for computing the matrix multiplication of all intensities. 

It is lowest for multiplying the lowest size/intensity 160x160 and gradually rosed till the 
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highest computational intensity 450x450, which seized CPU for a longer time to 

execute. The observed mean consumption of multiplying the matrices of dimensions 

160x160 is 4.58 J which is calculated by running the same intensity for sample size 20. 

The 99 % confidence interval 4.58(+/-)1, shows that the possible range of EC fall in 

between 4.58+1 J and 4.58-1 J. The SD shows the variation in observed values of the 

same sample for the same intensity. It is 0.249 J for the computational intensity 

160x160 of the same sample space in each experiment.  

 

Likewise, the mean EC of computational intensity 300x300 observed, which is 

19.62 J with 99 % confidence interval 19.62(+/-)0. The confidence interval with margin 

of error 0 shows, the standard deviation SD is minimal and the values of calculated EC 

in the same sample are almost equal. The SD observed for the computational intensity 

300x300 is 0.164 J while the % RSD which is 0.84 % shows that the SD value of the 

same intensity is 0.84 % of the mean value. The lowest the % RSD the closer are the 

sample values. Also, the observed mean EC of multiplying matrices of dimensions 

450x450 is 45.4 J with a confidence interval 45.4(+/-)0. The EC of the highest intensity 

in the experiments 450x450 is higher than all the computational intensities. The 

observed SD value of the sample size for the same intensity is 0.158 J which is lower 

than 1 therefore the margin of error is rounded to 0. Hence, the calculated 99 % 

confidence interval for the same intensity is 45.4(+/-)0 J. The % RSD 0.35 is the 

percentage Joules of standard deviation to energy consumption of mean.  

 

                

Figure 5.3 Local Energy Consumption (J) of Matrix Multiplication by Samsung 

Galaxy A5 
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Figure 5.4 Local Energy Consumption (J) of Matrix Multiplication by ASUS 

Zenfone5 

 

Further, the EC of executing task locally at ASUS Zenfone5 given in Figure 5.4. 

The mean energy consumption of multiplying the matrices of dimensions 160x160 is 

5.54 J with 99 % confidence interval 5.54(+/-) 0 shows that the possible range of EC 

fall in between 5.54+0 J and 5.54-0 J. The calculated SD for sample space 20 is 0.30 J.  

Similarly, the mean EC of last intensity 450x450 is 48.4 J with a SD 0.51 and % RSD 

1.06. Comparative analysis of both the devices discussed in Section 5.6 of this chapter. 

Here, the EC of locally executing the task at ASUS Zenfone5 for all the intensities 

ranged between 5.48 J to 48.4 J while the same for Samsung Galaxy A5 ranged between 

4.58 J to 45.4 J.  

 

5.3 Analysis of Application Executed through Traditional Computational 

Offloading Methods 

 

The prototype application executed using traditional computational offloading 

methods in order to estimate the ET in Milliseconds (ms) and EC in Joules (J). The 

experimental results conducted with both the devices presented in Table 4.6, Table 4.7, 

Table 4.8 and Table 4.9 of Chapter 4 going to analyse further in this section. The results 

of executing the porotype application at remote servers through traditional 

computational offloading methods considered as a second benchmark. Also, the 

research published in 2013, the DEAP Framework Shiraz et al., (2014) considered as a 

second benchmark. Similarly, the prototype application consists of generating two 
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random matrices at local mobile device which are then offloaded to remote servers for 

multiplication with each other and then displayed the resulted matrix on mobile screen. 

The ET and EC by using traditional method are higher than the local execution because 

the communication overhead and extra resources utilization involved in performing the 

executions. The prototype application ran for 30 different computational intensities 

started from 160x160 to 450x450 with the increase of 10 in each following 

computational intensity.  

 

From the experimental results of Table 4.6 of Chapter 4, it is observed that the 

ET/TT of executing the application using traditional computational offloading method 

on Samsung Galaxy A5 varies between different computational intensities. Figure 5.5 

shows the ET in milliseconds (ms) against the multiplication of different matrix sizes 

executed on remote servers offloaded through traditional computational offloading 

method using Samsung Galaxy A5. The mean ET of processing application carrying the 

intensity 160x160 for a sample space of 20 is equal to 9,608 ms, with 99 % confidence 

interval 9608 (+/-)1236 ms which shows the range of possible ET between 9608+1,236 

ms and 9,608-1,236 ms. The variation in ET determined by calculating SD for each 

intensity of sample space 20 which is 535.78ms for 160x160.  

 

Likewise, the ET of computational intensity 200x200 is equal to 14286ms with 

14,286(+/-) 928 ms while the SD for sample space 20 is equal to 402.23 ms.  By a close 

observation the ET pattern increases about 1-2 seconds while computing the lower 

computational intensity under the range 240x240. For higher intensities above than 

240x240, the ET quickly increased for each intensity approximate 5 seconds for each.  

 

The ET of computational intensity 450x450 reached up to 189,523 ms with a SD 

value 2,089 ms and of confidence interval 189,523(+/-) 4822 ms. It is thus clear from 

the evaluation and observations of executing all computational intensities that as the 

computational intensity increases the ET increases. Compare to the local execution, the 

ET/TT reached up to 189,523 ms which is about 80,000 ms longer than executing the 

same intensity by local execution at mobile device.  
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Figure 5.5 Execution Time of Matrix Multiplication in Traditional Offloading by 

Samsung Galaxy A5 

 

Similarly, from the experimental results of Table 4.7 of Chapter 4, it is observed 

that the ET/TT of executing the application using traditional computational offloading 

method on ASUS Zenfone5 varies between different computational intensities. Figure 

5.6 shows the ET in milliseconds (ms) against the multiplication of different matrix 

sizes executed on remote servers offloaded through traditional computational offloading 

method.  

 

            
 

Figure 5.6 Execution Time of Matrix Multiplication in Traditional Offloading by 

ASUS Zenfone5 
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The mean ET of processing application carrying the intensity 160x160 for a 

sample space 20 is equal to 11280ms, with 99 % confidence interval 11,280(+/-)379 ms 

which shows the range of possible ET between 11,280+379 ms and 11,280-379 ms. The 

variation in ET determined by calculating SD for each intensity of sample space 20 

which is 535.78 ms for 160x160. For computational intensity 300x300 the mean 

execution time is 45,520 ms with SD 228.04 and 0.50 % RSD. The last intensity 

450x450 executed in ASUS Zenfone5, the execution time reaches up to 152,520 ms 

with 238.75 SD and 0.16 % RSD. 

 

Further, the EC in Joules (J) of executing the prototype application at remote 

servers by traditional computational offloading methods, for both the devices are 

presented in Table 4.8 and Table 4.9 of Chapter 4. Figure 5.7 shows the EC in Joules (J) 

against the multiplication of two random matrices of different sizes in traditional 

offloading using Samsung Galaxy A5. It is observed that the EC varyies of computing 

the matrix multiplication for all the intensities. EC is lowest for multiplying the lowest 

size/intensity 160x160 and gradually increasing till the highest computational intensity 

which is 450x450. The observed mean EC of multiplying the matrices of dimensions 

160x160 is 7.72 J which is calculated by running the same intensity for sample size 20. 

The 99 % confidence interval 7.72(+/-)1 shows that the possible range of energy 

consumption fall in between 7.72+1 J and 7.72-1 J.  

 

              

Figure 5.7 Energy Consumption (J) of Matrix Multiplication in Traditional 

Offloading by Samsung Galaxy A5 

0

20

40

60

80

100

120

En
e

rg
y 

C
o

n
su

m
p

ti
o

p
n

 C
o

st
 (

J)

Length of Matrices



  

135 

SD is 0.421 J for the computational intensity 160x160 of the same sample space 

in each experiment. Similarly, the mean energy consumption of computational intensity 

300x300 is observed which is 30.36 J with 99 % confidence interval 30.36(+/-)1. The 

confidence interval with margin of error 1 shows the standard deviation SD is minimal 

and the values of calculated energy consumptions in the same sample are almost equal. 

The SD observed for the computational intensity 300x300 is 0.241 J while the % RSD 

which is 0.79 % shows that the standard deviation value of the same intensity is 0.79 % 

of the mean value.  

 

Furthermore, the observed mean EC of multiplying matrices of dimensions 

450x450 is 102.08 J with a confidence interval 102.08(+/-)1. The energy cost of the 

highest intensity on the experiments, 450x450 is higher than all the computational 

intensities. The calculated 99 % confidence interval for the same intensity is 102.08 (+/-

)1 J.  The % RSD 0.59 is the percentage energy consumption in Joules of standard 

deviation to energy consumption of mean. 

 

Subsequent in Figure 5.8 shows the EC in Joules (J) against the multiplication of 

two random matrices of different sizes in traditional offloading using ASUS Zenfone 5. 

By the observations of collected results, it is clear that EC of lower intensities are 

lowest starting from 8.56 J while the same for higher intensities increases and reaches 

up to 102.74 J for 450x450.  

            

Figure 5.8 Energy Consumption (J) of Matrix Multiplication in Traditional 

Offloading by ASUS Zenfone5 
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5.4 Analysis of Application Execution using REST-Offload Method 

 

The prototype application executed by proposed REST-Offload method in order 

to estimate the ET in milliseconds (ms) and EC in Joules (J). The experiments 

conducted with both the devices. The detail experimental results presented in Table 

4.10, Table 4.11, Table 4.12 and Table 4.13 of Chapter 4 are going to further analyse in 

this section. The main concern of deploying the surrogate (cloudlet) to reduce distance 

between client device and remote service, which is on the other hand hit power due to 

longer RTT. Here, the similar prototype application consists of generating two random 

matrices at local mobile device which are then offloaded to surrogate servers for 

multiplication and displays the resulted matrix on mobile screen. The ET and EC by 

using REST-Offload method are very low than the local execution and of traditional 

offloading methods because the communication overhead and extra resources utilization 

are minimized in performing the execution.  

 

From the experimental results, it is observed that the ET of executing the 

application using the proposed solution REST-Offload computational offloading 

methods varies between different computational intensities. Figure 5.9 shows the ET in 

milliseconds (ms) by conducting experiment with Samsung Galaxy A5.  

 

           

Figure 5.9 Execution Time (ms) of Matrix Multiplication in REST-Offload using  

Samsung Galaxy A5 
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The component of prototype application where the multiplication of different 

matrix sizes, executed on remote servers offloaded through REST-Offload method. The 

mean ET of processing application carries the intensity 160x160 for a sample space 20 

is equal to 7,418 ms, with 99 % confidence interval 7,418(+/-)514 ms. It shows the 

range of possible ET between 7418+514ms and 7,418-514 ms. The variation in ET 

determined by calculating SD for each intensity of sample space 20 which is 222.86ms 

for 160x160.  

 

Similarly, the ET of computational intensity 300x300 is equal to 23365ms with 

23,365(+/-) 660 ms while the SD for sample space 20 is equal to 285.93 ms. By a close 

observation a gradual and constant proliferation noted in the ET pattern in computing 

each higher computational intensity in the complete set of 30 intensities. This increase 

is approximate a second or two for each following intensity. The ET of computational 

intensity 450x450 reached to 49587ms with a SD value 274.23 ms and of confidence 

interval 49,587(+/-) 633 ms.   

 

It is clear from the evaluation and observations of executing all computational 

intensities through REST-Offload that, as the computational intensity increases the ET 

increases. Compare to local execution here the ET reached up to 49,587 ms which is 

about 61,000 ms less than the local execution of prototype application and 140,000 ms 

from traditional computational offloading techniques.  

 

Further, the ET of executing prototype application through REST-Offload using 

ASUS Zenfone5 are shown in Figure 5.10. The results given in Table 4.11 of Chapter 4 

are going to analyse here. The ET of executing task using ASUS Zenfone5 and 

Samsung Galaxy A5 through REST-Offload is identical. The detail comparison of ET 

of both the devices through REST-Offload is given in Section 5.7 of this Chapter. If we 

consider the three random intensities as shown in Figure 5.10, the mean ET of intensity 

160x160 is 7,780 ms with SD 164.32 and 2.11 % RSD. Similarly, the mean ET of 

computational intensities 300x300 is 24,320 ms with SD 228.04 and 0.94 % RSD. The 

last and highest computational intensity of all 30 intensities is 450x450 and the mean 

ET of this intensity is 61,520 ms with 178.89 SD and 0.29 % RSD. Offloading through 

REST-Offload is comparatively impressive as it reduces ET about 30 %. The detail 

comparison is given in Section 5.9 of this Chapter.  
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Figure 5.10 Execution Time (ms) of Matrix Multiplication in REST-Offload using  

ASUS Zenfone5 

 

Likewise, the EC in Joules (J) of executing the prototype application at surrogate 

servers by offloading through REST-Offload are presented in Table 4.12 and Table 4.13 

of Chapter 4. The experimental results of multiplying two random matrices of different 

sizes with 30 computational intensities using REST-Offload are further analysing in this 

section. Figure 5.11 shows the Energy Consumption in Joules (J) against the 

multiplications of two random matrices of different sizes using Samsung Galaxy A5. It 

is perceived that the EC fluctuating for computing the matrix multiplication of different 

intensities, started from lowest consumption to higher as the intensity increases.  

 

            

Figure 5.11 Energy Consumption (J) of Matrix Multiplication in REST-Offload 

using Samsung Galaxy A5 
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The EC is lowest for multiplying the lowest size/intensity 160x160 and 

gradually increasing till the highest computational intensity which is 450x450. The 

observed mean EC of multiplying the matrices of dimensions 160x160 is 3.48 J which 

is calculated by running the same intensity for sample size 20. The 99 % confidence 

interval 3.48(+/-)0 shows that the margin of error 0 and therefore the possible range of 

EC closely fall around 3.48 J. The SD shows the variation in observed values of the 

same sample for the same intensity. It is 0.1 for the computational intensity 160x160 of 

the same sample space in each experiment.  

 

Similarly, the mean EC of computational intensity 300x300 is observed 11.50 J 

with 99 % confidence interval 11.50 (+/-)1. The confidence interval with margin of 

error 1, shows the standard deviation SD is minimal and the values of calculated EC in 

the same sample are almost equal. The SD observed for the computational intensity 

300x300 is 0.31 J while the % RSD which is 2.75 % shows that the standard deviation 

value of the same intensity is 2.75 % of the mean value. The lowest the % RSD the 

closer are the sample values. Also, the observed mean EC of multiplying matrices of 

dimensions 450x450 is 25.35 J with a confidence interval 25.35(+/-)0. The EC of the 

highest intensity in the experiment 450x450 is higher than all the computational 

intensities. The % RSD 0.48 is the percentage EC in Joules of standard deviation to 

energy consumption of mean. 

 

 

Figure 5.12 Energy Consumption (J) of Matrix Multiplication in REST-Offload by 

ASUS Zenfone5 
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Next, the EC cost of executing same intensities using ASUS Zenfone5 shown in 

Figure 5.12. The results gathered in Table 4.13 of Chapter 4 are further analysing and 

comparing here.  The three random intensities are picked. The EC at ASUS Zenfone5 of 

160x160 through REST-Offload is 4.64 J with SD 0.29 and 6.21 % RSD. Similarly, the 

EC of 300x300 is 13.16J with SD 0.25 and 1.19 % RSD. The EC of the highest 

computational intensity 450x450 is 28.32 J with SD 0.30 and 1.07 % RSD. EC of ASUS 

Zenfone5 through REST-Offload is slight higher than the one executed at Samsung 

Galaxy A5 which is in detail compared and analysed in Section 5.7 of this Chapter.  

 

5.5 Comparison of Execution Time of Matrix Multiplication Service between 

Local Execution, Traditional Offloading and REST-Offload 

 

This section consists of the results comparison and analysis of both the devices 

Samsung Galaxy A5 and ASUS Zenfone5 in terms of Execution Time (ET) for all three 

scenarios Local Execution, Traditional Offloading and REST-Offload.  

 

5.5.1 Execution Time (ET) Result Comparison of Samsung Galaxy A5 

 

Here, the ET of all three scenarios conducted with Samsung Galaxy A5 is going 

to analyse.  Table 5.1 shows sample results comprise of the ET results gathered for all 

three scenarios with Samsung Galaxy A5. The rest of the result shown in appendix E 

(Table E.1). Analysing of ET is crucial for two basic reasons. Firstly, it is proved in all 

the previous researches that, network communication, CPU Processing and longer ET 

always hit the battery power (Anand et al., 2007). Also, the shorter ET is most 

important for real time processing as well as user’s demand for instant interaction with 

their gadgets. It is considered further to analyse and compare how long the porotype 

application took place to execute in each scenario.  

 

Table 5.1 Comparison of ET of Samsung Galaxy A5 between Local Execution, 

Traditional Offloading and REST-Offload  

Matrix Size ET of Local 

Execution 

ET of Traditional 

Offloading 

ET of REST-Offload 

Method 

160x160 11071 9608 7418 

450x450 111799 189523 49587 
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By evaluating the experiments result of Samsung Galaxy A5, the execution time 

of prototype application at local mobile device is longer than executing the same with 

traditional offloading techniques for the computational intensities in the range 160x160 

to 300x300. In Contrast, the execution time of computational intensities following 

300x300 until 450x450 takes longer ET using traditional techniques. It shows that for 

lower computational intensity of any task execution which involves less computation 

can be offloaded to remote surrogate through traditional offloading. However, the tasks 

which are complex in computation, required longer execution time take longer time to 

execute. Further, the comparison shows that the execution time of different 

computational intensities starting from 160x160 until 450x450, in all the three 

scenarios, execution time of local mobile device is greater than the REST-Offload while 

less than traditional offload. Similarly, executing the same intensity at traditional 

computational offloading, the ET is less than the ET of local execution. Similarly, the 

ET of traditional offloading is greater than ET of the same intensity if execute it through 

REST-Offload method. Figure 5.13 shows the complete comparison of the three 

scenarios. It is clear that ET of conducting offloading through REST-Offload is lower 

than attempted at local mobile device or executing the same through traditional 

offloading techniques.  

 

 

 

Figure 5.13 Execution Time (ms) Comparison of Matrix Multiplication of all Three 

Scenarios using Samsung Galaxy A5 
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Table 5.2 P% of ET of REST-Offload Method for Samsung Galaxy A5 using the 

equation, Y= P% * X, against Local Execution and Traditional Offloading 

 

 

To go more specific in comparison of all three scenarios the percentage 

Execution Time calculated of the three random computational intensities. Table 5.2 

shows the P% of Execution Time of REST-Offload Method using the equation, Y= P% 

* X, against Local Execution and Traditional Offloading. It also included Execution 

Time using Traditional Offloading against Local Execution. It will give the percentage 

execution of REST-Offload against Local Execution and Traditional Offloading for the 

three random computational intensities. The percentage Execution time of 

computational intensity 160x160 executing prototype application using REST-Offload 

against local execution is 67 % which is decreasing as the computational intensity 

increases, such as for 300x300 is 56.02 % and for 450x450 is 44.35 %. 

 

By the comparison of the results for all three scenarios using Samsung Galaxy 

A5 as a DUT, it is clear that as the complexity increases, execution of computational 

intensive task at REST-Offload becoming useful in terms of Execution Time. Similarly, 

if consider the ET of traditional computational offloading, which is 86.79 % for 

160x160 against local execution which reaches up to 169.52 % for the computational 

intensity 450x450. It shows that for a task with less computational load can be executed 

quickly at traditional offloading method while for complex execution task the local 

execution can process them fast.   

 

5.5.2 Execution Time (ET) Result Comparison of ASUS Zenfone5 

 

The Execution Time (ET) results collected in Table 5.3 consist of sample results 

of ASUS Zenfone 5 for all three scenarios Local Execution, Traditional Offloading and 

REST-Offload are going to analyse. Rest of the results are in appendix E (Table E.2). 

Computational 

Intensity 

% ET of REST-Offload 

against Local 

Execution 

% ET of Traditional 

Offloading against 

Local Execution 

% ET of REST-Offload 

Method  against 

Traditional Offloading 

160x160 67.00 86.79 77.21 

300x300 56.02 97.40 57.51 

450x450 44.35 169.52 26.16 
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Table. 5.3 Comparison of ET of ASUS Zenfone5 between Local Execution, 

Traditional Offloading and REST-Offload 

 

 

 

By evaluating the experiments results, the ET of prototype application at local 

mobile device is longer than executing the same with traditional offloading techniques 

for the computational intensities in the range 160x160 to 300x300. In Contrast, the 

execution time of computational intensities after 300x300 until 450x450 takes longer 

ET using traditional techniques. It shows that for lower computational intensity of any 

task execution, which involves less computations can be offloaded to remote surrogate 

through traditional offloading, while for tasks which required higher/complex 

computations takes longer execution time if delegate the task with Traditional 

Offloading Methods. The results in terms of Execution Time of ASUS Zenfone5 is 

almost identical to the result of Samsung Galaxy A5, which is further explained in 

Section 5.7 of this Chapter. 

 

                       

Figure 5.14 Execution Time (ms) Comparison of Matrix Multiplication of all Three 

Scenarios using ASUS Zenfone5 
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Matrix Size ET of Local 

Execution 
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Method 

160x160 13240 11280 7780 

450x450 118460 152520 61520 
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Table 5.4 P% of ET of REST-Offload Method for ASUS Zenfone5 using the 

equation, Y= P% *X, against Local Execution and Traditional Offloading 

 

Further, the comparison shows that the ET of different computational intensities, 

executing 160x160 at all three scenarios, ET of local mobile device is greater than the 

rest two. Similarly, executing the same intensity at traditional computational offloading 

way, the ET is less than the ET of local mobile device while greater than ET of same 

intensity if execute it through REST-Offload method. Figure 5.14 shows the complete 

comparison of the three scenarios. It is clear that ET of attempting execution through 

REST-Offload is lower than the one attempted at local mobile device or executing the 

same through traditional offloading techniques.  

 

To go more specific in comparison of all three scenarios the percentage ET 

calculated of the three random computational intensities. Table 5.4 shows the P% of ET 

of REST-Offload Method using the equation, Y= P% * X, against Local Execution and 

Traditional Offloading. It also included Execution Time using Traditional Offloading 

against Local Execution. It will give the percentage execution of REST-Offload against 

Local Execution and Traditional Offloading for the three random computational 

intensities.  The percentage ET of computational intensity 160x160 executing prototype 

application using REST-Offload against local execution is 58.76 %. It decreases with 

the computational intensity increase, such as for 300x300 is 53.22 % and for 450x450 is 

51.93 %.  

 

By the comparison of the results for all three scenarios using ASUS Zenfone5 as 

a DuT, it is clear that as the complexity increases, execution of the computational 

intensive tasks at REST-Offload becoming useful in terms of Execution Time. Two 

types of pattern observed here in the results. If compare all three scenarios, then ET of 

REST-Offload is lower than the rest two and therefore is more efficient.   

 

Computational 

Intensity 

% ET of REST-Offload 

against Local 

Execution 

% ET of Traditional 

Offloading against 

Local Execution 

% ET of REST-Offload 

Method  against 

Traditional Offloading 

160x160 58.76 85.20 68.97 

300x300 53.22 99.61 53.43 

450x450 51.93 128.75 40.34 
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In the second pattern, if consider the execution time of traditional computational 

offloading, which is 85.20 % for 160x160 against local execution and reaches up to 

128.75 % for the computational intensity 450x450. It shows that for tasks with less 

computational load can be executed quickly at traditional offloading methods while for 

complex tasks the local execution can process faster.   

 

5.6 Comparison of Energy Consumption (EC) of Matrix Multiplication Service 

between Local Execution, Traditional Offloading and REST-Offload 

 

This section consists of the results comparison and analysis in terms of Energy 

Consumption (EC) between all the three scenarios Local Execution, Traditional 

Offloading and REST-Offload. The results of the three scenarios for both devices are 

distinctly compared as given in following sub-sections.   

 

5.6.1 Energy Consumption (EC) Result Comparison of Samsung Galaxy A5 

 

The EC of prototype application at local mobile device, offloaded to remote 

servers, through traditional computational method and offloaded through REST-Offload 

method are collected using Samsung Galaxy A5 in Chapter 4. Table 5.5 shows the 

sample results of the Energy Consumption Cost gathered for all the three scenarios. The 

details of results attached in appendix E (Table E.3). Further analysis and comparison of 

energy consumption costs of different computational intensities evaluated using all 

three scenarios.  By evaluating the experiments results the energy consumption cost of 

prototype application at local mobile device is greater than executing the same 

application using REST-Offload techniques, for all the 30 different computational 

intensities starting from 160x160 to 450x450. 

 

Table. 5.5 Comparison of Energy Consumption Cost between Local Execution, 

Traditional Offloading and REST-Offload for Galaxy A5 

 

 

Matrix Size EC (J) in 

Local Execution 

EC (J) in 

Traditional Offloading 

EC (J) in 

REST-Offload Method 

160x160 4.58 7.72 3.48 

450x450 45.4 102.08 25.35 
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It is also observed that the EC of local execution is less than the energy 

consumption costs of traditional offloading techniques, for all the 30 computational 

intensities 160x160 to 450x450. It shows that for the used test case, traditional 

computational offloading methods are complex and energy intensive.  

 

Moreover, the Traditional Offloading techniques are complex as it needed extra 

mobile’s resources for computational offloading which is discussed in detail in Chapter 

3. The inference component, dynamic partitioning and virtual machine migrations are 

few of the heavyweight procedures which turns the offloading techniques computational 

intensive. The energy costs for executing all the 30 computational intensities using 

REST-Offload method are very low compare to the rest two.  

 

Further, comparison of the energy consumption costs of few selected cases of 

computational intensities for all the three scenario attempted. It shows, that the energy 

consumption cost of local mobile device is 4.58 J which is less than the energy 

consumption cost of traditional method 7.72 J while is greater than the REST-offload 

method 3.48 J. Similarly, the energy consumption cost of computational intensity 

300x300, executed at local mobile device is 19.62 J. It is less than the energy 

consumption cost 30.36 J of executing same intensity through traditional offloading 

method while greater than the energy consumption cost 11.50 J of executing through 

REST-Offload.  In case of executing 450x450 in all three scenarios, the energy 

consumption costs of local execution is less than the traditional offloading method 

while greater than executing the same through REST-Offload.  

 

 Figure 5.15 shows the complete comparison of the three scenarios. It is clear 

from the results that, the Energy Consumption Costs of local execution in executing the 

same intensity for all the scenarios less than the energy consumption cost at Traditional 

Methods, while greater than executing the same at REST-Offload. The range of energy 

consumption cost of local execution fall in the range 4.58-45.4 J for all 30 

computational intensities. Similarly, traditional offloading energy consumption cost is 

in the range of 7.72-102.08 J while REST-offload fall in the range 3.48-25.35 J which 

comparatively very low of the other two scenarios.   
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Figure 5.15 Energy Consumption (J) Comparison of Matrix Multiplication of all 

Three Scenarios using Samsung Galaxy A5 

 

To go more specific in comparison of all the three scenarios the percentage EC 

calculated of three randomly chosen computational intensities. Table 5.6 shows the P% 

of REST-Offload Method using the equation, Y= P% * X, against Local Execution and 

Traditional Offloading. It also included EC of Traditional Offloading against Local 

Execution. It will give the percentage EC of REST-Offload against Local Execution and 

Traditional Offloading for the three random computational intensities.  The percentage 

EC of computational intensity 160x160 executing prototype application using REST-

Offload against local execution is 75.98 % which is decreasing as the computational 

intensity increases, such as for 300x300 is 58.61 % and for 450x450 is 55.84 %. It 

shows that, as the complexity increases, the execution of computational intensive task at 

REST-Offload getting more useful in terms of Energy Consumption. 

 

Table 5.6 P% of Energy Consumption of REST-Offload Method for Samsung 

Galaxy A5 using the equation, Y= P% * X, against Local Execution and Traditional 

Offloading 
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% EC of REST-
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 Execution  
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Execution 
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Method  against 
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160x160 75.98 168.56 45.08 

300x300 58.61 154.74 37.88 

450x450 55.84 224.85 24.83 



  

148 

Similarly, if consider the Energy Consumption Cost of traditional computational 

offloading which is 168.56 % for 160x160 against local execution, depicts a significant 

increase in energy consumption compare to local execution. It reaches up to 224.85 % 

for the computational intensity 450x450. It is clear that, for any kind of intensive task 

execution through traditional offloading methods are time and energy intensive and 

drain power more than any other method. The energy consumption cost of REST-

Offload is comparatively very low against the energy consumption cost of both the 

scenarios which are given in percentage in Table 5.6.  

 

5.6.2 Energy Consumption (EC) Result Comparison of ASUS Zenfone5 

 

The EC results of prototype application at local execution, traditional 

computational offloading techniques and REST-Offload method, are gathered using 

ASUS Zenfone5 in Chapter 4. Table 5.7 shows the sample results of EC gathered for all 

three scenarios. It is further considered to analyse and compare EC of different 

computational intensities evaluated using all the three scenarios. Rest of the results are 

in appendix E (Table E.4).   

 

By evaluating the experiments results, the EC of prototype application at local 

mobile device is greater than EC of executing the same application at REST-Offload 

method. It is also observed that the EC of local execution is less than the EC of 

executing prototype application through traditional offloading techniques for all the 30 

computational intensities 160x160-450x450. The results affirm that, for the used test 

case, the energy costs of traditional computational offloading methods are energy 

intensive. The reason of energy intensity of traditional computational offloading 

methods is the extra mobile’s resources utilization in computational offloading which is 

already discussed in Chapter 3.  

 

Table 5.7 Comparison of Energy Consumption Cost between Local Execution, 

Traditional Offloading and REST-Offload for ASUS Zenfone5 

Matrix Size EC (J) in 

Local Execution 

EC (J) in 

Traditional Offloading 

EC (J) in REST 

Offload Method 

160x160 5.54 8.56 4.64 

450x450 48.4 102.74 28.32 
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The inference component, dynamic partitioning and virtual migration are few of 

the heavyweight procedure which turns offloading to a resource intensive solution. The 

energy cost for executing all 30 different computational intensities using REST-Offload 

method are very low compare to the rest two.  Further, the comparison of the EC of few 

individual cases of computational intensities such as, for the intensity 160x160 the 

observed EC of all three scenarios is 4.64 J < 5.54 J < 8.56 J shows that Rest-Offload < 

Local-Execution < Traditional-Offload. Similarly, the EC of computational intensity 

300x300 executed at local mobile device is 20.38J which is less than the EC 31.6J of 

executing same intensity through traditional offloading method while greater than the 

EC 13.16 J of executing it by REST-Offload.  In case of executing 450x450 in three 

scenarios the EC of local execution again is less than the traditional offloading method 

while greater than executing the same through REST-Offload.  

 

 Figure 5.16 shows the complete comparison of the three scenarios. It shows that 

the EC of local execution for the same intensity is less than the EC at traditional 

Methods, while greater than executing the same at REST-Offload. The range of EC of 

local execution falls in the range 5.54J-48.4J for all 30 computational intensities. 

Similarly, EC in traditional offloading falls in the range of 8.56J-102.74J while REST-

offload falls in the range 6.64J-28.32J which is comparatively very low than the other 

two scenarios. To go more specific in comparison of all three scenarios the percentage 

EC calculated of three randomly chosen computational intensities.  

 

                        

Figure 5.16 Energy Consumption (J) Comparison of Matrix Multiplication of all 

Three Scenarios using ASUS Zenfone5 
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Table 5.8 P % of Energy Consumption of REST-Offload Method of ASUS 

Zenfone5 using the equation, Y= P% * X, against Local Execution and Traditional 

Offloading 

 

Table 5.8 shows the P% of REST-Offload Method using the equation, Y= P% * 

X, against Local Execution and Traditional Offloading. It also included Energy 

Consumption Cost using Traditional Offloading against Local Execution. It gives the 

percentage Energy Consumption Cost of REST-Offload against Local Execution and 

Traditional Offloading for the three randomly chosen computational intensities.   

 

The percentage EC of computational intensity 160x160 executing prototype 

application using REST-Offload against local execution is 75.98 %. It is decreasing as 

the computational intensity increasing, such as for 300x300 is 58.61 % and for 450x450 

is 55.84 %. It shows that as the complexity increases, the execution of computational 

intensive task at REST-Offload getting more efficient in terms of Energy Consumption. 

Similarly, if consider the percentage Energy Consumption Cost of traditional 

computational offloading against local execution, which is 169.56 % for 160x160. It 

shows a huge increase in energy consumption compare to local execution. It reaches up 

to 224.85 % for the computational intensity 450x450. It is clear from the results that for 

any kind of intensive task execution through traditional offloading methods are time and 

energy intensive and drain power more than any other method. The EC of REST-

Offload is comparatively very low against the energy consumption cost of both the 

scenarios which are given in percentage in Table 5.8.  

 

 

 

 

 

Computational 

Intensity 

% EC of REST-Offload 

against Local 

 Execution  

% EC of Traditional 

Offloading against 

Local Execution 

% EC of REST-Offload 

Method  against 

Traditional Offloading 

160x160 75.98 168.56 45.08 

300x300 58.61 154.74 37.88 

450x450 55.84 224.85 24.83 
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5.7 Comparison of Execution Time (ET) and Energy Consumption (EC) 

between REST-Offload and DCOF Framework 

 

DCOF Framework proposed by Shiraz et al., in (2013), as a lightweight solution 

for addressing the resources intensity and communication overhead. DCOF is 

considered as a second benchmark in this study. Both, REST-Offload and DCOF 

(Distributed Computational Offloading Framework) are going to analyse in this section 

in terms of ET and EC. Also, the data set of DCOF Framework is considered in REST-

Offload for testing ET and EC. The intention of selecting same data set was the 

comparison of results against DCOF (the benchmark). It was also intended to find out 

the efficiency of REST-Offload.  The first part of this section is going to discuss and 

compare the ET results of DCOF and REST-Offload model. The second part consist of 

discussion and comparison of both the approaches for EC. Table 5.9 shows the sample 

ET results of executing the computational intensities started from 160x160 until 

450x450. The detail results are in appendix E (E.5).   

 

DCOF Framework shows 72 % ET efficiency against Traditional Computational 

Offloading techniques, while REST-Offload shows 104.2 % ET efficiency against 

Traditional Computational Offloading Techniques. Figure 5.17 illustrates the 

comparison of all 30 computational intensities between REST-Offload and DCOF. 

DCOF solution initially proposed the elimination of unnecessary utilization of mobile’s 

resources during offloading of computational task to remote servers. However, the 

results collected from both the approaches shows that, by the deployment of Virtual 

Machine in computational offloading technique demands extra resources at mobile 

devices. Also, the delegation of VM instance at runtime needs to transfer a huge data to 

remote servers using the available bandwidth, which takes more time to complete the 

task. 

 

Table 5.9 Comparison of ET between REST-Offload and DCOF Framework  

 

Matrix Size ET (ms) in 

DCOF Framework 

ET (ms) of REST-

Offload 

 Difference (ms) 

160x160 4241 7418 -3177 

450x450 97887 49587 48300 
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Figure 5.17 ET (ms) Comparison of Matrix Multiplication of between DCOF and 

REST-Offload 

 

Figure 5.17 shows that for all the tasks which are lightweight can be executed 

quicker at DCOF while as the complexity of the task increases the resources utilization 

and communication overhead increases, which increases ET. The ET of DCOF while 

executing intensities 160x160 to 320x320 is less than REST-Offload whereas, the ET 

intersects the ET of REST-Offload after computational intensities 340x340 to 450x450, 

which clearly shows that for higher complexity REST-Offload is efficient than DCOF. 

 

Next, this section also discusses the EC of matrix multiplication operation 

between both the approaches. Table 5.10 shows the sample result comparison of EC 

while executing computational intensities 160x160 to 450x450 through DCOF and 

REST-Offload. Referred to appendix E (Table E.6) for details results.  Previously, by 

examining the results of local execution against REST-Offload, the EC increases as the 

ET increases.  The EC given in Table 5.10 plotted to show a precise comparison of 

both, as shown in Figure 5.18. Against the results of ET which intersects until mid, the 

EC here is higher in DCOF from the first intensity 160x160 until last intensity 450x450, 

regardless of the twisting of ET at mid. 

 

Table 5.10 Comparison of EC between REST-Offload and DCOF Framework 
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Figure 5.18 EC (J) Comparison of Matrix Multiplication of between DCOF and 

REST-Offload 

 

The EC range of DCOF starting from 10.8 J for intensity 160x160 and reaches 

up to 65.3 J for the last intensity 450x450. Similarly, the EC range of REST-Offload is 

24.35 J, starting from 3.48 J for the lowest intensity while 25.35 J is the EC for highest 

intensity 450x450. The ET efficiency of REST-Offload against the benchmarks Local 

Execution and DCOF is 54.63 % and 35.01 % respectively. Also, the EC efficiency of 

the proposed REST-Offload model against both the benchmarks Local Execution and 

DCOF is 43 % and 60.14 % respectively.  The observation and comparison of results in 

all three scenarios such as Local Execution, REST-Offload and of DCOF shows that, 

REST-Offload is far efficient in ET and EC both than DCOF and Local Execution.  

 

5.8 ET and EC Comparison of Samsung Galaxy A5 with ASUS Zenfone5 for all 

Three Scenarios  

 

Two different state-of-the-art mobile devices of two different vendors used as 

DuT in the experiments. The intension of using different mobile devices with different 

specifications to know the effect of lower/higher speed processor and different network 

interfaces on battery consumption. Also to know the efficiency of proposed light weight 

method by changing specification of mobile models and brands. This section consists of 

the results comparison between two different devices, in terms of ET and EC. In the 

first part the comparison in terms of Execution Time (ET) is presented in Table 5.11 as: 
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Table 5.11 ET Comparison of Samsung Galaxy A5 and ASUS Zenfone5 

 

 

The ET of processing task in all three scenario of Samsung Galaxy A5 is a bit 

lower than the ET for the same using ASUS Zenfone5.  There are many reasons of 

differences in the observed results and few key reasons are the specification differences 

(CPU architectures, clock speeds, number of cores, and amount of RAM) (Shin et al., 

Matrix 

Size 

ET (ms) of Local Exec. ET (ms) of Traditional-Off. ET (ms) of Rest-Off 

  

Galaxy A5 

 

ASUS Z5 

 

Galaxy A5 

 

ASUS Z5 

 

Galaxy A5 

 

ASUS Z5 

160x160 11071 13240 9608 11280 7418 7780 

170x170 12675 14880 10544 13220 8042 8420 

180x180 14696 16460 11152 14260 8503 9140 

190x190 16331 18425 13448 16260 9511 10360 

200x200 18088 20300 14286 17420 10374 11160 

210x210 20146 22620 16406 19420 10844 12260 

220x220 22004 24460 17200 22420 12572 12540 

230x230 24290 27420 18931 24500 13814 14220 

240x240 26542 29380 20687 26400 15236 15360 

250x250 28654 32240 23727 29620 16448 16700 

260x260 31666 34280 26968 31620 17410 18440 

270x270 33751 37160 29593 34360 18719 19540 

280x280 37176 39220 33056 37400 20403 21260 

290x290 38941 43540 35777 41420 21483 23380 

300x300 41711 45700 40627 45520 23365 24320 

310x310 45589 49400 46807 49280 24627 25480 

320x320 49128 52300 52168 52380 26354 27300 

330x330 53249 56060 58184 58360 27505 29460 

340x340 56637 58680 63449 64380 28799 32380 

350x350 60939 62300 70335 67460 30591 33360 

360x360 63523 66540 76010 70562 31768 34480 

370x370 65479 70240 87753 80360 33536 37460 

380x380 71061 74320 101338 89480 35023 39260 

390x390 79131 79340 120554 95560 37374 41440 

400x400 83313 84640 136166 105340 38703 44720 

410x410 87112 89360 148291 116460 40305 49240 

420x420 89920 96540 165687 123500 41631 51320 

430x430 95844 102760 173176 131360 43565 54540 

440x440 104633 109600 182196 140640 46347 58440 

450x450 111799 118460 189523 152520 49587 61520 
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2013). Specification of the devices against each other are given in Table 5.12. For a 

decent performance, the CPU and RAM specifications must be good enough as well as 

the device need to be in good operating condition. The device condition can also be 

considered one of the reasons, which effect the device’s performance.  

 

Devices according to the conditions are categorized as, brand new, good 

condition, reliable, poor condition, broken.  The DuT in the experiments are Samsung 

Galaxy A5 which is good in condition after passing through the initial test. A good 

phone is the one having no visible scratches, battery health good and not much used. A 

reliable phone is the one which works 100 % but having some visible scratches, used 

longer and battery condition not very good. Also, due to continuous use of the device, 

processing speed get slower due to heated up ICS.   The ASUS Zenfone5 is reliable in 

condition which affects the experiment’s result.   

 

Now to distinctly analyse the differences of results, the processor of Samsung 

Galaxy A5 is Quad-core while ASUS Zenfone5 is Dual-core. In Addition, the condition 

of Samsung Galaxy A5 is good while ASUS Zenfone5 is reliable. The RF CAL 

(manufacturing year) of Samsung Galaxy A5 shows the device is latest while ASUS 

Zenfone5 used longer and reliable only in condition.  Due to all these specification’s 

differences and the devices conditions, the ET results of both the devices in all three 

scenarios are slightly different. The ET results of Samsung Galaxy A5 is slightly better 

than ASUS Zenfone5, as shown in Figure 5.19, Figure 5.20 and Figure 5.21. 

 

Table 5.12 Specifications of Samsung Galaxy A5 and ASUS Zenfone5 

 

D. Name Processor RAM Storage Battery D. Condition RF CAL 

Galaxy A5 Quad-core 

1.2 GHz 

2 GB 16 GB 2300mAh Good 2015.02.06 

ASUS Z5 Dual-core 

1.2 GHz 

2 GB 8 GB 2110mAh Reliable 2014.01.22 
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Figure 5.19 Execution Time (ms) Comparisons of Galaxy A5 and ASUS Z5 in Local 

Execution  

 

 

 

 

 

Figure 5.20 Execution Time (ms) Comparisons of Galaxy A5 and ASUS in 

Traditional Offloading 
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Figure 5.21 Execution Time (ms) Comparisons of Galaxy A5 and ASUS in REST-

Offload 

 

Based on the results and specifications of the devices, it is concluded that 

Samsung Galaxy A5 for all three scenarios is better in executing the task compare to 

ASUS Zenfone5. Here, in the second part of this section, the comparisons of both the 

devices in terms of energy consumption (EC) in all three scenarios is going to analyse. 

Table 5.13 consist of the EC results of all three scenarios conducted with both the 

devices. Similar to ET, the EC results of Samsung Galaxy A5 observed in all three 

scenarios are lower than that of ASUS Zenfone5. In other words, executing a complex 

task in any of the given scenario, Samsung Galaxy A5 drain less power and therefore is 

energy efficient compare to ASUS Zenfone5.   

 

The energy consumption cost of executing the task at surrogate server, offloaded 

through Traditional Offloading methods observed closely identical using both the 

devices. There is only (1-2) J of jump of each higher intensity while processing each 

intensity. In case of executing the task locally, the EC of Galaxy A5 and ASUS Z5 

having a jump of 1-2 J during processing of each intensity. Similarly, during REST-

Offload method the EC of Galaxy A5 is efficient then ASUS Z5. For lower intensities 

the EC difference between both the devices is about 1 J while for higher intensities the 

difference reaches up to 3 J. The overall analysis of comparison as shown in Table 5.13, 

shows that Galaxy A5’s results are better and efficient than ASUS Z5.  
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Table 5.13 EC Comparisons of Samsung Galaxy A5 and ASUS Zenfone5 

 

 

Local Execution, Traditional Offloading and REST-Offload results of Table 

5.13 plotted in Figure 5.22, Figure 5.23 and Figure 5.24 respectively. Galaxy A5 drains 

less battery than ASUS Z5 and again of many other reasons like specification and 

condition of the device, the battery status and health is important to consider which 

Matrix 

Size 

EC (J) of Local Exec. EC (J) of Traditional-Off. EC (J) of Rest-Off 

  

Galaxy A5 

 

ASUS Z5 

 

Galaxy A5 

 

ASUS Z5 

 

Galaxy A5 

 

ASUS Z5 

160x160 4.58 5.54 7.72 8.56 3.48 4.64 

170x170 6.26 7.4 9.14 9.72 3.83 4.86 

180x180 6.725 7.78 10.24 11.64 4.45 5.52 

190x190 7.44 8.72 11.18 12.58 4.68 5.86 

200x200 7.56 8.44 11.5 13.4 5.55 6.46 

210x210 9.54 10.54 16.74 17.46 6.33 7.58 

220x220 10.3 11.66 15.06 18.4 7.05 8.82 

230x230 11.5 12.68 19.48 19.52 8.18 10.24 

240x240 12.3 13.5 21.8 21.4 8.65 10.72 

250x250 13.36 14.54 21.52 22.7 8.40 11.42 

260x260 14.54 15.62 23.56 24.48 9.48 11.78 

270x270 15.74 16.58 25.92 26.44 10.08 12.46 

280x280 17.12 18.46 26.34 27.8 10.78 12.72 

290x290 18.36 19.52 29 29.14 11.33 12.74 

300x300 19.62 20.38 30.36 31.6 11.50 13.16 

310x310 20.72 21.54 33.52 33.46 12.68 13.74 

320x320 22.16 23.58 35.48 34.34 13.03 14.4 

330x330 23.32 24.68 37.6 38.54 14.20 15.68 

340x340 24.66 25.46 40.82 41.6 15.33 16.54 

350x350 26.34 26.6 43.28 44.58 15.78 17.18 

360x360 27.58 28.48 43.62 45.4 16.00 18.38 

370x370 29.48 30.5 46.56 47.62 17.20 19.3 

380x380 31.36 32.62 50.6 51.62 18.38 20.4 

390x390 33.16 34.52 58.08 58.42 19.03 21.76 

400x400 34.3 35.7 61.08 61.38 19.23 22.3 

410x410 36.5 37.64 66.88 68.54 21.78 23.3 

420x420 38.46 39.42 72.56 73.5 22.05 24.48 

430x430 41.2 42.48 77.96 78.46 23.08 25.36 

440x440 43.46 44.66 88.66 88.62 24.40 26.414 

450x450 45.4 48.4 102.08 102.74 25.35 28.32 
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affects battery consumption. Similarly, in case of ASUS Z5 the battery health is normal 

only compare to a good battery health of Galaxy A5.  

 

 

Figure 5.22 Energy Consumption (J) Comparisons of Galaxy A5 and ASUS Z5 in 

Local Execution 

 

 

 

 

 

Figure 5.23 Energy Consumption (J) Comparisons of Galaxy A5 and ASUS Z5 in 

Traditional Offloading 
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Figure 5.24 Energy Consumption (J) Comparisons of Galaxy A5 and ASUS Z5 in 

REST-Offload 

 

5.9 Efficiency Comparisons of REST-Offload against Existing Framework 

 

In order to compare the efficiency of REST-Offload against different method 

level computational offloading frameworks/models the results collected of three method 

level computational offloading models. The result evaluated based on the execution 

time and energy consumption in both the scenarios; local execution and offloaded 

execution. The average execution time and energy consumption values calculated and 

the efficiency determined for each method level model against the local execution. 

Firstly, the Table 5.14 consist of the prototype application, the developed model, the 

average local execution time and remote execution time, and the efficiency calculated. 

Similarly, Table 5.15 shows, the energy consumption comparison; the average local 

energy and offloaded energy calculated and efficiency observed for all the three method 

level offloading approaches.  

 

5.9.1 Efficiency Comparisons of Execution Time 

 

Table 5.14 consist of the results and efficiency comparisons of previous method 

level offloading solutions against the proposed lightweight REST-Offload Model. It 

included the prototype application developed for testing. Based on the observed average 

values of local execution and remote executions the efficiency calculated. Kosta et al., 

(2009) developed N-queen puzzle for puzzling numbers. The average local execution 

time of the puzzle game is 15s while the same offloaded to remote server at distant 
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Table 5.14 Efficiency Comparison of Execution Time 

 

Framework/Model Prototype  %Average Ex. Time of Local 

and Offload Execution(s) 

Efficiency in 

Percentage 

(%) Local Offload 

ThinkAir Framework 

(Kosta et al., 2012) 

N-Queen Puzzle 15 9 40% 

Cuckoo 

(Kemp et al., 2010) 

eyeDentify object-

recognition application 

100 50 50% 

DECOF 

(Shiraz et al., 2014) 

Matrices Multiplication 108 97 11% 

REST-Offload Matrices Multiplication 111 49 56% 

 

cloud and the average execution time observed is 9s. It shows 40 % efficiency of 

execution time against local execution. 

 

Similarly, Kemp et al., (2010) developed an eyeDentify object recognition 

application. The application tested for both scenarios. The local average execution time 

observed is 100s while the remote execution time is 50s. It shows 50 % efficiency 

against the local execution. Likewise, Shiraz et al., (2014) used an application for 

multiplying two matrices and observed the execution time. The local execution time is 

108s while the remote execution time is 97s. It gives 11 % efficiency against the local 

execution of the same application.  

 

 

Figure 5.25 Efficiency Comparison of Execution Time 
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In contrast to the previously developed three method level frameworks/models, 

the proposed REST-Offload discussed at the end. REST-Offload tested for the same 

matrix multiplication application. The results of local execution observed is 111s while 

of remote execution is 49s. The efficiency is 56 % against the local execution.  In 

addition, the comparison of REST-Offload ET results against all the three method level 

offloading approaches, are shown in Figure 5.25. The calculated efficiency of all the 

three methods depicts that REST-Offload model is efficient than all the rest approaches 

with the highest execution time efficiency of 56 %. 

   

5.9.2 Efficiency Comparisons of Energy Consumption 

 

Table 5.15 consists of the results and efficiency comparisons of energy saving 

against previous method level offloading frameworks and models. Based on the 

observed average values of local execution and remote executions the efficiency in 

terms of energy consumption calculated. The energy consumption values gathered for 

N-queen puzzle of Kosta et al., (2009). The average local energy consumptions of the 

puzzle game is 78 J while the same offloaded to remote server at distant cloud and the 

average energy consumption observed is 41 J. It gives 48 % efficiency of energy saving 

against the local execution.  

 

Similarly, the eyeDentify object recognition application of Kemp et al., (2010) 

shows, 100 J of energy consumption in local execution while 50 J in offloaded 

execution. It shows 50 % energy efficiency against the local executions. Likewise, 

matrix multiplication of Shiraz at al., (2014) tested for energy consumption during local 

execution and it gives the consumptions 91 J while the same execution at remote is 65 J. 

The efficiency derived here is 29 %. 

Table 5.15 Efficiency Comparison of Energy Consumption 

Framework/Model Prototype  % Average Energy 

Consumption of Local and 

Offload Execution(J) 

Efficiency in 

Percentage 

(%) 

Local Offload 

ThinkAir Framework 

(Kosta et al., 2012) 

N-Queen Puzzle 78 41      48% 

Cuckoo 

(Kemp et al., 2010) 

eyeDentify object-

recognition application 

100 50      50% 

DECOF 

(Shiraz et al., 2014) 

Matrices Multiplication 91 65      29% 

REST-Offload Matrices Multiplication 45 25      45% 
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Figure 5.26 Efficiency Comparison of Energy Consumption 

 

On the other hand, REST-Offload tested for a similar matrix multiplication 

application. The results observed of energy consumption in local execution is 45 J while 

of remote execution is 25 J. The efficiency is 45 % against the local execution.  In 

addition, the comparison of REST-Offload energy consumption against all the three 

method level offloading approaches are shown in Figure 5.26. The calculated energy 

efficiency of three methods depicts that REST-Offload Model falling in the third place 

in terms of energy efficiency, compare to the rest. The energy consumption of different 

applications is different based on the level of complexity of application. As the matrix 

multiplication application is more complex than the N-Queen Puzzle and eyeDenetiy 

application, therefore the energy consumption is slightly higher than both.  

 

5.10 Specification Comparisons of REST-Offload and Existing Approaches 

 

The specification of REST-Offload is compared with the previously developed 

method level offloading frameworks and models as shown in Table 5.16. Seven main 

components are selected here to compare and contrast REST-Offload against others. 

Five main components such as partitioning, data size reduction, service call, predefine 

parameters selection mechanism and remote execution environment are considered. 

All the previous works developed the models based on these parameters where REST-

offload model addresses the lacking features of the exiting models to propose a 

different approach for each component.   
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Table 5.16 Specification Comparison of REST-Offload against Existing 

Frameworks / Models 

 

All the existed solutions and the proposed model are going to briefly describe 

according to the models/framework specifications, as given in Table 5.16.   

 

a) Partitioning: This point is to know which method is adopted to partition the 

application before offloading. There are two possible ways to partition 

application static partition, dynamic partition. 

b) Service Call:  It defines what type of service call adopted to delegate the 

computational intensive tasks. It could be SOAP, REST or RPC. 

c) Communication Medium: It describes the channels used to delegate the task 

for remote execution. It is important to consider, as a low bandwidth network 

will hit the communication interface and will waste mobile resource. 

Ultimately, the battery will drain. 

d) Remote Server: Which type of remote server configured to receive intensive 

tasks and execute. Server could be a cloud server or cloudlet. Cloud server 

resides at multi hop distance which increases the communication time and 

therefore increases RTT. 

e) Predefine Parameters Mechanism: This component defines the basic 

parameters to include in taking decision before offload. Most of the 

Framework / 

Model 

Partition Service 

Call 

Commu-

nication 

Medium 

Remote 

Server 

Predefine 

Parameter 

Mechanism 

Data Size 

Reduction 

Contribution 

Dynamic 

Compilation 

and Method 

Execution 

(Chen et al., 

2004) 

Dynamic SOAP 3G/4G Cloud 

Server 

No Data 

Compression 

(e 

java.util.zip) 

Energy 

Saving 

Cuckoo 

(Kemp et al., 

2010) 

Dynamic SOAP 

(RPC) 

Wi-Fi Cloud 

Server 

No n/a Reduce 

Energy 

Consumption 

DCOF 

(Shiraz et al., 

2014) 

Static SOAP 

(RPC) 

Wi-Fi Cloud 

Server 

No Deployment 

of SaaS 

Model and 

remote 

services 

Reduce Data 

size and 

energy 

consumption 

REST-Offload 

 

Proposed 

REST-Offload 

Model 

 

Static REST Wi-Fi Surrogate 

Server 

`Yes Replaced 

XML by 

JSON 

Reduce 

Energy 

Consumption 
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frameworks/models lacks in considering this component, therefore the ultimate 

results are, sometime not efficient in energy savings. 

f) Data Size Reduction: It is very important to reduce the data size before offload 

the task. If the communication data size is huge, it needs more time to offload. 

g) Strategy for energy offloading; It defines the model strictly goal that is, the 

model developed to save energy or to achieve any other goal.  

 

To address the lacking (dynamic partitioning of application, huge 

communication data size, remote service call and longer RTT) of previously developed 

models and frameworks this study proposed a lightweight computational offloading 

model. REST-Offload deployed five distinct components to counter the gaps of those 

frameworks/models. Further, unlike the mentioned method level computational 

offloading approaches, this research study is focus to understand first where and how 

the energy drains. Based on the observation of power analysis and critical review of 

the existing models, a lightweight method level REST-Offload model proposed. In 

order to reduce the consumption of local resources the novel dynamic application 

partitioning technique indulged which carries some static features.   

 

Further, RTT reduction is considered the main focus because increasing RTT 

has a key effect on battery consumption (Cuervo et al., 2010).  Also by Teka et al., 

(2004), minimizing the RTT between mobile device and remote server results in 

increasing the benefits of computational offloading. Therefore, remote execution 

environment is configured at a single hop distance which eliminates the long run RTT. 

Secondly, REST deployed as a service call carrier protocol which replaces SOAP. 

REST is lightweight and eliminates the XML data carrier by JSON.  JSON is easy to 

parse and easy to read.  JSON is smaller in size than XML and hence it reduces the 

data size to be offloaded. An additional component deployed for considering the 

predefine parameters before offload. As computational offloading always not energy 

efficient, it was observed by the experimental results of analysis of power 

consumption of mobile devices. Therefore, an algorithm proposed in order to select 

the best possible time based on the available bandwidth, availability of remote server, 

computations required and available battery level to offload. Hence, by reducing the 

communication data size, deploying a server at single hop, static partitioning of 

application and REST as a service call, the REST-Offload model is expected to 
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produce efficient results compare to the previous developed method level 

computational offloading models. 

 

5.11 Threats to Validity 

 

Empirical research sometime encounters many threats to validity which leads to 

unwarranted conclusions. In this research sufficient efforts have been taken to minimize 

those threats. Further, the implementation of this study was done based on three main 

experiments Local Execution, Traditional Offloading and REST-Offload. All three the 

experiments are evaluated based on Execution Time (ET) and Energy Consumption 

(EC).   

 

Prior to discuss about the threats, it is important to recall the experiments setup 

here. Fist Experiment: Local Execution where the application is thoroughly executed in 

the mobile device. Second Experiment: Traditional Offloading where the experiments 

are designed based on offloading the intensive tasks to multi-hop cloud server using 

SOAP techniques. Lastly, REST-Offload is the proposed setup where the intensive tasks 

are offloaded to a single-hop server using REST techniques.  

 

The validity threats to each set of experiment are arranged as: Firstly, the Usage 

Scenario Threats which perhaps varies the results while running the same simulated 

tool in all the three experiments. Secondly, the DuTs Specification Threats which if 

change may possibly change the results in all three experiments. Thirdly, Single-hop 

Surrogate Threat, which affect REST-Offload only.  Lastly, EC and ET Estimation 

Threats where a Stopwatch used to observe the ET and a Power Meter used to observe 

EC in all three experiments.    

 

5.11.1 Usage Scenario Threats 

 

Power consumption strongly relates to the using location, different age groups, 

different generation of Smartphones, climate and geographical regions. Moreover, the 

energy consumption of different mobile components also relates to the user activity, for 

instance, a user playing video game offline will hit the CPU and LCD only in term of 

consumption while an online video game player will hit the Wi-Fi as main energy 
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drainer. These are some of the factors which affect battery consumption. In the 

experiment design phase of this research, the mobile device used to be in a single 

physical location.  Further, the usage scenario varied with different age groups. It is 

established that young age group’s usage timing and the choice of interactions with 

mobile device are different than the elder group of users and it inevitably affect the 

consumptions level. This level of threats probably affects the results in all three 

experiments. 

 

5.11.2 DuTs Threats 

 

 The Devices under Test (DuTs) threats comprises of mobile device’s 

specification threats and battery’s specification threats. The mobile devices selected are 

Samsung Galaxy A5 and Asus Zenfone5. The reason of running the simulations on two 

different devices was to counter the specification differences and the observed 

variations of results. Likewise, battery condition of each mobile device needs to 

investigate, as if the condition of batteries change due to calendar fade or cycle fade, it 

affects the consumption level.  

 

5.11.2.1 Mobile Device’s Specifications Threats 

 

In fact, mobile devices manufactured by different companies carrying 

considerable differences. The differences are in terms of power consumption owing to 

different versions of operating systems and features incorporated in different models. 

Few of the mobile components like LCDs, Air Interfaces, Sensors, and Audio/Video 

Calls are considered power-intensive in various analysis and experiments.  Few of the 

researchers established screen brightness is one of the key factors which drain battery 

too fast, such as, display screens of mobile systems usually consume a considerable 

amount of energy.  

 

The display along with (backlight, touch screen and LCD panel) consumes about 

400 mW, which is one of the energy-intensive component. This research also 

established that the contents displayed on screen affects the total LCD energy 

consumption such as 33.1mW energy consumption with white screen while 74.2mW 

with a black screen. Therefore, the screen brightness level and the background graphics 
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are kept constant throughout the experiments. Moreover, speakers, touch key’s light, 

vibration, sensors, system sounds and network types are the adjustable parameters 

which may considerably change the battery level of consumption. Hence, all these 

parameters are kept constant while offloading the tasks to surrogates.  

 

GSM, 3G/4G and Wi-Fi:  A faster medium always reduces consumption 

compare to a slow transmitting medium. The GSM voice services are 46 % better in 

energy saving compare to UMTS (3G) networks. However, 3G+ (4G) technologies are 

more energy efficient for transmitting big volumes of data. Selection of transmission 

medium affects the ET and EC results, this research therefore opted the communication 

medium to be W-Fi in order to reduce the transmission time of data.  

 

As, mobile device is the main component in each type of experiment, therefore 

the mobile specifications threats are expected to affect all three type of experiments.  

 

5.11.2.2Mobile’s Battery Specifications Threats  

 

Amongst other threats to validity, battery specification is one of the main threat 

which likely affect the battery consumption level. Some specification threats of the 

battery are:  

 

Battery Model: Non-removable, 2300mAh: In the experiments 2300mAh and 

2400mAh batteries investigated. The mAh is taken as a parameter which change device 

to device. More mAh (Milliamp per Hour) means more energy the battery can supply on 

a full charge and more energy supply is directly proportional to a longer battery life, 

although more current the battery produces, the more voltage across the internal resistor 

drops according to Ohm’s law (V=IR). Thus, the higher the voltage the more charge to 

consume and it will therefore change the consumption level.  

 

Battery Health: A battery is known to be in good health if it stays active and keep the 

systems running till sufficient hours during usage, or if it satisfies the mentioned 

working hours in the device’s manual.  Two factors deteriorate the performance of 

battery, one is time and the other is usage. The performance weakening over time is 

called “Calendar Fade”, while the performance deterioration with usage is known as 
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"Cycle Fade". Furthermore, the lifespan or the battery calendar life is the elapsed time 

before the battery become useless whether it is in use or not. The batteries used in this 

research were brand new in one device and used one in the other device. The power 

consumption of both the devices is therefore slightly different from each other. Hence, 

battery health is important which may vary the consumption level.  

 

Battery Temperature: One of the main factors influencing the battery calendar life is 

the battery temperature. Lithium Ion batteries perform poorly if it gets warm or stays 

warm, leaving to a damaging affect. Having a protective case on device does not allow 

the heat to escape and to decrease battery temperature. It will then result in cell 

oxidation which shrinks the capacity and shortening battery’s lifespan. Once the battery 

is damaged by heat, the capacity cannot be restored. Smartphone devices are intended to 

perform well in an extensive variety of encompassing temperatures, with 62° to 72° F or 

16° to 22° C as the perfect safe place. It is particularly imperative to abstain the device 

from surrounding temperatures higher than 95° F 35°C, where the battery capacity can 

permanently be damaged. In case of this research the mobile device used in optimal 

temperature between 16° to 22° C to counter the threat of battery temperature. 

 

Battery Voltage: Lithium-Ion batteries affect from low voltage. It is essential to 

partially charge or drain the batteries like from 20 % to 90 % than to fully charge and 

fully drain. Complete charge or fully draining affect the cycle life of battery, which 

shrinks and reduces the overall efficiency.  Additionally, the relationship between 

voltage and current produced by a battery has no affect together on the amount of 

energy either the values increases or decreases by the same inverse ratio.  Such as, high 

voltage and low current equals to low voltage and high current. Power in watts is still 

the same. For example, Battery A: 3600mAh * 3.7V = 13Wh and Battery B: 3200mAh 

* 4.3V=13Wh. If a Smartphone consumes 10W per hour it will work 1 hour and 18 

minutes with battery A or B. The consumption of mobile device may change due to any 

of the above battery related parameters.  

 

As both the DuTs, which were equipped with Li-Ions batteries, used to conduct 

the experiments, therefore, this threat is common to all three type of experiments. To 

counter the threat, the simulation ran 20 consecutive times in order to acquire the mean 

consumption level which is expected to be closer to the real consumptions.    
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5.11.3 Single-Hop Surrogate Threats  

 

The single hop surrogate is the modified concept of existing cloudlet. The hop 

distance would affect RTT. This had been analyzed by Aiguo et al., (1998) who stated 

in their findings that if hope count increased, the packets would have to go through 

many routers. At each router, the packets would have to consume a certain amount of 

time to be routed for the next router and this would be repeated continuously until 

reaching the destination. Thus, at each router, packet delay would occur and this would 

increase the overall delay as the hop count increase.  

 

The multi-hop which consists of unlimited hops is the initial concept where the 

distant cloud server has to serve as a remote computer. The cloudlet concept presented 

by Satyanarayanan et al., (2009) has brought the cloud closer to the computing 

environment which is multi-hop (limited) and thus reduced RTT. Single hop, is the 

modified concept of this research which brings the computing to a single hop and 

reduces RTT further.  Due to changing of geographical position and distance between 

mobile device and the counterpart server, the RTT varies which is considered threat to 

validity in this research. This threat relates to the experiments of REST-offload only, 

where the intensive tasks are delegated for execution to a single hop server.  

 

5.11.4 Energy and Time Estimating Tools Threats 

 

To estimate the EC and ET, there are different tools available. Some tools are in 

the form of software while some are off-target hardware tools. Using different tools 

possibly grasp slightly different values for the same data set. The EC and ET threats are 

discussed as:  

 

5.11.4.1Energy Consumption Estimation Threats 

 

PowerTutor, which is an open source built in software power estimating tool 

for Android devices available in Google Play Store. It uses information about the power 

discharge rate of the voltage-curve to calculate the power consumption. As it works 

manually, such as, with each instance of the experiment it needs to start by clicking run 

and stop by clicking break. The calculated time between stop and start is unpredictable 
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due to possible occurrence of few milliseconds difference. Moreover, PowerTutor runs 

in the background and log data on power utilization for each application by combining 

all the hardware power modes. While running in the background the power 

consumption of the tool itself sometime affect the estimated power consumptions. 

Instead to use the software estimating tool an off-target device works more accurate.   

 

Therefore, an off-target Monsoon Power Monitor was used to observe better 

results and exclude the milliseconds difference which is usual to happen in Power 

Tutor. The Monsoon Power Monitor application provides the popular off-target power 

consumption estimation. It is also capable of measuring the current, voltage and power 

and then connected to a special Monsoon Power Application (Computer Software) 

which gives control over power data and collect and display the data in the form of a 

graph automatically. As, Monsoon Power Monitor used to observe the power 

consumption during each experiment therefore, this threat relates to all three 

experiments.  

 

5.11.4.2Exectuion Time Estimation Threats 

 

To record the ET of each offloading task a stop watch TimeLeft used. It ran with 

each offload concurrently. There is a possibility of fractional difference of ET in each 

attempt due to manual use, while recording the ET. To surface the ET difference in 

results, each task is therefore run approximate 20 times and calculated the mean ET. 

Further, ET is one of the main parameter to evaluate in all the experiments, therefore, 

this threat is common to all three type of experiments.  

 

5.12 Summary 

 

The two developed components; Local Execution and Traditional Offloading of 

the prototype application created to generate bench mark for the proposed solution 

REST-Offload. The focus was to check the Execution Time (ET) and Energy 

Consumption (EC) of the prototype application which generates two random matrices at 

mobile device, multiplies the matrices and displays the resulted matrix at UI. The 

prototype application ran in all three scenarios Local Execution, Traditional Offloading 
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and REST-Offload. The ET efficiency of REST-Offload against the benchmarks Local 

Execution and Traditional Offloading is 54.63 % and 62.01 % respectively.  

 

If consider the energy consumption cost, the EC efficiency of the proposed 

REST-Offload model against both the benchmark Local Execution and DCOF is 43 % 

and 60.14 % respectively. The last sections of the Chapter included the efficiency 

comparisons and comparative analysis of REST-Offload model against the previously 

developed method level computational offloading models and frameworks.  

 

Comparatively analysis yields that the proposed computational offloading model 

is easy to develop and lightweight compare to the traditional computational offloading 

approaches. It can successfully offload the computational intensive tasks of mobile 

applications to the surrogate servers and can save a significant amount of energy as well 

as reduce the execution time.  
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CHAPTER 6 

 

 

CONCLUSION  

 

 

6.1 Overview 

 

This chapter re-evaluates the problem statement, research objectives and reviews 

the contribution of the research. It also reflects the limitations and future research work 

of this study.  The chapter is organized into six main sections. Section 6.2 consists of the 

discussion part which includes goal of the research and re-assessment of the research 

objectives. Section 6.3 presents the revisiting of objectives. Section 6.4 presents overview 

of the contributions. Section 6.5 describes the scalability of the research. Section 6.6 

discusses the limitations and future research work.  

 

6.2 Discussion 

 

The focus of this research was to: curtail the use of extra resources of mobile 

device during offloading; to reduce the size of communication data; and to utilize the 

closest computing environment in order to curtail battery consumption. Several research 

frameworks/models have been developed in the past with the intension to reduce the 

computational load of mobile devices through computational offloading. In principal, it 

is true that computational offloading may free the processor of mobile device from 

processing the given task. However, it should be kept in mind that mobile device has to 

spend a significant amount of energy while establishing the connection to remote server, 

send the request and offloading data through a fluctuating bandwidth. It also has to wait 

until the result comes back to the device. If the energy consumption during this whole 

process is less than the one consumed in processing the task locally, then computational 

offloading will be an energy saving solution for mobile devices. Unfortunately, many of 
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the previously developed models failed to encompass the three basic parameters B, C, 

and D, hence have become energy harvesting approach instead of energy saving. 

 

This research is all about addressing the limitation of mobile devices through a 

new lightweight method level computational offloading model. The previous 

computational offloading frameworks/models were based on VM migration, whole 

application migrations and traditional method level offloading. The traditional 

offloading frameworks based on either static or dynamic partitioning while XML used 

as a carrier file, have been simulated and observed experimentally. The experiments 

have been conducted in order to know which component of the existing approaches 

causes overhead computation and hence causing the offloading to be a resources 

intensive approach. In order to achieve the goal, a lightweight method level 

computational offloading model has been designed and developed. 

 

6.3 Revisit of the Research Objectives  

 

There are three main objectives which collectively accomplish the process to 

reach the goal; a lightweight method level computational offloading model. The first 

objective is, to develop a novel dynamic application partitioning method, for 

reduction of computations and handling of the dynamic network changes. To 

achieve the first objective, an analysis has been conducted and the cost estimation 

models of existing static and dynamic application partitioning techniques have been 

developed. Based on the analysis, a novel approach was proposed, which is to combine 

the positive features of both static and dynamic. The existing static and dynamic 

techniques are concluded to be inefficient in reducing RTT and hence cannot reduce the 

power consumptions. Static approach does not need any additional computations due to 

compile time partitioning. Dynamic partitioning however, is good in bringing 

automation and coping the dynamic changes, yet increases computations due to 

continuous changing of the execution pattern.  

 

Therefore, this research proposed a novel dynamic technique which is dynamic 

in nature, however, inherits some static features. In the proposed partitioning technique, 

the application is partitioned statically by a manual annotation similar to the static 

partitioning approach. In addition, an algorithm is proposed to deploy a mechanism for 
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the selection of predefined parameters. This algorithm copes with the changes that occur 

in the environment dynamically. It is important because offloading every time by using 

any bandwidth network to any status of remote server is not energy efficient. The novel 

dynamic partitioning is a middle level approach, which costs more than the static 

technique while less than the dynamic technique, in terms of Execution Time (ET) and 

Energy Consumption (EC). 

 

 The second objective of the research is, to design the cloud server/surrogate 

machine for the execution of intensive tasks to reduce long run RTT. The previous 

research mostly configured the remote server at distant cloud. It is a fact, that cloud 

environment is resources rich. The server at cloud is equipped with powerful resources, 

however, the delegation of tasks to distant cloud increases RTT. It is also established by 

the previous researches, that long run RTT drains power. To reduce RTT, this research 

modifies the concept of cloudlet presented by Satyanarayanan et al., (2009). 

Satyanarayanan proposed Cloudlet where the distant cloud is brought closer to the mobile 

environment in order to reduce RTT. As the hop count decreases, it decreases the RTT, 

yet the Cloudlet is still situated in multi hop distance. This research has designed the 

cloudlet/surrogate to be more closer to the mobile device. A surrogate machine at a single 

hop distance was configured next to IEEE 802.11 access point. The surrogate machine 

is further connected to cloud to fetch any necessary data from the internet. Hence, the 

RTT is reduced further and this has ultimately reduced the power consumption during 

delegation of tasks to remote (surrogate) computer. 

 

The last objective of the study is, to develop and evaluate a lightweight 

offloading method for size of communication data reduction. The existing method for 

offloading the task to remote executions normally become intensive due to increasing size 

of communication data and due to additional computation required at mobile device.  In 

the previous research works, the SOAP offload trigger was normally used. SOAP 

offload supports XML file to trigger with offload for carrying data from client device 

to remote servers. With the analysis of SOAP testing, as a carrier protocol, it is observed 

that SOAP is heavy to execute and complex to parse. Although SOAP and XML based 

offloading is considered more secure compared to the RPC, RIC and REST, it however 

increases the communication data and hence increasing computations at mobile device.  
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Therefore, in order to reduce the data size during communication at both sides 

of mobile device and remote server, a new lightweight offloading technique REST-

offloading is proposed, based on the analysis carried out between many different 

offloading protocols. Normally, XML and JSON have been used in many different 

problems, however, a technique based on the combination of REST, JSON and WSDL 

is proposed here to reduce complexity, computations and size of communication data.  

The intention of using REST and JSON here is due to the low computing ability of 

mobile device. This technique reduces the communication data size and cuts the 

computations and RTT.  REST is simple to write due to HTTP and some CRUD (Create, 

Read, Update, and Delete) operations. Nevertheless, REST is less secure as compared 

to SOAP, as REST inherits the security from the underlying transport while SOAP 

defines its own WS-Security (Web services Security).  

 

After accomplishing each objective, the model was then implemented in lab 

environment by developing a prototype application. The prototype application consists of 

Local Execution, Traditional Computational Offloading Method and the proposed REST-

Offload. Each component of the prototype consists of matrix multiplication where two 

random matrices were taken as input by the application, the matrices were then 

offloaded to surrogate/cloud server to multiply and the result was taken back on the 

mobile screen.  It was tested for ET in milliseconds (ms) and power consumption in 

Joules (J) as discussed in Chapter 4 (Section 4.6). The results of three pre-defined 

scenarios which are Local Execution, Traditional Computational Offloading Method and 

the proposed REST-Offload Method were collected and compared to validate the 

proposed lightweight method level computational offloading model. The REST Offload 

is significantly useful compared to both local execution and traditional methods and it has 

saved about 50% ET and reduced approximately 38% energy consumption compared to 

ET and EC of task locally executed.   

 

 The comparative analysis has been conducted in two ways. Firstly, the 

efficiency of REST-Offload was compared to the rest in terms of ET and EC.  Secondly, 

the REST-Offload model was compared by specification against the three closely 

related method level computational framework/models.  It has been observed from the 

efficiency comparison results, that REST-Offload is 56 % efficient in ET against local 
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execution, which is highest in efficiency compared to all the three frameworks/models. 

Similarly, in terms of the energy efficiency of REST-Offload, it shows that, REST-

Offload is 45 % efficient in energy consumption against local execution of the task. The 

efficiency of REST-Offload is higher than ThinkAir and Cuckoo, while less than 

DCOF.   

 

6.4 Contributions of the Research  

 

This research ought to contribute sufficiently to the sphere of research which are 

further discussed in this section. This research contributes in the existing method level 

computational offloading frameworks/models in order to improve the existing 

frameworks/models to be a lightweight solution. The main contribution of this research 

is A Model for Power Efficiency of Mobile Device through Lightweight Method Level 

Computational Offloading. This model addresses the overhead computation of 

traditional method level frameworks/models.  It provides a lightweight solution for 

executing the computational intensive tasks at surrogate server. The model consists of 

two main components; client component and server component. The client component 

is deployed at client device while server component is configured at surrogate server. 

Both are synchronized to communicate for execution of intensive tasks. Sub 

contributions of the research are:  

 

There are few sub contributions for the achievement of main contributions. First 

sub contribution is the development of novel dynamic application partitioning technique. 

It eliminates the overhead computation by inheriting the static feature of existing 

techniques. It also carries the dynamic features by deploying an algorithm for the 

selection of pre-defined parameters. This technique reduces the additional computation 

and copes with the dynamic changes in execution environment at the same time.  The 

second sub contribution is the development of single hop surrogate model. Based on the 

existing cloud computing models and cloudlet, a single hop surrogate model is 

developed which reduces the long run RTT. The third sub contribution of the research 

is the development of lightweight REST-Offloading technique. This technique 

eliminates the additional computational and communication overhead due to easy 

configuration and of reduced data size. It costs less than the available techniques in term 

of ET and EC.  
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There are two supportive contributions. First, a prototype REST-Offload 

application is developed. REST-Offload implements the proposed algorithm and 

lightweight method level computational offloading model. REST-Offload has been 

used in real mobile cloud environment to observe the intensity of application processing 

in terms of ET and EC. Second, the proposed algorithm for the selection of the 

predefined parameters. Offloading in any circumstances is not always energy efficient, 

therefore a monitoring mechanism is needed to check all the predefined parameters and 

take right decision before delegating intensive components. For this purpose, a 

lightweight computational offloading algorithm has been proposed, to monitor and 

verify all the predefined conditions before offloading. It also ensures to statically 

partition the application and delegate the computational intensive components only 

which releases the resources management and communication overhead.  

 

6.5 The Scalability of Proposed Model 

 

REST-Offload is scalable and can adopt changes due to mobility or changing 

network topology. The mechanism defined for the selection of predefined parameters 

supports the model to work in heterogeneous kind of environment. Although there are 

some limitations such as 3G network being excluded as a medium due to its limited 

bandwidth, the model can still be used to operate in the environment of 4G, WiMAX and 

Wi-Fi. The surrogate needs to be active and available with each access point. In case of 

the absence of surrogate server, the model turns the application to run in local 

environment.  

 

6.6 Limitations and Future Work 

 

Conclusively, this research has studied different approaches towards the 

conservation of energy in resources constrained mobile devices.  The research is first 

carried out by examining the fundamental energy-related issues with respect to executing 

the tasks on local mobile device. Subsequent intention was to resolve the energy 

consumption issues with local processing through a new proposed and developed 

lightweight method level offloading model.  Secondly, a thorough study of the 

computational offloading frameworks took place and the results were compared with 

local consumption of the device while task executed locally. From the critical analysis 
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and observation of the results, a gap has been found, which is, minimizing the resources 

management and transmission overhead can save a significant amount of energy. This 

research started the work to fill in that gap.  

 

Therefore, the focus of this research is to address the limitations of mobile devices 

through lightweight method level computational offloading in Mobile Cloud Computing. 

This research emphasizes to minimize the additional resources utilization of mobile 

computing devices in traditional computational offloading frameworks. However, this 

research lacks in addressing issues related to security and services availability through 

low bandwidth networks. The resources scarcity or mobile inefficiency in computations 

and several other limitations exist in mobile devices due to portability and mobility are 

required to be further addressed in the ongoing research.  Nevertheless, the scope of this 

work is focused to address the issues related to ET and battery consumption. This research 

also lacks in addressing the issues related to mobility and services availability in case of 

limited bandwidth. The medium of communication used is Wi-Fi and by research 

observations, the limited bandwidth networks are not suitable for offloading due to longer 

RTT, therefore 3G as an offloading medium has been avoided here. Security and 

consistency in parallel execution between client device and remote servers are inadequate 

for heterogeneous mobile devices. The future research will include addressing the low 

bandwidth issues and to make computational offloading services available for any kind 

of mobile device anywhere. The security concerns will also be the focus to make data 

processing safe at remote location.    
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Appendix A 
 

 

Table A.1 Energy Consumption Cost EC1 of Offloading Matrix Multiplication 

Service in Traditional Computational Offloading 

 

 

 

 

 

Matrix 

Size 

Energy Consumption Cost (J) Standard 

Deviation 

(SD) 

Confidence 

Interval CPU (J) LCD (J) Wi-Fi (J) Total 

consumption (J) 
160x160 3.9 1.4 2.5 7.72 0.420714 7.8(+/-)0.966 

170x170 4.1 1.5 3.2 9.14 0.568331 8.8(+/-)1.311 

180x180 4.8 1.9 3.4 10.24 0.585662 10.1(+/-)1.351 

190x190 4.9 2.2 3.5 11.18 1.712308 10.6(+/-)3.951 

200x200 6.0 2.4 3.4 11.5 0.223607 11.8(+/-)0.516 

210x210 6.8 3.0 6.9 16.74 0.450555 16.7(+/-)1.040 

220x220 7.3 3.3 6.7 15.06 1.301153 17.3(+/-)3.003 

230x230 7.8 3.8 6.8 19.48 1.645296 18.4(+/-)3.797 

240x240 8.6 3.9 7.7 21.8 1.189538 20.2(+/-)2.745 

250x250 9.8 3.9 8.1 21.52 0.216795 21.8(+/-)0.500 

260x260 11.0 4.1 8.4 23.56 0.371484 23.5(+/-)0.857 

270x270 11.7 4.5 8.9 25.92 1.077961 25.1(+/-)2.488 

280x280 13.2 4.4 8.4 26.34 0.31305 26(+/-)0.722 

290x290 15.2 4.8 8.7 29 0.738241 28.7(+/-)1.704 

300x300 16.2 5.2 8.9 30.36 0.240832 30.3(+/-)0.556 

310x310 18.5 5.4 9.1 33.52 0.356371 33(+/-)0.822 

320x320 19.7 5.4 9.5 35.48 0.766159 34.6(+/-)1.768 

330x330 21.4 5.8 9.8 37.6 0.424264 37(+/-)0.979 

340x340 23.2 6.1 10.4 40.82 1.482228 39.7(+/-)3.420 

350x350 26.3 6.2 10.8 43.28 0.549545 43.3(+/-)1.268 

360x360 26.9 6.4 10.3 43.62 0.363318 43.6(+/-)0.838 

370x370 29.5 6.7 10.7 46.56 0.31305 46.9(+/-)0.722 

380x380 33.2 7.0 10.1 50.6 0.524404 50.3(+/-)1.210 

390x390 37.8 7.2 12.4 58.08 0.637966 57.4(+/-)1.472 

400x400 41.2 7.1 12.5 61.08 0.756307 60.8(+/-)1.745 

410x410 45.7 7.5 13.8 66.88 1.037786 67(+/-)2.395 

420x420 51.7 7.4 13.2 72.56 0.270185 67(+/-)0.623 

430x430 55.4 7.6 14.5 77.96 0.630872 77.5(+/-)1.456 

440x440 64.8 7.8 15.1 88.66 0.95289 87.7(+/-)2.199 

450x450 78.4 7.9 15.2 102.08 8.517159 101.5(+/-)1.388 
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Appendix B 
 

Table B.1 Time Consumption Cost TC1 of Offloading Matrix Multiplication Service 

in Traditional Computational Offloading 

 

 

 

Matrix Size Execution Time 

 Milliseconds (ms) 

Standard Deviation 

(SD) 

Confidence Interval 

160x160 9608 535.7891 9608 (+/-)1236.39 

170x170 10544.8 313.4002 10544.8 (+/-)723.21 

180x180 11152.8 171.0956 11152.8 (+/-)394.82 

190x190 13448.2 382.5588 13448.2 (+/-)882.80 

200x200 14286.2 402.2328 14286.2 (+/-)928.20 

210x210 16406.8 326.287 16406.8 (+/-)752.94 

220x220 17200.2 140.4482 17200.2 (+/-)324.10 

230x230 18931.8 183.9489 18931.8 (+/-)424.48 

240x240 20687.8 442.4536 20687.8 (+/-)1021.15 

250x250 23727 506.9122 23727 (+/-)1169.76 

260x260 26968.2 370.9699 26968.2 (+/-)856.05 

270x270 29593.8 528.0177 29593.8 (+/-)1218.46 

280x280 33056.6 631.9401 33056.6 (+/-)1458.27 

290x290 35777 606.8299 35777 (+/-)1400.33 

300x300 40627.4 1042.291 40627.4 (+/-)2405.21 

310x310 46807.4 1081.437 46807.4 (+/-)2495.54 

320x320 52168.8 909.6099 52168.8 (+/-)2099 

330x330 58184.4 849.8919 58184.4 (+/-)1961.23 

340x340 63449.8 701.4454 63449.8 (+/-)1618.67 

350x350 70335.2 1286.772 70335.2 (+/-)2969.81 

360x360 76010.6 1611.518 76010.6 (+/-)3718.77 

370x370 87753.2 1720.307 87753.2 (+/-)3969.81 

380x380 101338.6 4000.621 101338.6 (+/-)9231.92 

390x390 120554.6 3948.49 120554.6 (+/-)9111.62 

400x400 136166 2742.36 136166 (+/-)6328.33 

410x410 148291.4 1998.916 148291.4 (+/-)4612.74 

420x420 165687.2 2785.926 165687.2 (+/-)6428.86 

430x430 173176.8 1495.201 173176.8 (+/-)3450.35 

440x440 182196.4 1792.104 182196.4 (+/-)4135.49 

450x450 189523.8 2089.393 189523.8 (+/-)4821.52 
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