

A MODEL FOR POWER EFFICIENCY OF MOBILE

DEVICES THROUGH LIGHTWEIGHT METHOD

LEVEL COMPUTATIONAL OFFLOADING

MUSHTAQ ALI

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter page 2 from

the organization with the period and reasons for confidentiality or restriction.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MUSHTAQ ALI .

Date of Birth : 07-04-1977 .

Title : A Model for Power Efficiency of Mobile Devices through .

 Lightweight Method Level Computational Offloading .

 .

Academic Session : 2017 / 2018 .

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies for the purpose

of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

 KS1796323

New IC/Passport Number

Date: 14 Feb 2018

 (Supervisor’s Signature)

Dr. Mohamad Fadli Zolkipli

Name of Supervisor

Date: 21 Feb 2018

i

SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis/project*

is adequate in terms of scope and quality for the award of the degree of *Doctor of

Philosophy in Computer Sciences.

 (Supervisor’s Signature)

Full Name : Dr. Mohamad Fadli Zolkipli

Position : Senior Lecturer

Date : 21 Feb 2018

 (Co-supervisor’s Signature)

Full Name : Prof. Dr. Jasni Mohamad Zain

Position : Professor

Date : 19 Feb 2018

ii

 STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citation which have been duly acknowledged. I also declare that it has not

been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : MUSHTAQ ALI

ID Number : PCC13009

Date : 14 Feb 2018

iii

A MODEL FO POWER EFFICIENCY OF MOBILE DEVICES THROUGH

LIGHTWEIGHT METHOD LEVEL COMPUTATIONAL OFFLOADING

MUSHTAQ ALI

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy

Faculty of Computer Systems & Software Engineering

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2018

ii

Dedicated to

 “My Mom and Dad (Late)”

I learned from my Mother: “Where there is a will there is a way”

&

 I learned from my Father: “Always do the best job, your reputation

 worth more than a quick profit”

iii

ACKNOWLEDGEMENT

All virtues and praise to Almighty Allah, Whose blessings are unlimited. I am thankful

to my current research supervisor Dr. Mohamad Fadli Zolkipli who guided me at each

step in the beginning till end to pursue my research. I pay my tribute to my previous

research supervisor Prof. Dr. Jasni Mohamad Zain for her kind support to deal with all

the challenges pertaining to this research. Her wise guidance leaded my way from my

first step of this research till the last one; particularly in the process of data acquisition

and lab instruments. Apart from my research supervisors, I am very thankful to

Associate Professor Dr. Mazlina Abdul Majid, Assistant Professor Dr. Nawsher Khan

and my dear friend Mr. Waris Khan who helped me in starting my PhD journey and

supported me throughout. I also received the cooperation of Dr. Mansoor Abdullateef

Abdulgabber, Assistant Professor at University Malaysia Pahang and Dr. Muhammad

Shiraz Assistant Professor in Federal Urdu University Islamabad Pakistan. I would like

to extend my gratitude to my uncle Noor Rahman Afghani without whom guidance I

would not be here today. I am very thankful to my brother Ashraf Ali who supported

me and taught me how to tackle the hard time. My thanks further goes to university

friends Dr. Gran Badshah, Shahid Anwar and Riaz ul Haq, who helped me in

overcoming the hurdles during my studies. The prime credit goes to the University

Malaysia Pahang that funded this work under research grant GRS 110334. I also wish

to express my sincere gratitude and appreciation to my family specially my wife and

two beautiful kids Manahil Ali and Abdul Moiz, who endured my absence with

patience and never let me have any idea of those problems that they faced persistently

during the whole period I remained abroad.

iv

ABSTRAK

Peranti mudah alih telah menjadi satu bahagian penting dalam kehidupan seharian kita.

Walaubagaimanapun, masa yang terhad pada bateri mengurangkan masa operasinya.

Untuk menangani masa yang terhad pada bateri, pemunggahan pengiraan (computational

offloading) digunakan untuk melepaskan tugas intensif daripada peranti mudah alih ke

pelayan jauh bagi melaksanakan tugas itu dari jauh dan menjimatkan hayat bateri. Rangka

kerja pemunggahan pengiraan berdasarkan penghijrahan Virtual Machine (VM), aplikasi

keseluruhan penghijrahan atau tahap kaedah (method level) tradisional pemunggahan

adalah sumber yang intensif dan memakan masa. Pembahagian yang dinamik pada

aplikasi, pelaksanaan tugas pada pelayan awan, panggilan perkhidmatan oleh SOAP dan

tiada penentu mekanisme untuk parameter yang telah ditetapkan, mengubahkan rangka

kerja tahap kaedah pengiraan (method level computational) menjadi tidak cekap untuk

penjimatan tenaga. Dalam usaha untuk menangani kekurangan rangka kerja tahap kaedah

pengiraan pemunggahan (method level computational offloading), rangka kerja tahap

kaedah yang ringan (lightweight method) telah dicadangkan. Empat komponen yang

berbeza digunakan dalam rangka kerja yang dicadangkan bagi menghapuskan kelemahan

rangka kerja yang dibangunkan sebelum ini. REST digunakan untuk panggilan

perkhidmatan yang berasaskan JSON dan ia menghapuskan SOAP yang berasaskan

XML. Oleh sebab itu, REST adalah satu pendekatan ringan. REST juga mengurangkan

saiz data komunikasi sehingga 100% berbanding dengan panggilan perkhidmatan SAOP.

Pelayan tumpang (Surrogate server) dikonfigurasikan pada jarak hop tunggal yang

mengurangkan RTT dan seterusnya mengurangkan penggunaan kuasa. Aplikasi itu

dibahagikan di peringkat tahap kaedah (method level) yang sama dengan rangka kerja

tahap kaedah sebelumnya tetapi pembahagian berlaku di peringkat kod sumber statik.

Satu mekanisme khusus untuk pemilihan parameter yang telah ditetapkan adalah penting

untuk dipertimbangkan sebelum setiap offload. Parameter yang telah ditetapkan terdiri

daripada tahap bateri, jenis rangkaian dan masa pelaksanaan telah mengesahkan

penjimatan tenaga semasa pemunggahan. Rangka kerja yang dicadangkan telah

dilaksanakan dalam persekitaran pengkomputeran awan mudah alih yang sebenar. Masa

Pelaksanaan dan Penggunaan Tenaga oleh Pelaksanaan Tempatan dan Pemunggahan

Secara Tradisional ditanda aras untuk menyiasat dan mengesahkan pelaksanaan rangka

kerja tahap kaedah ringan (lightweight method level) yang dicadangkan. Prototaip

dibangunkan dengan tiga komponen REST-Offload, Pelaksanaan Tempatan dan

Traditional-Offload serta ia diuji dalam persekitaran awan mudah alih sebenar untuk

Masa Pelaksanaan dan Penggunaan Tenaga. Hasilnya telah menunjukkan bahawa

penyelesaian yang dicadangkan telah mengurangkan penggunaan sumber pada peranti

mudah alih. REST-Offload adalah amat berguna jika dibandingkan dengan kedua-dua

Pelaksanaan Tempatan dan kaedah Pemunggahan Tradisional. Ia mengurangkan kira-

kira 50% Masa Pelaksanaan dan kira-kira 38% Penggunaan Tenaga.

v

 ABSTRACT

Mobile devices have become an integral part of our daily lives. However, the restricted

battery timing curtails longer operational hours. To tackle the limited battery timing issue,

a technique, computational offloading is used. In computational offloading, the intensive

tasks are offloaded from mobile devices to remote server in order to execute the task

remotely and save battery life. Computational offloading frameworks/models based on

VM migration, whole application migration, or traditional method level offloading are

resources intensive and time consuming. The dynamic partitioning of application,

execution of task at cloud server, service call by Simple Object Access Protocol (SOAP)

and no defined mechanism for predefined parameters, make the previous method level

computational frameworks/models inefficient for energy saving. In order to address the

inefficiencies of previous method level computational offloading frameworks/models, a

lightweight method level computational offloading model is proposed. Four distinct

components are deployed in the proposed model which eliminates the shortcomings of

previously developed frameworks/models. A Representational State Transfer (REST)

based technique developed for calling the remote services which is based on JSON

instead of XML, and hence is lightweight. REST also reduces the size of communication

data at approximately 100% as compared to SAOP service call. Surrogate server is

configured at a single hop distance which reduces the RTT and ultimately reduces the

power consumption. The application is partitioned at method level by a novel dynamic

technique in source code, which counters the inefficiencies of existing partitioning

techniques. A mechanism for selection of predefined parameters is defined. These

parameters are important to consider before each offload. The predefined parameters

consist of battery level, network type, and execution time which affirms the energy saving

during offloading. The proposed framework is implemented in the real mobile cloud

computing environment. Execution time and energy consumption of both local execution

and traditional offloading are benchmarked in order to investigate and validate the

performance of the proposed lightweight method level model. The prototype is developed

with three components which are REST-Offload, Local Execution and Traditional-

Offload and then tested in real mobile cloud environment for Execution Time and Energy

Consumption. The result of this research indicates that the proposed solution diminishes

resources utilization. The REST-Offload is significantly useful compared to both Local

Execution and Traditional Offloading methods. It reduces about 50% Execution Time

and approximately 38% Energy Consumption.

 vi

 TABLE OF CONTENTS

 Page

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENT iii

ABSTRAK iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ABBREVIATION xv

CHAPTER 1 INTRODUCTION

1.1 Overview 1

1.2 Motivation 1

1.3 Problem Background 3

1.4 Problem Statement 6

1.5 Research Questions 7

1.6 Goal and Objectives 8

1.7 Scope of Research 8

1.8 Thesis Organization 9

CHAPTER 2 LITERATURE REVIEW

2.1 Overview 11

2.2 Background 11

 2.2.1 Mobile Computing 12

 2.2.2 Cloud Computing 13

 2.2.3 Mobile Cloud Computing 16

2.3 Approaches for Augmenting Mobile’s Resources 17

 vii

 2.3.1 Generation of New Hardware Resources 18

 2.3.2 Execute Program Slowly 18

 2.3.3 New Applications for Resources Constrained Devices 19

 2.3.4 Hardware and Software Management Techniques 19

2.4 Taxonomy of Batteries Augmentation Techniques 21

 2.4.1 Hardware Level Augmentation 22

 2.4.2 Software Level Augmentation 23

2.5 An Analysis of CPU Clock Time, Execution Time and Power Consumption 29

2.6 Computational Offloading 31

 2.6.1 Energy Saving Computational Offloading 32

 2.6.2 Metrics of Computational Offloading Approaches 34

 2.6.3 Taxonomy of Computational Offloading / Cyber foraging Approaches 37

2.7 Related Works 42

 2.7.1 Previous Research on Enhancing Mobile’s Efficiency 43

2.8 Review of Computational Offloading Frameworks 57

 2.8.1 Whole Application Migration Frameworks 57

 2.8.2 Virtual Machine (VMs) Migration Frameworks 58

 2.8.3 Method Level Migration Frameworks 58

2.9 Analytical Analysis of Method Level Computational Offloading

Frameworks

65

2.10 Summary 70

CHAPTER 3 METHODOLOGY

3.1 Overview 72

3.2 Research Approach 72

3.2 Research Phases 76

 3.2.1 Planning Phase 78

 3.2.2 Analysis, Design and Implementation Phase 79

 3.2.3 Evaluation Phase 87

 3.2.4 Comparative Analysis 88

3.3 Summary

89

 viii

CHAPTER 4 DESIGN AND IMPLEMENTATION

4.1 Overview 90

4.2 Computational Offloading and Execution Time 90

4.3 The Model 92

 4.3.1 Mobile Component 97

 4.3.2 Server Component 102

 4.3.3 Communication 103

4.4 Operational Logic 103

 4.4.1 Operational Logic of REST-Offload Model 103

 4.4.2 Application Execution Flow of REST-Offload Model 105

 4.4.3 Proposed Algorithm for the Selection of Pre-defined Parameters 109

4.5 Evaluation of the Model 112

 4.5.1 Experiment Setup 113

 4.5.2 Prototype 117

 4.5.3 Data Collection and Data Processing 118

 4.5.4 Data Collected by Executing Application at Local Mobile Device 119

 4.5.5 Data Collected by Offloading Application using Traditional

Offloading Techniques

122

 4.5.6 Data Collected by Offloading Application using REST-Offload 124

 4.6 Summary 126

CHAPTER 5 RESULTS AND DISCUSSION

5.1 Overview 127

5.2 Analysis of Application Execution at Local Mobile Device 127

5.3 Analysis of Application Executed through Traditional Offloading Methods 131

5.4 Analysis of Application Execution using REST-Offload Method 136

5.5 Comparison of ET/TT of Matrix Multiplication B/W Local Execution,

Traditional Offloading and REST-Offload

140

 5.5.1 Execution Time (ET) Result Comparison of Samsung Galaxy A5 140

 5.5.2 Execution Time (ET) Result Comparison of ASUS Zenfone5 142

5.6 Comparison of Energy Consumption Cost of Matrix Multiplication between

Local Execution, Traditional Offloading and REST-Offload

145

 ix

 5.6.1 Energy Consumption (EC) Result Comparison of Samsung Galaxy

A5

145

 5.6.2 Energy Consumption (EC) Result Comparison of ASUS Zenfone5 148

5.7 Comparison of Execution Time (ET) and Energy Consumption (EC)

between REST-Offload and DCOF

151

5.8 ET and EC Comparison of Samsung Galaxy A5 with ASUS Zenfone5 for

all Three Scenarios

153

5.9 Efficiency Comparison of REST-Offload against Existing Frameworks 160

 5.9.1 Efficiency Comparison of Execution Time 161

 5.9.2 Efficiency Comparison of Energy Consumption 162

5.10 Specification Comparisons of REST-Offload and Existing Approaches 163

5.11 Threat to Validity 166

 5.11.1 Usage Scenario 166

 5.11.2 DuTs Threats 167

 5.11.3 Single Hop Surrogate Threats 170

 5.11.4 Energy and Time Estimating Tools Threats 170

5.9 Summary 171

CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 Overview 173

6.2 Discussion 173

 6.2.1 Revisit of the Research Objectives 174

 6.2.2 Contribution of the Research 177

 6.2.3 The Scalability of the Research 178

6.5 Limitations and Future Work 178

REFERENCES 180

 x

 LIST OF TABLES

Table 2.1 A Comparison of advancement between Static Servers and Mobile

Devices with a gap of 5 years

16

Table 2.2 Analysis of the Previous Research Work on Resources Augmentation

of Mobile Devices

54

Table 2.3 Comparative Review of Computational Offloading Models 60

Table 2.4 Summary of Method Level Computational Offloading Frameworks 66

Table 3.1 Energy Consumption Cost EC1 of Offloading Matrix Multiplication

Service in Traditional Computational Offloading

82

Table 3.2 Time Consumption Cost TC1 of Offloading Matrix Multiplication

Service in Traditional Computational Offloading

85

Table 3.3 The Experiment Setup of Previous Research Works 87

Table 4.1 The Hop-Count and Average Delay 93

Table 4.2 Local Execution Time of Prototype Application at Samsung Galaxy A5 120

Table 4.3 Local Execution Time of Prototype Application at ASUS Zenfone5 120

Table 4.4 Energy Consumption (EC) of Prototype Application at Samsung

Galaxy A5 through Local Execution

121

Table 4.5 Energy Consumption of Prototype Application at ASUS Zenfone5

through Local Execution

121

Table 4.6 Execution Time of Prototype Application Execution through

Traditional Offloading using Samsung Galaxy A5

122

Table 4.7 Execution Time of Prototype Application Execution through

Traditional Offloading using ASUS Zenfone5

122

Table 4.8 Energy Consumption Cost of Prototype Application Execution through

Traditional Offloading using Samsung Galaxy A5

123

Table 4.9 Energy Consumption Cost of Prototype Application Execution through

Traditional Offloading using ASUS Zenfone5

123

Table 4.10 Execution Time of Prototype Application Execution through REST-

Offload Method using Samsung Galaxy A5

125

Table 4.11 Execution Time of Prototype Application Execution through REST-

Offload Method using ASUS Zenfone5

125

Table 4.12 Energy Consumption Cost of Prototype Application Execution through

REST-Offload Method using Samsung Galaxy A5

125

 xi

Table 4.13 Energy Consumption Cost of Prototype Application Execution through

REST-Offload Method using ASUS Zenfone5

125

Table 5.1 Comparison of ET / TT of Samsung Galaxy A5 between Local

Execution, Traditional Offloading and REST-Offload

140

Table 5.2 P% of ET / TT of REST-Offload Method for Samsung Galaxy A5

using the equation, Y= P% *X, against Local Execution and

Traditional Offloading

142

Table 5.3 Comparison of ET of ASUS Zenfone5 between Local Execution,

Traditional Offloading and REST-Offload

143

Table 5.4 P% of ET / TT of REST-Offload Method for ASUS Zenfone5 using

the equation, Y= P% *X, against Local Execution and Traditional

Offloading

144

Table 5.5 Comparison of Energy Consumption Cost between Local Execution,

Traditional Offloading and REST-Offload for Galaxy A5

145

Table 5.6 P% of Energy Consumption of REST-Offload Method for Samsung

Galaxy A5 using the equation, Y= P% *X, against Local Execution and

Traditional Offloading

147

Table 5.7 Comparison of Energy Consumption Cost between Local Execution,

Traditional Offloading and REST-Offload for ASUS Zenfone5

148

Table 5.8 P% of Energy Consumption of REST-Offload Method of ASUS

Zenfone5 using the equation, Y= P% *X, against Local Execution and

Traditional Offloading

150

Table 5.9 Comparison of ET between REST-Offload and DCOF 151

Table 5.10 Comparison of EC between REST-Offload and DCOF 152

Table 5.11 ET Comparison of Samsung Galaxy A5 and ASUS Zenfone5. 154

Table 5.12 Specifications of Samsung Galaxy A5 and ASUS Zenfone5 155

Table 5.13 EC Comparison of Samsung Galaxy A5 and ASUS Zenfone5. 158

Table 5.14 Efficiency Comparison of Execution Time 161

Table 5.15 Efficiency Comparison of Energy Consumption 162

Table 5.16 Comparative Analysis of REST-Offload against Others 164

 xii

LIST OF FIGURES

Figure 2.1 Framework of Mobile Computing 13

Figure 2.2 Service-Oriented Layered Architecture of Cloud Computing 15

Figure 2.3 A Typical Framework of Mobile Cloud Computing 17

Figure 2.4 Mobile’s Resources Enhancing Approaches 21

Figure 2.5 Taxonomy of Mobile's Battery Augmentation Techniques 22

Figure 2.6 Clone-Cloud Framework 29

Figure 2.7 Relationship between B, D and C 33

Figure 2.8 Metrics of Cyber Foraging 34

Figure 2.9 Execution Flow of Computational Offloading 35

Figure 2.10 Taxonomy of Cyber Foraging/Computational Offloading 37

Figure 2.11 CloneCloud- Architectural and System Framework 44

Figure 2.12 Cloudlet Architectural Model 46

Figure 2.13 Context-Aware Power Manager 49

Figure 2.14 CALEEF Architectural Model 50

Figure 3.1 Research Flowchart 73

Figure 3.2 Operational Model 77

Figure 3.3 EC Cost of Matric Multiplication in Traditional Offloading 82

Figure 3.4 ET Cost of Matrix Multiplication in Traditional Offloading 85

Figure 4.1 Computational Offloading and Execution Time/Turnaround Time 92

Figure 4.2 Mobile Devices Connected to Remote Servers through Single hop,

limited multi-hop and multi-hop

94

Figure 4.3 Model of REST-Offload 96

Figure 4.4 Operational Logic of REST-Offload Model 104

Figure 4.5 Application Execution Flow of the Proposed Model 107

Figure 4.6 Flow of the Selection of Predefine Parameters 110

Figure 4.7 The Environment of Experimental Offloading Scenario 114

Figure 4.8 A Screen Short of Monsoon Power Monitor Application Tools 116

Figure 4.9 Use of Monsoon Power Monitor in Experiments for Power

Consumption Readings

117

Figure 5.1 Execution Time (ms) of Matrix Multiplication in Local Mobile

Device Samsung Galaxy A5

128

 xiii

Figure 5.2 Execution Time (ms) of Matrix Multiplication in Local Mobile

Device ASUS Zenfone5

129

Figure 5.3 Local Energy Consumption (J) of Matrix Multiplication by

Samsung Galaxy A5

130

Figure 5.4 Local Energy Consumption (J) of Matrix Multiplication using

ASUS Zenfone5

131

Figure 5.5 Execution Time of Matrix Multiplication in Traditional Offloading

by Samsung Galaxy A5

133

Figure 5.6 Execution Time of Matrix Multiplication in Traditional Offloading

by ASUS Zenfone5

133

Figure 5.7 Energy Consumption (J) of Matrix Multiplication in Traditional

Offloading by Samsung Galaxy A5

134

Figure 5.8 Energy Consumption (J) of Matrix Multiplication in Traditional

Offloading by ASUS Zenfone5

135

Figure 5.9 Execution Time (ms) of Matrix Multiplication in REST-Offload

using Samsung Galaxy A5

136

Figure 5.10 Execution Time (ms) of Matrix Multiplication in REST-Offload

using ASUS Zenfone5

138

Figure 5.11 Energy Consumption (J) of Matrix Multiplication in REST-Offload

using Samsung Galaxy A5

138

Figure 5.12 Energy Consumption (J) of Matrix Multiplication in REST-Offload

using ASUS Zenfone5

139

Figure 5.13 Execution Time (ms) Comparison of Matrix Multiplication of all

Three Scenarios using Samsung Galaxy A5

141

Figure 5.14 Execution Time (ms) Comparison of Matrix Multiplication of all

Three Scenarios using ASUS Zenfone5

143

Figure 5.15 Energy Consumption (J) Comparison of Matrix Multiplication of

all Three Scenarios using Samsung Galaxy A5

147

Figure 5.16 Energy Consumption (J) Comparison of Matrix Multiplication of

all Three Scenarios using ASUS Zenfone5

149

Figure 5.17 ET (ms) Comparison of Matrix Multiplication of between DCOF

and REST-Offload

152

 xiv

Figure 5.18 EC (J) Comparison of Matrix Multiplication of between DCOF and

REST-Offload

153

Figure 5.19 Execution Time (ms) Comparison of Galaxy A5 and ASUS Z5 in

Local Execution

156

Figure 5.20 Execution Time (ms) Comparison of Galaxy A5 and ASUS in

Traditional Offloading

156

Figure 5.21 Execution Time (ms) Comparison of Galaxy A5 and ASUS in

REST-Offload

157

Figure 5.22 Energy Consumption (J) Comparison of Galaxy A5 and ASUS Z5

in Local Execution

159

Figure 5.23 Energy Consumption (J) Comparison of Galaxy A5 and ASUS Z5

in Traditional Offloading

159

Figure 5.24 Energy Consumption (J) Comparison of Galaxy A5 and ASUS Z5

in REST-Offload

160

Figure 5.25 Efficiency Comparison of Execution Time 161

Figure 5.26 Efficiency Comparison of Energy Consumption 163

 xv

 LIST OF ABBREVIATIONS

3D Three Dimensions

3G Third Generations

4G Fourth Generations

ADB Android Debug Bridge

AMOLED Active Matrix Organic Light Emitting Diode

AP Access Point

API Application Programming Interface

AWS Amazon Web Services

BTS Base Transceiver Station

BW Bandwidth

CALEEF Context Aware Light Weight Energy Efficient Framework

CasCap Cloud Assisted Context-Aware Power Management

CC Cloud Computing

CDB Context Detection Block

CEO Chief Executive Officer

CF Cyber Foraging

CI Confidence Interval

CPU Central Processing Unit

DiET Distributed Execution Transformer

DOCs Documents

DPM Dynamic Power Management

DuT Device under Test

EC2 Elastic Cloud Computing

ECC Energy Consumption Cost

ECC Elastic Cloud Computing

EDGE Enhanced Data for GSM Evolution

ET Execution Time

FA Fidelity Adaptation

FTP File Transfer Protocol

GB Giga Byte

GHz Giga Hurts

 xvi

GPRS Global Packet Radio Service

GPS Global Positioning System

GPU Graphical Processing Unit

GSM Global System for Mobiles

HTC High Tech Computer Corporation

HTTP Hypertext Transfer Protocol

I/O Input Output

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineering

IT Information technology

J Joule

LCD Liquid Crystal Display

Li-ion Lithium-Ion

mAh Milliamp ere per Hour

MCC Mobile Cloud Computing

MP3 Moving Picture Experts Group Layer-3 Audio

ms Millisecond

mV Millivolt

mW Milli-watt

OS Operating System

P2P Point to Point

PaaS Platform-as-a-Service

PC Personal Computer

PDA Personal Digital Assistance

QoS Quality of Services

RAM Random Access Memory

REST Representational State Transfer

RPC Remote Procedure Calls

RSD Relative Standard Deviation

RTT Round Trip Time

S3 Simple Storage Services

SaaS Software-as-a-Service

 xvii

SD Standard Deviation

SDK Softwaere Development Kit

SID Smart Internet Device

SOAP Simple Object Access Protocol

T0 Zero Throughputs

TC Time Cost

TCP Transfer Control Protocol

TM Maximum Throughputs

TN Normal Throughputs

TT Turnaround Time

UDP User Datagram Protocol

UI User Interface

UMTS Universal Mobile Telecommunication System

USB Universal Serial Bus

VM Virtual Machine

WAN Wide Area Network

Wi-Fi Wireless Fidelity

Wi-Max Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

WWW World Wide Web

1

 CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter presents the theoretical framework and motivations for the proposed

research. It discusses the problem statement, states the objectives and describes the

methodology used for the proposed research. The chapter is divided into six sections.

Section 1.2 highlights the motivations for the proposed research by explaining the

importance of the proposed work and significance of the proposed solution. Section 1.3

discusses the problem background. Section 1.4 states the problem statement. Section 1.5

discusses the research question. Section 1.6 highlights the research objectives. Section

1.7 summarizes the research scope. Section 1.8 outlines the layout of the thesis.

1.2 Motivation

Current smartphone evolved from Personal Digital Assistants (PDAs) and Cell

Phones and gradually being enhanced capabilities with each coming year. The rapid

growth of Smart Internet Devices (SIDs), especially smartphones in terms of swelling

functionalities such as graphics, high speed processing, storage capacity, and sensing

features, has led to the device being the first choice of communication tool for people

across generations. Moreover, the explosion of smart mobile applications such as

YouTube, Facebook, Twitters, Google Maps and a wide range of other functionalities

such as sensors, cameras, navigators, sounds and text editors has been the factors of

mobile device being an integral part of our daily lives.

2

Furthermore, Smartphone usage has experienced significant growth in the recent

years. The latest survey conducted by Cisco in 2015 shows that the mobile-connected

devices are more than the population of people on earth and by the current pace the

increase will be 1.5 mobile devices per capita in 2019 ("Cisco Visual Networking Index:

Global Mobile Data Traffic Forecast Update 2014–2019 White Paper," 2015). Despite

the numbers and increasing popularity of Smartphones, there is always a tension remains

in between the increasing demands for Smartphone features (market demand) and

Smartphone performance.

The modern mobile devices comprise features such as advance displays, high

processing speed, network adapters (Wi-Fi, 3G, 4G), powerful data storage, advanced 3D

graphics which reflects Moore’s Law “the integrated circuits double every two years”.

Conversely, the practice of all these features boosts the energy depletion of the portable

devices. The functionalities and extra features are burdening the resources-constrained

mobile device especially on limited battery power, while the battery improvement

remained historically slow, curtails the operational time of mobile devices to few hours.

Consistent with Moore’s law, the capacity of mobile battery hardly doubles in a

decade (Mack, 2011). The improvement of battery technologies cannot keep pace with

the rapid growth of energy demand required by the new power-hungry mobile

applications. Also, due to emerging high computational intensive applications, for

instance, speech recognizers, natural language translators, online video games, and

wearable sensors in the mobile computing environment coupled with increased user’s

expectations, while battery life, limited processing and storage memory remain a big

challenge (Shiraz et al., 2013).

To sum up, mobile devices have turned to an integral part of our daily lives due

to mobility, convenience and convergence; however, the operational time of mobile

devices especially of smartphones curtail to few hours only due to the diverse

functionalities such as, natural language translation, playing games, browsing,

audio/video, touch screen and sensing features. In spite of all the recent advancements,

mobile devices are still low potential computing devices due to the limitation in CPU

speed, memory capacity and battery power (Bheda & Lakhani, 2013). Besides, in

pervasive computing, smartphones have brought a new rich user experience, but the

3

hardware performance is still inadequate due to limited capacity, thus restraining potential

applications too. Therefore, the battery of SIDs in particular smartphones needs

improvement, as the explosion of new mobile applications, multiple sensors and wireless

interfaces drain battery swiftly.

1.3 Problem Background

Cloud computing, as a rich pool of computing resources facilitates to augment

the computing capabilities and energy constraints of resource-limited mobile devices

by providing a leased infrastructure, platform and software applications as services.

Mobile devices thus utilize the served cloud resources to replenish the limitation of

processing and energy hassles. The process where mobile devices approach cloud

resources through mobile cloud applications is termed as Mobile Cloud Computing

(MCC). Furthermore, researchers have been attempting to curtail the battery consumption

by adopting different techniques either on the application side or on hardware (managing

resources) side. Amongst many other proposed solutions, the technique utilized to

minimize the computational load of mobile devices is to offload the complex tasks to a

remote server for processing (Son & Lee, 2017; Wolski et al., 2008) and is called

computational offloading. The concept of computational offloading is not new (Yang et

al., 2008a). This concept dates back to the concepts of load balancing in the early 70s

once used in distributed systems.

However, always offloading to remote servers is not energy saving (Kumar & Lu,

2010). If the computation required is low or if data needed to be exchanged is large whilst

the available bandwidth is small, then execution of the task at mobile device is energy

efficient rather than offloading the task. In order to reduce Round Trip Time (RTT) and

save mobile’s resources (energy, processing time) while accessing the resources of

cloud servers, the compact size, mobility nature and wireless access medium of mobile

devices always requires a lightweight (easy to execute locally or required less

computations) framework or model to process the computational intensive tasks faster.

Thus, computational offloading can be energy efficient only if all the necessary

parameters are considered and a lightweight communication procedure is adopted. It is

argued that the current computational offloading solutions for MCC are similar

extensions of the traditional computational offloading frameworks and models for mobile

4

computing (MC). Additionally, the current approaches of computational offloading are

computational heavy and resources hungry. An offloading approach can be efficient only

if it considers the required Computation “C”, the size of Data to be exchange “D” and the

available Bandwidth “B”, while most of the approaches previously proposed are

resources intensive, as they failed to encompass the three basic parameters (Kumar & Lu,

2010). The three basic parameters, C, D and B, are the backbones for any computational

offloading model to surface efficient results. Unfortunately, all the three parameters are

avoided partially or fully to design the computational offloading frameworks (Griera

Jorba, 2013). For instance, if there is no any mechanism to deal with the huge size of data

to be exchanged both sides (transmitting and receiving), it will hit the power more, due

to longer communication time. Similarly, if the required computation “C” is small enough

then it is better to process locally rather than to offload while if the available bandwidth

“B” is limited then the offloading time increases, which ultimately hits the battery life.

Some of the recent research techniques proposed for computational offloading

(Chun et al., 2010; Cuervo et al., 2010; Lu et al., 2011; Moghimi et al., 2012) need

runtime migration of computational tasks and configuration of ad-hoc resources

platforms. Additionally, most of these techniques are time consuming (increased

execution time) and resource intensive (occupy CPU for longer time) which ultimately

drain power. The concept proposed by Sathan (2009) is named as context-aware

computational offloading, where embedded sensors (additional sensors) are deployed to

gather contextual information before making an offloading decision. It must be noted that

using sensors itself is a power intensive process. Furthermore, in case of any sensor

failure, the system needs to restart and restore itself to the last working state, thus is a

time consuming and power draining process too.

In addition, the utilization of cloud resources in traditional offloading

frameworks/models takes place at VM level, application level, task level, class level and

method level. Several of the traditional computational offloading frameworks/models

have developed outsourcing running instances of mobile applications (Cuervo et al.,

2010; Huang et al., 2010). The method of outsourcing running instances to remote servers

incorporates additional costs of running application’s states saving on mobile devices and

then reconfiguration of application based on the saved states on remote services. This

whole process requires additional mobile resources. Moreover, continuous

5

synchronization is needed for the management of runtime distributed platforms between

mobile devices and remote servers; as a result, the mobile device needs to be in active

state which is ultimately a power consuming process. VM level computational offloading

is an example of outsourcing running instances to remote servers. Offloading based on

VM level involves extra computation at local device. This is due to the process of creating

an instance of the virtual machine on mobile device; and then pausing the running

application and creating a state file. The file needs to save the memory states of the

application); then to encapsulate the state file into VM instance and offload application

with state file to remote computing environment (Shiraz et al., 2013). This whole process

increases computation at the mobile device by using maximum resources for a long time.

In addition to that, the transfer of state file along with the application encapsulated into

VM also increases the size of data to be exchanged, which ultimately increases RTT.

Furthermore, runtime transmission of data files and binary codes of the application used

in some of the traditional approaches increase the data transmission overhead in wireless

network medium. It causes longer RTT which ultimately drains power at local device

(Kosta et al., 2012).

Similarly, offloading basis on class level, task level, and application level

increases size of the communication data because every application has some lightweight

methods that can be processed locally, while the heavy methods can be offloaded and

hence executed remotely. Subsequently, if the whole application migrates for processing

remotely, it also offloads the lightweight methods and thus increases the communication

data size. Likewise, class level offloading migrates the whole class along with the

lightweight methods and task level offloading sends the whole task to remote servers,

which requires delegating the lightweight methods also, for the completion of the task.

Thus, the traditional offloading frameworks and models utilize maximum resources of

the mobile device prior to offloading and therefore, increases the size of communication

data during offloading, which is a computational and resources intensive process. In

addition, extra resources management is needed to handle offloading whilst adopting the

VM migration or the whole application migration. Amongst the previous proposed

computational offloading approaches, one such approach is a method level computational

offloading approach, which has to counter the huge size of data communication. This

approach in computational offloading reduces the size of communication data “D”

partially to the smallest offload-able unit (method) which precisely divides application

6

into light and heavy methods. Hence, it reduces the unnecessary components of

application to offload. However, the dynamic partitioning of application at method level,

remote processing of the application, and huge size of data carrier files, cause additional

computations at mobile device, as a result, turns the traditional computational offloading

models to resources intensive for mobile devices.

1.4 Problem Statement

The approaches available in literature use VM (Virtual Machine) deployment and

management, which are resource intensive in terms of overhead transfer and consumes

extra battery (Chun et al., 2011; Satyanarayanan et al., 2009). The computational

offloading approach based on VM migration is amongst the cloud based application

processing mechanisms, which takes in encapsulation of mobile application in VM

instance and delegates the instance to cloud node. The challenging part of computational

offloading based on VM migration is the heavyweight resource intensive method which

requires additional mobile’s computing resources to manage and deploy VM at remote

server node (Shiraz et al., 2013). In order to decrease communication data size “D” the

concept of method level was developed, where the delegation of intensive parts is based

on “methods”, the smallest unit of application. Only the intensive methods are identified

to be either runtime or compile time, and then the methods annotated as “light” are

processed locally while the methods annotated as “heavy” are delegated for remote

processing.

The three most recent researchers used the concept of method level offloading:

Rim (2006) used DiET, Kosta (2012) developed ThinkAir, and Shiraz (2013) developed

EECOF. All of the research works mentioned minimized the offload-able part to the

smallest unit but the process of partitioning application into methods adopted is either

time consuming or resources intensive. For instance, Rim (2006) used DiET as a slim

code generator, which takes offload-bale source code as input and generator byte codes

to reduce the size of data to communicate. DiET itself is a process of capturing mobile’s

resources for longer time due to generating byte codes; as a result, it hits the battery

power. The concept used by Kosta (2012) and Shiraz (2013), is the dynamic partitioning

of applications into methods. The partition of application at runtime (dynamic) requires

the application to be genius enough to decide based on the previous offloaded pattern or

7

context gathered about the surrounding execution environment and divide the application

into light and heavy parts. The process of dynamic partitioning causes additional

computation at mobile device. Moreover, utilizing cloud resources and services used by

Kosta (2012) and Shiraz (2013) for augmenting efficiency of mobile devices in terms of

execution time and battery life hits by the long run RTT of distant cloud. Hence, the previous

computational offloading solutions based on the dynamic partitioning techniques and then

offloading the intensive tasks to distant cloud are not fully effective in making

computational offloading an energy saving solution; as it causes additional computations

and increases the size of data to be transferred and received. The focus of this research is

to address the overhead local execution, the size of data to reduce for transmitting as well as

to address the long run RTT of distant cloud by proposing a new lightweight method level

computational offloading model.

Summing up, the traditional frameworks/models are not successful enough in

minimizing the transfer load (data size), since it generates additional computation

overhead due to dynamic partitioning, runtime migration and states file transfer.

Consequently, computational offloading becomes an energy intensive and time-

consuming solution. In addition, the delegation of intensive tasks to cloud server increases

RTT due to multi-hop distance, which ultimately affects the results in terms of reducing

battery consumption. Hence, by computational intensive procedure of traditional

offloading frameworks/models, the offloading of complex tasks to distant cloud servers

is not always energy saving. Therefore, the proposed offloading solution takes place by a

dynamic partitioning of application at method level, which also carries some static

features in order to reduce the overhead computations. By using the novel partitioning

technique, the computational intensive methods will be identified during compile time

before taking an offloading decision and then executing the methods at surrogate machine

connected at a single hop distance.

1.5 Research Questions

1. How to increase the performance of existing applications partitioning techniques

for the purpose of reduction of computations and handling of the dynamic network

changes?

2. How does cloud server/surrogate machine affect RTT?

8

3. What are the possible offloading methods that reduce the communications data

size?

1.6 Goal and Objectives

The goal of this study is to develop a model for power efficiency of mobile devices

through lightweight method level computational offloading. In order to achieve the goal,

the research objectives are identified as:

1. To develop a novel dynamic application partitioning method for the reduction of

computations and handling of the dynamic network changes.

2. To design the cloud server/surrogate machine for the execution of intensive tasks

in order to reduce long run RTT.

3. To develop and evaluate a lightweight offloading method for reduction of

communication data size.

1.7 Scope of Research

The scope of the work is to develop a model for addressing the limitations of

mobile devices, especially the limited battery timing. The research is limited to android

devices produced after 2015 owing to the fact that the device under test (DuTs) used in

this research are manufactured in 2015 onwards.

Furthermore, different OS generally requires different approaches to tackle the

limitation issues of mobile battery. Android is Linux-based, comparatively open source

and is more PC-like than iOS. The interface and basic features are generally more

customizable from top to bottom. However, iOS is completely different in features and

uniform in design, which runs by apple device only. Android is the world’s most

commonly used platform and used by many different phone manufacturers. Both android

and iOS have their own play stores (Google Play or Apple App Store) which possess their

own compatible applications only. Therefore, due platform differences, feature and

application differences, both the platforms require different approaches to tackle the

issues in limitations. This study is limited to android OS as the experiments are planned

http://data.diffen.com/Linux
http://www.diffen.com/difference/Mac_vs_PC

9

to be conducted with android OS only and therefore it will not be applicable for Symbian

and IOS.

The communication medium will be Wi-Fi and 4G for offloading the intensive

task for remote processing. 3G is excluded as it has a limited bandwidth communication

medium which is energy intensive rather energy saving. The model will be developed to

test two parameters only, which are Execution Time (ET) and Energy Consumption (EC).

Both the parameters ET and EC are inter-related as, if ET increases, it increases the EC

too. The efficiency of devices will always be measured by considering these two

parameters.

1.8 Thesis Organization

This thesis is divided into six chapters.

Chapter 1: Introduction: This chapter introduces the theoretical framework and

motivation for the proposed research. It discusses the problem statements, states the

objectives, scope and describes the methodology used for the proposed research as well

the thesis layout. Chapter 2: Literature Review: This chapter presents the epistemology

of mobile cloud computing and reviews the state-of-the-art in application offloading for

mobile cloud computing. It classifies current offloading frameworks / models on the basis

of thematic taxonomy and compares current offloading models on the basis of significant

parameters. The challenges to traditional offloading models and issues in cloud-based

application processing for MCC are also identified. Chapter 3: Methodology: This chapter

consists of the research methodology carried out to achieve the research goal. It is starting

from the analysis of the problem (gaps analysis) and then designing of the research

question and research objectives. The next phase of this chapter includes the model

designing and implementation. The implemented model is then to test in real mobile cloud

environment, while the last phase presents the comparative analysis of the proposed

model.

Chapter 4: Design and Implementation: This chapter proposes REST-Offload

lightweight computational offloading model for delegating computational intensive task

of mobile applications. It explains the model and proposed algorithms for computational

10

offloading. It gives details of different predefined parameters taken in account before

offloading any task. Chapter 5: Results and Discussion. This chapter discusses the

collected results with comparison with the traditional offloading systems and of local

execution. It reports the tools used to collect data with special emphasis on computational

intensity and of power consumption. Chapter 6: Conclusion: concludes the thesis with a

commentary on the review of the research objectives. It highlights the outcomes of the

research work cum the importance of the proposed solution. It states the limitations and

suggests guidelines for future research.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter presents a review of the theoretical framework for Mobile Cloud

Computing (MCC) that has been developed for saving energy of mobile devices. The

chapter is organized into 9 sections. Section 2.2 gives a detailed background of Mobile

Computing. Section 2.3 comprises different approaches adopted to augment mobile

resources. This is followed by Section 2.4 which discusses limited battery problem of

mobile devices and presents a taxonomy of mobile device’s battery augmentation

techniques. Meanwhile, Section 2.5 provides an analysis of CPU Clock time, Execution

Time and Power Consumption. Next is Section 2.6 which provides the definition, detailed

background and the hypothesis of computational offloading. Section 2.7 then discusses

previous research works focusing on efficiency of limited resources of mobile devices

and compares these frameworks based on a few defined parameters while Section 2.8

provides a review of current computational offloading frameworks as well as a

comparative analysis of frameworks and establish a connection with the proposed

solution. Section 2.9 presents analytical analysis of Method Level Computational

Offloading Frameworks. Finally, section 2.10 concludes the chapter.

2.2 Background

This section discusses the background of cloud computing (CC), mobile

computing (MC) and mobile cloud computing (MCC). Furthermore, it discusses the

different approaches adopted to augment battery life of SIDs. This section also critically

analyses the traditional computational approaches.

12

2.2.1 Mobile Computing (MC)

In 1990s, ideas of ubiquitous computing (i.e., mobile computing) were defined as

technologies that would bring human computer interaction to an absolutely new level.

The pervasive nature of smartphones has been proposed by Mark Weiser (1991) with the

concept of ubiquitous computing as noted by (Saha et al., 2003) “After the mainframe

era, where people used to share a single machine, personal computers where one-to-one

human computer interactions took place, the next era will be ubiquitous computing (the

era of calm technology) where the technology will disappear”. Weiser (1991) had hoped

for a world to be created where people could use and interact with computers without

thinking about them (psychologically disappeared). Ubiquitous computing has provided

a complete freedom from the mental presence to experience the rich number of services

using the internet.

Mobile computing has progressed rapidly and become one of the powerful trends

in the development of IT, commerce and industrial field. It has revolutionized, how

people work and deal with their daily lives. In addition, with the development of wireless

technology like WiMAX, Ad Hoc Network, Wi-Fi, 3G and 4G, users could surf internet

much easier and would not be limited by any physical link with a static position or place

as before. Thus, mobile devices have been accepted by an increasing number of people

as their first choice for communication, at work and for entertainment in their everyday

lives. The transmission of data without the connectivity of any physical link is one of the

basic features of mobile computing. This has given rise to the increasing number of users

of mobile computing.

Gartner, which is a famous analytical and consulting firm, predicted that by 2013,

mobile devices would replace PCs to be the most common web access tools in the top

ten strategic technology trends and by 2015, the firm predicted that smartphones would

dominate over 80% of the mobile phone mature markets (Orlando, October 8,

2013). Furthermore, Business Insider's (BI) Intelligence (2015) had anticipated that the

use of smartphones at a global scale would have significantly increased from 5% in 2009

to 22% by the end of 2013, that is, an increase of nearly 1.3 billion smartphones within

four years.

https://intelligence.businessinsider.com/welcome?utm_source=House&utm_medium=Edit&utm_term=MPENCHART&utm_content=link&utm_campaign=BIIMobile

13

Mobile computing is defined by Wikipedia as “mobile computing is a form of

human computer interaction, while the computer is expected to be transported during

normal usage”. There are three main components which collectively form mobile

computing, namely, the hardware, the software and the communication (Qi et al., 2012).

Hardware refers to the actual mobile device (e.g., smartphone and laptop or their

components) whereas software refers to the number of applications running in the mobile

device, such as the antivirus, internet browsers and games. Meanwhile, communication

includes the setup of the mobile networks, protocols and the delivery of data between the

devices. Figure 2.1 shows a framework of mobile computing. The central processors in

the mobile network receive user request through Base Station and pass it to the servers

for the required services. In response, the servers release the desired services and the

central processors deliver services back to the user.

2.2.2 Cloud Computing (CC)

In the history of computing, a stepwise evolution can be seen from mainframe

computing until cloud computing (CC). The feature of unlimited availability of resources

makes CC a superior distributed computing model than grid computing. CC provides the

ultimate solution of keeping pace with the development of technology and that is the

magic of Moore’s Law (Qi & Gani, 2012). Since 2007, CC has become popular and most

Figure 2.1 Framework of Mobile Computing

14

significantly researched topic. Due to the different perspective of numerous developers

and organizations, it is difficult to define cloud computing in a distinct way.

Consulting Firm Accenture has set a useful, brief definition of CC as “the dynamic

provisioning of IT capabilities (hardware, software, or services) from third parties over a

network” (Adrees et al., 2016). According to the convention set by the National Institute

of Standards & Technology (NIST):

Cloud Computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management efforts or service provider interaction (Mell

et al., 2011).

The main objective of the Cloud Computing Model is to increase the capabilities

of client devices by augmenting the proficiencies of the device’s own resources through

accessing cloud infrastructure and software instead of possessing them. In CC, the

services provided by the service providers over internet are commoditized like traditional

utilities such as water, electricity and telephone. Consumers avail the resources on

demand fashion and they pay as they use (Buyya et al., 2009).

Amazon Web Services (AWS), Google Apps Engine, Aneka and Microsoft Azure

are examples of public utility computing which are delivered at low cost by the Cloud

providers (e.g., Google, Amazon and Salesforce). AWS allows infrastructure and

software as services, which enable users to manage virtualized resources in Cloud

datacentre. This decreases the hardware and software costs and the extra efforts of an

organization in providing services. AWS also allows the utilization of Simple Storage

Services (S3), the unlimited storage capacity for personal data in cloud datacentre by

online file storage web services. The computation is performed on the data by Elastic

Cloud Computing or EC2 (Kristensen, 2007). It was believed that Amazon S3 had a

reputed storage of more than two trillion objects as of April 2013 ("Aamazon S3," March

14, 2006).

http://en.wikipedia.org/wiki/Online_file_storage
http://en.wikipedia.org/wiki/Web_service

15

Meanwhile, Google Apps Engine provides a unique powerful application

development platform in cloud data centres. The well-known development tools like Java

and Python are used by Apps Engine for the independent development of applications

(Chun et al., 2013). As for Microsoft, its Windows Azure is an open and extensible cloud

computing platform for the development, deployment and operation of applications and

services in datacentre. Azure offers a simple, widespread, and a powerful platform for the

designing of web applications and services (Windows Azure, 2010).

The service-oriented Cloud Commuting model basically consists of four layers.

These layers are Data Centres, Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS), as shown in Figure 2.2. The cloud physical

resources are the hardware resources in datacentres. To access the physical resources,

virtual machines are installed. Hypervisor (middleware) is used to access the physical

resources (Hardware) and is responsible for the placement and management of virtual

machines. Both layers consist of physical resources and virtual resources which fall in the

category of IaaS. The third layer, namely, PaaS, comprises the application hosting

platform, which provides a cloud programming environment and monitoring tools such

as admission control, QoS negotiation and pricing and billing. The fourth layer, SaaS,

consists of all the cloud applications running on virtual machine instances in a complete

secluded form.

Figure 2.2 Service-Oriented Layered Architecture of Cloud Computing

16

2.2.3 Mobile Cloud Computing (MCC)

The CEO of Google Eric Schmidt was reported to have anticipated this in 2010

as: “based on Cloud Computing services development, mobile phones [would] become

increasingly complicated and [would] evolve to [become] a portable super computer” (Qi

& Gani, 2012). Aepona defines MCC as “a new distributed computing paradigm for

mobile applications whereby the storage and the data processing are migrated from the

SID’s to resources rich and powerful centralized computing data centres in computational

clouds” (Shiraz et al., 2013). The terms resource rich and resource scarce are used for

static computers and mobile devices, respectively. The mobile device was initially

considered for limited use. The lightweight and mobility features have turned the device

into a computing tool that is resources limited. Therefore, the performance of a mobile

device is restricted by its limitations. These limitations, as noted by Satyanarayanan et

al., (1996), are the mobility features of the device’s inherent problems such as low

connectivity, resource scarceness and finite energy. The comparison in development of

the resources capacity of mobile devices and static computers is presented in a series of

five-year gaps from 1997 until 2016 as shown in Table 2.1.

To deal with the low capability issues of devices, CC has turned out to be a ruling

model which efficiently overcomes the resource scarceness problems by remote

computation and utility services. Hence, by offloading and remote computation technique

Table 2.1 A five-year-gap comparison of advancement between Static Servers and

Mobile Devices (19972016)

Year Static Servers Mobile Devices

Processer Speed Memory Processor Speed Memory

1997 Pentium I 266 MHz 256MB Palm Pilot 16 MHz 512 KB

2002 Itanium 1 GHz 512MB BlackBerry 5810 133 MHz 1 MB

2007 Core 2 3.0 GHz (2 core) 1GB Cortex A8 600 MHz 256 MB

2012 Xeon X3 3.1 GHz (4 Cores) 2 GB Samsung Galaxy

S3

1.4 GHz

(4 cores)

1 GB

2016 Intel Core

i7

3.9 GHz (4 cores) 8GB Samsung Galaxy

Note 7

1.6 GHz

(8 cores)

4 GB

17

CC addresses the techniques, CC addresses the inherent issues of mobility using the

remote resources, provided by the service providers. The big players in the list of service

providers are Google, Amazon, Apple, Facebook, and Yahoo. The Cloud providers offer

such infrastructure where both the processing and data storage exist outside of the mobile

device termed as mobile cloud. Thus, mobile cloud computing (MCC) is a novel model

which encompasses CC, MC and Networking.

Figure 2.3 shows a framework of mobile cloud computing (MCC). The model

framework composed of mobile computing (MC) and cloud computing (CC) are bridged

by Internet. The mobile devices are connected to a network which establishes and controls

the connection between the networks and mobile devices through base stations such as

BTS, access points, and satellite (Dinh et al., 2013). The user request is then processed

and forwarded by central processors to the servers; providing network services. Finally,

the requests are transferred to cloud through internet and the cloud controller process the

requests and provides the desired services to subscribers.

2.3 Approaches for Augmenting Mobile Resources

There are four main approaches used to augment mobile resources. The

approaches are as follows:

Figure 3.1 A Typical Framework of Mobile Cloud Computing

18

i. Generation of New Hardware Resources;

ii. Slow Execution of Program;

iii. New Applications for Resource Constrained Devices; and,

iv. Hardware and Software Management Techniques.

2.3.1 Generation of New Hardware Resources

 The root cause of limited battery timing is the very slow development of battery

technology. This had been anticipated by Moore (1965, 1975) decades ago who stated

that “the development of battery technology hardly doubled in a decade”. In order to

tackle limited battery capacity issue, the following two possible approaches should be

considered.

2.3.1.1 Need of a New Generation Semiconductor Technology

 The current semi-conductor technology has made the transistors smaller. In other

words, the transistors consume less power. Nevertheless, due to the smaller size, more

transistors are needed to achieve functionalities and produce better performances. Thus,

increasing the number of transistors is actually a burden on the power source of a mobile

device which ultimately consumes more energy (New Semiconductor Research, 2014).

2.3.1.2 Replenish Resources (Battery) by External Action

Human movements and solar light (e.g., nanotechnology) are some of the possible

alternate replacements of the existed mobile’s battery in future. These new technologies

may perhaps overcome the issues of limited power of the mobile devices.

2.3.2 Slow Execution of Program

With the increase of the CPU speed, battery consumption would significantly

increase, that is, if the processor Clock Speed doubles, the speed of the power

consumption would become nearly octuple (Kumar et al., 2010).

19

2.3.3 New Applications for Resources-constrained Devices

Another approach to augment mobile resources is to rewrite new applications for

resource-constrained mobile devices. This approach may seem impractical, costly and

pushes towards ad-hoc applications (Dinh et al., 2013).

2.3.4 Hardware and Software Management Techniques

Numerous approaches had been used in the past to curtail the power consumption

of SIDs. A few of the very basic approaches are geared towards managing the computing

resources of SIDs by optimising the operating systems and software tools in a way that

will consume limited power. Some of the hardware and software management techniques

are briefly explained in this section. Any of the approaches explained in this section can

be adopted to reduce power consumption of mobile devices.

2.3.4.1 Avoid Wasting Energy

Waste of energy can be reduced by avoiding unnecessary processing, better

management of resources and setting the components on standby or sleep mode

(Balasubramanian et al., 2009; Vallina-Rodriguez et al., 2013).

2.3.4.2 Reduce Resources Requirement

Context-aware mobile applications need to be developed. Such mobile

applications could make the device be aware enough of when and what to process and

when as well as what not to process in order to reduce the unnecessary use of mobile

resources.

2.3.4.3 Fidelity Adaptation

Fidelity adaptation manages the compromise between resources consumption and

application quality. Although fidelity adaptation technique deteriorates the quality of

results, it allows the execution of applications when there is no other solution to run the

application in standard mode.

20

2.3.4.4 Cyber Foraging/ Computational Offloading

In this technique, the execution of programs is eliminated altogether and the heavy

computations are sent to remote servers. If the mobile device utilizes its own local

resources solely to perform executions of the complex applications, this will drain its

battery faster and in some cases, the execution is even not possible for some kinds of

application due to limited processing speed. By computational offloading, the load can

be eliminated to augment the device’s own resources.

Numerous researchers have attempted and achieved success up to some extent in

saving the power consumption of the mobile device’s battery. This literature review

focuses on the last option, that is, utilization of powerful resource of cloud (Cloudlet)

instead of local limited resources of mobile device. In this way, the burden is not solely

carried by the mobile device. Rudenko et al., (1998) was the first to introduce the term

remote executions which are different from the traditional Client-Server architecture,

where a thin client always migrates computational tasks to a server in the same local

network. By contrast, in remote executions, the offloading process is accomplished with

the computing devices which are outside of the immediate computing environment.

Satyanarayanan et al., (2001) presented the concept of remote executions by accessing

nearby available machines (i.e., the surrogates) to execute complicated computation on

behalf of handheld devices. Although useful, Satyanarayanan et al., (2009) work does not

put sufficient focus on power saving issues. Satyanarayanan et al., (2001) termed such

type of computing as Cyber Foraging or Surrogate Computing. In this way, the local

execution of the entire complex task is eliminated. Figure 2.4 shows the possible ways

of augmenting the mobile resources.

21

Mobile’s Resources Enhancing Approaches

Execute Program

Slowly

Reduce Resources

Requiremtn

Fidelity Adaptation

Cyber Foraging

Replenish Battery by

Human Movement /

Solarlight

New Semi-Conductor

Technologies

Generating High End

Resources

H/w & S/w

Management

New Apps for Resource

Constrained Devices

Reducing Clock Speed

will reduces power

consumption

Develop new

application for each

device according to

design of the device

Offloading to remote

servers

Develop Context-Aware

OS and Applications

2.4 Taxonomy of Mobile Device Battery Augmentation Techniques

Battery is an element that permits the mobility as a luxury feature in the first place.

Hence, focus should obviously be on the improvement of energy usage in order to prevent

mobile device from becoming stationary due to low bandwidth and resource-hungry

applications.

Most of the mobile devices use Lithium-ion batteries (Rodriguez & Crowcroft,

2003). These batteries are comparatively better power sources available in all brands and

models of mobile devices. Nevertheless, battery technology has shown that the only

substitute left to solve the issue of limited power of mobile devices is by reducing the

power consumption at hardware level and designing more power-efficient operating

systems and applications. Ongoing research conducted by hardware manufacturers and

OS designers has led to some new solutions using augmentation techniques at different

levels such as Hardware, Wireless technology, Operating System and Applications

(Rodrigues & Crowcroft, 2003). Figure 2.5 shows the taxonomy of smartphone’s battery

augmentation at different levels.

Figure 2.4 Mobile’s Resources Enhancing Approaches

22

Smartphone’s Battery

Augmentation Approaches

Software Level

Augmentation

Generating New High

End Resources

Energy Aware

Operating System

Wireless Interfaces &

Protocol Optimisatrion

Hardware Level

Augmentation

Resources Aware

Applications

Mobile Cloud

Applications

Reduce Resources

Requirement

Conserving Local

Resources

Remote

Execution

Remote Storage

Fidelity

Adaptation

Figure 2.5 Taxonomy of Mobile Device Battery Augmentation Techniques

2.4.1 Hardware Level Augmentation

The first step in hardware level augmentation is to enhance the capabilities of

mobile local resources such as high speed multi-core processors, storage and long lasting

batteries (Wang et al., 2011). However, the development in battery technology is

unfortunately not progressing at the same speed as that of the processors and storage while

it is the only un-restorable resource which cannot be renewed without the help of any

external resource (A.D, Jan, 2013). Many efforts have been made since 1990s to replenish

energy from different sources such as human movement, wireless radiation and solar

energy, which are not adequately effective to minimize energy deficiency (Abolfazli et

al., 2012). However, this is presently still being researched. Similarly, large screen and

data storage also increase the power consumption due to additional weight and size

(Perrucci et al., 2011). Large data storage and retrieval have been proven to be power

hungry. Hence, memory increase contributes to faster draining of the battery.

23

2.4.2 Software Level Augmentation

Software level augmentation of smartphone batteries consists of three main

categories, namely, energy aware operating system, conservation of local resources and

reduction in resources requirement.

2.4.2.1 Energy Aware Operating Systems

Two kinds of programs run in the mobile device, namely, the operating system

(OS) and the applications. A question now arises, that is, which one should be responsible

for energy management. Some of the researchers have suggested the application level

energy management is the best approach as noted by Liu et al., (2005). However, this

approach lacks of the main entity responsible for monitoring and supervising the

resource’s consumptions by other applications (Rodrigues & Crowcroft, 2003).

On the other hand, some researchers prefer the OS to monitor and manage energy

resources. Considering OS alone to be responsible for energy management, this solution

may lead to a problem of scalability; hence, there are researchers who have suggested a

hybrid model (Vallina-Rodriguez & Crowcroft, 2013) in which both the applications and

the OS should be aware of the resources utilization and supervision. Examples of such

OS are Odyssey and Ecosystem.

Normally, the OS must be made aware of the application’s energy demand and

the available energy level until the next charging facility. Moreover, new programs,

scheduler, models and energy measurement tools should be developed in order to reduce

energy consumption and support software level energy measurement. Some of the OS

level techniques proposed for power utilization are Hard Disk Management, CPU

scheduling, Screen blanking.

2.4.2.2 Conservation of Local Resources

In 1990s, the best way to conserve the local resources of mobile devices was to

reduce the workload on the local resources. Later on, the concept of remote execution,

remote storage and fidelity adaptation were introduced to conserve local resources.

24

a. Remote Execution

Remote execution is a process involved to transfer the executable codes, control,

computational data or any compute intensive application through a network to any local

server machine called the surrogate where the execution of computational task takes

place. The results are then transferred back to the handheld Client.

The remote execution concept was presented to divide the load of local resources

with the remote stationary devices. Rudenko et al., (1998) had first introduced the idea of

remote execution to save workload of the local restricted resources and conserve mobile

energy. The same idea was introduced by Satyanarayanan et al., (2001) in a broader way

and proposed the concept of remote executions. This concept was not only used for

conserving the power, storage, and processing efficiency of the device but also to enable

the execution of computational intensive mobile applications which might not be possible

to be processed locally. The technique of remote execution is known as process offloading

or cyber foraging. The term cyber foraging was first introduced by Satyanarayanan for

augmenting the computing potentials of resource-constrained devices by exploiting the

potential of rich-computing resource devices available in the local environment

(Satyanarayanan, 2001). The rich-computing local devices are termed as the surrogates.

The Aura Project at Carnegie Mellon University presented the concept of two

techniques, namely, cyber foraging and fidelity adaptation, which seemed promising in

terms of substantial power saving (Garlan et al., 2002) .In the scenario of cyber foraging,

the surrogates can be used by data staging or by computing the surrogates. Data Staging

is the technique used with the surrogates to get rid of the long latencies (long RTT or

Round Trip Time), If the mobile device itself to request for web data situated far away

from handheld device, and then wait for the distant file to receive, the surrogate machine

will prefetch the data from distant server in advance, in order to reduce RTT. This

increases the user’s response time and more importantly, the high latency which causes

power consumption.

In this case, the surrogates are used to fetch data for mobile device by data staging.

Mobile client send request to surrogates for the distant file. The surrogate fetches the file

and Client device retrieves the file from nearby surrogates. This will reduce the RTT as

25

well as the power consumption. If the data staging technique is coupled with some

predictable software, then it will let the surrogate to pre-cache all the files which the client

device needs to use next. This will be more effective in terms of RTT and power

consumption. By using the technique of computing the surrogate, the client device

requests to the nearest surrogates for computation on its behalf. In this scenario, if the

Client device detects that its own battery level is not adequate to perform the computation

locally, it will send computational intensive file to the surrogates and will obtain the

results back on its screen. Research has revealed that remote execution is highly effective

in reducing power consumption of mobile devices (Flinn et al., 2002).

b. Remote Storage

The outsourcing of data storage at third location, somewhere in the local network

or remote clouds, enhances the storage capacity of handheld devices. A number of remote

accessible file storage services are available in the cloud which extend the storage

capabilities by providing off-device storage services. Examples of such services are

Amazon S3 ("Aamazon S3," March 14, 2006), Dropbox (Balan et al., 2004) and Google

Docs (Flinn et al., 1999). The online storage services (remote storages) not only provide

the facility of unlimited storage space but also ensure the safety and reliability of data

storage. Thus, the remote storage, especially the cloud storage services, boosts the limited

storage capacity of mobile devices and enables the mobile users to store and access any

kinds of data anywhere in the cloud and retrieve the data from anywhere by using a web

browser. The writing of data to the local storage and the retrieval of data will consume

more power as compared to remote storage of such data. Thus, it is power-efficient to

manage big data for remote storage which does not need to be accessed too often. As a

result, battery energy can be reserved adequately.

c. Fidelity Adaptation

The cyber foraging can be effective if the surrogate devices are available but what

will happen when there is no access to any surrogate device in the surroundings? This

raises some concerns such as how the Client devices will minimize the load to reduce

battery power. Fidelity adaptation is a technique that will work in such circumstances.

Balan et al., (2004) have defined fidelity as “the trade-off between the application’s

26

quality and power consumption”. For example, if a client device is in a video call and

experiences a sudden power drop to a lower level, the video will automatically shut down

while the voice call still continues.

The concept of fidelity, with regard to this adaptation technique, involves the

release of CPU load and bandwidth. The runtime parameters can be modified so that an

application can still be used by the user but in lower quality in order to reserve power,

bandwidth and computational resources (Flinn & Satyanarayanan, 1999). For instance, a

user watching a full colour video from the server will experience an automatic change in

display from full colour to black and white when the bandwidth drops. Many approaches

(Flinn & Satyanarayanan, 1999; Lara et al., 2011) have used both cyber foraging and

fidelity adaptation to enhance the device’s local resources and achieve better

performance.

2.4.2.3 Reduction in the Local Resources Requirement

There are indeed numerous software developers. However, many of these

software developers do not have comprehensive knowledge of energy-constrained handy

systems such as those embedded in smartphones and personal digital assistants (PDAs).

As a result, many mobile applications consumes an unreasonably huge amount of power.

To augment the capabilities of mobile resources along with manufacturing the high-end

hardware devices, a parallel development of resource-efficient application plays a vital

role. This approach focuses on the design phase of software development to form energy-

efficient applications.

a. Wireless Interface and Protocol Optimization

Among the other components of the mobile devices which contribute to power

consumption, the wireless interface has a greater impact than that of any other component.

A total of 10% of the overall power consumption in laptops is caused by the wireless

interface while in case of smartphones, this ratio reaches up to 50% of the overall

consumption (Kravets et al., 2000). Mobile devices nowadays are equipped with several

air interfaces such as GSM, Wi-Fi, 3G and 4G. Hence, it is vital to manage these

interfaces either manually or by resources-aware applications to stop the excessive

27

draining of power. Although all the wireless interfaces provide a flexible choice for

communication and saving energy, however, the existing communication protocols such

as UDP and TCP do not give any advantages. For example, a communication which is

established with 3G connection will last either until the session ends or until the interface

becomes unavailable anymore even though the device is close to a better interface in

terms of speed, energy saving and communication (Rahman et al., 2013).

 New technologies in cellular networks such as 4G LTE have been introduced to

reduce the cost per transmission as compared to the previous standards (Frattasi et al.,

2006). In all the available interfaces of mobile devices, Wi-Fi is more power-efficient if

it stays in continuous data transmission for larger data (Balasubramanian et al., 2009).

The only time Wi-Fi drains the battery is the idle time or scanning of Access Point (AP)

to connect. Therefore, a common solution has been suggested by researchers (Bertozzi et

al., 2003) to explore transport protocols optimization for IEEE 802.11 networks in order

to reduce the energy depletion of IEEE 802.11 standards with very little overhead. The

study conducted by Bertozzi et al., (2003) was based on the transport protocol which

tackled flow control of data to regulate the network traffic. This played an important role

in predicting the workload of the network interface. Further evidence has shown that

tuning parameters in the protocol would form the activity profile of the network interface

and make it more energy-efficient.

b. Resource Aware Applications

In order to protect smartphones from energy depletion, it is vital to understand the

need of power consumption of the hardware components and also of the software

installed. Many software developers have limited understanding of energy-constrained

portable systems such as those embedded in smartphones and PDAs. As a result, quite a

number of smartphone applications consume enormous amount of power unnecessarily

(Zhang et al., 2013). Thus, better understanding of the power consumption of individual

mobile components (e.g., CPU, Memory, Wireless Interface and Screen) would

contribute to reduction in significant amount of energy and development of better energy

aware systems. For instance, in cases which the available air interfaces are 2G and 3G, a

resource-aware application is needed to exploit 2G for voice communication and 3G for

FTP services because of their different energy consumption needs (Perrucci et al., 2011).

28

The memory and computational intensive applications are also considered power

hungry. The compute intensive applications engage CPU for a long time to process

complicated data thus directly affecting the battery of the mobile device. Both the increase

in computational intensive applications and increasing memory size of mobile devices

lead us to more power consumption (Perrucci et al., 2011).

c. Cloud-Mobile Applications

Cloud mobile applications are identical to Web-based applications. The main

similarity in both the applications is that they run on external servers instead of the client

device itself. They require a browser on the client device to access them (Claybrook).

Moreover, they both are designed for different operating systems and multiple mobile

devices unlike native applications, which are designed for specific operating system and

single device model only.

Native mobile applications are restricted by capacity of the battery and processing

efficiency of mobile devices, which ultimately disrupt the speedy progress of these

devices. The concept of cloud computing bridges this gap by offering cloud-mobile

applications which have the capabilities of connecting the cloud servers for processing

with the remote storage. The new concept of cloud and mobile agreement has generated

this new era of rich cloud-mobile applications which are intended to curtail smartphones’

resource consumption by utilizing rich cloud resources without changing the quality.

Therefore, the development of cloud-mobile applications accelerates code execution by

offloading computational intensive data to the cloud server and thus decreasing the

overall execution time without using the mobile resources (Kumar & Lu, 2010).

Efforts have been made by numerous researchers for designing perfect

cloudmobile application to leverage the Cloud resources for mobile devices. For

example, Lu et al., (2011) have developed an architecture for rendering the mobile screen

to the cloud environment. In screen rendering the remote code execution takes place and

online data are stored. On the one hand, the cloudmobile applications architecture helps

mobile devices to augment the limited resources of mobile devices. On the other hand,

the remote execution of intensive task by the traditional mobile application does not

support the development of applications that incorporate the cloud features (Othman et

http://searchcloudapplications.techtarget.com/definition/mobile-cloud

29

al., 2014). Therefore, the new mobile cloud application development is essential to

augment mobile resources by remote processing.

The migration of resource-hungry and interactive portion of the screen for

execution in cloud will certainly decrease the power consumption due to minimized

computational burden of the local CPU and GPU. A similar effort made by Chun et al.,

(2010), that is, the CloneCloud service, using the smartphone's internet connection to

communicate with a full image (clone) of itself that exists in remote servers in the cloud.

In order to execute intensive tasks, the CloneCloud is required to offload data to the server

which possesses the clone of the device. Figure 2.6 shows the CloneCloud framework.

2.5 An Analysis of CPU Clock Time, Execution Time and Power Consumption

By developing cloud mobile applications, it is possible to utilize maximum

resources of remote servers and minimize the workload of local devices. By offloading

tasks, the CPU engagement (CPU execution time) will decrease. According to

Perrucci et al., (2011), the power consumption of CPU is directly proportional to the

complexity of the instruction (workload of the CPU). To manage complex calculations

and make possible execution of complex task locally, CPU clock speed can be increased

to get maximum throughput. The processor performance can be assessed simply by

calculating the number of operations per given time. That is, the Throughput “T” of CPU

can be obtained as:

Figure 2.6 Clone-Cloud Framework

http://berkeley.intel-research.net/bgchun/clonecloud/

30

Throughput (T) = Operations / Time (S)

In terms of application, the throughput of processor can be plotted into three main

categories as follows:

i. Maximum Throughputs (Tm), for real time applications (spreadsheet updates,

navigations, spell check, scientific calculations and for audio/video calls) as they

would be required to response very quickly, in which the throughput should be

maximum.

ii. Normal Throughputs (Tn), for applications running in the background not affected

by the delay, as they need to be processed in fractions, in which the processor

throughput can be normal or low.

iii. Zero Throughputs (T0), in which processor can be idle and no throughput is

desired.

The Maximum Throughputs (Tm) can only benefit to the process which are

computational intensive and requires to have low latencies. The processes which are

running in the background and of high latency cannot benefit from Maximum Throughput

(Tm).

The increase of CPU clock speed or Throughput (Tm) reduces the execution time

and make possible local execution but it directly hits the battery life, as by Kumar et al.,

(2011), when a processor’s clock speed doubles, the power consumption nearly octuples.

If the clock speed is reduced by half, the execution time doubles, but only one quarter of

the energy is consumed. Although CPU performance proliferate whenever the execution

time decrease (Ramanathan, 2008) i.e.

 𝑃𝑐𝑝𝑢 =
1

𝐸𝑇
 2.1

where 𝑃𝐶𝑃𝑈 is the performance of CPU, while 𝐸𝑇 is the execution time of a task.

Additionally, execution time decreases if Cycle per Instruction (CPI) or Frequency (F)

increases,

31

 𝐸𝑡 =
1

𝑓
 2.2

From Equation 2.1 and Equation 2.2

1

𝑓
 =

1

𝑃𝑐𝑝𝑢
 or 𝑓 = 𝑃𝑐𝑝𝑢 2.3

Equation 2.3 shows that the increase of CPU frequency will increase the

performance. Although increasing CPU frequency improves the CPU performance to

some extent, the increasing frequency of the CPU needs more power to operate. Hence,

this will affect the battery power. To support extensive range of workloads efficiently,

the modern CPUs are capable of adjusting their clock rate dynamically. For example,

when the CPU is idle, it adjusts the clock rate to the lower speed and allows the voltage

to be lower too. The lower voltage assists in reducing the CPU power consumption. Thus,

fewer CPU Cycles (Frequency) means that the CPU requires less power and produces

less heat.

However, there are two basic dilemmas. The energy-conscious design of the

portable systems is vital without compromising performance (i.e., the CPU). A parallel

work needs to minimize the workload of the battery while at the same time improve the

CPU speed to handle the most challenging and most demanding applications. Thus, in

order to maximize the total computation per battery life, the energy consumption per

operation should be minimized. Furthermore, to prolong battery life, operations need to

be reduced per battery life. This has been done using numerous techniques adopted in the

past. One such technique is to offload the intensive computational activity of mobile

device to a remote server. The server will then process the complex task on behalf of

mobile device and send the result back to mobile.

2.6 Computational Offloading (Cyber Foraging)

The term computational offloading is also defined by the terms code offload or

cyber foraging. The process of transferring some computer processing tasks to remote

servers in order to discharge the execution load of task from mobile devices is called

computational offloading.

32

2.6.1 Energy-saving Computational Offloading

Researchers in the past have agreed that computational offloading will always not

be power-efficient (Kumar et al., 2012; Satyanarayanan, 2001; Satyanarayanan et al.,

2009; Shiraz & Gani, 2014). Thus, the following two questions need to be answered

before adopting computational offloading as a solution:

i. What is the optimum condition for computational offloading?

ii. What factors need to be addressed before starting computational offloading?

Kumar et al. (2012) have addressed this by evaluating the mentioned questions using the

mathematical formula as:

 𝑃𝐶 ×
𝐶

𝑀
 − 𝑃𝐼 ×

𝐶

𝑆
− 𝑃𝑇𝑅 ×

𝐷

𝐵
 2.4

where:

C is the number of instructions to be offloaded,

S & M are the speed instruction/ second of server and mobile device respectively,

PC Mobile power consumption (watts),

PI Mobile idle power consumption (watts),

PTR – Mobile power consumption during transmission,

D Data in bytes to be exchanged,

B Network bandwidth.

If the server speed considered is F times faster than mobile speed, then:

 𝑆 = 𝐹 × 𝑀 2.5

And by substituting Equation 2.4 in Equation 2.5, the formula can be rewritten as follows:

𝐶

𝑀
 × 𝑃𝐶 (

𝑃𝐼

𝐹
) − 𝑃𝑇𝑅 ×

𝐷

𝐵
 2.6

33

In this regard, the values M, Pi, Pc, and PTR are constant, and if Equation 2.6

provides a positive number, then offloading will reduce the power consumption of mobile

device. The formula will provide a positive number if
𝐷

𝐵
 is sufficiently small (i.e., B is

sufficiently large) and F is sufficiently large. In other words, if the bandwidth and server

speed are sufficiently large, then offloading will reduce the power consumption. The

relationship between B, D and C is important to predict whether or not to offload tasks.

For instance, in large computation C, if communication data D is smaller and bandwidth

B is large enough, then offloading will be beneficial; otherwise, for small C and low

bandwidth B, it is useful to avoid offloading and process data locally. The relationships

between B, D and C are illustrated in the Figure 2.7.

Computational offloading is a worthy solution to augment the resources

limitations of mobile devices. However, this approach also has several limitations. Firstly,

to accomplish the process of offloading some surrogates should be accessible and willing

to share their own resources with others (PDAs, Mobile Devices) via wireless networks.

Secondly, through cyber foraging, the security of confidential data cannot be guaranteed.

Thirdly, cyber foraging is applicable only to the tasks which are transferable and not

applicable to some tasks which are not transferable. In addition, offloading of small tasks

may not be beneficial due to extra communication overhead or changing of network

topology that may affect the offloading process too. Fourthly, computation offloading to

multiple surrogates may cause the issue of load balancing.

NEVER
OFFLOAD

DEPENDS ON BANDWIDTH B

OFFLOAD

COMPUTATION C

C
O

M
M

U
N

IC
A

T
IO

N

 D

Figure 2.7 Relationship between B, D and C

34

In addition, to improve the efficiency of remote execution the required data needs

to offload only in order to reduce communication overhead. Finally, the dynamic

allocation of resources on demand generate the issues of synchronization and resuming

(releasing) which ultimately causes latency. A good understanding of all the related issues

is crucial to keep in mind before making the cyber foraging practical and useful.

2.6.2 Metrics of Computational Offloading

It is necessary to take into account certain metrics which are influencing the

process of computational offloading, such as context specification, mobile and surrogate

specifications, network specification as well as application specification. Figure 2.8

illustrates the computational offloading decision which is influenced by metrics that need

to be considered. If there are no surrogates available in the surrounding to offload the

complex computation, then fidelity adaption, which is the process of trade-off between

quality and speed or quality and power consumption, would be considered. User can

manually specify the low quality for better speed and this will reduce battery drainage.

Furthermore, wireless networks have different type of features and bandwidths. Hence,

a mobile device can connect and communicate through any kinds of available network

such as Wi-Fi, 3G, and Wi-MAX. Therefore, computational offloading decision is

strongly influenced by the different bandwidth of different networks.

Figure 2.8 Metrics of Computational Offloading (Fernando et al., 2013; Dinh et al.,

2013)

Computational

Offloading

Decision User Preferences (Data

Confidentiality, Fidelity)

Network Specification

(Network type- 3G, Wi-Fi,

and WiMAX)

(Network Bandwidth)

Surrogate’s Specification

(CPU speed, load,

available memory,

available storage, memory

size)

Application’s

Specification (un-

transferable Parts, average

execution time, input)

Mobile’s Specification

(CPU speed, memory size,

storage size, available

battery, location)

35

Moreover, mobile and surrogate devices have different types of CPU, speed,

available memory, and storage capacity. If a mobile device does not have enough speed

or storage memory, then offloading is a better option to utilize. For computational

offloading, a few pre-identified parameters need to be considered first. Application type

is a key metric which needs to be checked prior to offloading decision. If the application

is processor-intensive or complex to compute locally, then offloading will be more useful.

Meanwhile, other elementary metrics such as user QoS requirement, availability of local

resources, SLA and network availability described in a sample flow of mobile application

execution are shown in Figure 2.9.

The flow chart depicts four processes of mobile application to be executed. If a

mobile device is capable of running the task, it will be executed locally; otherwise, it will

be offloaded to the remote servers. If all the available options go false, then application

execution request will be killed. The issues related to offloading are the efficiency and

dynamism of offloading under changing environments (Dinh et al., 2013). For example,

the mobility or movement of the user of the mobile device will affect the bandwidth. This

raises some concern about which strategy should be adopted to offload applications.

End

Is
Computati

onal
Offloading
Possible ?

Perform Fidelity
Adaptation

Start

Is Device
Connected

?

Is Fidelity
Adaptation
Possible?

Perform Cyber
Foraging

Execute Locally

Kill Task

Available
Resources

SLA
User

Preference Yes

Yes

Yes

No

No

No

Figure 2.9 Execution Flow of Traditional Computational Offloading (Abolfazli et al.,

2012)

36

In the case of static offloading, the application will be partitioned for offloading

at compile time regardless of environmental changes and user context. Redenko et al.,

(1998) have noted that static offloading is not always an energy-efficient approach. If the

size of intensive task is small enough, then offloading will consume more energy than the

energy consumed in local processing due to the communication cost. For instance, if the

size of intensive task is 500KB, then offloading the same task for remote execution will

use about 5% of the battery of the mobile device while local execution of the same size

of code will consume approximately 10% of the battery in computation. In this case,

offloading can save a significant amount of energy (i.e., 50%). Conversely, if the size of

codes is 250KB, then the efficiency reduces up to 30%. Thus, if the size of codes to be

executed is small, the offloading will consume more battery than that of the local

execution of the same task.

Computational offloading decision for mobile devices can be extremely tricky as

it is not easy to decide whether or not to offload and which portions of the application’s

codes need be to be offloaded in order to improve energy efficiency. Moreover, diverse

wireless access technologies require different amount of energy and also support

dissimilar data transfer rates. These factors need to be considered prior to offloading

decision.

Hence, to overcome these issues, the dynamic offloading techniques are used. As

suggested by Kumar and Lu (2010), these techniques will decide at runtime whether or

not to offload and which portions of the application to be offloaded based on energy

consumption. The optimal partitioning of program takes place on the basis of trade-off

between computation cost and communication cost.

Additionally, several other solutions have been proposed for the optimal

application partitioning. According to Messer et al., (2002), if a device becomes resource-

constrained at runtime and accepts that it can beneficially use nearby resources, it then

automatically and transparently offloads part of the service to the nearby devices and

configures the device to provide the services as a surrogate machine. Messer et al., (2002)

have therefore proposed a dynamic shared distributed environment, that is, in case no

remote server becomes available, then the load can be shared with other surrogate servers.

37

2.6.3 Taxonomy of Cyber Foraging/ Computational Offloading

In this section, based on the available information of the existing computational

offloading systems, a cyber-foraging or computational offloading taxonomy is presented.

The most significant repetitive features such as offload type, surrogate type, offloading

scale, solver locations, code availability, offloading granularity, data availability and

parameter of decision of computational offloading systems are used to classify and

discuss the taxonomy. Figure 2.10 illustrates cyber foraging taxonomy and is briefly

discussed in the following subsections.

2.6.3.1 Offloading Types

Offloading can occur either at start time referred to as static offloading or at

runtime called as dynamic offloading (Murarasu et al., 2009). During static offloading, a

middleware or programmer partitions the program before execution. Thus, at runtime, the

system identifies which portions of the program should be offloaded. However, due to

the expanded uniformity of network environments and the surrogates, static offloading

cannot ensure the best partitioning for all probable situations which could be beneficial.

Spectra (Flinn et al., 2001; Flinn et al., 2002) and Chroma (Balan et al., 2003); Balan et

al., 2007) are the examples of most important works in which partitioning occurs before

program execution.

Computational

Offloading

Taxanomoy

Offload Types

Parameters of

Decesions

Offloading

Granularity

Offloading Scale

Data Availability

Surrogate Types

Solver Locations

Static Computer

Dynamic

Mobile Device

Cloud

Mobile Devices

Surrogates

I/O

Memory

CPU

Latency Storage Energy

Fine-Grain

Coarse-Grain

Multiple Surrogates

Single Surrogate

Already Available

Offload from Mobile

Transfer from Prev.

Surrogate or Internet

Partitioning

Static

Partitioning

Dynamic

Partitioning

Figure 2.10 Taxonomy of Cyber Foraging (Adapted from Sharifi et al., 2012)

38

By contrast, dynamic offloading starts to offload tasks when the required

resources for offloading are insufficient. Dynamic offloading techniques were used by

Gu et al., (2004) in their research. This type of offloading partitions the program

according to the availability of resources at runtime. This approach makes offloading

decisions based on existing conditions and therefore, is beneficial and more flexible. Such

approach however causes more overheads on the system.

2.6.3.2 Surrogate Types

Cyber foraging can be further categorized by the surrogate types. The surrogates

can be either static computers or mobile devices. Generally, most of the cyber foraging

approaches use static computers as surrogates (Su et al., 2005; Satyanarayanan et al.,

2009) while others use mobile surrogates (Begum et al., 2010). Although powerful

stationary computers or surrogates are suitable for offloading, in case which no surrogates

become available or in circumstances such as changing network topology, user

preferences may direct a cyber-foraging system to choose a mobile surrogate for

offloading instead.

2.6.3.3 Offloading Granularity

If the surrogate device does not have the required application, then there is a need

to offload some of the related parts of the application from the mobile device to the

surrogate. The process of offloading parts or the whole of the application is called

offloading granularity. In the cyber foraging approach, if some parts of the application

are offloaded, this is referred to as fine-grain. In their work, Flinn et al., (2002) used this

fine-grain method while other researchers such as Murarasu and Magedanz (2009) and

Satyanarayanan et al., (2009) offloaded the whole program which is referred to as coarse-

grain. In fine-grain strategy only the parts which are needed can be offloaded and it leads

to adequate energy saving. This strategy is suitable for a highly mobile environment,

because mobile devices move in the environment and the probability of network

disconnection increases due to load and unavailability of wireless signals.

39

2.6.3.4 Offloading Scale

The selection of surrogate devices to offload CPU intensive parts off applications

is called offloading scale. Offloading scale differs in different cyber foraging or

offloading approaches. The cyber foraging system either selects a single surrogate from

the pool of available surrogates to offload a task and then obtains the result back (Flinn

et al., 2002), or in some other cases as noted by Kristensen et al., (2008), the cyber

foraging system uses multiple surrogates to offload a task. Offloading scale using

multiple surrogates to offload a task is beneficial. This is because it deals with the

mobility nature of mobile devices. Moreover, fault tolerance can also be increased by

parallel offloading to multiple surrogates which will also facilitate the latency control

(Zhang et al., 2010).

2.6.3.5 Data Availability

To perform an execution of a task, some of the related information such as input

data need to be available in the execution environment. The assumptions and tactics about

data availability can be defined in three cases. The first case refers to a condition in which

data are already available on the surrogate and there is no need to transfer anything from

the mobile device to the surrogate (Kristensen, 2010b). For example, suppose two tasks

A and B are running in mobile device and the A’s output is the required B’s input. If a

surrogate has executed task A, then it has the B’s input and it will not need data migration

from mobile.

In the second case, information is missing with the surrogate and transfer is

needed from a mobile device to surrogate (Balan et al., 2003) whereas in the third case,

the necessary information is fetched from another surrogate (Su et al., 2005). This third

case strategy can work more efficiently if the required data is fetched from the Internet.

Additionally, the forecasting and context-aware information can help to improve this case

to provide information prior to execution such as user’s location, bandwidth or internet

availability. It also foresees the next availability of internet in advance to transfer

necessary information before starting to run the next task.

40

2.6.3.6 Parameter Decision

The main goal of cyber foraging or computational offloading is to cope with the

resource constraints of mobile devices. Therefore, several matrices must be kept in mind

before considering cyber foraging as a solution to augment a mobile device’s local

resources. The most essential factors that could be considered for offloading are energy

consumption, memory storage, responsiveness and input/ output (I/O).

a. Energy Consumption

One of the key constraints of mobile devices is the limited power storage. As the

mobile device’s energy cannot be replenished by itself, this is the reason why many

researches considered energy consumption or battery power as a parameter for taking an

offloading decision (Flinn et al., 2002).

b. Memory Storage

The applications which are memory intensive usually cannot be run on mobile

devices and all such applications entails to offload. Consequently, many of the researchers

considered the local memory and storage of mobile device as an effective parameter

before offloading (Ou et al., 2006).

c. Responsiveness

The execution time of a computational intensive application can be decreased by

offloading if the processing power or the CPU speed of the mobile device is significantly

lower than that of the static computers. Many researchers considered the response or

execution time and latency as the main parameter which could affect the offloading

decision.

d. Input/ Output (I/O)

Sometimes, input / output (I/O) devices are considered for the improvement of

quality. For example, when there is a need to play a movie on a larger screen, use bigger

41

speaker for playing music or use distant printing. Some previous works focused on

augmenting the I/O as an effective parameter in offloading decision.

2.6.3.7 Solver Location

The unit, which is responsible for taking offloading decision, is called a solver.

This parameter is considered by many researchers as a location of solver. Normally, every

mobile device has its own solver and can play the role of decision maker itself. However,

in some works such as Cuervo et al., (2010), the solver was not located in the mobile

device. For example, MAUI generates a call graph of application to execute. The call

graph may possible obtained the accurate partition to execute while it may sometime

miscalculate the partitioning and offloading decision due to insufficient pre-defined

parameters. It is therefore significant to have a solver which may take a precise decision

for offloading the remote executable tasks.

2.6.3.8 Application Partitioning

As the computational complexity of application processing as well as the

resources of computational network increases, logic dictates to distribute a centralized

programme into components and execute each component parallel in order to reduce load,

share resources and make the processing efficient. The term application partitioning

refers to breaking down the application into components in distributed application

frameworks while the components preserve the semantic of applications. Current

Distributed Applications Frameworks comprise dividing runtime applications in two

different ways, either static partitioning or dynamic partitioning.

a. Static Partitioning

The concept of computational offloading has been introduced with static

offloading where the application used is partitioned once in compile time or runtime and

the static parts of the application are then offloaded to the remote server. In their work,

Satyanarayanan et al., (2009) primarily partitioned applications into two parts, namely,

the user interface part which stayed in the mobile device, and the resource-intensive or

compute-intensive parts delegated to the remote servers. Meanwhile, in their research,

42

Dou et al., (2010) developed Misco in which the application was statically partitioned

into two parts, namely, the Map and the Keys. The Map function was then applied to the

set of input data which produced the intermediary <” Key, values”> pairs. All such pairs

were then grouped into a number of partitions. Whole pairs in a single partition were then

passed to the reduce function which then produced the final results.

b. Dynamic Partitioning

In the dynamic partitioning approach, the algorithms used to dynamically partition

an application continuously monitor the available resources for SIDs. During the

processing of the application at runtime, the resources are allocated to each component

for processing. The concept of dynamic partitioning is developed in contrast to static

partitioning where resources are allocated to components once in compile time or runtime

as opposed to the dynamic approach in which resources are allocated to each task in a

sophisticated way. Current dynamic computational offloading frameworks are used to

exercise the dynamic application partitioning approach. The works of Goyal et al.,

(2004), Chun et al., (2009) and Zhao et al., (2010) Yang et al., (2013) are examples of

the current distributed application computational offloading frameworks which used

dynamic application partitioning approach in their studies.

2.7 Related Works

In order to achieve energy efficiency during application processing, the whole

focus of researchers would be to execute the intensive tasks as quickly as possible and

then allow the platform to go into sleep state. For this purpose, a multithreading concept

had been used in the past to allow the applications be executed in multiple parts using

multiple cores of the processor concurrently. As soon as the execution finishes, the free

cores in the processors go into idle mode and then into sleep mode (Metri et al., 2014).

After the era of mobile cloud computing has started, the concept of computational

offloading becomes familiar with vigour. The computational load has migrated to the

remote servers for processing in order to free the mobile device’s processor from the local

workload.

43

2.7.1 Previous Research on Enhancing Mobile Efficiency

For the last few decades, numerous researcher has attempted different techniques

to delegate the resource-intensive parts of the applications to remote servers in order to

minimize the load of the local resources. In this regard, two approaches are commonly

used (Cuervo et al., 2010).

The first approach relies on programmers specifying how to partition a

programme, and which parts of a programme need to be remote and how to adjust the

programme partitioning scheme with the frequently changing network environment

(Balan et al., 2002; Balan et al., 2007). This approach leads to saving adequate energy

because it is fine-grained. The application can then be offloaded in sub-parts only if the

remote execution is beneficial in terms of energy, processing and storage.

The second approach involves the migration of the entire process (Balan et al.,

2002) or OS (Virtual Machines) (Chun et al., 2010) to the cloud instead of to the sub-

parts. This approach excludes burden on programmers for instance application does not

need to be partitioned and the entire process or system is automatically loaded to the

remote servers. A review of some typical research projects is presented next in this

section.

This review begins with a discussion of CloneCloud. It was introduced in 2011

by Chun et al., (2010). The Clone is an image of a mobile device residing on a virtual

machine in cloud. In contrast to the smartphone, a Clone is in rich hardware, networks

and software environment close to energy-efficient resources. This condition is more

suitable for the execution of complicated task. The main method used is virtual machine

migration which offloads the application’s execution blocks from resource-constrained

mobile devices to rich resources pool Cloud flawlessly and partly. The CloneCloud

system either fully or partly offloads the smartphone based execution to a dispersed

environment. The CloneCloud architectural framework is shown in Figure 2.11 (A). Each

smartphone’s task is divided into five different execution blocks. The blocks are divided

on resource-intensive basis. The blocks which are more power hungry are then passed to

the cloud for processing. The energy-intensive blocks appear in coloured green in the

diagram as shown in Figure 2.11 (B).

44

(A) (B)

Once the execution of these blocks are completed, the output is then passed from

CloneCloud to the smartphone. A face tracking application is taken as a test by Chun et

al., (2011) with and without CloneCloud and the result showed that CloneCloud had taken

1 second to process the task while the smartphone had taken 100 seconds to process the

same. Another advantage of CloneCloud System is the reservation of battery life, as

Smartphones do not need to process complicated tasks.

Nevertheless, this approach has its disadvantages such as the handover delay and

bandwidth limitation. Because the speed of data transmission is known to be inconsistent,

the CloneCloud System will therefore not be responsive whenever the user moves to a

signal blind area. Furthermore, the data that stream from the mobile device to the distant

server is also not consistent; hence, data stream needs to be optimized for speedy process

of flow and thus reducing RTT (Yang et al., 2013). On the basis of CloneCloud, Zhang

et al., (2011) have introduced an elastic application framework to enhance the

performance of resource-constrained devices by dynamic execution configuration of

application according to the device current status. This framework divides an application

into a range of multiple components called weblets. It offers a dynamic adaptation nature

of weblet execution configuration and a cost model is provided to adjust the execution

pattern; however, this framework needs a mechanism for exchanging of weblets between

the mobile devices, as the communication channel of the mobile devices may be changing

(e.g., from 3G to GPRS or Wi-Fi). Another challenge is a media channel or high speed

bandwidth is needed to ensure that the communication between weblets is reliable.

Figure 2.11 CloneCloudArchitectural and System Framework (Chun et al., 2010)

45

Although both of the approaches are energy-efficient for mobile devices, the

response time for data transmission between cloud and mobile devices is slow, especially

when the bandwidth is low. Thus, for light weight applications which can be deployed

locally in a smartphone, it cannot be justified to offload all the applications to the cloud.

Lu et al., (2011) have made the presentation of Virtualized Screen in the cloud possible.

In this approach, the screen rendering moves from the mobile device to the cloud as a

service and is brought as an image to the client device for interactive display. They enable

thin-client devices to enjoy various compute-intensive and graphically-rich services in

the cloud.

Furthermore, screen virtualization does not mean offloading the whole rendering

task to the cloud but to make offloading decision on the basis of matrices such as local

device resources efficiency, network condition, traffic condition, response time, screen

resolution. In this regard, part of the smartphone’s screen is virtualized in the cloud which

contains a collection of data using display image, audio, video, key board input, and text-

contents. The light weight part of an application is deployed locally to process which

effectively diminish the power consumption. As such, Lu et al., (2011) have suggested

that the framework for screen rendering should be partially done in the cloud and partially

in the mobile device. Consequently, they sought to resolve network bandwidth obstacles

and curtail energy consumption. The challenge in remote screen rendering is that the

real-time and high-fidelity processing of the remote execution of the screen is affected by

low bandwidth. The low bandwidth and the offloading to a distant cloud server for

execution impede the optimal performance of mobile applications (Ahmed et al., 2015).

In order to solve the issue of bandwidth delay between the mobile device and the

cloud, Satyanarayanan et al., (2009) have presented the concept of Cloudlet which is a

Micro Cloud configured in the middle of the mobile device and the Cloud. The author

argued that even though Cloud Computing is the finest solution for resource-constraint

devices, the long WAN latency impedes its performance. The rapid changing of the

computing environment causes changes in the bandwidth access between the mobile

device and the cloud. This leads to different kinds of delay, especially when mass data

need to be transferred and processed. The occurrence of such delays will then be

experienced by the user. Unfortunately, the bandwidth delay is totally unavoidable

because of firewall filtering or data checking which are inevitable for security. To

46

overcome the problem, virtual machine (VM) technology is used to provide instantaneous

customized services. Figure 2.12 shows a Cloudlet, which is a resource-rich computer or

cluster of computers, installed in a coffee shop to provide rapid customized services to

the client devices using VM technology through a high bandwidth to mobile users.

Compared to the distant Cloud, Cloudlet exists in a single hop distance, which

provides the fastest processing and transmission bandwidth to the connected devices. In

case where no Cloudlet exists in the surrounding, the mobile devices will then access the

resources of a distant cloud or in the worst case scenario, the mobile devices will use their

own local resources to handle the execution of applications. The main challenge in this

approach is the compatibility issue related to applications running in Smartphones which

are rapidly improving. This is because the VM based Cloudlet might not possess such a

wide range of compatible applications.

A slightly similar approach has been introduced by Canepa et al., (2010), namely,

the ad-hoc mobile cloud framework, which is a virtual cloud computing platform.

Canepa et al., (2010) have discussed communities which are built of mobile devices

where the mobile devices become capable of executing shared tasks.

Figure 2.12 Cloudlet Architectural Framework (Satyanarayanan et al., 2009)

47

The framework proposed by Canepa et al., (2010) allows a small portion of the

task to be executed locally while the rest is delegated to the nearest mobile device

available in the same vicinity already running the same task. The concept of ad-hoc

mobile cloud framework presented by Canepa et al., (2010) consists of five basic

components such as application manager, resource manager, context manager, P2P

component, and offloading manager. Each of these five basic components will be

described briefly.

First and foremost, the application manager, is responsible for the starting and the

stopping of an application at loading time. It also modifies the application to take in

features according to the current context needed for offloading such as RPC support and

proxy creating.

Secondly, the resource manager is in-charge of the application profiling and

monitoring of resource in a local device. For each application to execute, a profile is

created to keep record of all of the remote devices which are needed to build a virtual

cloud. The application profile is then checked by the application manager every time an

application is executed in order to determine whether or not an instance of the required

virtual provider needed to be created.

The third basic component is the context manager. It is responsible for the

synchronisation of contextual information getting from context widgets and makes them

available for other process. Context manager consists of three sub-components: 1) Context

widget, which is responsible for handling communication with the sources of context

information; 2) Context manager, which receives new context from the available

information; and, 3) Social manager, which keeps record of several types of relationship

between users.

The fourth and the fifth basic components are the P2P component and the

offloading manager. P2P component is responsible for informing the context manager of

joining a new device in the vicinity or leaving away status of an old device. Meanwhile,

the offloading manager handles the offloading task to the neighbouring device for

execution. It also accepts tasks from the other remote devices and process the tasks

accordingly. This approach would certainly save energy; however, the pervasive nature

48

of nodes needs to have an adopting access mechanism from the neighbouring device.

Hence, a mechanism for dealing with the energy consumed in extra computation for

making decisions is needed.

The biggest challenge to mobile devices is distributed computing. In such

computing, new class of applications are needed to react to the rapidly occurring changes.

Schilit (1994) introduced the term context-awareness in distributed computing (i.e.,

ubiquitous computing). Applications should be aware of the environment they are running

in and adapt to the changes according to the context. The mobile devices can manage their

resources in a better way when devices are aware of the contextual computing in the

pervasive environment. For example, GPS is used in Smartphone devices to detect

locations, but it drains the battery of the mobile devices more than other components. The

context aware approach will keep the GPS usage in schedule to trigger whenever it is

needed or otherwise the GPS will be turned off.

Zhuang et al., (2010) had first developed a framework for location sensing based

on the contextual information which is energy-efficient as compared to GPS. Kim et al.,

(2011) then developed Wi-Fi Sense system to sense the environment using low power

sensors and previous recorded data in order to predict the best available network interface

for communication, and to turn on Wi-Fi interface on demand fashion to save battery life.

Meanwhile, Herrmann et al., (2012) have proposed a system, namely, the

Dynamic Power Management (DPM), to avoid the unnecessary sensing of distributed

sensing application. This system uses the context knowledge to adapt to the behaviour of

applications. According to the current user’s context, the system starts, suspends and

changes the sampling rate of application used for collecting sample in a sensor network.

In addition, context-aware battery management architecture for mobile devices

(CABMAN) has been proposed (Ravi et al., 2008). On the basis of user’s current context,

if the system detects a charging opportunity, it will then warn the user that the device’s

battery may be running out of power. The system works on the proposed algorithms for

processing user’s location and call-logs for making some of the predictions.

49

By using the embedded sensors of the mobile device, Moghimi et al., (2012) have

presented a middleware context-aware power management system. Fuzzy inference is

used in this system for extracting the high level context from the low level context, which

provides near to accurate results of the user context. The system proposed by

Moghimi et al., (2012) consists of the sensors, the context detection block (CDB) and the

power manager as shown in Figure 2.13.

The system receives raw sensing data from the embedded sensors. CDB works as

an inference unit, which extracts the high level context from the low level sensing context.

This eliminates the possibility of an application retrieving the same context for the second

time. The power manager is placed in between the CDB and the applications. It receives

the sensing variables registered by the respective applications and tune them by some

defined rules to deliver context-aware energy-efficient performance. This results in 10-

50% lower power consumption of the system. The challenges of this system are to expand

the context variables and adopt a dynamic way of distinguishing the high level context

from the low level context.

Figure 2.13 Context-Aware Power Manager

50

To make the user interaction limited and build a smart environment, Sathan et al.,

(2009) have proposed a context-aware lightweight energy-efficient framework

(CALEEF). CALEEF consists of seven components as shown in Figure 2.14. Using this

approach, the smartphone needs to be intelligent enough to decide when to access or to

execute the application on the basis of high level contextual information. For example, if

the user is in a meeting room, the context-aware mobile device will sense the environment

and reject all unimportant calls.

First Component: Context Acquisition Context acquisition acts as a mediator between an

application and its operating environment. At data acquisition layer, specific widgets are

developed in order to capture different kinds of information. This layer releases the

applications from the issues relating to context sensing by tying the sensor with a single

interface. This way it makes independent application design for the method of context

sensing. The context widget will continuously update the context encoder with context

information. The context information is then sent to the context service provider for the

storage and dissemination of the context to the consumers.

Figure 2.14 CALEEF Architectural Framework (Sathan et al., 2009)

51

Second Component: Context Manager Context manager is responsible for the conversion

of context data received from sensors to the context information that will be provided to

application for further action. This component is further divided into two sub-

components, namely, the context interpreter and the context encoder. The context

interpreter does context processing by logical reasoning; as a result, the high level context

is derived from the low level context. It also resolves context conflicts. The context

encoder, as the name suggests, encodes the context information using Ontology Web

Language (OWL) and then passes it to the context logger for record.

Third Component: Interface Engine The interface engine performs reasoning on stowed

facts. Using the past and current context information, it defines how an application should

change its behaviour accordingly.

Fourth Component: Context Logger The context-aware applications may change their

behaviour using the past context along with the current context. For this reason, the

previous context is encoded and stored in the context history that may be queried by the

applications later whenever needed. The context logger is made up of the context

knowledge base and the context history. The context knowledge base provides a set of

API’s for the components of other services to query, modify, add, delete the context

information.

Fifth Component: Context Provider The context provider is responsible for keeping

record of the context consumers. This component will always trigger the record it keeps

whenever new context information is obtained.

Sixth Component: Directory Services The directory services register the sensors’

information of the surrounding and keep record of the sensors’ attributes such as refresh

rate, spatial information, and correctness. By using this mechanism, CALEEF selects the

sensor that is most suitable for receiving context data.

Seventh Component: Context Consumers Context consumers consumes different kinds of

context information and adapt to their behaviour accordingly. It is done by either listening

to the context provider for new context information or querying it to receive updates. The

main feature of CALEEF is context reasoning. High level implicit context can be derived

52

from low level explicit context. Application confidently uses the high level context

information to change their behaviour.

The challenging issue in CALEEF framework is, in case there is a failure in any

sensor or component, the system needs to restart and restore itself to the last working state.

Some researchers have utilized cloud resources using the contextual approach to

minimize local resources operation. For example, Xiao et al., (2011) proposed a

framework CasCap (Cloud-assisted Context-aware Power Management). In their work,

the cloud resources for processing, storage, and networking were utilized to provide an

efficient and low cost power management of mobile devices. CasCap consists of three

main components, namely, mobile devices, internet services and clones. Mobile devices

in CasCap have the following five components: resource manager, context manager,

scheduler, policy manager and communicator.

The first component, namely, resource manager runs in the background and is

responsible for monitoring the device’s resource consumption. It also collects the

contextual data from sensors such as the GPS and the accelerometer. The second

component is the context manager. It generates the contextual information on the basis of

the data collected by the resource manager from the sensors and uploads the context

information to the cloud. A crowed-context monitors service in the cloud which receives

the contextual information from context manager of the mobile devices and other network

elements and then queries on them to get meaningful context information.

The third component is the scheduler. This component is responsible for keeping

track of the changes in the context and then adapts to the mobile devices according to the

changes. Meanwhile, the fourth component is the policy manager which stores all the

policies that are made to govern the process of the CasCap framework. These policies are

specific rules and actions that should be taken by the device itself or by the internet Cloud

whenever a specific change occurs in the context information. Finally, the communicator

is the component which is responsible for providing the wireless communication facility

between the mobile device and the cloud for sharing the policies and the context

information and for using internet services.

53

The findings of a study conducted by Xio et al., (2011) are significant in terms of

the main features of CasCap such as the monitoring of crowed-sources context, functional

offloading to the cloud and the adaptation as services. Tis research first time considered

the third party services to be part of the development and the deployment of power

management services. The system still needs to resolve the challenges in the migration of

radio stream from one proxy to another whenever the user moves. A filter process is also

needed for context information stored in the cloud. This is because after some time, the

stored context information might become invalid.

All of the discussed approaches have resulted in different solutions at different

levels to minimize the power consumption of handheld devices. The two most popular

solutions are, either by conserving battery life through resource management or by

offloading (i.e., migrating load to cloud servers). Singular solution by simply adopting

job migration to the cloud or only through resource management alone cannot provide an

adequate power-saving solution as both approaches have their own limitations. The

different approaches reviewed are summarised in Table 2.2.

54

Table 2.2 Analysis of the Previous Research Work on Resources Augmentation of

Mobile Devices

Focus / Purpose Framework Method Outcomes / Results Limitations / Future

Work

Reduce Mobile

Resources Labour

CloneCloud

Chun et al.

(2010)

Offloading 21.2x speedup smartphone

device application processing

Protect battery life by remote

application execution

Handover delay and

bandwidth limitation

Dynamic

application

execution

Weblet

Zhang et al.

(2011)

Elastic

application

configurati

on

Performance enhanced by

dynamic adaptation nature of

complicated tasks.

Quick and dynamic access of

application reduces the local

resources operation and save

battery life

Mechanism need for

exchanging weblets between

devices, with changing

communication channels

(3G to GPRS or Wi-Fi)

Reduce Mobile

Resources labour

Interactive

Screen Remote

system

Lu et al. (2011)

Screen

Virtualizati

on in Cloud

Thin-client devices to enjoy

various compute-intensive and

graphically rich services in

cloud.

Reduces local resources

operations & conserve battery

life

For real time and high

fidelity processing the

remote execution of screen

might affected by low

bandwidth

Solve the issue of

bandwidth delay

b/w mobile device

and cloud

Cloudlet

Balan et al.

(2001)

Offloading

(Cyber

Foraging)

Cloudlet exist in a single hop

distance, provide the fastest

processing and transmission

bandwidth to the connected

devices

Provides the rapid customized

services to the client devices by

using VM technology through

a high bandwidth.

Applications compatibility

issues

Reduce Mobile

Resources labour

Virtual Cloud

Computing

Platform

Hureta-Canepa

et al. (2010)

Offloading

(Remote

Execution)

The pervasiveness of mobile

devices, creating a cloud

among the devices in the

vicinity, allowing them to

execute jobs between the

devices.

The pervasive nature of

nodes needs to have an

adopting access mechanism

from neighbour. Also a

mechanism for dealing the

energy consumed in extra

computation for making

decisions.

Resource

Management

PARCTAB

System

Ali et al. (2015)

Context-

aware

Computing

Developed unique set of

context-aware application

which enhances the operation

of applications by

communication and context

information.

PARCTAB depends on small

cell wireless communication,

thus combines portability with

information about context.

PARCTAB system has very

limited use when

disconnected from a

network.

Resource

Management

Location

Sensing

Framework

Zhuang et al.

(2010)

Context-

aware

Computing

Reduce GPS usage up to 95 %

while increase battery life up to

75 %`

As compare to GPS, the

proposed system cannot

provide accurate location

sensing in some cases.

55

Table 3.2 Continued

Resource

Management

WiFisense

System

Kim et al.

(2011)

Context-aware

Computing

Increases Wi-Fi usage for

various scenarios.

Save energy consumption

for scanning by up to 79 %

while reduces false

triggering by up to 4.3 %

The accelerometer is unable to

provide the accurate

movement information

without any location base

sensor.

Resource

Management

Context-aware

DPM

Herrmann et al.

(2012)

Context-aware

Computing

The tested technique on a

real system shows that it

can extend smartphone

battery life by 5x.

The context detection using

sensor is an extra cost that the

system has to pay to gain the

context knowledge.

Resource

Management

CABMAN

Ravi et al.

(2008b)

Context-aware

Computing

Predict next charging

opportunity on the basis of

developed prediction

algorithm.

Accurate battery life

prediction based on a

discharge speedup factor.

Save battery life for crucial

applications for instance

Telephony

For those users who spent a

very high entropy routine, the

prediction al- gorithms may

not work very well.

As many users charge phones

in their cars while driving, in

such condition it is not always

possible to consider location

prediction for charging

availability.

Resource

Management

Context Aware

Power Manager

Moghimi et al.

(2012)

Context-aware

Computing

Fuzzy inference used to

provide high level context.

The results show reduction

in energy 13-50% for

periodic applications, and

for streaming applications

18- 36%.

Need to expand the context

variables and adopt a dynamic

way of determining high level

context from low level

context.

Resource

Management

CALEEF

Sathan et al.

(2009)

Context-aware

Computing

Reduces the cost and

complications of

developing context-aware

applications by a shared

context model of

distributed software

components.

It also get context from a

widespread range of

sources rather than sensors

only that are rooted in the

local environment.

It enables knowledge

sharing among applications

entities.

The need of autonomic

service-oriented Computing

ideas for developing context-

aware service frameworks.

In case of sensor or any

component failure need the

system to restart and restore

itself to the last working state.

Resource

Management +

Offloading

CasCap

Xiao et al.

(2011)

Context-aware

Computing

CasCap comprise of

crowd-sourced context

monitoring, function

offloading, and adaptation

as service.

For the third party service

providers the frame work

provide a fresh way to

develop and deploy power

management services.

The system still needs to

resolve the challenges in

migration of radio stream from

one proxy to another

whenever the user moves.

Need a filter process for

context information stored in

the cloud as after some time

the stored context information

might become invalid.

56

Chun et al., (2010) have used the concept of cloning mobile device in distant cloud

to process computational intensive tasks migrated away from mobile device; however,

the mobility features and low or interrupting bandwidth issues sometimes cause delay in

the services. Moreover, synchronization with the clone device each time increases Round

Trip Time (RTT).

Meanwhile, Lu et al., (2011) have presented a concept of the screen rendering

instead of migrating the whole task to the distant cloud. Lu et al., (2011) have introduced

Virtualized Screen in the cloud to overcome the bandwidth delay issues. In this approach,

the screen rendering moves from the mobile device to the cloud as a service and is brought

as an image to the client device for interactive display. In this approach, part of the

smartphone’s screen is virtualized in the cloud which contains collection of data using

display image, audio, video, key board input, and text-contents.

Similarly, Balan et al., (2002) had earlier presented the concept of Cloudlet, which

is a Micro Cloud configured in the middle of mobile device and the Cloud. They argued

that even though Cloud Computing would be the finest solution to overcome limitation

of resource constraint devices, the long WAN latency may impede its performance. The

rapidly changing computing environment would alter the bandwidth access between the

mobile device and the cloud thus leading to different kinds of delay, especially when mass

data would need to be transferred and processed. The presence of such delays would be

detected by users. This approach has shown that a Cloudlet, which is a resource-rich

computer or cluster of computers installed, provides the rapid customized services to the

client devices by using Virtual Management (VM) technology through a high bandwidth.

In comparison to the distant cloud, the Cloudlet, which is situated in the nearest distance,

provides the fastest processing and transmission bandwidth to the connected devices. In

case there is no Cloudlet that exists in the surrounding, the mobile devices will then access

the resources of the distant cloud or in the worst case scenario, the mobile devices will

use their own local resources to handle the execution of applications. The main challenge

in this approach is the compatibility issue related to applications running in Smartphones

which are rapidly improving. This is because the VM base Cloudlet might not possess

such an immense range of compatible applications.

57

Likewise, the approaches such as those adopted by Balan et al., (2002), Chun et

al., (2010), and Lu et al., (2011) encompasses the issues of low bandwidth and excessive

offloading, while in particular circumstances the mobile device can locally process the

task easily. For this reason, to make the user interaction limited and build a smart

technique, Sathan et al., (2009) have proposed a context-aware lightweight energy-

efficient framework (CALEEF). The limitation of this approach is the deployment and

then the failure of the sensor which causes disconnection of the whole service. In case of

sudden failure of the system, an automatic mechanism needs to restate the system to the

previous state. Past researchers have used the concept of context-awareness to make a

precise decision at the time of offloading remote executable parts of different applications

(Ravi et al., 2008a, Kim et al., 2011, Xiao et al., 2011, Herrmann et al., 2012, Moghimi

et al., 2012). The major issues in context-aware approaches are the use of extra sensors

and filtration of high level context information from low level sensed context input.

2.8 Review of Computational Offloading Frameworks

By nature of the computational offloading, its frameworks are mainly divided into

several main categories. These frameworks will be explained in this section.

2.8.1 Whole Application Migration Frameworks

In this approach of computational offloading frameworks, the entire application

is offloaded to remote servers for processing. The Application Migration offloading

Frameworks are used to exclude the partitioning and granularity overhead at mobile

device; however, offloading the entire application is sometimes communication- or

bandwidth- intensive due to the limited available bandwidth. Furthermore, delegating

components of the application to resourceful servers which are, by contrast, lightweight

and easy to process locally, causes delay and consequently drains the battery’s power. A

few past research works that were based on the whole application migrations are a study

conducted by Chun et al., (2004) and also another study conducted by Chun and Maniatis

(2010).

58

2.8.2 Virtual Machine (VM) Level Migration Frameworks

Virtual machine (VM) level migration frameworks fall into the second category

of computational offloading frameworks where a VM instance of each SID is required to

be created on the server which serves as a shared infrastructure. The advantage of VM

migration frameworks is that a single surrogate can run a number of VM instances with

a complete isolation and security; therefore, these frameworks are less vulnerable to

security concerns. The adverse side of these frameworks is the deployment of template

based virtualized approach which is resource-intensive and highly time-consuming for

VM deployment. This approach is used by many researchers such as Goyal et al., (2004),

Satyanarayanan et al., (2009), Chun et al., (2010) and Wang et al., (2011).

2.8.3 Method Level Migration Frameworks

In method level migration, the computational intensive methods of a running

application are marked as heavy methods and lightweight methods. Different terms have

been used in research for both heavy and lightweight. Some research works have referred

to heavy methods as intensive methods or computational intensive methods (Ewens et al.,

2001). These methods involve heavy computations required to offload for execution.

By contrast, lightweight methods are methods which do not involve heavy

computations and can be processed locally. The term lightweight is used by many

researchers in their studies such as Shiraz et al., (2013), Shiraz et al., (2014) and

Shuja et al., (2015). To partition the application into lightweight and heavy methods, the

heavy methods are symbolized as computational-intensive using specific keywords. The

whole burden of partitioning the application in local and remote methods is placed on the

developer.

The concept of method level migration was introduced after the migration at class

level. After the concept of class level migration which had been used by Gu et al., (2004),

Yang and Liotta (2006) developed a concept in which the whole class was identified as

intensive and migrated to the remote severs. This concept would be secure and easy to

implement. However, the only disadvantage would be a class may contain many methods

59

including methods which would be easy to process locally and therefore would be

illogical to offload such methods to the non-computational-intensive remote servers.

By contrast, at method level, the computational-intensive methods are offloaded

only during which the rest can be executed locally. As a result, it eliminates the process

of lightweight methods having to wait for execution while remote execution is in process.

Meanwhile, Rim et al., (2006) and Cuervo et al., (2010) have used the method level

migration. In their research, Rim et al., (2006) employed the technique to reduce the code

size in the mobile device by transformation method and used Distributed Execution

Transformer (DiET) to generate slim codes for heavy methods. The mobile device would

download the modified bytecodes and execute the application computation at the server.

The traditional offloading approach refers to the existing and recent research

works. In the literature, the term traditional offloading has been used in many research

works. For instance, Wu et al., (2013) and Shiraz et al., (2014) have used the same term.

In the present research, the term traditional offloading has been used with the intention of

simulating the traditional offloading porotype which would be compared based on

efficiency with the proposed model. Thus, traditional offloading frameworks from 2004

until 2015 are critically examined in this literature review in relation to power efficiency

of mobile devices. Table 2.3 summarises the traditional computational offloading

frameworks on the basis of computational offloading nature, type of offloading,

granularity, application partitioning and offloading scales.

60

 Table 2.3 Comparative Review of Computational Offloading Frameworks

Framework Application

Partitioning

Migration

Level

Offloading

Type

Remote

Server Type

Offloading

Scale

Offloading

Granularity

Focus

Offloading Inference Engine

(Gu et al., 2004)

Dynamic Class level Static Surrogate Single Fine-grained Memory

Management

Roam System

(Chu et al., 2004)

Dynamic Application

Level

Dynamic Cloud Server n/a Coarse-

grained

System for

Heterogeneous

devices

DiET

(Rim et al., 2006)

Static Method Level Static

Computer

Cloud Server Multiple Fine-grained Save Battery

Offloading Toolkit

(Ou et al., 2006)

Static Class Level Static Surrogate Single Fine-grained Reduce

Complexity of

Partitioning

 IDP

(Xian et al., 2007)

Static Task Level Static Surrogate Single N/a Save Battery

 mPlatForm

(Gorackzko et al., 2008)

Dynamic Task Level n/a n/a Multiple Fine-grained Energy Saving

 n/a

(Huerta et al., 2008)

Dynamic Tasks level n/a n/a Single Fine-grained Reduce Execution

time

WishBones

(Newton et al., 2009)

Static n/a Dynamic n/a Multiple Fine-grained High-rate Data

processing

CloudLet

(Satyanarayanan et al., 2009)

n/a VM level Dynamic Surrogate single Coarse-

Grained

Reduce Complexity

Mobile Service Cell

(Liu et al., 2009)

n/a n/a Dynamic Surrogate Multiple n/a Reduce Complexity

Scavenger

(Kristensen, 2010)

Static n/a Dynamic Surrogates Multiple Fine-grained Energy saving &

Augmenting CPU

61

 Table 2.3 Continued

Framework Application

Partitioning

Migration

Level

Offloading

Type

Remote

Server Type

Offloading

Scale

Offloading

Granularity

Focus

 Cuckoo

(Kemp et al., 2010)

Dynamic Method Level Dynamic Cloud Server Single Fine-grained Reduce Energy

Consumption

 MAUI

(Cuervo et al., 2010)

Dynamic Method Level Static Surrogate Single Fine-grained Energy Saving

N/a

(Chun et al., 2010)

Dynamic Application

Level

Dynamic Cloud Server n/a Coarse-

Grained

App. Partition

Problem

 CloneCloud

(Chun et al., 2011)

Dynamic Thread Level Dynamic Cloud Server Single Coarse-grained Saving Energy

SociableSense

(Rachuri et al., 2011)

 Static Task Level Static Cloud

Server

Single Fine-Grained Social Behavior

 ThinkAir

(Kosta et al., 2012)

 Static Method Level Dynamic Cloud Server Multiple n/a Energy and

execution time

reduction

 DCOF

(Shiraz et al., 2014)

 Dynamic Method Level Dynamic Cloud

Server

 n/a Fine-grained Energy and

offloading cost

reduction

 EECOF

(Shiraz et al., 2015)

 Dynamic Task Level Dynamic Cloud

Server

 Multiple n/a Reduce complexity

and energy

Code Offloading

(Flores et al., 2015)

Dynamic Code Level Dynamic n/a n/a Fine-grained Energy Saving

MCC Offloading

(Shuja et al., 2016)

Static Process State

Migration Level

Dynamic Cloud Server n/a n/a Reduce Overhead

62

The study conducted by Goyal and Carter (2004) is based on dynamic offloading

to the static computers (i.e., the surrogates) in close proximity, utilized the computing

resources nearby. It is a simple client server environment where a mobile device requests

to utilize the server’s resources for processing and the surrogate computers provide the

resources on demand. Goyal’s framework supports VM migration for remote processing

and falls in the category of virtualization approaches. The framework is good for privacy

and security due to local availability. It also involves low latency due to limited hop

proximity. Conversely, the deployment template of virtual machine each time with each

offload is resource-intensive and time-consuming (Wang et al., 2011).

To overcome the issues of virtual machine deployment, VMbase cloudlet

framework had been proposed by Satyanarayanan et al., (2009). In this framework,

instead of deploying the template of virtual machine, the image of running applications

would be migrated to the Cloudlet, which is a local server or cluster of servers at single

hop proximity. In the proposed work, the mobile device acted as a thin client, utilizing

the server’s resources through user interface. The actual processing of application takes

place at the remote server. For customization of services, extra hardware resources are

involved in implementing the framework. The cloning of mobile application each time

with a fluctuated bandwidth is resource-intensive as well as time-consuming. It also leads

to issues of security and privacy.

A more recent approach of Chun et al., (2010) proposed the migration of clone

virtual machine image for cloud-augmented execution. The approach adopted by

Chun et al., (2010) differed from those adopted by Goyal & Carter (2004) and

Satyanarayanan et al., (2009), that is, proposing three different types of offloading

algorithms for different types of applications. Chun et al., (2010) works resembles to

Cloudlet in terms of migrating the virtual machine image. A simple synchronizing

approach is used to reduce the application’s dynamic transmission overhead. Clone cloud

approach implements a simple partitioning method of executing applications in two main

parts. The user interface which is less computational-intensive processed locally while

the heavy tasks are offloaded for remote execution. The critical part of the Clone cloud

approach is migrating the execution environment from the mobile device to the remote

server, which implicates the issues of access control, privacy and security. It also involves

in the complications management of mobile resources and of VM deployment.

63

Furthermore, in the system virtualization approach, sometimes the size of the VM image

to be transferred over Wi-Fi/ Cellular networks is within the range of gigabytes (Shuja et

al., 2016). In addition, some of the approaches used the concept of migrating the entire

application for processing to the remote servers such as those used in studies conducted

by Liu et al., (2009), Lai et al., (2010), Hung et al., (2012) and Liu et al., (2012).

On the one hand, the approach of migrating the entire application is useful as it

eliminates the partitioning and managing local resource’s overhead at the local device. It

does not need to take any smart decision. Instead, it simply has to offload the whole

application and thus reduces the complexity of the mobile device. However, it is

bandwidth-intensive and time-consuming because in the fluctuating bandwidth,

offloading unnecessary parts of an application is illogical. Each application has some

activities which can easily be processed at the local device while offloading of such

activities causes communication overhead.

The offloading frameworks proposed for computational offloading based on

system and application virtualization simply causes unnecessary overhead during

offloading attempt to the remote servers (Shuja et al., 2016). Thus, by evaluation and

also complex procedure adopted in virtualizing the running states of machine to the

remote cloud, it is considered resource-intensive as well as a time-consuming process.

Many other researchers have proposed the method level computational offloading

approach and claimed to have eliminated the complexity of partitioning and of

unnecessary offloading as well as management overhead. The method level

computational offloading concept was once used by Rim et al., (2006) to reduce the code

size at the mobile device by transformation method and used Distributed Execution

Transformer (DiET) to generate slim codes for heavy methods. The mobile device then

downloaded the modified bytecodes and executed the application computation with the

server. This whole transformation of codes would be heavy to process. It would also

generate slim codes each time with each offloading method and thus rendering the method

as time-consuming as well as resource-intensive.

Meanwhile, Cuervo et al., (2010) had earlier presented MAUI, which is an

energy-aware offloading system enabling fine-grained strategy during offloading to

64

remote infrastructure. In MAUI, offloading of application code to the remote server takes

place at the method level. The ultimate goal of MAUI is to reduce energy consumption

of the mobile device. This framework dynamically partitions the application into local

and remote methods which are annotated by the developer using special annotation

symbols. Consequently, the MAUI profiler determines the remote methods which are

then offloaded to remote server. In terms of energy consumption, it has been established

that offloading is not always beneficial.

Thus, with each time offloading, the MAUI Profiler and MAUI solver are

invoked. If the remote server is available, then the optimization framework decides

whether or not the intensive components should be offloaded. Once the process of

offloading method ends, MAUI profiler gathers information as a context which is then

used to better predict any future computational offloading calls.

Furthermore, the MAUI solver works to find the remote location where the

offloading methods are executed. The MAUI profiler works as an input provider for

MAUI solver. The authors have established that as the Round Trip Time (RTT) increases,

the energy cost linearly increases almost for all the networks, including the same network

type. It has also been concluded that high bandwidth (BW) technology and low RTT

latency make computational offloading more preferable to attempt over Wi-Fi instead to

offload over 3G which carries very low and inconsistent bandwidth.

In addition, it has been concluded that offloading codes to a cloud server residing

at the distant cloud with Wi-Fi drains more energy than the same offloading to a server

nearby at single hop distance. The concept of local server by the name of surrogates or

cloudlet which was first used by Satyanarayanan et al., (2009) has motivated the present

researcher to reach a decision to use a nearby server rather than a remote cloud distant

server for offloading the resource-intensive components of mobile applications. The goal

of using any offloading techniques would be to minimize the local resources consumption

and offloading overhead while using the MAUI profiler in this work would need extra

resources such as CPU and energy itself to evaluate the individual method calls.

Similarly, Kosta et al., (2012) have proposed ThinkAir, which is a concept of

offloading at method level with integration of multiple VM images delegation to the cloud

65

server. The focus of executing parallel processing of intensive method codes at multiple

virtual machine at the same time is to achieve energy efficiency of mobile devices.

Kosta et al., (2012) have concluded that using a memory hungry tool for image

combination shows that during processing, each application can send request to many

virtual machines of high computational power simultaneously in order to complete its

own complex delegated computations. This approach is beneficial in offloading and

complex computation of delegated components.

Nevertheless, the involvement of many virtual machine images altogether is a

compute-intensive and resource-intense process itself for the local device and results in

local mobile device overhead. In addition, the method level computational offloading

approach has been used in many studies by other researchers such as Dynamic

Compilation and Method Execution by Chen at el., (2004), Cuckoo by Kemp et al.,

(2010), and Distributed Computational Offloading Framework (DCOF) by Shiraz et al.,

(2014). However, general quantitative analysis in all the computational offloading

approaches is still missing. Furthermore, user requirements such as delay-tolerance

threshold have yet to be considered. Although the static partitioning and method level

computational offloading minimize the overhead, still there must be a proper resources

management tool to predict offloading cost precisely and manage the whole process of

offloading efficiently.

2.9 Analytical Analysis of Method Level Computational Offloading Frameworks

This section presents an analytical analysis of the three recently developed method

level computational offloading frameworks. With respect to the offloading techniques,

the following aspects are critically reviewed and then analysed: partitioning, remote

execution environment and reduction in communication data size. Chen et al., (2004)

have used the concept of Java-based wireless communication where the mobile devices

are leveraged with cross platform compatibility. The mobile device can work as a

personal computer and can communicate to any kind of platform or member of the

network family.

66

Table 2.4 Summary of Method Level Computational Offloading Frameworks

The focus of Chen et al., (2004) research was to improve client-server

collaboration by offloading computational task to the remote server for execution. In their

research, they used dynamic partition of application at runtime, which is a resource-

intensive process (Shiraz et al., 2014). It needs to have an additional component act as an

inference engine. This component decides at runtime based on the previous execution

pattern or contextual information gathered by a sensor, to partition application. Any

additional hardware (sensor) will consume more power. In addition, the deployment of

inference engine needs additional computational at mobile device which is a resources

intensive approach. As a result, more power is consumed.

Furthermore, it has been established from the previous research works that calling

the remote server through SOAP-based offloading techniques and using mobile networks

(3G and 4G) would consume more power and would be resources-intensive. SOAP

supports XML as a data carrier which is crowed wordy and increases mark-up overhead

based on the analysis carried out in this research. It needs longer time to read as more

data presented and therefore more time is needed to parse (Nurseitov et al., 2009).

Moreover, 3G is used as a communication medium which is a low bandwidth

network. In fact, some features of the existing works can securely offload the tasks for

remote executions. However, this may also incur additional computations which will

make the framework resource-intensive for mobile computing.

Framework Partition Service

Call

Comm.

Medium

Remote

Server

Predefine

Parameter

Mechanism

Data Size Reduction Contribution

Dynamic

Compilation

and Method

Execution

(Chen et al.,

2004)

Dynamic SOAP 3G/4G Cloud

Server

No Data compression

(ejava.util.zip)

Save energy

Cuckoo

(Kemp et al.,

2010)

Dynamic SOAP

(RPC)

Wi-Fi Cloud

Server

No n/a Save energy

DCOF

(Shiraz,

Gani, et al.,

2014)

Static SOAP

(RPC)

Wi-Fi Cloud

Server

No Deployment of SaaS

model and remote

services

Reduce data

size and save

energy

67

There is no any mechanism defined for considering the predefined conditions such

as which network to consider as a communication medium before making an offloading

decision. If a distant cloud server is configured as a remote execution environment, then

it will increase RTT (Abolfazli et al., 2014). To reduce the size, an additional data

reduction technique is defined. In order to reduce the communication data size during

communication between the client device and the cloud sever, a data compression

approach is used. This is done to reduce the communication data size in order to optimize

communication energy process.

As the data compression and decompression also incur some amount of energy,

there are compression tiers introduced both on the client and the server device. The data

are compressed into GZIP format through java.util.zip package before being sent through

wireless medium. The receiving data are decompressed at the client device before

proceeding to the same to application. Consequently, the energy to be consumed in

compression and decompression overlaps with the operations of sending and receiving to

minimize the consumption.

The present research has fallen into the category of the first few approaches

employed to save energy through computational offloading. From these approaches, two

main conclusions can be made. Firstly, a low bandwidth network such as 3G is energy-

draining. Secondly, the service call made through SOAP, which is an old technique of

calling remote services, takes longer time to parse and read. In addition, it also causes

extra baggage of communication during offloading, which turns into heavy process.

In this regard, Kemp et al., (2010) have presented a better concept in terms of

reducing RTT using a good bandwidth medium; however, Kemp et al., (2010) have used

a distant cloud server for remote execution of intensive tasks same as adopted by Chen et

al., (2004). Furthermore, Kemp et al., (2010) have dynamically partitioned the

application at method level which has led to RTT and resources-draining issues.

Moreover, the mobile network mediums (i.e., 3G and 4G) are replaced by a Wi-

Fi. There is no any mechanism defined for data compression or data reduction at the client

device before offloading. As the dynamic partitioning of application is a resources-

intensive procedure (Shiraz et al., 2014), therefore DCOF has used the concept of static

68

partitioning to reduce the energy consumption during runtime partitioning of application.

Additionally, SaaS model of cloud computing facilitates to provide software as a service,

which is then approaches by the client device to utilize.

Meanwhile, Shiraz et al., (2014) have deployed the SaaS model of cloud

computing at the cloud server to reduce the overhead during offloading. This overhead is

the key reason which sometimes increases RTT using a limited bandwidth medium. The

SaaS model and remote services are configured at the cloud server which reduces the

burden of client devices to offload portions of the application alongside of intensive

computational data. This is due to the fact that if the remote services do not possess the

complete operational codes of the application, then SaaS model of the cloud computing

will assist in configuring the execution before executing the offloaded tasks.

Distributed Computational Offloading Framework (DCOF) is resources-intensive

due to the SOAP call. Shiraz et al., (2014) had configured a distant cloud server as a

remote execution environment similar to that of the previous two research works.

Nevertheless, there is no mechanism defined for including predefined parameters to

consider prior to the offloading decision.

The development in computational offloading solutions started in the year 2004,

during which the whole application was offloaded for remote executions. In that year,

Chun et al., (2004) presented a Roam System in which the whole application was

delegated to the remote server for execution. It was soon realised that, instead of

offloading the whole application, only the intensive parts should be offloaded because

this could reduce the size of communication data.

The concept of application partitioning such as DiET was developed by

Rim et al., (2006). Further, DiET was used to execute the task at a single remote server

which was then modified to a concept of using multiple remote servers. This concept was

developed for faster execution by concurrent processing of the task at multiple servers.

Goraczko et al., (2008) applied the concept of multiple servers in their mPlatForm work.

As the distance of the remote server execution effect RTT, a novel of concept of

Cloudlet was developed by Satyanarayanan et al., (2009) to reduce hop distance which

69

would then reduce the RTT. Satyanarayanan et al., (2009) presented the concept of VM

and brought the cloud closer to the execution environment. The VM was used to bring

automation in the partitioning and increase compatibility of the offloaded task executions.

Execution of the whole application was dynamically partitioned and offloaded with a VM

which then increased the additional computation in mobile device.

The new concept was later developed in the year 2010 to reduce the additional

computation. Kemp et al., (2010) applied the same concept of VM with partitioning

application at method level. The method level partitioning concept was used by many

other researchers in their works, such as MAUI, ThinkAir, and DCOF. This level of

partitioning at method level is the partitioning of application at the smallest unit (level).

It minimizes the chances of offloading the unnecessary tasks (components) and hence

reduces computation “C” as well as size of communication data.

More recently, the concept of code level offloading developed which is going

counter the intensive operation procedure of the VM level. Shiraz et al., (2015) applied

the code level offloading concept in the research ECOF. Code level offloading somehow

exclude the VM deployment from offloading which further reduce the operational and

computational overhead prior offloading.

However, as for the present research was concerned, the three existing method

level frameworks were studied and critically analysed either in terms of either the

intensity of local computing or remote execution. All the selected frameworks

partitioning application at method level were used to reduce the size of data and delegate

the computational-intensive tasks for executions only.

Based on the comparison of the three recent research works, it can be concluded

that computational offloading would be effective only if the three basic parameters B, C

and D are considered. Kemp et al., (2010) considered method level computational

offloading; nevertheless, their research lacked the mechanism for reducing the size of

communication data. Later, Shiraz et al., (2014) adopted the method level computational

offloading using the static approach to partition application at method level. However,

the cloud server was considered as a remote execution environment, whereas the long run

RTT during offloading to the cloud server would drain the power. The mechanism for the

70

selection of predefined parameters was also lacking in their research. Therefore, the

traditional computational offloading frameworks (VM level), Class Level, Task Level

and also the method level offloading frameworks would be resources-intensive if the

basic three parameters in the design the framework are not considered.

 It can be concluded from the literature review that the previous computational

offloading frameworks have not been fully successful in making computational

offloading an energy-saving solution. The techniques adopted either by whole application

level migration or by virtual machine level migration are computational-intensive. They

involve utilizing maximum resources which ultimately makes offloading a resources-

intensive procedure. The method level computational offloading techniques adopted is

partially an effective approach by offloading the smallest unit (method) for remote

execution. However, the dynamic partitioning and offloading to distant cloud increase

RTT and consume more resources of mobile devices. Therefore, the previous research

which worked on method level offloading have not been fully battery-saving. In addition,

to make the process of computational offloading beneficial, it is necessary to consider all

the limited resources, limited bandwidth and compact size of mobile as well as the battery

before designing the frameworks. Furthermore, the same mechanism for considering

predefined parameters has been missing in the previous research works. To deploy the

computational offloading application, all the necessities need to be fulfilled in order to

make the process lightweight for the mobile cloud computing environment.

2.10 Summary

This chapter has reviewed and discussed the concept of mobile computing, cloud

computing, and mobile cloud computing. It has explained the limitations especially the

battery power limitations of mobile devices supported by studies conducted worldwide.

It has further discussed the best possible approaches for augmenting the limited resources

of mobile devices. It has analyzed the taxonomy of battery augmentation techniques and

further explained the different techniques which can be implemented by researchers and

users to curtail battery consumption.

It is also argued that the current computational offloading frameworks for Mobile

Cloud Computing are the equivalent extensions of traditional computational offloading

71

frameworks for ubiquitous computing (i.e., mobile computing). Further, details of the

computational offloading have been explained and discussed with all possible matrices

and taxonomies which may influence the process of computational offloading. The

review continues with an analysis of the previous research works based on all of the

parameters and matrices as well as their efficiency in terms of their results. It has been

concluded that the current approaches of computational offloading are heavyweight and

deficient of addressing the limitations of mobile resources.

In the final part of the review, the focus has been made on discussing the

computational offloading frameworks based on method level computational offloading.

In this regard, three most recent method level offloading frameworks have been selected

and thoroughly discussed. These frameworks have been critically analyzed based on the

parameters (partitioning technique, remote execution environment, service call, data

reduction and mechanism for selection of predefined parameters). It is argued that any of

the three mentioned method level computational offloading frameworks are resources-

intensive. As a result, power consumption of mobile devices has not been successfully

reduced significantly.

72

CHAPTER 3

METHODOLOGY

3.1 Overview

This chapter presents the research methodology adopted to achieve the goal of the

research which is “A model for power efficiency of mobile devices through lightweight

method level computational offloading”. The chapter is divided into four main sections.

Section 3.2 includes the research approach adopted. Section 3.3 highlights the research

phases carried out to reach the target. Section 3.3 is further divided into sub sections: Sub-

section 3.3.1 consists of the planning phase. Sub-section 3.3.2 includes the analysis

(Problem Analysis), design (The Model, Operational Logic of Model Components,

Application Execution Logic and Proposed Algorithm) and implementation phases. Sub-

section 3.3.3 describes the evaluation phase of the research. Sub-section 3.3.4 provides

the comparative analysis while the last section 3.4 summarises the chapter.

3.2 Research Approach

Before proposing any solution, it is important to understand the power

consumption first in terms of “where and how the power consumes” in any modern

mobile device. A thorough investigation of power consumption of different mobile

applications and system components of the target devices will be organized by conducting

experiments to determine which mobile application and system component drains power

the most. Once the power draining mobile applications and system components are

identified, then the basic causes will be taken into account as predefined parameters for

developing the model.

73

RESEARCH FLOWCHART
INTENSIVE READING FROM LEADING JOURNALS

 Power Consumption Analysis of Mobile Devices(20 articles)
 Augmentation Techniques of Power Efficiency in Mobile Devices (20 article)

 Study of Computational Offloading Frameworks (40 articles)

 Literature Review
 Dependency on Mobile Devices
 Limited Battery Life
 Battery Augmentation Approaches
 Analysis of Existing Computational Offloading Approaches
 Analysis of Method Level Computational Offloading

Approaches

 Research Questions

 How to increase the performance of existing applications
partitioning techniques for the purpose of reduction of
computations and handling of the dynamic network
changes?

 How cloud server/surrogate machine affect RTT?
 What are the possible offloading methods which reduce

the communications data size?

Problem Statement
 The existing application partitioning techniques are

resources intensive
 Existing offloading techniques increases RTT and

Computations
 Offloading task to distant cloud increases RTT

Methodology
 Gaps identified and analysis conducted.
 A lightweight method level Offloading Model proposed.
 Maximum predefined parameters and REST included to

make offloading efficient in limited bandwidth.
 A middle layer installed near to IEEE 802.11 AP to reduce

offloading distance to single hop.
 The proposed model simulated and tested.
 Comparative analysis conducted to find out the efficiency.

Experiment Setup and Evaluation of Result
 Developed a Prototype Application for Local Processing and

Remote Processing to Test the Execution Time and Power
Consumption for a specific Time Slot.

 The Prototype Application run for 30 different
Computational Intensities at local and remote locations.
Compared the Execution time and Power Consumption of
both to get offloading efficiency.

Objectives

 To develop a novel dynamic application partitioning
method, for reduction of computations and handling of the
dynamic network changes.

 To design the cloud server/surrogate machine for the
execution of intensive tasks to reduce long run RTT.

 To develop and evaluate a lightweight offloading method
for reduction of communications data size.

Design
 The model designedBased on the three new components.

REST-offloading, novel dynamic partitioning and single hop
surrogate in the existing offloading models.

Motivation
 Mobile devices are increasingly becoming the crucial part of

daily life while the limited power capacity of battery and
embedded new features with coming year of available
battery not let the device to operate for longer hours.

RESEARCH GOAL
The development of a new Lightweight Method Level Model in

order to address the intensive computational procedure of

existing method level computational offloading frameworks

Figure 3.1 Research Flowchart

Additionally, the traditional computational offloading frameworks/models

emphasis on computational intensive mobile applications using different techniques at

different granularity levels, thus implicates a mechanism which is resource intensive. The

word traditional been inherited from the previous research works where it refers to the

existing computational offloading methods (Shiraz et al., 2014). In traditional offloading

the application profiling and partitioning at runtime utilizes maximum resources of SIDs,

74

as a result, the Turnaround Time (TT) and Energy Consumption (EC) costs of

applications increases.

The focus of this research is to reduce both, in order to achieve maximum

throughput in minimum time along with curtailing the extra battery drain. The proposed

method level computational offloading model is inspired by the concept once used in

code transformation method (Rim et al., 2006). Rim (2006) partitions application at

method level and offloads the heavy parts for remote execution; while a code

transformation technique used at mobile device for reducing the code size by DiET

(Distributed Execution Transformer) to generate slim codes for heavy methods. The DiET

generator of slim code is an additional computational load on mobile device with each

offload.

This research intents to use REST (Representational State Transfer) which is an

architectural style of World Wide Web and communicates over HTTP protocol, instead

of slim code concept or sending whole executable codes direct to a server. REST was

developed by Roy Thomas Fielding (Fielding, 2000). REST was initially developed to

restructure the Web Applications while REST not been used as a carrier protocol in

mobile computing for offloading purposes. Subsequently, this research eliminates the

necessity of generating slim codes for reducing the size of data as well as, replaces XML

with JSON as a data carrier file which is comparatively more lightweight and fast parsing

than XML. Normally in the past researches, SOAP (Simple Object Access Protocol) has

been used to establish client server connection for transmission of data between Web

Applications. The reason of using REST instead of SOAP is the portability, simplicity

and lightweight nature. Hence, REST is more lightweight against DiET, SOAP and RPC

(Giorgio et al., 2010).

Furthermore, to reduce the delegation of computational intensive tasks to cloud

server which resides at multi-hop distance; a middle layer solution is proposed which was

first presented by Satyanarayanan et al., (2009) and used by Magurawalage et al., (2014).

Offloading any computational intensive task direct to a distant cloud always result in a

long run RTT which is resource intensive. In order to reduce the distance, Satyanarayan

et al., (2009) used the concept of Cloudlet, which is a small cloud in the nearest computing

75

environment. Normally, the Cloudlet concept presented by Satyanarayan et al., (2009)

were to install in the nearest café, library, coffee shop or any public place. This research

used a similar concept with further addition of a single hop where any personal computer

(PC) connected to IEEE 802.11 access point acts as a cloudlet layer in between the client

device and the cloud infrastructure. The cloudlet layer serves as a confined service in a

faster communication approach of client device to offload. Again, on top of the middle

layer, an algorithm was proposed in order to define maximum parameters before taking

any offloading decision, such as to check network type and network bandwidth, thus,

eliminates the issues of limited bandwidth and size of data to be offloaded. It will also

consider an offloading decision, to either offload to the local cloud (cloudlet) or to execute

the task using mobile device’s resources.

The proposed algorithm encompasses the user preferences, applications

requirement and maximum predefined parameters for a precise offloading decision.

Application requirements contain the nature of application such as real-time, fidelity

adaptive and intensive parts in terms of computation and communication. User predefined

parameters comprise of reliability and secure offloading while predefined parameters

include current battery level, type of network available, execution time and most

importantly, the available network bandwidth.

The proposed model will be developed and then will be evaluated in the

simulation environment using SDK (Software Development Kit), Java and REST/SOAP

APIs along with Glassfish Server. A prototype application named REST-Offload,

Android-Local and Traditional-Offload will be simulated for testing the intensity of

applications in terms of computation both on local and offloaded time. The Local

Execution component of the prototype application will be designed to execute the whole

application locally. Traditional offloading component will be designed using the SOAP

offloading techniques, the cloud server for remote execution and the application will be

partitioned dynamically based on the existing techniques.

Furthermore, while offloading, each offload will be tested and the intensity of

application will be analyzed in terms of resources utilization (battery consumption) and

the Execution Time of application at mobile device and at remote server. The analysis

76

will be considering all three scenarios (Local Execution, REST-Offload and Traditional-

Offload). Accordingly, the power consumption of mobile device will be tested while

executing the tasks locally as well as when offloading task to remote servers for

execution. With 30 different computational intensities starting from 160x160-450x450,

the Execution Time and Energy Consumption will be tested on all three scenarios. Each

intensity will be tested 20 times for validation purposes. For further measurement of

precisions, the value of sample mean for each experiment will be calculated which is

signified with 99% confidence interval for the sample space of five values. The

lightweight nature of the proposed computational model will be tested and validated by

the comparison of REST-Offload results of computational intensive tasks execution

against the benchmarks.

3.3 Research Phases

By onion approach, peeling the layers one after another, the research is carried out

in few fundamental phases, which are presented in Figure 3.2. Starting from the planning

phase, the research proceeds to analysis phase processes which are reviewing articles,

identifying gaps, designing research questions and defining objectives. The analysis

design and implementation phase consist of analysis of problem, designing the model and

proposing algorithm for pre-defined parameters. It also includes the implementation of

model and selection of dataset. The last phase consists of the evaluation and testing of the

model.

77

Collection and Carrying out Literature Review

Define the Research QuestionsIdentify and Define Gap

Identify Problems

Determine Aims and Objectives

Planning Phase

Propose algorithm for
Predefined Parameters

Designing of Light Weight
Framework

Analysis of Problem

Analysis, Design and Implementation
Phase

Test Developed Framework ConclusionAnalysis of the Results

Evaluation Phase

Implementation of Framework

Selection of Data Set

Comparative Analysis

Compare The Framework with
related works

Execution Time and Power
Consumption

Figure 3.2 Operational Model

78

3.3.1 Planning Phase

The planning phase is the starting phase of the research which consists of many

sub-phases including the literature review. In the literature review, the main problems are

identified first before precisely identifying the research gap. A total of 80 articles closely

related to the title of the research, published between 2009 and 2016 collected from

different standard journals indexed in ISI and Scopus are critically reviewed. The total

articles are divided into two groups. One group of articles were discussing the problem

in general and consists of about 60 articles which were reviewed for understanding the

background of problem. After understanding the overall problem of insufficient capacity

of mobile battery power, the researcher investigated other problems and their possible

solutions. In addition to that, the researcher sought to identify other research approaches

that had been used in addressing the problem in the past. The second group of 20 articles

investigated the specific gaps identified in the first group of articles reviewed. In this

second group of articles, the different research frameworks and models based on

computational offloading developed in the near past were studied critically and then

compared and analysed in order to identify the research gap.

At the completion of review stage, it is observed that the previously proposed

models on computational offloading are unnecessarily complex to configure and heavy

to operate while utilizing maximum resources of the mobile device; which ultimately

causes additional consumption of power. Furthermore, traditional computational

offloading models that focus on computational intensive mobile applications using

different techniques at different granularity levels, implicates a mechanism which is

resource intensive. The application profiling and partitioning at runtime utilizes

maximum resources of SIDs, as a result, the turnaround time and energy consumption

cost (ECC) of applications increases. The focus of this research is to reduce both

(execution time and energy consumption), in order to achieve maximum throughput with

minimum time along with curtailing the extra battery drain. Moreover, the existing

models have not precisely considered the three basic parameters (available bandwidth B,

size of data D and the computation required C) which are important for any computational

offloading model to produce efficient results.

79

Based on the shortcomings of existing computational offloading models, the

research questions which were not yet completely answered by the previous research

works were identified. Further to that, to answer the research questions, the goal of the

research and objectives of the research were determined. The goal of the research is to

develop a model in order to minimize the additional computation at mobile device by

offloading the computational intensive tasks. However, the proposed model must avoid

the additional computation of application partitioning which has not been addressed in

the existing computational offloading frameworks/models. Furthermore, the size of data

exchange between mobile device and the remote execution counterpart must be reduced

in order to minimize RTT. If RTT is reduced, it will reduce the power consumption

(Kumar et al., 2011).

3.3.2 Analysis, Design and Implementation Phase

In this phase of the research, the problem was analyzed first. Based on the

observation of problem analysis, the model was designed and then implemented through

simulation in order to test its efficiency against traditional computational offloading

frameworks/models.

3.3.2.1 Analysis of the Problem

The analysis phase consists of analysis of problem which determines the design

adopted in this study. The traditional offloading solutions (VM Level, Whole Application

Level and Method Level) which involved in dynamic runtime migration of the resource

intensive components of mobile applications create resources management overhead

(Hung et al., 2012). Enormous computational offloading frameworks and models used

dynamic application partitioning and profiling techniques (Giurgiu et al., 2009; Cuervo

et al., 2010; Chun et al., 2011; Shiraz et al., 2014). All the traditional computational off-

loadings are focused on how to partition runtime application, how and where to offload

the intensive parts. However, the offloading models have failed to consider the additional

cost of runtime migration of offloading parts. It has been analyzed that the traditional

offloading models with offloading intensive parts through dynamic partitioning to distant

cloud are resources intensive; as a result, the execution time and energy consumption

80

increases. The resource intensive problem of traditional offloading analyzed in terms of

Execution Time (ET) and Energy Consumption (EC) as:

I. Analysis of the Energy Consumption (EC) Cost

The energy consumed using traditional computational offloading techniques

during runtime computation offloading is denoted by Total Energy consumption (ET) in

Joules (J). The total energy consumption (ET) is equal to the energy consumed in saving

the data states of running instance of application to offload, energy consumed in runtime

component offloading, energy consumed for uploading the remote executable methods to

remote server, energy consumed in idle time waiting for results to come and energy

consumed in returning the result data (download result) files to mobile device. Therefore,

the total energy consumption for each component of mobile application offloaded at

runtime to remote server is given by the following equation:

 ET = ES+ EM+ EUP + EI + EDW 3.1

Where,

ES- Energy consumed in saving running app states: represents energy consumed in saving

the running instances of the mobile application.

EM- Energy consumed in component Migration (EM): represents the energy consumed

during offloading intensive component of mobile application.

EUP- Energy consumed in Uploading preferences (EUP) represents energy consumed in

uploading the data file (which is known as preferences file) to remote server node at

runtime.

EDW- Energy consumed in Downloading result file (EDW): represents energy consumed

in downloading the resultant data file to mobile device.

As there are several components of each application to offload that may be

intensive, then, let E denotes the finite set of total energy consumption for runtime

offloading all the intensive components of mobile application to remote server. Then E

81

can be calculated as: Lets ECa represents the cost of energy consumption for runtime

offloading a single component of the mobile application. Whereas a=1, 2… n.

∴ E= {EC1, EC2,…, ECn

As ECA denotes the energy consumption of a single component which is a positive real

number, hence, by using the set builder notation ECA is represented as:

E = {ECa: ECa ∈ R ˄ ECa > 0} Where a=1, 2,…,n

The energy consumption of a single component belongs to the set of real numbers

and is greater than 0. Next, the total energy consumption of a runtime offloading

application is equal to the sum of energy consumption cost of all the instances a=1, 2,…,

n. Let β denotes the total energy consumption of the runtime application offloading of all

the instances ECa, where a=1,2,…, n.

Therefore, β is represented as follow:

β = (EC1+ EC2 +…+ ECn) ⟹ ∀ ECa ∈ E ˄ |E| ≥1 where a=1, 2,…,n

By using the summation notation, the total energy consumption cost β of runtime

computational offloading of mobile application is represented in Equation 3.2 as bellow:

 β = ∑ E𝐶𝑎
𝑛
𝑎=1 ⟹ ∀ ECa ∈ E ˄ |E| ≥1 3.2

Equation 3.2 describes that for all the ECa’s which denotes the energy consumption

of each component at runtime offloading, belongs to the set of total energy consumption

E and cardinality of set E must be greater than or equal to 1. E is the set of energy

consumption cost of the components of the mobile application which are offloaded at

runtime. The precondition validates that E is a non-empty set. One component (EC1) of

Equation 3.2 was considered to be evaluated and analyzed for energy consumption.

82

Table 3.1 Energy Consumption Cost EC1 of Offloading Matrix Multiplication

Service in Traditional Computational Offloading

This component carries 30 different computational intensities (160x160-450x450)

with the increase of 10 in each higher intensity. The Energy Consumption Cost (EC1) of

runtime computational offloading of the Matrix Multiplication service was calculated

using Equation 3.1. The Energy consumption results of traditional computational

offloading techniques are displayed in Table 3.1. The lowest and highest intensities are

given as sample while the results of intensities in between are presented in Table A.1 in

Appendix A.

The size of a matrix shows the dimensions of matrices which are going to be

multiplied. The Energy consumption cost in Joule (J) indicates the mean energy

consumption of a sample space of 20 values in each experiment. In order to know

variations in the values of sample space, the standard deviation (SD) is calculated. The

confidence interval column shows the range of the sample mean calculated of the whole

sample, 20 values in each experiment with 99% confidence. Figure 3.3 displays the

energy consumption of matrix multiplication during runtime offloading in traditional

offloading techniques.

Figure 3.3 EC cost of matrix multiplication in traditional offloading

Matrix

Size

Energy Consumption Cost (J) Standard

Deviation

(SD)

Confidence

Interval CPU (J) LCD (J) Wi-Fi (J) Total

consumption (J)

160x160 3.9 1.4 2.5 7.72 0.420714 7.8(+/-)0.966

450x450 78.4 7.9 15.2 102.08 8.517159 101.5(+/-)1.388

0

20

40

60

80

100

120

1
6

0
*1

6
0

1
8

0
*1

8
0

2
0

0
*2

0
0

2
2

0
*2

2
0

2
4

0
*2

4
0

2
6

0
*2

6
0

2
8

0
*2

8
0

3
0

0
*3

0
0

3
2

0
*3

2
0

3
4

0
*3

4
0

3
6

0
*3

6
0

3
8

0
*3

8
0

4
0

0
*4

0
0

4
2

0
*4

2
0

4
4

0
*4

4
0

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 in

 (
j)

Length of Matrix

83

It shows that as the size of matrices increase, the complexity increases and as the

complexity increase the energy consumption cost also increase. Based on all the collected

results as displayed in Table A.1 Appendix A, the energy consumption cost of matrices

160x160 offloaded at runtime is 7.72 J which is approximately equal to energy

consumption of matrices 180x180 and 200x200. It shows that the runtime offloading

component is not much complex to process and hence consumes an average 10J. As the

complexity increases with the size of matrices such as 260x260 and so on until 440x440,

the energy consumption cost reaches up to 80 J. The total percentage of increase in energy

consumption between 160x160 and 440x440 is about 1300%. The analysis of results

shows that using traditional offloading that works on runtime computational offloading

with virtual machine migration or whole application migration are energy intensive

because they need much energy to manage resources and to handle calculations.

II. Analysis of Execution Time (ET) Cost

The time consumed by traditional computational offloading frameworks/models

during runtime computation offloading is evaluated by Time Cost (TC) in Joules (ms).

The total time cost (Tc) is equal to the time consumed in saving (TS) the data states of

running instance of application to offload, time required in runtime component offloading

(TO), time required for uploading the remote executable methods to remote server (TU),

time required in idle time waiting for results to come and time for returning the result

(download) data files (TD) to mobile device. Therefore, the total time consumption for

each component of mobile application offloaded at runtime to remote server is given by

Equation 3.3 as:

 TC = TS + TO + TU + TD 3.3

As there are many components denoted as intensive and needed to offload, let T

denotes the finite set of total time consumption for a runtime offloading all the intensive

components of mobile application to a remote server. Then T can be calculated as:

Let TCa represents the cost of time for runtime offloading a single component of the

mobile application, where a=1, 2… n

84

∴ T= {TC1, TC2,…, TCn}

As TCA denotes the time consumption of a single component which is a positive

Real number. Hence, by using the set builder notation TCA is represented as:

T = {TCa: TCa ∈ R ˄ TCa > 0} Whereas, a=1, 2,…,n

The time consumption of a single component belongs to the set of real numbers

and is greater than 0. Next, the total time consumption of a runtime offloading application

is equal to the sum of time consumption cost of all the instances a=1, 2,..., n. Let ϒ denotes

the total time consumption of the runtime application offloading of all the instances TCa,

whereas a=1, 2…., n. Therefore, ϒ is represented as:

ϒ = (TC1+ TC2 +…+ TCn) ⟹ ∀ TCa ∈ T ˄ |T| ≥1 whereas a=1,2,…, n.

By using the summation notation, the total time consumption cost of runtime

computational offloading of mobile application is represented in Equation 3.4 as follow:

 ϒ = ∑ T𝐶𝑎
𝑛
𝑎=1 ⟹ ∀ TCa ∈ T ˄ |T| ≥1 3.4

Equation 3.4 describes that for all the TCa’s which denotes the time consumption

of each component at runtime offloading, it belongs to the set of total time consumption

T and cardinality of set T must be greater than or equal to 1. T is the set of the time

consumption cost of the components of the mobile application which are offloaded at

runtime. The precondition validates that T is non empty set. One component of Equation

3.4 (TC1) considers and the time consumption cost of the component (offloading matrix

multiplication component) of the prototype application at runtime offloading is evaluated

for 30 different computational intensities (160x160 to 450x450).

The prototype application developed consists of one component; matrices

multiplication services. This service gets two random matrices as an input from the user

then offloads the matrices and performs the multiplication operation at server which is a

computational intensive operation. The prototype application is developed using SOAP

as a carrier protocol while application partitioned at method level and then migrated to

85

Table.3.2 Time Consumption Cost TC1 of Offloading Matrix Multiplication Service

in Traditional Computational Offloading

remote cloud servers for processing. By runtime computational offloading with the

traditional approaches, multiplying matrices are evaluated for 30 different computational

offloading intensities 160x160 to 450x450 with the increase of size 10 with each intensity.

The total Execution Time (TET) and total Energy consumption (ET) are evaluated by

offloading the service components of mobile application at runtime. Table.3.2 shows the

Execution Time of the component Matrix Multiplication during runtime offloading. The

result displays highest and lowest intensities as samples while the complete results of all

30 intensities are given in Table B.1 Appendix B. The attribute of matrix dimensions

shows the size of matrices to be multiplied and the time consumption cost in milliseconds

(ms) indicates the mean time consumption of a sample space of five values in each

experiment. To know the variation in the values of sample space, standard deviation (SD)

is calculated. The confidence interval column shows the range of the sample mean

calculated of the sample five values in each experiment with 99 % confidence. Figure 3.4

displays the time consumption of matrix multiplication during runtime offloading in

traditional offloading techniques.

Figure 3.4 ET cost of matrix multiplication in traditional offloading

Matrix

Size

Execution Time

 Milliseconds (ms)

Standard Deviation

(SD)

Confidence Interval

160x160 9608 535.7891 9608 (+/-)1236.39

450x450 189523.8 2089.393 189523.8 (+/-)4821.52

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Ti
m

e
 C

o
n

su
m

p
ti

o
n

 (
m

s)

Matrix Length

86

It shows that, as the size of matrices increases, the complexity increases and as

the complexity increases, the time consumption cost also increases. While offloading, the

execution time cost increases with the increase of uploading data size (matrix size). It also

increases due to saving the running states of application each time. The time consumption

cost of matrices 160x160 offloading at runtime is 9608ms which is approximately equal

to time consumption of matrices 180x180 and 200x200. It shows that the runtime

offloading component are not much complex to process and hence consume an average

10000 ms. As the complexity increases with the size of matrices such as 260x260 and so

on until 440x440, the time consumption cost reaches up to 189,523 ms.

The analysis of entire results shows that by using traditional offloading techniques

based on virtual machine migration, the whole application migration and dynamic method

level migration to cloud servers are time consuming. It involves much time to manage

resources and handle calculations. The distant cloud execution increases RTT which

causes extra battery drain. Further to that, the analysis of problem phase surfaces the

causes of why traditional computational offloading is resource intensive and it helps in

designing the proposed offloading model of this research.

3.3.2.2 Designing of the Lightweight Model

After the complete analysis of problem which is “runtime migration of

computational intensive tasks to distant cloud (cloudlet) are resources intensive”, the

observation is tabulated in analysis phase. Based on the observation of analysis phase, a

model for power efficiency of mobile devices through a new lightweight method level

computational offloading is designed. The real experimentation devices have been

selected to implement the model. This selection was made to observe the real battery

consumptions. There is a possibility to script the mobile battery in the existing CloudSim

tool, however, modifying CloudSim for the battery consumptions might change the

parameters and may affect the accuracy of the results. Therefore, the use of CloudSim

has been avoided. The test setup is adopted from the literature where most of the previous

research works conducted the experiments in the similar way using real device. The setup

consist of Mobile device, Remote Computing Device, Network Device and Simulations

as shown in Table 3.3. The rest of the details on designing the proposed new lightweight

method level computational offloading model is provided in Section 4.3, Chapter 4.

87

Table 3.3 Test Setups of Previous Research Works

Research Works Mobile Component Computing

Component

Network Component

Cuevro et al.,

(2010)

Mobile Device Maui Server Wi-Fi & 3G

ThinkAir et al.,

(2012)

Mobile Device Cloud Server Wi-Fi

Shiraz et al.,

(2015)

Mobile Device

(Smartphone)

Cloud Server Wi-Fi (radio type 802.11 g)

Shuja et al.,

(2016)

Mobile Device

(Smartphone)

Cloud Server Wi-Fi

3.3.2.3 Implementation Phase

Once the completion of designing phase completed, the model is then developed

and evaluated in the simulations environment using SDK (Software Development Kit),

Java and REST/SOAP APIs along with Glassfish Server. Three components of the

prototype application have been developed. SOAP-Offload is developed to analyze the

results of traditional computational offloading in terms of execution time (ET) and Energy

Consumption (EC) based on method level offloading to remote cloud servers. The

Android-Local is developed to collect results of the computations performed pure locally

at mobile device while REST-Offload is developed based on the proposed model to

identify the ET and EC of intensive components at surrogate. Matrix multiplication in

mathematics is considered one of the computational intensive (computational complex)

calculations. Matrix multiplication was selected, in order to test the three developed

porotype components for ET and EC, to analyze the performance (ET and EC) of each

scenario.

3.3.3 Evaluation Phase

The significance of the proposed model is evaluated by simulating in real mobile

cloud computing environment. A prototype application Android-Local, Android-Soap,

and REST-Offload is developed for android mobile devices, in order to test different

computational intensities in all three scenarios. The execution performance of application

88

is conducted in reference with execution time of application (response time) and power

consumption during execution. A process of evaluation was organized in order to test the

model. The dataset selected are of 30 different computational intensities of matrix

multiplication starting from 160x160 to 450x450. Each intensity was tested five times for

validation purposes. For further measurement of precisions, the value of sample mean for

each experiment was calculated which is signified with 99 % confidence interval for the

sample space of five values. The lightweight nature of the proposed computational model

was tested and validated by the comparison of REST-Offload results of computational

intensive tasks execution using traditional offloading frameworks/models and of local

execution at mobile device. Furthermore, to measure the efficiency of the model, the

percentage efficiency equation has been used. This equation calculates the percentage

efficiency in execution time and power consumptions against the local and traditional

computational offloading. The equation used is:

Y= P% * X 3.5

Where, Y is the first variable referred to the execution time and energy consumptions

while X referred to the parameters of local and traditional offloading. All the empirical

results were collected by conducting experiments with (DUTs) of two different vendors

Samsung Galaxy A5 and ASUS Zenfone5. By the same comparison, the significance of

the proposed solution is proved in this research. The experimental setup has been

elaborated here, along with the tool used in these experiments, techniques for collection

of data and statistical techniques used for operating the collected data for meaningful

results.

3.3.4 Comparative Analysis

In order to justify the results of the proposed lightweight method level

computational offloading model, the recent research work, closely related to the proposed

model was selected. The commonalities of all the selected models are stated based on the

design of the model. Further, all the differences of the models are tabulated and discussed.

At the end, the results of the proposed method level offloading model then compared to

the benchmarking data collected from the previous research works, individually with the

results of each selected model in terms of ET and EC. Likewise, the percentage efficiency

89

of each model was compared and contrasted against each other. At the end, efficiency of

the proposed model drawn against all the three approaches in terms of ET and EC.

3.4 Summary

This chapter was designed to state the methodology adopted for achieving the goal

of the research. The goal of the research is to design and develop a framework for power

efficiency of mobile devices through lightweight method level computational offloading.

Starting from the planning phase of the research, the research carried out into analysis

into analysis phases.

Based on the outcome from the analysis phase the model was designed. The

designed model is then implemented by developing a porotype application in real mobile

cloud computing environment. In the evaluation phase the data set was selected for testing

and evaluation purpose. In the last phase of the research (Comparative Analysis) the

results of REST-Offload are comparatively analysed with the three most recent method

level computational offloading frameworks/models. Based on the analysis results the

efficiency in terms of EC and ET obtained.

90

CHAPTER 4

DESIGN AND IMPLEMENTATION

4.1 Overview

This chapter presents the proposed lightweight method level computational

offloading model in order to address the heavy procedural issues of traditional

computational offloading approaches. The chapter is divided into six sections. Section

4.1 gives an introduction to the chapter. This is followed by Section 4.2 which discusses

the relationship between computational offloading and execution time. Then, Section 4.3

describes the proposed lightweight method level computational offloading model while

Section 4.4 explains the operational logic of the proposed model and presents the

proposed computational offloading algorithm. Meanwhile, Section 4.5 provides details

of implementation, evaluation of the proposed model, and also includes data gathering

procedures of the experiments conducted. Finally, Section 4.6 concludes the chapter.

.

4.2 Computational Offloading and Execution Time

The mobility of mobile devices and the changing network bandwidth have led the

traditional computational offloading frameworks or models to employ the heavyweight

procedure for processing of the intensive components of mobile applications. Due to the

limited feature and fundamental limitations in wireless networks, lightweight

computational offloading models would be needed in order to achieve the best possible

results. The traditional computational offloading basically works in three parts, namely,

initialization of offloading, offloading of intensive task to remote servers and execution

of the task at remote server. During the first phase, the network information, availability

of servers and contextual information would be gathered by using sensors. Then, during

91

the second phase, VMinstance would be created in the local mobile device where the

application partitioning and migration of the VM instance would take place. Altogether,

this whole process of three phases would be a heavyweight computational intensive

process itself and could not produce potential results. Thus, a lightweight method level

computational offloading model was proposed to address the limited computational

performance of mobile device and limited bandwidth of transmission. In this chapter, the

architecture of the proposed solution is modeled and the operating procedures are

explained. Compared to the traditional offloading frameworks or models, the proposed

lightweight computational offloading model would result in an efficient gain in the

performance of mobile devices. Compared to local execution, the execution time of the

applications would significantly be reduced. Therefore, this would directly affect battery

consumption and its life.

The turnaround time (TT) of an application to offload is very important to be

considered before making the offloading decision. It has been claimed that a longer TT

would affect the battery (Kumar, 2011). In addition to that, the applications such as speech

recognition, natural language translation and image manipulation would need to have real

time processing. Only the spontaneous processing for all the real time systems would

render the system to be a useful tool. Numerous past studies have claimed that

computational offloading would lead to saving considerable amount of the battery life

while reducing the TT. In principle, while processing offloading to remote servers, the

mobile device resources would need to be free of computational load. However, it should

be kept in mind that mobile device would need to use sufficient amount of energy during

activities such as establishing a connection with remote server, sending a request, waiting

until a task would be completed and obtaining the result back and then closing the

connection.

The whole process starting from establishing a connection to remote servers until

closing the connection after completion would take a significant amount of time (Kumar

et al., 2011). The longer the TT, the poorer the performance of CPU would be. In addition,

the fluctuating lower bandwidth would cause lengthier TT while transmitting huge

amount of data. The relationships between TT, communication bandwidth, amount of

data to be exchanged, mobile speed, server speed, and energy consumption are illustrated

in Figure 4.1. An increase in TT would increase battery consumption; thus, if the total

92

energy consumption during the whole process is less than the amount needed by the

mobile device to consume on its own execution, then offloading would be effective.

4.3 The Model

Traditional computational offloading models have adopted different approaches

for computational intensive mobile applications using different techniques at different

granularity levels. This would implicate a resource intensive mechanism. A middle layer

solution was presented for the first time by Satyanarayanan et al. (2009) and the same

solution was also used by Magurawalage et al., (2014). Offloading any computational

intensive task direct to a distant cloud would eventually result in resource intensive due

to long run RTT.

ServersMobile Device

DT + DRTM TS

BT + BR

 TM- Time taking in processing at Mobile

 TS- Time taking in processing at Server

 DT- Data need to transmit

 DR- Data need to receive

 BT- Transmission bandwidth

 BR- Receiving bandwidth

By a general fact,

TM > TS (Server Speed is always high than Mobile's

Speed)

Now, offloading will be effective only if

TM > RTT whereas,

RTT = DT / BT + DR / BR + TS

TOffload

Figure 4.1 Computational Offloading and Execution Time/Turnaround Time

93

 In order to reduce the distance to a single hop, a cloudlet layer would be used and

installed next to IEEE 802.11 access point, in between the client devices and its cloud

infrastructure. This cloudlet layer would serve as a confined service which is in the fast

approach to client device for offloading the task.

The single hop surrogate is the modified concept of existing cloudlet. The hop

distance would affect RTT. This had been analyzed by Aiguo et al. (1998) who stated in

their findings as shown in Table 4.1 that if hope count increased, the packets would have

to go through many routers. At each router, the packets would have to consume a certain

amount of time to be routed for the next router and this would be repeated continuously

until reaching the destination. Thus, at each router, packet delay would occur and this

would increase the overall delay as the hop count increased. Figure 4.2 illustrates the

conceptual diagram of a mobile device that is connected to remote the servers through

single hop, limited multi-hop and unlimited multi-hop.

The multi-hop which consists of unlimited hops is the initial concept where the

distant cloud server has to serve as a remote computer. The cloudlet concept has brought

the cloud closer to the computing environment and reduced RTT (Satyanarayanan et al.,

2009). The last one which is a single hop, is the modified concept of this research which

is presented to bring the computing to a single hop and reduce RTT further.

Table 4.1 The Hop-Count and Average Delay

Region Average Hop Count Average Delay

WEST 10.7 33.6ms

Mountain 13.7 60.2ms

Central-East 14.4 94.8ms

East 15.5 99.3ms

94

Figure 4.2 Mobile device connection to remote servers through single hop, limited

multi-hop and unlimited multi-hop

Furthermore, in traditional offloading models, offloading takes place at VM level,

application level, task level and method level. All the three levels, namely, the VM level,

the application level and the task level would involve extra computation in the local

device and would therefore be resource intensive. In the proposed solution, offloading

would take place at the method level where computational intensive methods would be

identified before taking offloading decision. This concept was once used by Rim et al.,

(2006) to reduce the code size in the mobile device by transformation method and

developed Distributed Execution Transformer (DiET) to generate slim codes for heavy

methods. The mobile device would download the modified bytecodes and execute the

application computation with the server.

This whole transformation of codes involves heavy processing and generates slim

codes each time with each offloading method; thus, this would be time consuming as well

as resource intensive. In the proposed lightweight method level model, REST

(Representational State Transfer) which is an architectural style of World Wide Web

communicating over HTTP protocol was used instead of the slim code concept or sending

whole executable codes directly to the sever. Normally in the past solutions, Simple

C
lo

u
d

 S
er

v
er

C
lo

u
d
le

t
S
in

g
le

 H
o

p

S
u
rr

o
g
at

e
M

o
d
el

Cloud

CloudCloudlet (Surrogate)

Single Hop Surrogate Cloud

Server at Multi-hop (Unlimited)

Server at Multi-hop (Limited)

Server at Single-hop

95

Object Access Protocol (SOAP) had been used to establish client service connection and

transmit data. Instead of SOAP, REST was used because of its portability and lightweight

as well as simple nature.

On top of the middle layer, an algorithm was proposed for the purpose of taking

decision, and offloading either to the local cloud (cloudlet) or executing the task using

the mobile device’s resources. The proposed algorithm encompasses user’s preferences,

application’s requirement and maximum predefined parameters in order to take useful

offloading decision precisely. Application’s requirement includes the nature of the

application such as real-time, fidelity adaptive and intensive parts in terms of computation

and communication. User predefined parameters comprise of reliability and secure

offloading while predefined parameters include current battery level, type of network

available, execution time and most importantly, available network bandwidth.

Figure 4.3 shows the architectural diagram of the proposed light weight method

level computational offloading model. Every computational offloading approach in the

present study consists of the following three main components: the mobile component,

the server component and the communication medium. Each main component has many

sub-components. The novel aspect of the proposed model is the combination of the

concepts from the two previous offloading frameworks or models. The first concept

revolves around the cloudlet where a middle layer is deployed between a mobile device

and the cloud infrastructure in order to reduce the distance of delegating tasks to a server

at single hop distance referred to as a cloudlet layer by Satyanarayanan et al., (2009).

There are a several reasons why the cloudlet is used instead of cloud. The main

reason is the cost. If the mobile client has internet access and uses it, this would incur

certain amount of cost and if the client is connected to a local server with an available

Wi-Fi network, this would eliminate such cost.

96

Data Center
Surrogate

Servers

Virtual Server

Mobile Component Server Component

Oflload Request Accepted/ Flow
Started

Variation

Handled by

Mobile Application

Application
Profiler

REST Offload Monitor

Synchronizer

Operating System

Device s Hardware

Server Application

Offload
Receive

Synchronizer

Operating System

Device s Hardware

Novel Dynamic
Partitioning

Execution
Manager

REST Offload
Trigger

Resources
Monitor

Execution
Environment

Offload
Execute

Result
Trigger

Local
Execution

Offload Executed / Result Flow
Started

Middleware Middleware

Figure 4.3 Model of RESTOffload

Latency is the second fundamental reason why the cloudlet is used. Despite

connection of the network bandwidth to the internet has been rapidly increasing over the

past few decades, the issue of latency has not been addressed equally rapidly and

convincingly. In this regard, latency causes inappropriate cloud computing in certain

cases such as in real-time processing, considering that response time is very crucial.

Bandwidth is the third most important reason. Although mobile internet speed is

increasing with each coming year, it is still very slow compared to the speed of locally

connected WLAN networks. This reduces the effectiveness of cloud computing in special

cases such as in data intensive situations like speech recognition, natural language

translation and image manipulation. Hence, the model of the proposed solution consists

of these three main components: 1) Mobile Component; 2) Server Component; and, 3)

Communication.

97

4.3.1 Mobile Component

Mobile component of the model is deployed to the mobile device. This component

of the model is capable of processing application. The application processing would first

start in the mobile device if the complexity of application is less than the value of

predefined conditions (Execution Time, Battery Level and Available Network). Mobile

components usually consist of the following sub-components.

4.3.1.1 Application Profiler

Application profiler is the essential component of any offloading system which

drives the automatic evaluation of resources during offloading. Computational offloading

models employ various kinds of application profiler. This is because the kind of

application profiler to be used depends on its function, for instance, dynamically

evaluating the availability of resources such as RAM, battery level, network availability

and types of networks. Therefore, for evaluating different kinds of information, different

profilers were used. The application profiling components in the proposed model was to

evaluate maximum resources before taking an offloading decision. These application

profiling components determine the feasibility of application partitioning and tasks

offloading. Based on the information collected by the application profiler, a decision

would be made either to execute task locally, offload the task or terminate the task. In

RESTOffload model, the application profiler operates along with the execution manager

to dynamically switch between local execution and remote execution based on the

evaluated information regarding the battery, the network and the execution time.

4.3.1.2 Local Execution

Mobile application component of the proposed model consists of local execution

and offloading. Local execution component encompasses the complete executable codes

and could process the application completely. Local execution of the application is always

the first priority to try during processing. This is due to the variation in the communication

bandwidth and the uncertainty of available surrogate servers which would sometimes fail

to provide efficiency in terms of power and performance. Additionally, the offloading of

application parts, which are easy to process locally, would put transmission overhead.

98

This would ultimately cause loss of power and loss of performance. The offloading of

executable codes would be beneficial only if the energy needed to consume during

offloading is less than the energy consumption of the mobile device to process tasks using

its local processing resources.

4.3.1.3 Application Partitioning

The first step before offloading is application partitioning. It divides the

application into non-offloadable (local) and offloadable components. Non-offloadable

means that the components are to be held in the mobile device for local execution while

offloadable means that the components migrate to server for execution.

Application can be partitioned either dynamically or statically. In the dynamic

partition of the application, one additional component, that is, the inference engine, needs

to be installed for inferencing the offloading decision based on the contextual information

collected by the application, the mobile device, the remote server and the network load

(Shiraz et al., 2013; Akherfi et al., 2016). The inference engine would also need to read

loads of the mobile device’s resources (i.e., memory, and CPU) and available battery

level. All this information could be collected either from the sensors or the previous

execution pattern. The inference engine then evaluates the information and takes a precise

decision. Compared to static partitioning, dynamic partition takes more precise decision

at runtime to avoid offloading of unnecessary component. However, due to the

involvement of inferencing component sensors and the continuous changes of execution

pattern due to dynamic changes, dynamic partition utilizes more resources of the mobile

device thus rendering it a resources intensive approach (Shiraz et al., 2014).

In order to counter the intensiveness of dynamic partitioning of the application,

the static partitioning approach is used. Nevertheless, both the approaches have their pros

and cons. In case of the static partitioning, the additional computation is eliminated in

the mobile device by eliminating the inference engine and the sensors. The programmers

would annotate intensive components through a special Application Programming

Interface (API) as an offloadable component (Akherfi et al., 2016). In the static

partitioning approach, the decision of the partitioning is made at compile time (design

time).

99

4.3.1.4 Novel Dynamic Partitioning in Source Code

In order to avoid the complexity in terms of resources utilization and execution

time of previously used partitioning techniques, the partition of application at source code

was proposed in RESTOffload. Partitioning of application can be either be static or

dynamic. Both types of technique would have some intrinsic limitations. Static

partitioning takes place at compile time through manual annotation of intensive methods.

This would reduce the computations “C”; however, it would not be able to cope with the

changes occurring in the execution environment due to the mobility of the users moving

from one location to another.

By contrast, the dynamic partitioning automates the partitioning of the

applications. This type of technique would be able to cope every dynamic change of the

execution environment; however, the pattern of execution would change each time with

every new change in the network. Thus, the computation in the mobile device would

increase and hence, would be resource intensive.

The proposed novel dynamic technique carries some static features, along with its

ability to cope with the dynamic changes in the execution environment. To cope with

such dynamic changes, an algorithm was deployed for the selection of execution

parameters prior to offloading. Hence, by combining the positive features of both the

static and the dynamic approaches, the novel approach would be able to overcome the

lacks of both static and dynamic approaches. Therefore, the novel approach would be

more effective in reducing the RTT and energy consumption. The novel dynamic

technique proposed based on the analysis conducted for both the existing application

partitioning techniques.

Moreover, the heavy methods are statically annotated as the remote methods at

compile time by using the symbol @Web Method. This component is the sub-component

of the Offload Monitors and is responsible for dividing the application into offloadable

and local executable tasks. The component also distinguishes the offloadable methods

from the local methods at compile time. Thus, the complexity of the dynamic partitioning

and the static partitioning would be reduced as special APIs are used. All the local

100

executable tasks are then processed locally while all the offloadable tasks are transferred

to the server for further processing.

4.3.1.5 Execution Manager

This component consists of the complete execution environment. It controls and

monitors the whole environment of the application process. It scrutinizes and utilizes the

whole system thus making the execution of the application possible and smooth. If the

user was in the proximity of the surrogate servers, it would monitor and provide

connectivity as an option to the mobile user. Execution manager also monitors to exhaust

the option of local processing first. If the application processing at local device is complex

enough, then the predefined condition would be read and the resources for offloading

would be monitored. If during remote execution the network was interrupted or services

were no more available, then execution would be switched from remote execution to local

execution. Finally, execution manager would stay active for collecting the processed

result from the remote server and terminate the process.

4.3.1.6 Offload Trigger and Result Trigger

The Offload Trigger component is responsible for triggering the offload process

once the partitioning of application is completed. Normally, the SOAP offload trigger had

been used in past studies. SOAP offload supports the XML file to trigger with offload for

carrying data from the client device to the remote servers. With the analysis of SOAP

testing, as a carrier protocol, it has been observed that SOAP is heavy to execute and

complex to parse. Although SOAP- and XML-based offloading is considered as more

secure compared to the RPC-, RIC- and REST-based offloading, communication data

would be increased. Hence, this would increase computations in the mobile device.

Therefore, to reduce the size of data during communication at both sides between

the mobile device and the remote server, a new lightweight offloading technique referred

to as the REST-offloading technique was proposed, based on the analysis carried out

involving many different offloading protocols. This new technique combined REST,

JSON and WSDL to perform offloading. Normally, XML and JSON had been used as

solutions in many different problems in past studies. In the present study, a technique

101

based on the combination of REST, JSON and WSDL was proposed to reduce

complexity, computations and size of communication data. The intention of using REST

and JSON in this study was influenced by the low computing ability of the mobile device.

This technique would reduce the size of communication data and eliminate the

computations as well as RTT. Furthermore, REST is simple to write because of HTTP

and some CRUD (Create, Read, Update, and Delete) operations. Nevertheless, REST is

also less secure as compared to SOAP. This is because REST has inherited the security

from the underlying transport while SOAP defines its own WS-Security (Web services

Security).

4.3.1.7 RESTOffload Trigger and REST Result Trigger

A RESTOffload Trigger component was added in the RESTOffload model.

This component is the sub-component of Offload Monitor and is responsible for

transferring the control of execution of the intensive tasks identified by the partitioning

part to the remote servers. The RESToffload receives the component at the server side

and is responsible for receiving the incoming intensive tasks which would further transfer

the tasks to Offload Execute Component. After executing the task, the REST Result

Trigger component was activated and the result was sent back to the client device.

Deploying RESTOffload Trigger and REST Result receiver would not only execute the

offloading processes but also provide a lightweight medium of carrying data from the

device to the remote server. REST eliminates the heavy XML exchanging files between

the client device and the remote server (i.e., the surrogate at one hop distance) which

would ultimately reduce the size of communication data.

4.3.1.8 Resources and Offload Monitor

This component controls and monitors the offloading process from the start of

establishing a connection until the termination of the connection. It checks the availability

of the network and a surrogate willing to share its resources. Then, it establishes a

connection and allow the RESTOffload Trigger to transfer the computational intensive

task to the remote servers.

102

4.3.1.9 Middleware

Remote execution of mobile application in RESTOffload model needs a

middleware, that is, the sources bridging the client device and the remote services. It

provides access to remote services in order to execute intensive tasks delegated by the

mobile device. Middleware would keep hiding the complications between the client

device and its remote counterpart. RESTOffload makes a transparent remote execution

available in the environment through middleware and allows the client device

approaching the services using REST as a carrier protocol. Web Services Description

Language (WSDL) was used as a middleware to advertise the remote services. WSDL

supports XML format, that is, a hardware and software independent tool used to store and

transport data between network devices.

4.3.1.10 Synchronizer

The synchronizer component keeps the client side and the server side parts of the

application intact. It also keeps the sending and receiving of offloadable data over the

bandwidth synchronous to avoid missing and interrupting any sequence of data. The basic

role of the synchronizer component is to act as a coordinator between the client device

and the server. It also monitors the communication overhead and ensure the smooth

transmission and reception of communication bandwidth.

4.3.2 Server Component

Server component of the model consists of a physical server (surrogate)

configured with glassfish server. The server component of the model was deployed on

configured glassfish server to entertain all the computational intensive tasks received

from the mobile device. The server component also consists of sub-components similarly

identical to the sub-components of the mobile component. Hence, the description will not

be repeated in this section. The RESTOffload model was configured with a surrogate

server.

103

4.3.2.1 Surrogate Server

The geographical distance between the mobile device user and the cloud service

provider plays a vital role to measure the latency rate. Previously, cloud servers had been

used for the execution of the computational intensive tasks. In order to the reduce long

run RTT, cloudlet was used to bring the distant cloud to a single hop distance. In the

proposed RESTOffload model, a surrogate server was configured to be connected at a

single hop to the access point. This would reduce the distance, which in turn would reduce

RTT as well as lead to the PC or the laptop in the working environment becoming a

powerful remote execution machine for mobile applications.

4.3.3 Communication

The third component of proposed model is the communication medium. The role

of communication is as important as the role of high speed CPU required to be at the

remote execution environment. If the bandwidth of the available communication medium

was not good, the uploading and downloading process would consume more time and it

would ultimately affect the battery (Kumar et al., 2011). Therefore, it is essential to

consider the type of communication medium in order to ensure that the uploading and

downloading process would be fast during offloading.

4.4 Operational Logic

This section consists of operational logic of the RESTOffload model, operational

logic of the execution of applications and the proposed algorithm deployed for the

consideration of pre-defined parameters.

4.4.1 Operational Logic of RESTOffload Model

Figure 4.4 shows the operation of different components of the RESTOffload

Model. Mobile application was deployed for execution on the mobile device. The

application is capable of executing a task locally as well as at the remote server node.

During execution, the application profiler would continuously monitor resources such as

104

battery level, execution time of a task and network bandwidth of the mobile device and

would then profile the resources. After completion of the profiling resources, the first

attempt of any mobile application would be to execute the task locally in order to

eliminate the remote execution time and avoid resource consumption in remote

processing.

Start

Application
Profiler

Middleware

REST-Offload
Trigger

Synchronizer

Execute Locally

Critical

Condition

Novel Dynamic
Application
Partitioning

Single Hop
Surrogate

Is component

light

NO

YES

NO

End

YES

YES

Is Execution

Completed

Execute Locally

Resources
Monitor

NO

Figure 4.4 Operational Logic of RESTOffload Model

105

If the application was already complex enough, or if it was not be possible to

execute at local device, then the predefined conditions for remote execution would be

checked. If the conditions have been met, then resources monitoring for remote

processing would start to search for the availability of a remote server (i.e., a surrogate)

and then establish a connection to the remote server. If the conditions have not been met,

then local processing would be checked again. If the local execution was not possible,

then execution would be turned back to the first step of mobile application and

subsequently stop further processing. If the condition has been satisfactory based on the

defined values, then resources monitoring would take place and the middleware

component would be activated to check the available services. Similarly, it would allow

the application component to employ static partition application into lightweight parts

and computational intensive parts where both will start execution concurrently.

If a component of a mobile application is lightweight, ten component would be

proceeded for local processing. After completion of the local processing the result would

be sent back to the mobile application. Otherwise, if a component is not lightweight, then

it would be passed to the RESTOffload Trigger component, which would then activate

the synchronizer and offload the components (i.e., methods) to the surrogate for

execution. At the completion of the remote execution of the application, the results are

triggered back to the mobile execution manager components. This would consequently

lead to the combination of both the result of the local execution and that of the remote

execution. Finally, the combined results would be displayed.

 4.4.2 Application Execution Flow in RESTOffload Model

The flowchart in Figure 4.5 shows the details of the interaction of the components

in the proposed lightweight method level model in leveraging the services of the remote

server node. The Client side application of the model is executed on the mobile device

while the server side application is deployed to the remote server node. Whenever the

Client side application needs the services of the surrogate server, it would activate the

offload trigger and delegate the computational intensive task denoted as heavy method to

the server.

106

In the online scenario, the client application utilizes the services provided by the

remote server while in the offline scenario, the client application is capable of using its

own local resources to process the task. The distinct procedure in the proposed solution

was adopted to avoid unnecessary load in the runtime prediction and extra management

of resources by using VM migration or whole application delegation. In this regard, the

application partitioning is reduced to a simple two-step process. A novel dynamic

approach used here, which will statically partition the application at method level and

denote heavy method as offloadable method and delegate it to the counterpart at runtime.

Clearly, in the proposed algorithm, all the predefined parameters would be firmly checked

before complex tasks are offloaded to the remote server.

However, remote task execution while being connected to the 3G network was

excluded. This is because 3G, which is a low bandwidth network, would fluctuate

according to the mobility of the mobile application user from one location to another.

Using an unreliable network for establishing connection to the remote server would yield

inefficient results. The battery level should also be checked before starting the offloading

task. A battery operating at critical level during offloading task to the remote server could

turn the device off and would subsequently discard the offloading task. The most

important parameter would be to predict the complexity of the task or the method to

offload. A predictive algorithm would load on the limited available resources of the

mobile device.

107

Check Application Execution Time

Start

Check Network Type & Connecction

Check Available Battery Level

If Exec. Time > Pred. Time
If Battery Level< Critical

If Network & Wi-Fi

Is Local Execution
Possible

Kill Task Request

End

NO

Search & Connect to Surrogate

Execute & Send Result Back

YES

Run Locally

YES

NO

Figure 4.5 Execution Flow of the Mobile Application in Proposed Model

 Additionally, an algorithm was proposed to encompass all the predefined

parameters identified after a thorough investigation of power consumption of a modern

108

mobile device. The thorough investigation of the power consumption was conducted for

both the application and the system components in order to identify the power draining

factors. These factors are important to include which possibly alters the offloading results.

For instance, checking the network type and network bandwidth would thus eliminate the

issues of limited bandwidth and size of data to be offloaded. The proposed algorithm

would also consider an offloading decision, that is, whether to offload the task to the local

cloud (cloudlet) or to execute the task using the mobile device’s resources. In short, the

proposed algorithm would encompass the user preferences, applications requirement and

maximum predefined parameters for a precise offloading decision. Application

requirements would include the nature of the application such as real-time, fidelity

adaptive and intensive parts in terms of computation and communication. User predefined

parameters would comprise reliability and secure offloading while predefined parameters

would include the existing battery level, the type of network available, the execution time

and most importantly, the available network bandwidth.

The proposed lightweight method level model was first designed with the

deployment of supplementary components to address the intensive partitioning issues of

the traditional offloading methods and to counter the heavy parsing issues of previously

developed frameworks and models. Further, the proposed method level computational

offloading model has been inspired by the concept which had once been used in code

transformation method by Rim et al., (2006) who had partitioned the application at

method level and offloaded the heavy parts for remote execution. This had reduced the

size of communication data and led to a reduction of RTT. However, the code

transformation technique used by Rim et al., (2006) in mobile devices for reducing the

code size via Distributed Execution Transformer (DiET) was a heavy process which

caused computational overhead.

The DiET generator of slim code is a supplementary computational load on the

mobile device with each offload. Hence, in designing the proposed model, instead of

using the slim code concept or sending whole executable codes directly to the server, the

present study aimed to deploy Representational State Transfer (REST), which is an

architectural style of World Wide Web that communicates over HTTP protocol. REST

was first developed by Roy Thomas Fielding (Fielding, 2000) and was initially developed

to re-structure the Web Applications as none of the past researchers had used REST as a

109

carrier protocol in mobile computing for offloading purpose. Subsequently, the present

research aimed to eliminate the need to generate the slim code for reducing the size of

communication data by using REST as a carrier protocol because of its advantage of being

lightweight compared to DiET, SOAP and RPC (Giogrio et al., 2010).

In addition, using REST protocols instead of SAOP for communication carriers

would eliminate XML file transfer. This would support the JSON format, thus eliminating

the extra baggage of data to delegate. As a result, the transmission data “D” would be

reduced, which would then reduce the Turnaround Time. This would ultimately save

battery. Normally in past research, Simple Object Access Protocol (SOAP) had been used

to establish client service connection for transmission of data between Web Applications.

The reasons for using REST instead of SOAP are due to the portability, simplicity and

also the lightweight nature of REST.

Furthermore, to reduce the delegation of computational intensive tasks to the

cloud server residing at multi-hop distance, a middle layer solution had been proposed

first by Satyanarayanan et al., (2009) and later used by Magurawalage et al., (2014).

Offloading any computational intensive task directly to a distant cloud would always

results in a long run RTT which is resource intensive. In order to reduce the distance,

Satyanarayan et al., (2009) had used the concept of Cloudlet, which is a small cloud in

the nearest computing environment. Hence, the present research used a similar concept.

A further addition of a single hop was made in the present study where a PC would be

connected to IEEE 802.11 access point as a cloudlet layer in between the client device

and the cloud infrastructure. This cloudlet layer would serve as a confined service in a

fast approach for the client device to offload.

4.4.3 Proposed Algorithm for the Selection of Pre-defined Parameters

It is an established fact that, offloading in any circumstances, is always not

energy-efficient and involves burden of calculations over resource constrained devices.

Chapter 2 of this thesis has discussed details of when and how to offload. The focus of

the proposed model is to avoid any further load in terms of computations over mobile

device. A predefined time slot used by deployed an algorithm for completing execution

of a task at local scenario is shown in Figure 4.6. While processing any task locally, if the

110

predefined time slot was knocked out, the control would be passed to the remote server

with a message to compute the specific heavy method at the server node.

This algorithm would guide the Offload Monitor to verify all the predefined

conditions and ensure that the right decision of offloading would be made. The flow of

execution of the offloading task is given in the flowchart in Figure 4.6. The basic steps of

the proposed algorithms are given in algorithm 1 as follows:

BEGIN

 Local Execution

Exec. T. > 3000ms

Network

Connected

Start Offload

END

No

No

Wi-Fi

Network Type

Yes

Yes

3G

BL > Critical

Level

Yes

No

Figure 4.6 Flow of the Selection of Predefined Parameters

111

Step1. Attempt local execution first. If the execution time exceeds the predefined

threshold value, then go to Step 2.

Step 2. Check all the predefined parameters such as battery level, network connection,

network type and execution time.

Algorithm 1: Computational Offloading Service

1: procedure OFFLOADINGSERVICE (ET, BL, NT, NS)

 ET-Execution Time, BL-Battery Level, NT- Network Type, NS- Network Status

2: Read: ET, BL, NT, NS;

3: Run: Local-execute();

4: if ET > Threshold Value then; // Predefined Parameter 2 seconds

5: trigger offload monitor;

6: end if

7: if BL < critical Value then // Predefined parameter of critical battery

8: write: " battery critical";

9: local-execute();

10: end;

11: else if

12: NS == connected then

13 check network type:

14: if NT == Wi-Fi or 4G then // 3G excluded because of limited bandwidth

15: Trigger-offload();

16: else

17: Local-execute();

18: end if;

19: else

20: Kill-request ();

21: end if;

Step 3. If all the predefined parameters meet, then trigger-offload is activated to search

the remote server.

- Establish a connection to the remote server and start offload,

- Return result back to handheld device.

Step 4. If any of the above defined conditions is false, then resume local execution and

end.

Step 5. If the local execution is not possible, then kill the request and end.

The response time of an application varies from application to application. For all

the real-time systems such as GPS, natural language translators and online games, the

112

response should always be crispy. In the proposed algorithm, an execution deadline has

been defined with a threshold value which would be entertained for the local execution

to attempt first. If the deadline threshold value has been met and execution has not yet

been completed, then Execution Monitor would be activated and the offloading process

would take place. The threshold value in the proposed algorithm would be 3000 ms (3s)

which is considered as the lowest response time (Ferreira et al., 2011; Izaki, 2000). The

threshold value would vary for different applications and could be selected solely based

on the complexity of application and available resources. Hence, 3000 ms was selected

as the threshold value for testing purpose through the developed prototype application.

The prototype application was developed to test a single component of an

intensive task; therefore, the threshold value was kept minimum. Moreover, the real-time

systems would need to have a spontaneous response whereas the response time for

applications such as editors could be up to 20003000 ms. Furthermore, the critical level

of battery would also vary for different manufacturers mobile devices as well as

researchers. For example, the critical battery level for the iPhone is about 6%. For iPhone,

once the mobile device drains the whole battery, it would not turn on until the recharge

percentage of battery level reaches up to 6%. Similarly, for all Samsung devices, the

critical battery level starts from 5%. In the present research, 3% was considered the

critical level because the percentage would vary between 1 and 6% for different mobile

devices. Offloading in such a critical level would most likely result in the mobile device

turned off thus discarding the whole efforts during offloading. In both cases, if the

predefined parameters have not been satisfactorily met, offloading tasks to the remote

servers should be avoided and local execution should be attempted. In any case in which

the local execution would not be possible, the request should be turned down.

4.5 Evaluation of the Proposed Model

The significance of the proposed model was evaluated by simulating it in real

mobile cloud computing environment. A prototype application for Android mobile

devices was developed in order to test different computational intensities. The execution

performance of application was conducted with reference to the execution time of the

application (i.e., response time) and power consumption during the execution. All the

empirical results were obtained from simulations using 30 different intensities with a

113

sample space of 20. The experiments conducted with Device under Tests (DUTs) from

two different vendors, namely, the Samsung Galaxy A5 and the ASUS Zenfone 5. To

validate the resultant values, a sample mean was calculated for the sample data and for

further measurements of error estimation, the standard deviations were used. With 99%

confidence interval, all the empirical results were then compared to the benchmarking

data collected from the local execution of mobile device as well as the findings of

previous studies.

Moreover, the findings of a study conducted by Shiraz et al., (2014) have also

been considered as a second benchmark for the proposed lightweight method level

offloading. Both comparisons have indicated the significance of the proposed solution in

the present research. The following sections will elaborate the experimental setup, the

tool used in these experiments, the techniques for data collection and statistical techniques

employed in the analysis of the collected data in order to obtain meaningful results.

4.5.1 Experimental Setup

The experimental emulation environment in the present study was set up as

illustrated in Figure 4.7. The setup composed of the remote surrogate machine and mobile

client devices. The surrogate machine used 32-bit Microsoft Windows 10 Professional

operating system (OS) with Intel® Core™ i7-3770 Processor @ 3.40 GHz speed and

4.0 GB RAM capacity. A D-Link wireless Wi-Fi modem/ Access Point with a physical

layer data rates of 54 Mbps was used to connect the remote server machine with the

mobile devices.

To test the developed prototype applications, the experiment setup was developed

in Wi-Fi wireless network of radio type 802.11g, the surrogate machine and two different

brands of Client mobile devices, namely, the Samsung Galaxy A5 and the ASUS Zenfone

5. The Samsung Galaxy A5 was operating using the Android 5.0.2 (Lollipop) OS with

Quad Core Cotex-A53 Processor @ 1.2 GHz and 16 GB memory on 2300 mAh battery.

Meanwhile, the ASUS Zensfone 5 was running on the same Android v5.0.2 (Lollipop) OS

with 1.2 GHz Processor and 2 GB RAM but Dual Core instead of Quad Core and only 8

GB instead of 16 GB memory as well as slightly less 2110 mAh battery capacity. Mobile

114

Surrogate

I N
 T

 E
 R

 N
 E

 T

SERVERS

User1 User2

Access Point

Cloud

Figure 4.7 The Environment of Experimental Offloading Scenario

device accessed the wireless network via Wi-Fi wireless network connection of radio type

802.11g, with the available physical layer data rates of 54 Mbps.

Two components of the proposed model were developed, namely, one for the

Client side that was used in the mobile device, and the other for the surrogate servers. The

surrogate machine was configured for the provisioning of services utilizing Software as

a Service (SaaS) and Infrastructure as a Service (IaaS) models of cloud computing. The

Server side application was deployed by configuring a Glassfish server at the surrogate

using Web Services Application tools in Eclipse. Android Developers (Java-based

Android Software development tool kit) was deployed for the development of the Client

side application in Intellij IDE 15 Community environment. Android Debug Bridge

(ADB) plugin was used to develop the prototype Android application.

The traditional computational offloading models had used KSOAP libraries in

prototype development which is an XML-based messaging protocol. SOAP is

conceptually more difficult and more heavyweight as compared to REST. The aim of the

115

current work was to develop a lightweight Android application model which could be

easily managed and should reduce the heavy processing steps during migration of data.

SOAP-based applications would be harder to develop and configure as well as heavy in

size. SOAP is the older form of providing communication environment to client devices

which communicate with its remote server counterparts.

By contrast, REST is an architectural style used to design a system which solves

the common issues occurring during communication which was developed by Roy

Thomas Fielding in his PhD research (Fielding, 2000). The aim of implementing REST

in the present study was to ensure fast performance, reliability, lightweight and

extensibility. REST was used in the development of the prototype application to access

the preconfigured services deployed to the configured Glassfish server. To monitor the

execution time/ turnaround time, a stopwatch Time Left was used.

Meanwhile, for energy consumption of different computational intensities, Power

Tutor, which is a power estimating tool, was used in the first attempt. Power tutor is a

built-in power estimating tool available at Android Play Store. Power Tutor acquires the

battery discharge curve for each discrete component of the mobile device using built-in

battery voltage sensor. It determines the energy consumption state of each component and

application. Additionally, it also performs a regression to obtain the power mode.

However, as it was designed initially for a specific model (brand) of a mobile device, this

power estimating tool would not always be profiling the accurate energy consumption of

every mobile device. Therefore, Monsoon Power Monitoring Tool, which is a hardware

power estimating device, was used. This device provides a strong power estimating

solution for any kinds of mobile device powered by Lithium-ion or Li-ion batteries at 4.8

volts or lower.

Figure 4.8 is a screenshot of the graph of power consumption measured by the

Monsoon Power Monitor application tool. Most of the Android developers have failed to

consider the limited battery timing of the mobile devices during the designing process of

the application. Consequently, mobile applications have consumed enormous amount of

power and would drain the limited battery capacity in just a few hours. To measure the

power consumption of each individual application, numerous software estimating tools

have been used but all the tools would run on the devices and collects power data and

116

Figure 4.8 A Screenshot of the Monsoon Power Monitor Application Tool

then store it locally. This would ultimately use CPU cycles and result in inflating power

reading. The most popular devices such as the Samsung Galaxy and Nokia smartphones

could not report the power consumption of an application accurately even with the help

of software estimating tools. An off-target hardware tool would be needed to measure the

power consumption of such devices.

Therefore, the Monsoon Power Monitor application was used to help Android

developers create mobile applications with better battery life. The Monsoon Power

Monitor application provides the popular off-target power consumption estimation. It also

is capable of measuring the current, voltage and power and then connected to a special

Monsoon Power Application (Computer Software) which gives control over power data

and collect and display the data in the form of a graph.

 Figure 4.9 gives the experimental scenario of Monsoon Power Monitor for power

consumption used in the laboratory environment. The power monitor device was

connected with a PC using the backside USB port. The mobile device could either be

connected to the Auxiliary port, Main port or USB out port on the front side. In the

117

(A) (B)

Figure 4.9 Use of the Monsoon Power Monitor in the Experiments for Power

Consumption Readings

experiments, two mobile devices, namely, the Samsung Galaxy A5 and the ASUS Zenfone

5 were used to estimate power consumption. Both mobile devices were connected to the

USB port on the front side because the battery was not removable. Therefore, the only

way to connect was via the USB port as shown Figure 4.9 (A). In the case of the ASUS

Zenfone 5, the main port was used as the battery had been removed and a connection was

provided to the main port of the Power Monitor as shown in Figure 4.9 (B). Each time

when the prototype application ran locally or remotely while mobile device was

connected to the power monitor device, the readings of consumption were recorded.

4.5.2 Prototype Applications

The proposed model was implemented by developing a prototype Android

application. The prototype application composed of two components, namely, the service

provider called RESTOffload Service and the service consumer called Android-Local.

The service provider component was installed and configured at the remote server while

the service consumer component was deployed to the Client device (i.e., the mobile

device). The prototype application was designed for computational intensity of generating

two random matrices of type integer. Both the matrices were multiplied and then the

resultant matrix was obtained. As matrix multiplication is a computational intensive task,

hence it was selected to be implemented in the experiments. The matrix multiplication

logic of the prototype application was tested for 30 different computational intensities by

varying the matrices length between 160 x 160 and 450 x 450.

118

4.5.3 Data Collection and Data Processing

Three different types of testing scenarios were used in the experiments for data

collection. In the first scenario, data were collected by testing the prototype application

in the local mobile devices both on the Samsung Galaxy A5 and the ASUS Zenfone 5.

Meanwhile, in the second scenario, the traditional computational offloading logic was

implemented and the computational intensive tasks were offloaded to the remote servers

on both mobile devices. Finally, in the last scenario, the logic of the proposed lightweight

computational offloading was implemented and the execution of task offloaded to the

surrogate servers was tested. In all of the three scenarios, the aim was to analyse the

prototype application for execution time or turnaround time and energy consumption of

both mobile devices while executing the task.

The experiments considered a sample space of 20 values and for each scenario,

the experiments were evaluated 20 times of each computational intensity. In this regard,

the sample size (i.e., n = 20) and a sample mean (i.e., x̅ of n = 20) were calculated for

each computational intensity. Standard deviation (SD), which showed the variation in the

execution time as well as in energy consumption while running each intensity, was

calculated. The Central Limit Theorem states that as the sample size increases, the

sampling distribution of the sampling means approaches to a normal distribution.

Therefore, the sample, n = 20, was considered and about 99% of the sample means fell

within 2.58 of the standard deviation of the population mean. Hence, the confidence

interval calculated showed the range of the sample mean of 20 values in each experiment

with 99% confidence. The prototype application developed for mobile devices composed

of a computational intensive component, that is, the matrices multiplication service. This

was evaluated on the basis of two parameters execution time in milliseconds (ms) and

energy consumption in Joules (J). The empirical data were gathered for each

computational intensity. The intensities that ranged from 160 x 160 to 450 x 450 which

increased with the increase size of 10 with each intensity, were calculated. The whole

data were then tabulated. For all the three scenarios, the total Execution Time (TET) and

total Energy consumption (ET) were evaluated.

Meanwhile, the confidence interval was calculated for each sample intensity.

Confidence interval is the range of values of sample statistic which is likely to contain

http://www.statisticshowto.com/probability-and-statistics/normal-distributions/

119

the value of an unknown population parameter. Data sampling may have sampling error

that is, the sample mean calculated could differ from its population mean. Therefore, to

signify the correctness of the calculated sample value, the interval estimate of each sample

was calculated. A certain percentage of the sample values may contain the parameter of

an unknown population. The percentage of such confidence interval having the

population value is called the confidence level. Confidence interval is a range which

estimates the true population value for a statistic. There was a margin of error, E, which

existed and this showed the probability of not occurring mean value in the whole the

population value. If E denotes the error estimation for 99% confidence interval, then it is

calculated by the following equation:

 E = 2.58 * (𝜎
√𝑛⁄) 5.1

In Equation 5.1, 𝜎 denotes the standard deviation in the calculated sample values

and n denotes the size of the sample space. The confidence interval for each sample mean

of the collected sample data was calculated with 99% confidence interval by using the

following equation:

 Confidence Interval = x̅ ± 𝐸 5.2

The following section will explain data collected in experiments in all the three

scenarios in real-time mobile computing environment. The data were collected and then

manipulated in the first scenario such as by executing the application in the local mobile

device. The results (i.e., Execution Time and Energy Consumption) were tabulated. In

the second scenario, the application was delegated to the remote servers using traditional

computational offloading techniques. In the third scenario, data were collected and

tabulated using the proposed lightweight computational offloading method.

4.5.4 Data Collected by Executing Application in Local Mobile Devices

 In this scenario, the developed prototype application was executed in the local

mobile devices in order to assess the Execution Time or Turnaround Time in milliseconds

(ms) and Energy Consumption in Joules (J). The prototype application was run with

different computational intensities. As the matrices multiplication is a computational

120

intensive task, a prototype was developed to multiply two randomly generated matrices

ranged between 160 x 160 and 450 x 450. Each computational intensity varied from the

previous one with an addition of 10. The 30 different computational intensities were

selected and each intensity was run 20 times for validation purpose. Table 4.2 and Table

4.3 show the sample execution time for lowest and highest intensities of the prototype

application in the local mobile devices both for the Samsung Galaxy A5 and the ASUS

Zenfone 5, respectively.

Two matrices were randomly generated in the mobile devices and multiplied with

each other. Then, the resultant matrix was displayed on the screen of each mobile device.

The time consumed while generating the two random matrices, the time for processing

the computational task using mobile resources and the time of the display of the resultant

matrix on the screen of the mobile devices were all collectively referred to as the

execution time.

As mentioned earlier, the prototype was run for 30 different computational

intensities between 160 x 160 and 450 x 450 with the constant jump of 10 in each

intensity. The statistical computation was done in the experiments in order to justify the

result for whole population. In this regard, each intensity was iterated 20 times which

showed the size of the sample. The mean turnaround time was calculated for each sample,

which is the point estimator for whole population.

Table 4.2 Local Execution Time of Prototype Application for Samsung Galaxy A5

Table 4.3 Local Execution Time of Prototype Application for ASUS Zenfone5

Matrix

Size

Sample mean of ET of

Local Execution (ms)

SD of ET %RSD of ET Confidence Interval

160x160 11071 346.53 3.13 11071(+/-)800

450x450 111799 4434.77 3.97 111799(+/-)10234

Matrix

Size

Sample mean of ET of

Local Execution (ms)

SD of ET %RSD of ET Confidence

Interval

160x160 13240 207.36 1.57 13240(+/-)478

450x450 118460 230.22 0.19 118460(+/-)531

121

In addition, the standard deviation was calculated to show the variation in the

execution time while evaluating the experiments of each intensity that were conducted 20

times for each sample space. The percentage (%RSD) for each of the 30 computational

intensities was calculated for each sample space which showed the percentage difference

in the execution time of each experiment. The 99% confidence interval was calculated

for the sample space of each intensity which showed the degree of uncertainty in the

turnaround time for the whole population. Table 4.4 and Table 4.5 show the sample

energy consumption for lowest and highest intensities of the prototype application in the

local mobile devices both for the Samsung Galaxy A5 and the ASUS Zenfone 5,

respectively.

The porotype ran for 30 different computational intensities and the energy

consumption costs of each time execution of discrete intensity were recorded. The same

intensity was iterated for a sample size 20, which is a point estimator for the energy

consumption of any size sample or whole population. The standard deviation calculated

for each sample space showed the variation in energy consumption while %RSD

calculated for each sample space showed the percentage difference in energy

consumption of each experiment. The 99 % confidence interval was calculated for all

computational intensities, which determined the degree of uncertainty in each sample

space.

Table 4.4 Energy Consumption of Prototype Application for Samsung Galaxy A5

through Local Execution

Table 4.5 Energy Consumption of Prototype Application for ASUS Zenfone 5

through Local Execution

Matrix

Size

Sample mean of EC of

Local Execution (J)

SD of EC %RSD of

EC

Confidence

Interval

160x160 4.58 0.249 5.44 4.58(+/-)1

450x450 45.4 0.158 0.35 45.4(+/-)0

Matrix

Size

Sample mean of ET of

Local Execution (J)

SD of EC %RSD of EC Confidence

Interval

160x160 5.54 0.30 5.35 5.54(+/-)0

450x450 48.4 0.51 1.06 48.4(+/-)1

122

4.5.5 Data Collected by Offloading Application using Traditional Offloading

Techniques

In this scenario, the developed prototype application was offloaded by traditional

offloading techniques to the remote servers in order to assess the Execution Time or

Turnaround Time in milliseconds (ms) and Energy Consumption in Joules (J). The

prototype application ran with different computational intensities. As the matrices

multiplication was a computational intensive task, a prototype was developed to multiply

two randomly generated matrices that ranged between 160 x 160 and 450 x 450 in the

mobile devices and sent to the remote servers for executing the multiplication task, which

is a computed intensive task for mobile devices. The resultant matrix was sent back to the

mobile device and displayed at the user interface. Each computational intensity varied

from the previous one with an addition of 10. The prototype ran with total of 30 different

computational intensities. For validation purposes, statistical analyses were performed on

the data by selecting a sample of 20 values to verify the results for whole population.

Table 4.6 and Table 4.7 present the results of the sample total Turnaround Time

or Execution Time of the prototype application offloaded for execution to the remote

severs using traditional computational offloading techniques both for the Samsung

Galaxy A5 and the ASUS Zenfone 5, respectively. In the experiments, each of the

computational intensity was evaluated 20 times and the mean execution time of sample

size 20 was calculated.

Table 4.6 ET of Prototype Application Execution through Traditional Offloading

for Samsung Galaxy A5

Table 4.7 ET of Prototype Application Execution through Traditional Offloading

for ASUS Zenfone 5

Matrix

Size

Sample mean of ET

of Local Exe. (ms)

SD of ET %RSD of ET Confidence

Interval

160x160 9608 535.78 5.58 9608(+/-)1236

450x450 189523 2089.39 1.10 189523(+/-)4822

Matrix

Size

Sample mean of ET of

Trad. Offloading (ms)

SD of ET %RSD of ET Confidence

Interval

160x160 11280 164.32 1.46 11280(+/-)379

450x450 152520 238.75 0.16 152520(+/-)550

123

 The sample mean is the point estimator for the whole population. The standard

deviation (SD) calculated for each sample size showed the variation in execution time or

turnaround time in the sample size of each intensity. The %RSD calculated for each

sample showed the percentage difference in turnaround time or execution time of each

experiment. The confidence interval 99% was calculated for each computational intensity

which showed the degree of uncertainty in each sample size.

 Table 4.8 and Table 4.9 show the sample energy consumption costs while

processing the prototype application using the traditional computational offloading

techniques for both the Samsung Galaxy A5 and the ASUS Zenfone 5, respectively. In the

experiments, each of the computational intensity was evaluated 20 times and the mean

energy consumption of sample size 20 was calculated.

 The sample mean is the point estimator for the whole population. The standard

deviation SD calculated for each sample size, shows the variation of energy consumption

in the sample size of each intensity. The %RSD calculated for each sample showed the

percentage difference in energy consumption of each experiment. The 99% confidence

interval was calculated for each computational intensity which showed the degree of

uncertainty in each sample size.

Table 4.8 EC of Prototype Application Execution through Traditional Offloading

for Samsung Galaxy A5

Table 4.9 EC of Prototype Application Execution through Traditional Offloading

for Asus Zenfone 5

Matrix

Size

Sample mean of EC of

Trad. Offloading (J)

SD of EC %RSD of EC Confidence

Interval

160x160 7.72 0.421 5.45 7.72(+/-)1

450x450 102.08 0.602 0.59 102.08(+/-)1

Matrix

Size

Sample mean of EC of

Trad. Offloading (J)

SD of EC %RSD of EC Confidence

Interval

160x160 8.56 0.36 4.26 8.56(+/-)0

450x450 102.74 0.15 0.15 102.74(+/-)0

124

4.5.6 Data Collected by Offloading Application using RESTOffload Method

In this scenario, the developed prototype application was offloaded by the

proposed Rest-Offload method to the remote servers in order to assess the Execution Time

or Turnaround Time in milliseconds (ms) and Energy Consumption in Joules (J). The

prototype application ran with different computational intensities. As the matrices

multiplication was a computational intensive task, a prototype was developed to multiply

two randomly generated matrices that ranged between 160 x 160 and 450 x 450 in the

mobile devices and sent to the remote servers for executing the multiplication task which

is a computed intensive task for mobile devices. The resultant matrix was then sent back

to mobile devices and displayed at the user interface. Each computational intensity varied

from the previous one with an addition of 10. The total 30 different computational

intensities were run. For validation purposes, statistical analysis were performed on the

data by selecting a sample of 20 values to verify the results of whole population data.

Similarly, Table 4.10 and Table 4.11 show the sample turnaround time of

prototype application using the proposed lightweight computational offloading

RESTOffload method. The time consumed while generating the two random matrices,

the time for offloading the matrices to the surrogate servers, the time for processing the

computational task at server and the time of to obtain the resultant matrix back on the

screen of the mobile devices were all collectively referred to as the Turnaround time or

Execution time.

Here, each intensity was calculated for the iterated five times which showed the

size of the sample. The mean turnaround time was calculated for each sample, which is

the point estimator for the whole population. The SD calculated showed the variation in

the turnaround time while evaluating the experiment of each intensity 20 times of each

sample space. The %RSD calculated for each sample showed the percentage difference

in the turnaround time of each experiment. The 99% confidence interval was calculated

for the sample space of each intensity which showed the degree of uncertainty in the

turnaround time for the whole population.

125

Table 4.10 ET of Prototype Application Execution through RESTOffload Method

using Samsung Galaxy A5

Table 4.11 ET of Prototype Application Execution through RESTOffload Method

using ASUS Zenfone 5

 Likewise, Table 4.12 and Table 4.13 show the sample energy consumption cost

of prototype application using the proposed lightweight computational offloading

RESTOffload method. The energy consumption during the generation of the two

random matrices, the energy consumption during the offloading of the matrices to the

surrogate servers, the energy consumption for processing the computational task at the

server and the energy consumed during reception of the resultant matrix back on the

screen of the mobile devices were all collectively referred to as the energy consumption

cost. Each intensity was calculated for the iterated five times which showed the size of

the sample.

Table 4.12 Energy Consumption Cost of Prototype Application Execution through

RESTOffload using Samsung Galaxy A5

Table 4.13 Energy Consumption Cost of Prototype Application Execution through

RESTOffload using Asus Zenfone5

Matrix

Size

Sample mean of ET of

RESTOffload (ms)

SD of ET %RSD of ET Confidence

Interval

160x160 7418 222.86 3.00 7418(+/-)514

450x450 49587 274.23 0.55 49587(+/-)633

Matrix

Size

Sample mean of ET of

RESTOffload (ms)

SD of ET %RSD of ET Confidence

Interval

160x160 7780 164.32 2.11 7780(+/-)379

450x450 61520 178.89 0.29 61520(+/-)412

Matrix

Size

Sample mean of EC

of RESTOffload (J)

SD of EC %RSD of EC Confidence

Interval

160x160 3.48 0.1 2.88 3.48(+/-)0

450x450 25.35 0.12 0.48 25.35(+/-)0

Matrix

Size

Sample mean of EC

of RESTOffload (J)

SD of EC %RSD of EC Confidence

Interval

160x160 4.64 0.29 6.21 4.64(+/-)0

450x450 28.32 0.30 1.07 28.32(+/-)0

126

 The mean energy consumption cost was calculated for each sample, which is the

point estimator for the whole population. The standard deviation (SD) calculated showed

the variation in energy consumption while evaluating the experiment of each intensity 20

times of each sample space. The percentage (% RSD) calculated for each sample showed

the percentage difference in the energy consumption cost of each experiment while 99 %

confidence interval was calculated for the sample space of each intensity which shows

the degree of uncertainty in energy consumption for the whole population.

4.6 Summary

 The proposed new lightweight method level computational offloading model was

designed in this Chapter. The proposed model was developed in the real mobile cloud

environment. A prototype application with three components Local Execution (Android-

Local), Traditional Offloading (Android-SOAP) and RESTOffload was developed. All

three components were executed and the prototype application was evaluated in the real

mobile cloud environment.

The experimental data were collected in three different scenarios. In addition, a

computational offloading algorithm was proposed to avoid the unnecessary

computational load over mobile devices. It also stopped the unwanted processing and

uncertain computational offloading attempt. In other words, it simply reduced the

computational load and management hurdles of resource limited mobile devices.

127

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Overview

This chapter presents the analysis and discussion of experimental results

collected in Chapter 4. The chapter is organized as follows. Section 5.2 presents the

Local Execution experimental results in terms of Energy Consumption (J) and

Execution Time (ms). Section 5.3 presents the results in terms of energy consumption

(J) and execution time (ms) while processed the prototype application at remote servers

by offloading through traditional computational offloading techniques. Section 5.4

presents the discussion of experimental results in terms of energy consumption (J) and

execution time (ms) while executing the prototype application at surrogate server using

the proposed lightweight REST-Offload method. Section 5.5 consist of execution time

comparison of all three scenarios. Section 5.6 comprises energy consumption cost

comparison of all three scenarios. Section 5.7 discusses results against benchmark in

terms of Execution Time and Energy Consumption. Section 5.8 discusses comparison of

different mobile devices for ET and EC. Section 5.9 gives efficiency comparison of ET

and EC against others. Section 5.10 provides comparative analysis. Section 5.11

discusses threats to validity while section 5.12 summarises the chapter.

5.2 Analysis of Application Execution at Local Mobile Device

The prototype application executed at local mobile devices both on Samsung

Galaxy A5 and ASUS Zenfone5, in order to estimate the ET in milliseconds (ms) and

EC in Joules (J). The experimental results of both the devices presented in Table 4.2,

4.3, 4.4 and 4.5 of Chapter 4 are going to analyse further in this section.

128

The results gathered by executing task locally are considered benchmark for the

proposed solution. Here, the prototype application consists of generating two random

matrices at local mobile device which are then multiplied with each other and displayed

the resulted matrix. The prototype application ran for 30 different computational

intensities, started from 160x160 to 450x450 with the increase of 10 in each following

computational intensity. It is observed from the experimental results that the ET/TT of

executing the application at local mobile devices varies between different computational

intensities.

Figure 5.1 shows the ET in milliseconds (ms) against the multiplication of

different matrix sizes, executed on local mobile device Samsung Galaxy A5. The mean

ET of processing application carrying the intensity 160x160 for a sample space of 20 is

equal to 11,701 ms, with 99 % confidence interval 11701 (+/-) 800 ms which shows the

range of possible ET between 12,501 ms and 10,901 ms. The variation in ET

determined by calculating SD for each intensity of sample space 20 which is 346.53 ms

for 160x160.

Similarly, the ET of computational intensity 170x170 is equal to 8024 ms with

12,675(+/-)807 ms while the SD for sample space 20 is equal to 349.76ms. By a close

observation the ET pattern increases with an approximate one second with each higher

intensity. The ET of computational intensity 450x450 reached up to 111,799 ms with a

SD value 4434 ms and of confidence interval 111,799 (+/-) 10,234 ms.

Figure 5.1 Execution Time (ms) of Matrix Multiplication in Local Mobile Device

Samsung Galaxy A5

0

20000

40000

60000

80000

100000

120000

Ex
e

cu
ti

o
n

 T
im

e
(m

s)

Length of Matrices

129

Figure 5.2 Execution Time (ms) of Matrix Multiplication in Local Mobile Device

ASUS Zenfone5

Similarly, Figure 5.2 shows the ET in milliseconds (ms) against the

multiplication of different matrix sizes, executed on local mobile device ASUS

Zenfone5. The mean ET of processing application carrying the intensity 160x160 for a

sample space of 20 is equal to 13,240 ms, with 99 % confidence interval 13240 (+/-)478

ms which shows the range of possible ET between 13,718 ms and 12,762 ms. The

variation in ET determined by calculating SD for each intensity of sample space 20

which is 207.36 ms for 160x160.

The ET of computational intensity 300x300 is equal to 45,700 ms with 45,700

(+/-)672 ms while the SD for sample space 20 is equal to 291.55ms. With a similar

increase to a higher intensity the execution time (ET) pattern increases with

approximate 2-3 seconds. The ET of computational intensity 450x450 reaches up to

118,460 ms with a SD value 230.22 ms and of confidence interval 118,460 (+/-)531 ms.

Similarly, in the second part of this section, the Energy Consumption (EC)

analysed for both the devices, while executed the task locally. The EC in Joules (J) of

executed the prototype application at local mobile devices are presented in Table 4.3

and Table 4.4 of Chapter 4. Figure 5.3 shows the EC in Joules (J) against the

multiplication of two random matrices of different sizes at Samsung Galaxy A5. It is

observed that the EC varying for computing the matrix multiplication of all intensities.

It is lowest for multiplying the lowest size/intensity 160x160 and gradually rosed till the

0

20000

40000

60000

80000

100000

120000

140000

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Length of Matrices

130

highest computational intensity 450x450, which seized CPU for a longer time to

execute. The observed mean consumption of multiplying the matrices of dimensions

160x160 is 4.58 J which is calculated by running the same intensity for sample size 20.

The 99 % confidence interval 4.58(+/-)1, shows that the possible range of EC fall in

between 4.58+1 J and 4.58-1 J. The SD shows the variation in observed values of the

same sample for the same intensity. It is 0.249 J for the computational intensity

160x160 of the same sample space in each experiment.

Likewise, the mean EC of computational intensity 300x300 observed, which is

19.62 J with 99 % confidence interval 19.62(+/-)0. The confidence interval with margin

of error 0 shows, the standard deviation SD is minimal and the values of calculated EC

in the same sample are almost equal. The SD observed for the computational intensity

300x300 is 0.164 J while the % RSD which is 0.84 % shows that the SD value of the

same intensity is 0.84 % of the mean value. The lowest the % RSD the closer are the

sample values. Also, the observed mean EC of multiplying matrices of dimensions

450x450 is 45.4 J with a confidence interval 45.4(+/-)0. The EC of the highest intensity

in the experiments 450x450 is higher than all the computational intensities. The

observed SD value of the sample size for the same intensity is 0.158 J which is lower

than 1 therefore the margin of error is rounded to 0. Hence, the calculated 99 %

confidence interval for the same intensity is 45.4(+/-)0 J. The % RSD 0.35 is the

percentage Joules of standard deviation to energy consumption of mean.

Figure 5.3 Local Energy Consumption (J) of Matrix Multiplication by Samsung

Galaxy A5

0

5

10

15

20

25

30

35

40

45

50

En
er

gy
 C

o
n

su
m

p
ti

o
n

 C
o

st
(J

)

Length of Matrices

131

Figure 5.4 Local Energy Consumption (J) of Matrix Multiplication by ASUS

Zenfone5

Further, the EC of executing task locally at ASUS Zenfone5 given in Figure 5.4.

The mean energy consumption of multiplying the matrices of dimensions 160x160 is

5.54 J with 99 % confidence interval 5.54(+/-) 0 shows that the possible range of EC

fall in between 5.54+0 J and 5.54-0 J. The calculated SD for sample space 20 is 0.30 J.

Similarly, the mean EC of last intensity 450x450 is 48.4 J with a SD 0.51 and % RSD

1.06. Comparative analysis of both the devices discussed in Section 5.6 of this chapter.

Here, the EC of locally executing the task at ASUS Zenfone5 for all the intensities

ranged between 5.48 J to 48.4 J while the same for Samsung Galaxy A5 ranged between

4.58 J to 45.4 J.

5.3 Analysis of Application Executed through Traditional Computational

Offloading Methods

The prototype application executed using traditional computational offloading

methods in order to estimate the ET in Milliseconds (ms) and EC in Joules (J). The

experimental results conducted with both the devices presented in Table 4.6, Table 4.7,

Table 4.8 and Table 4.9 of Chapter 4 going to analyse further in this section. The results

of executing the porotype application at remote servers through traditional

computational offloading methods considered as a second benchmark. Also, the

research published in 2013, the DEAP Framework Shiraz et al., (2014) considered as a

second benchmark. Similarly, the prototype application consists of generating two

0

10

20

30

40

50

60

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Lemgth of Matrices

132

random matrices at local mobile device which are then offloaded to remote servers for

multiplication with each other and then displayed the resulted matrix on mobile screen.

The ET and EC by using traditional method are higher than the local execution because

the communication overhead and extra resources utilization involved in performing the

executions. The prototype application ran for 30 different computational intensities

started from 160x160 to 450x450 with the increase of 10 in each following

computational intensity.

From the experimental results of Table 4.6 of Chapter 4, it is observed that the

ET/TT of executing the application using traditional computational offloading method

on Samsung Galaxy A5 varies between different computational intensities. Figure 5.5

shows the ET in milliseconds (ms) against the multiplication of different matrix sizes

executed on remote servers offloaded through traditional computational offloading

method using Samsung Galaxy A5. The mean ET of processing application carrying the

intensity 160x160 for a sample space of 20 is equal to 9,608 ms, with 99 % confidence

interval 9608 (+/-)1236 ms which shows the range of possible ET between 9608+1,236

ms and 9,608-1,236 ms. The variation in ET determined by calculating SD for each

intensity of sample space 20 which is 535.78ms for 160x160.

Likewise, the ET of computational intensity 200x200 is equal to 14286ms with

14,286(+/-) 928 ms while the SD for sample space 20 is equal to 402.23 ms. By a close

observation the ET pattern increases about 1-2 seconds while computing the lower

computational intensity under the range 240x240. For higher intensities above than

240x240, the ET quickly increased for each intensity approximate 5 seconds for each.

The ET of computational intensity 450x450 reached up to 189,523 ms with a SD

value 2,089 ms and of confidence interval 189,523(+/-) 4822 ms. It is thus clear from

the evaluation and observations of executing all computational intensities that as the

computational intensity increases the ET increases. Compare to the local execution, the

ET/TT reached up to 189,523 ms which is about 80,000 ms longer than executing the

same intensity by local execution at mobile device.

133

Figure 5.5 Execution Time of Matrix Multiplication in Traditional Offloading by

Samsung Galaxy A5

Similarly, from the experimental results of Table 4.7 of Chapter 4, it is observed

that the ET/TT of executing the application using traditional computational offloading

method on ASUS Zenfone5 varies between different computational intensities. Figure

5.6 shows the ET in milliseconds (ms) against the multiplication of different matrix

sizes executed on remote servers offloaded through traditional computational offloading

method.

Figure 5.6 Execution Time of Matrix Multiplication in Traditional Offloading by

ASUS Zenfone5

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Lenth of Matrices

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Length of Matrices

134

The mean ET of processing application carrying the intensity 160x160 for a

sample space 20 is equal to 11280ms, with 99 % confidence interval 11,280(+/-)379 ms

which shows the range of possible ET between 11,280+379 ms and 11,280-379 ms. The

variation in ET determined by calculating SD for each intensity of sample space 20

which is 535.78 ms for 160x160. For computational intensity 300x300 the mean

execution time is 45,520 ms with SD 228.04 and 0.50 % RSD. The last intensity

450x450 executed in ASUS Zenfone5, the execution time reaches up to 152,520 ms

with 238.75 SD and 0.16 % RSD.

Further, the EC in Joules (J) of executing the prototype application at remote

servers by traditional computational offloading methods, for both the devices are

presented in Table 4.8 and Table 4.9 of Chapter 4. Figure 5.7 shows the EC in Joules (J)

against the multiplication of two random matrices of different sizes in traditional

offloading using Samsung Galaxy A5. It is observed that the EC varyies of computing

the matrix multiplication for all the intensities. EC is lowest for multiplying the lowest

size/intensity 160x160 and gradually increasing till the highest computational intensity

which is 450x450. The observed mean EC of multiplying the matrices of dimensions

160x160 is 7.72 J which is calculated by running the same intensity for sample size 20.

The 99 % confidence interval 7.72(+/-)1 shows that the possible range of energy

consumption fall in between 7.72+1 J and 7.72-1 J.

Figure 5.7 Energy Consumption (J) of Matrix Multiplication in Traditional

Offloading by Samsung Galaxy A5

0

20

40

60

80

100

120

En
e

rg
y

C
o

n
su

m
p

ti
o

p
n

 C
o

st
 (

J)

Length of Matrices

135

SD is 0.421 J for the computational intensity 160x160 of the same sample space

in each experiment. Similarly, the mean energy consumption of computational intensity

300x300 is observed which is 30.36 J with 99 % confidence interval 30.36(+/-)1. The

confidence interval with margin of error 1 shows the standard deviation SD is minimal

and the values of calculated energy consumptions in the same sample are almost equal.

The SD observed for the computational intensity 300x300 is 0.241 J while the % RSD

which is 0.79 % shows that the standard deviation value of the same intensity is 0.79 %

of the mean value.

Furthermore, the observed mean EC of multiplying matrices of dimensions

450x450 is 102.08 J with a confidence interval 102.08(+/-)1. The energy cost of the

highest intensity on the experiments, 450x450 is higher than all the computational

intensities. The calculated 99 % confidence interval for the same intensity is 102.08 (+/-

)1 J. The % RSD 0.59 is the percentage energy consumption in Joules of standard

deviation to energy consumption of mean.

Subsequent in Figure 5.8 shows the EC in Joules (J) against the multiplication of

two random matrices of different sizes in traditional offloading using ASUS Zenfone 5.

By the observations of collected results, it is clear that EC of lower intensities are

lowest starting from 8.56 J while the same for higher intensities increases and reaches

up to 102.74 J for 450x450.

Figure 5.8 Energy Consumption (J) of Matrix Multiplication in Traditional

Offloading by ASUS Zenfone5

0

20

40

60

80

100

120

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Lemgth of Matrices

136

5.4 Analysis of Application Execution using REST-Offload Method

The prototype application executed by proposed REST-Offload method in order

to estimate the ET in milliseconds (ms) and EC in Joules (J). The experiments

conducted with both the devices. The detail experimental results presented in Table

4.10, Table 4.11, Table 4.12 and Table 4.13 of Chapter 4 are going to further analyse in

this section. The main concern of deploying the surrogate (cloudlet) to reduce distance

between client device and remote service, which is on the other hand hit power due to

longer RTT. Here, the similar prototype application consists of generating two random

matrices at local mobile device which are then offloaded to surrogate servers for

multiplication and displays the resulted matrix on mobile screen. The ET and EC by

using REST-Offload method are very low than the local execution and of traditional

offloading methods because the communication overhead and extra resources utilization

are minimized in performing the execution.

From the experimental results, it is observed that the ET of executing the

application using the proposed solution REST-Offload computational offloading

methods varies between different computational intensities. Figure 5.9 shows the ET in

milliseconds (ms) by conducting experiment with Samsung Galaxy A5.

Figure 5.9 Execution Time (ms) of Matrix Multiplication in REST-Offload using

Samsung Galaxy A5

0

10000

20000

30000

40000

50000

60000

Ex
e

cu
ti

o
n

 T
im

e

Length of Matrices

137

The component of prototype application where the multiplication of different

matrix sizes, executed on remote servers offloaded through REST-Offload method. The

mean ET of processing application carries the intensity 160x160 for a sample space 20

is equal to 7,418 ms, with 99 % confidence interval 7,418(+/-)514 ms. It shows the

range of possible ET between 7418+514ms and 7,418-514 ms. The variation in ET

determined by calculating SD for each intensity of sample space 20 which is 222.86ms

for 160x160.

Similarly, the ET of computational intensity 300x300 is equal to 23365ms with

23,365(+/-) 660 ms while the SD for sample space 20 is equal to 285.93 ms. By a close

observation a gradual and constant proliferation noted in the ET pattern in computing

each higher computational intensity in the complete set of 30 intensities. This increase

is approximate a second or two for each following intensity. The ET of computational

intensity 450x450 reached to 49587ms with a SD value 274.23 ms and of confidence

interval 49,587(+/-) 633 ms.

It is clear from the evaluation and observations of executing all computational

intensities through REST-Offload that, as the computational intensity increases the ET

increases. Compare to local execution here the ET reached up to 49,587 ms which is

about 61,000 ms less than the local execution of prototype application and 140,000 ms

from traditional computational offloading techniques.

Further, the ET of executing prototype application through REST-Offload using

ASUS Zenfone5 are shown in Figure 5.10. The results given in Table 4.11 of Chapter 4

are going to analyse here. The ET of executing task using ASUS Zenfone5 and

Samsung Galaxy A5 through REST-Offload is identical. The detail comparison of ET

of both the devices through REST-Offload is given in Section 5.7 of this Chapter. If we

consider the three random intensities as shown in Figure 5.10, the mean ET of intensity

160x160 is 7,780 ms with SD 164.32 and 2.11 % RSD. Similarly, the mean ET of

computational intensities 300x300 is 24,320 ms with SD 228.04 and 0.94 % RSD. The

last and highest computational intensity of all 30 intensities is 450x450 and the mean

ET of this intensity is 61,520 ms with 178.89 SD and 0.29 % RSD. Offloading through

REST-Offload is comparatively impressive as it reduces ET about 30 %. The detail

comparison is given in Section 5.9 of this Chapter.

138

Figure 5.10 Execution Time (ms) of Matrix Multiplication in REST-Offload using

ASUS Zenfone5

Likewise, the EC in Joules (J) of executing the prototype application at surrogate

servers by offloading through REST-Offload are presented in Table 4.12 and Table 4.13

of Chapter 4. The experimental results of multiplying two random matrices of different

sizes with 30 computational intensities using REST-Offload are further analysing in this

section. Figure 5.11 shows the Energy Consumption in Joules (J) against the

multiplications of two random matrices of different sizes using Samsung Galaxy A5. It

is perceived that the EC fluctuating for computing the matrix multiplication of different

intensities, started from lowest consumption to higher as the intensity increases.

Figure 5.11 Energy Consumption (J) of Matrix Multiplication in REST-Offload

using Samsung Galaxy A5

0

10000

20000

30000

40000

50000

60000

70000

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Length of Matrices

0

5

10

15

20

25

30

En
e

rg
y

C
o

n
cu

m
p

ti
o

n
 C

o
st

 (
J)

Length of Matrices

139

The EC is lowest for multiplying the lowest size/intensity 160x160 and

gradually increasing till the highest computational intensity which is 450x450. The

observed mean EC of multiplying the matrices of dimensions 160x160 is 3.48 J which

is calculated by running the same intensity for sample size 20. The 99 % confidence

interval 3.48(+/-)0 shows that the margin of error 0 and therefore the possible range of

EC closely fall around 3.48 J. The SD shows the variation in observed values of the

same sample for the same intensity. It is 0.1 for the computational intensity 160x160 of

the same sample space in each experiment.

Similarly, the mean EC of computational intensity 300x300 is observed 11.50 J

with 99 % confidence interval 11.50 (+/-)1. The confidence interval with margin of

error 1, shows the standard deviation SD is minimal and the values of calculated EC in

the same sample are almost equal. The SD observed for the computational intensity

300x300 is 0.31 J while the % RSD which is 2.75 % shows that the standard deviation

value of the same intensity is 2.75 % of the mean value. The lowest the % RSD the

closer are the sample values. Also, the observed mean EC of multiplying matrices of

dimensions 450x450 is 25.35 J with a confidence interval 25.35(+/-)0. The EC of the

highest intensity in the experiment 450x450 is higher than all the computational

intensities. The % RSD 0.48 is the percentage EC in Joules of standard deviation to

energy consumption of mean.

Figure 5.12 Energy Consumption (J) of Matrix Multiplication in REST-Offload by

ASUS Zenfone5

0

5

10

15

20

25

30

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Length of Matrices

140

Next, the EC cost of executing same intensities using ASUS Zenfone5 shown in

Figure 5.12. The results gathered in Table 4.13 of Chapter 4 are further analysing and

comparing here. The three random intensities are picked. The EC at ASUS Zenfone5 of

160x160 through REST-Offload is 4.64 J with SD 0.29 and 6.21 % RSD. Similarly, the

EC of 300x300 is 13.16J with SD 0.25 and 1.19 % RSD. The EC of the highest

computational intensity 450x450 is 28.32 J with SD 0.30 and 1.07 % RSD. EC of ASUS

Zenfone5 through REST-Offload is slight higher than the one executed at Samsung

Galaxy A5 which is in detail compared and analysed in Section 5.7 of this Chapter.

5.5 Comparison of Execution Time of Matrix Multiplication Service between

Local Execution, Traditional Offloading and REST-Offload

This section consists of the results comparison and analysis of both the devices

Samsung Galaxy A5 and ASUS Zenfone5 in terms of Execution Time (ET) for all three

scenarios Local Execution, Traditional Offloading and REST-Offload.

5.5.1 Execution Time (ET) Result Comparison of Samsung Galaxy A5

Here, the ET of all three scenarios conducted with Samsung Galaxy A5 is going

to analyse. Table 5.1 shows sample results comprise of the ET results gathered for all

three scenarios with Samsung Galaxy A5. The rest of the result shown in appendix E

(Table E.1). Analysing of ET is crucial for two basic reasons. Firstly, it is proved in all

the previous researches that, network communication, CPU Processing and longer ET

always hit the battery power (Anand et al., 2007). Also, the shorter ET is most

important for real time processing as well as user’s demand for instant interaction with

their gadgets. It is considered further to analyse and compare how long the porotype

application took place to execute in each scenario.

Table 5.1 Comparison of ET of Samsung Galaxy A5 between Local Execution,

Traditional Offloading and REST-Offload

Matrix Size ET of Local

Execution

ET of Traditional

Offloading

ET of REST-Offload

Method

160x160 11071 9608 7418

450x450 111799 189523 49587

141

By evaluating the experiments result of Samsung Galaxy A5, the execution time

of prototype application at local mobile device is longer than executing the same with

traditional offloading techniques for the computational intensities in the range 160x160

to 300x300. In Contrast, the execution time of computational intensities following

300x300 until 450x450 takes longer ET using traditional techniques. It shows that for

lower computational intensity of any task execution which involves less computation

can be offloaded to remote surrogate through traditional offloading. However, the tasks

which are complex in computation, required longer execution time take longer time to

execute. Further, the comparison shows that the execution time of different

computational intensities starting from 160x160 until 450x450, in all the three

scenarios, execution time of local mobile device is greater than the REST-Offload while

less than traditional offload. Similarly, executing the same intensity at traditional

computational offloading, the ET is less than the ET of local execution. Similarly, the

ET of traditional offloading is greater than ET of the same intensity if execute it through

REST-Offload method. Figure 5.13 shows the complete comparison of the three

scenarios. It is clear that ET of conducting offloading through REST-Offload is lower

than attempted at local mobile device or executing the same through traditional

offloading techniques.

Figure 5.13 Execution Time (ms) Comparison of Matrix Multiplication of all Three

Scenarios using Samsung Galaxy A5

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Matrices Length

Local Traditional REST-Offload

142

Table 5.2 P% of ET of REST-Offload Method for Samsung Galaxy A5 using the

equation, Y= P% * X, against Local Execution and Traditional Offloading

To go more specific in comparison of all three scenarios the percentage

Execution Time calculated of the three random computational intensities. Table 5.2

shows the P% of Execution Time of REST-Offload Method using the equation, Y= P%

* X, against Local Execution and Traditional Offloading. It also included Execution

Time using Traditional Offloading against Local Execution. It will give the percentage

execution of REST-Offload against Local Execution and Traditional Offloading for the

three random computational intensities. The percentage Execution time of

computational intensity 160x160 executing prototype application using REST-Offload

against local execution is 67 % which is decreasing as the computational intensity

increases, such as for 300x300 is 56.02 % and for 450x450 is 44.35 %.

By the comparison of the results for all three scenarios using Samsung Galaxy

A5 as a DUT, it is clear that as the complexity increases, execution of computational

intensive task at REST-Offload becoming useful in terms of Execution Time. Similarly,

if consider the ET of traditional computational offloading, which is 86.79 % for

160x160 against local execution which reaches up to 169.52 % for the computational

intensity 450x450. It shows that for a task with less computational load can be executed

quickly at traditional offloading method while for complex execution task the local

execution can process them fast.

5.5.2 Execution Time (ET) Result Comparison of ASUS Zenfone5

The Execution Time (ET) results collected in Table 5.3 consist of sample results

of ASUS Zenfone 5 for all three scenarios Local Execution, Traditional Offloading and

REST-Offload are going to analyse. Rest of the results are in appendix E (Table E.2).

Computational

Intensity

% ET of REST-Offload

against Local

Execution

% ET of Traditional

Offloading against

Local Execution

% ET of REST-Offload

Method against

Traditional Offloading

160x160 67.00 86.79 77.21

300x300 56.02 97.40 57.51

450x450 44.35 169.52 26.16

143

Table. 5.3 Comparison of ET of ASUS Zenfone5 between Local Execution,

Traditional Offloading and REST-Offload

By evaluating the experiments results, the ET of prototype application at local

mobile device is longer than executing the same with traditional offloading techniques

for the computational intensities in the range 160x160 to 300x300. In Contrast, the

execution time of computational intensities after 300x300 until 450x450 takes longer

ET using traditional techniques. It shows that for lower computational intensity of any

task execution, which involves less computations can be offloaded to remote surrogate

through traditional offloading, while for tasks which required higher/complex

computations takes longer execution time if delegate the task with Traditional

Offloading Methods. The results in terms of Execution Time of ASUS Zenfone5 is

almost identical to the result of Samsung Galaxy A5, which is further explained in

Section 5.7 of this Chapter.

Figure 5.14 Execution Time (ms) Comparison of Matrix Multiplication of all Three

Scenarios using ASUS Zenfone5

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

1
6

0
x1

6
0

1
8

0
x1

8
0

2
0

0
x2

0
0

2
2

0
x2

2
0

2
4

0
x2

4
0

2
6

0
x2

6
0

2
8

0
x2

8
0

3
0

0
x3

0
0

3
2

0
x3

2
0

3
4

0
x3

4
0

3
6

0
x3

6
0

3
8

0
x3

8
0

4
0

0
x4

0
0

4
2

0
x4

2
0

4
4

0
x4

4
0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Matrices Length

Local Traditional REST-Offload

Matrix Size ET of Local

Execution

ET of Traditional

Offloading

ET of REST-Offload

Method

160x160 13240 11280 7780

450x450 118460 152520 61520

144

Table 5.4 P% of ET of REST-Offload Method for ASUS Zenfone5 using the

equation, Y= P% *X, against Local Execution and Traditional Offloading

Further, the comparison shows that the ET of different computational intensities,

executing 160x160 at all three scenarios, ET of local mobile device is greater than the

rest two. Similarly, executing the same intensity at traditional computational offloading

way, the ET is less than the ET of local mobile device while greater than ET of same

intensity if execute it through REST-Offload method. Figure 5.14 shows the complete

comparison of the three scenarios. It is clear that ET of attempting execution through

REST-Offload is lower than the one attempted at local mobile device or executing the

same through traditional offloading techniques.

To go more specific in comparison of all three scenarios the percentage ET

calculated of the three random computational intensities. Table 5.4 shows the P% of ET

of REST-Offload Method using the equation, Y= P% * X, against Local Execution and

Traditional Offloading. It also included Execution Time using Traditional Offloading

against Local Execution. It will give the percentage execution of REST-Offload against

Local Execution and Traditional Offloading for the three random computational

intensities. The percentage ET of computational intensity 160x160 executing prototype

application using REST-Offload against local execution is 58.76 %. It decreases with

the computational intensity increase, such as for 300x300 is 53.22 % and for 450x450 is

51.93 %.

By the comparison of the results for all three scenarios using ASUS Zenfone5 as

a DuT, it is clear that as the complexity increases, execution of the computational

intensive tasks at REST-Offload becoming useful in terms of Execution Time. Two

types of pattern observed here in the results. If compare all three scenarios, then ET of

REST-Offload is lower than the rest two and therefore is more efficient.

Computational

Intensity

% ET of REST-Offload

against Local

Execution

% ET of Traditional

Offloading against

Local Execution

% ET of REST-Offload

Method against

Traditional Offloading

160x160 58.76 85.20 68.97

300x300 53.22 99.61 53.43

450x450 51.93 128.75 40.34

145

In the second pattern, if consider the execution time of traditional computational

offloading, which is 85.20 % for 160x160 against local execution and reaches up to

128.75 % for the computational intensity 450x450. It shows that for tasks with less

computational load can be executed quickly at traditional offloading methods while for

complex tasks the local execution can process faster.

5.6 Comparison of Energy Consumption (EC) of Matrix Multiplication Service

between Local Execution, Traditional Offloading and REST-Offload

This section consists of the results comparison and analysis in terms of Energy

Consumption (EC) between all the three scenarios Local Execution, Traditional

Offloading and REST-Offload. The results of the three scenarios for both devices are

distinctly compared as given in following sub-sections.

5.6.1 Energy Consumption (EC) Result Comparison of Samsung Galaxy A5

The EC of prototype application at local mobile device, offloaded to remote

servers, through traditional computational method and offloaded through REST-Offload

method are collected using Samsung Galaxy A5 in Chapter 4. Table 5.5 shows the

sample results of the Energy Consumption Cost gathered for all the three scenarios. The

details of results attached in appendix E (Table E.3). Further analysis and comparison of

energy consumption costs of different computational intensities evaluated using all

three scenarios. By evaluating the experiments results the energy consumption cost of

prototype application at local mobile device is greater than executing the same

application using REST-Offload techniques, for all the 30 different computational

intensities starting from 160x160 to 450x450.

Table. 5.5 Comparison of Energy Consumption Cost between Local Execution,

Traditional Offloading and REST-Offload for Galaxy A5

Matrix Size EC (J) in

Local Execution

EC (J) in

Traditional Offloading

EC (J) in

REST-Offload Method

160x160 4.58 7.72 3.48

450x450 45.4 102.08 25.35

146

It is also observed that the EC of local execution is less than the energy

consumption costs of traditional offloading techniques, for all the 30 computational

intensities 160x160 to 450x450. It shows that for the used test case, traditional

computational offloading methods are complex and energy intensive.

Moreover, the Traditional Offloading techniques are complex as it needed extra

mobile’s resources for computational offloading which is discussed in detail in Chapter

3. The inference component, dynamic partitioning and virtual machine migrations are

few of the heavyweight procedures which turns the offloading techniques computational

intensive. The energy costs for executing all the 30 computational intensities using

REST-Offload method are very low compare to the rest two.

Further, comparison of the energy consumption costs of few selected cases of

computational intensities for all the three scenario attempted. It shows, that the energy

consumption cost of local mobile device is 4.58 J which is less than the energy

consumption cost of traditional method 7.72 J while is greater than the REST-offload

method 3.48 J. Similarly, the energy consumption cost of computational intensity

300x300, executed at local mobile device is 19.62 J. It is less than the energy

consumption cost 30.36 J of executing same intensity through traditional offloading

method while greater than the energy consumption cost 11.50 J of executing through

REST-Offload. In case of executing 450x450 in all three scenarios, the energy

consumption costs of local execution is less than the traditional offloading method

while greater than executing the same through REST-Offload.

 Figure 5.15 shows the complete comparison of the three scenarios. It is clear

from the results that, the Energy Consumption Costs of local execution in executing the

same intensity for all the scenarios less than the energy consumption cost at Traditional

Methods, while greater than executing the same at REST-Offload. The range of energy

consumption cost of local execution fall in the range 4.58-45.4 J for all 30

computational intensities. Similarly, traditional offloading energy consumption cost is

in the range of 7.72-102.08 J while REST-offload fall in the range 3.48-25.35 J which

comparatively very low of the other two scenarios.

147

Figure 5.15 Energy Consumption (J) Comparison of Matrix Multiplication of all

Three Scenarios using Samsung Galaxy A5

To go more specific in comparison of all the three scenarios the percentage EC

calculated of three randomly chosen computational intensities. Table 5.6 shows the P%

of REST-Offload Method using the equation, Y= P% * X, against Local Execution and

Traditional Offloading. It also included EC of Traditional Offloading against Local

Execution. It will give the percentage EC of REST-Offload against Local Execution and

Traditional Offloading for the three random computational intensities. The percentage

EC of computational intensity 160x160 executing prototype application using REST-

Offload against local execution is 75.98 % which is decreasing as the computational

intensity increases, such as for 300x300 is 58.61 % and for 450x450 is 55.84 %. It

shows that, as the complexity increases, the execution of computational intensive task at

REST-Offload getting more useful in terms of Energy Consumption.

Table 5.6 P% of Energy Consumption of REST-Offload Method for Samsung

Galaxy A5 using the equation, Y= P% * X, against Local Execution and Traditional

Offloading

0

20

40

60

80

100

120

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Matrices Length

Local Traditional REST-Offload

Computational

Intensity

% EC of REST-

Offload against Local

 Execution

% EC of Traditional

Offloading against Local

Execution

% EC of REST-Offload

Method against

Traditional Offloading

160x160 75.98 168.56 45.08

300x300 58.61 154.74 37.88

450x450 55.84 224.85 24.83

148

Similarly, if consider the Energy Consumption Cost of traditional computational

offloading which is 168.56 % for 160x160 against local execution, depicts a significant

increase in energy consumption compare to local execution. It reaches up to 224.85 %

for the computational intensity 450x450. It is clear that, for any kind of intensive task

execution through traditional offloading methods are time and energy intensive and

drain power more than any other method. The energy consumption cost of REST-

Offload is comparatively very low against the energy consumption cost of both the

scenarios which are given in percentage in Table 5.6.

5.6.2 Energy Consumption (EC) Result Comparison of ASUS Zenfone5

The EC results of prototype application at local execution, traditional

computational offloading techniques and REST-Offload method, are gathered using

ASUS Zenfone5 in Chapter 4. Table 5.7 shows the sample results of EC gathered for all

three scenarios. It is further considered to analyse and compare EC of different

computational intensities evaluated using all the three scenarios. Rest of the results are

in appendix E (Table E.4).

By evaluating the experiments results, the EC of prototype application at local

mobile device is greater than EC of executing the same application at REST-Offload

method. It is also observed that the EC of local execution is less than the EC of

executing prototype application through traditional offloading techniques for all the 30

computational intensities 160x160-450x450. The results affirm that, for the used test

case, the energy costs of traditional computational offloading methods are energy

intensive. The reason of energy intensity of traditional computational offloading

methods is the extra mobile’s resources utilization in computational offloading which is

already discussed in Chapter 3.

Table 5.7 Comparison of Energy Consumption Cost between Local Execution,

Traditional Offloading and REST-Offload for ASUS Zenfone5

Matrix Size EC (J) in

Local Execution

EC (J) in

Traditional Offloading

EC (J) in REST

Offload Method

160x160 5.54 8.56 4.64

450x450 48.4 102.74 28.32

149

The inference component, dynamic partitioning and virtual migration are few of

the heavyweight procedure which turns offloading to a resource intensive solution. The

energy cost for executing all 30 different computational intensities using REST-Offload

method are very low compare to the rest two. Further, the comparison of the EC of few

individual cases of computational intensities such as, for the intensity 160x160 the

observed EC of all three scenarios is 4.64 J < 5.54 J < 8.56 J shows that Rest-Offload <

Local-Execution < Traditional-Offload. Similarly, the EC of computational intensity

300x300 executed at local mobile device is 20.38J which is less than the EC 31.6J of

executing same intensity through traditional offloading method while greater than the

EC 13.16 J of executing it by REST-Offload. In case of executing 450x450 in three

scenarios the EC of local execution again is less than the traditional offloading method

while greater than executing the same through REST-Offload.

 Figure 5.16 shows the complete comparison of the three scenarios. It shows that

the EC of local execution for the same intensity is less than the EC at traditional

Methods, while greater than executing the same at REST-Offload. The range of EC of

local execution falls in the range 5.54J-48.4J for all 30 computational intensities.

Similarly, EC in traditional offloading falls in the range of 8.56J-102.74J while REST-

offload falls in the range 6.64J-28.32J which is comparatively very low than the other

two scenarios. To go more specific in comparison of all three scenarios the percentage

EC calculated of three randomly chosen computational intensities.

Figure 5.16 Energy Consumption (J) Comparison of Matrix Multiplication of all

Three Scenarios using ASUS Zenfone5

0

20

40

60

80

100

120

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Matrices Length

Local Traditional REST-Offload

150

Table 5.8 P % of Energy Consumption of REST-Offload Method of ASUS

Zenfone5 using the equation, Y= P% * X, against Local Execution and Traditional

Offloading

Table 5.8 shows the P% of REST-Offload Method using the equation, Y= P% *

X, against Local Execution and Traditional Offloading. It also included Energy

Consumption Cost using Traditional Offloading against Local Execution. It gives the

percentage Energy Consumption Cost of REST-Offload against Local Execution and

Traditional Offloading for the three randomly chosen computational intensities.

The percentage EC of computational intensity 160x160 executing prototype

application using REST-Offload against local execution is 75.98 %. It is decreasing as

the computational intensity increasing, such as for 300x300 is 58.61 % and for 450x450

is 55.84 %. It shows that as the complexity increases, the execution of computational

intensive task at REST-Offload getting more efficient in terms of Energy Consumption.

Similarly, if consider the percentage Energy Consumption Cost of traditional

computational offloading against local execution, which is 169.56 % for 160x160. It

shows a huge increase in energy consumption compare to local execution. It reaches up

to 224.85 % for the computational intensity 450x450. It is clear from the results that for

any kind of intensive task execution through traditional offloading methods are time and

energy intensive and drain power more than any other method. The EC of REST-

Offload is comparatively very low against the energy consumption cost of both the

scenarios which are given in percentage in Table 5.8.

Computational

Intensity

% EC of REST-Offload

against Local

 Execution

% EC of Traditional

Offloading against

Local Execution

% EC of REST-Offload

Method against

Traditional Offloading

160x160 75.98 168.56 45.08

300x300 58.61 154.74 37.88

450x450 55.84 224.85 24.83

151

5.7 Comparison of Execution Time (ET) and Energy Consumption (EC)

between REST-Offload and DCOF Framework

DCOF Framework proposed by Shiraz et al., in (2013), as a lightweight solution

for addressing the resources intensity and communication overhead. DCOF is

considered as a second benchmark in this study. Both, REST-Offload and DCOF

(Distributed Computational Offloading Framework) are going to analyse in this section

in terms of ET and EC. Also, the data set of DCOF Framework is considered in REST-

Offload for testing ET and EC. The intention of selecting same data set was the

comparison of results against DCOF (the benchmark). It was also intended to find out

the efficiency of REST-Offload. The first part of this section is going to discuss and

compare the ET results of DCOF and REST-Offload model. The second part consist of

discussion and comparison of both the approaches for EC. Table 5.9 shows the sample

ET results of executing the computational intensities started from 160x160 until

450x450. The detail results are in appendix E (E.5).

DCOF Framework shows 72 % ET efficiency against Traditional Computational

Offloading techniques, while REST-Offload shows 104.2 % ET efficiency against

Traditional Computational Offloading Techniques. Figure 5.17 illustrates the

comparison of all 30 computational intensities between REST-Offload and DCOF.

DCOF solution initially proposed the elimination of unnecessary utilization of mobile’s

resources during offloading of computational task to remote servers. However, the

results collected from both the approaches shows that, by the deployment of Virtual

Machine in computational offloading technique demands extra resources at mobile

devices. Also, the delegation of VM instance at runtime needs to transfer a huge data to

remote servers using the available bandwidth, which takes more time to complete the

task.

Table 5.9 Comparison of ET between REST-Offload and DCOF Framework

Matrix Size ET (ms) in

DCOF Framework

ET (ms) of REST-

Offload

 Difference (ms)

160x160 4241 7418 -3177

450x450 97887 49587 48300

152

Figure 5.17 ET (ms) Comparison of Matrix Multiplication of between DCOF and

REST-Offload

Figure 5.17 shows that for all the tasks which are lightweight can be executed

quicker at DCOF while as the complexity of the task increases the resources utilization

and communication overhead increases, which increases ET. The ET of DCOF while

executing intensities 160x160 to 320x320 is less than REST-Offload whereas, the ET

intersects the ET of REST-Offload after computational intensities 340x340 to 450x450,

which clearly shows that for higher complexity REST-Offload is efficient than DCOF.

Next, this section also discusses the EC of matrix multiplication operation

between both the approaches. Table 5.10 shows the sample result comparison of EC

while executing computational intensities 160x160 to 450x450 through DCOF and

REST-Offload. Referred to appendix E (Table E.6) for details results. Previously, by

examining the results of local execution against REST-Offload, the EC increases as the

ET increases. The EC given in Table 5.10 plotted to show a precise comparison of

both, as shown in Figure 5.18. Against the results of ET which intersects until mid, the

EC here is higher in DCOF from the first intensity 160x160 until last intensity 450x450,

regardless of the twisting of ET at mid.

Table 5.10 Comparison of EC between REST-Offload and DCOF Framework

0

20000

40000

60000

80000

100000

120000

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Matrices Length

REST-Offload DCOF

Matrix Size EC (J) in

DCOF Framework

EC (J) of REST-Offload Difference (J)

160x160 10.8 3.48 7.32

450x450 65.3 25.35 39.95

153

Figure 5.18 EC (J) Comparison of Matrix Multiplication of between DCOF and

REST-Offload

The EC range of DCOF starting from 10.8 J for intensity 160x160 and reaches

up to 65.3 J for the last intensity 450x450. Similarly, the EC range of REST-Offload is

24.35 J, starting from 3.48 J for the lowest intensity while 25.35 J is the EC for highest

intensity 450x450. The ET efficiency of REST-Offload against the benchmarks Local

Execution and DCOF is 54.63 % and 35.01 % respectively. Also, the EC efficiency of

the proposed REST-Offload model against both the benchmarks Local Execution and

DCOF is 43 % and 60.14 % respectively. The observation and comparison of results in

all three scenarios such as Local Execution, REST-Offload and of DCOF shows that,

REST-Offload is far efficient in ET and EC both than DCOF and Local Execution.

5.8 ET and EC Comparison of Samsung Galaxy A5 with ASUS Zenfone5 for all

Three Scenarios

Two different state-of-the-art mobile devices of two different vendors used as

DuT in the experiments. The intension of using different mobile devices with different

specifications to know the effect of lower/higher speed processor and different network

interfaces on battery consumption. Also to know the efficiency of proposed light weight

method by changing specification of mobile models and brands. This section consists of

the results comparison between two different devices, in terms of ET and EC. In the

first part the comparison in terms of Execution Time (ET) is presented in Table 5.11 as:

0

10

20

30

40

50

60

70

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Matrices Length

REST-Offload DCOF

154

Table 5.11 ET Comparison of Samsung Galaxy A5 and ASUS Zenfone5

The ET of processing task in all three scenario of Samsung Galaxy A5 is a bit

lower than the ET for the same using ASUS Zenfone5. There are many reasons of

differences in the observed results and few key reasons are the specification differences

(CPU architectures, clock speeds, number of cores, and amount of RAM) (Shin et al.,

Matrix

Size

ET (ms) of Local Exec. ET (ms) of Traditional-Off. ET (ms) of Rest-Off

Galaxy A5

ASUS Z5

Galaxy A5

ASUS Z5

Galaxy A5

ASUS Z5

160x160 11071 13240 9608 11280 7418 7780

170x170 12675 14880 10544 13220 8042 8420

180x180 14696 16460 11152 14260 8503 9140

190x190 16331 18425 13448 16260 9511 10360

200x200 18088 20300 14286 17420 10374 11160

210x210 20146 22620 16406 19420 10844 12260

220x220 22004 24460 17200 22420 12572 12540

230x230 24290 27420 18931 24500 13814 14220

240x240 26542 29380 20687 26400 15236 15360

250x250 28654 32240 23727 29620 16448 16700

260x260 31666 34280 26968 31620 17410 18440

270x270 33751 37160 29593 34360 18719 19540

280x280 37176 39220 33056 37400 20403 21260

290x290 38941 43540 35777 41420 21483 23380

300x300 41711 45700 40627 45520 23365 24320

310x310 45589 49400 46807 49280 24627 25480

320x320 49128 52300 52168 52380 26354 27300

330x330 53249 56060 58184 58360 27505 29460

340x340 56637 58680 63449 64380 28799 32380

350x350 60939 62300 70335 67460 30591 33360

360x360 63523 66540 76010 70562 31768 34480

370x370 65479 70240 87753 80360 33536 37460

380x380 71061 74320 101338 89480 35023 39260

390x390 79131 79340 120554 95560 37374 41440

400x400 83313 84640 136166 105340 38703 44720

410x410 87112 89360 148291 116460 40305 49240

420x420 89920 96540 165687 123500 41631 51320

430x430 95844 102760 173176 131360 43565 54540

440x440 104633 109600 182196 140640 46347 58440

450x450 111799 118460 189523 152520 49587 61520

155

2013). Specification of the devices against each other are given in Table 5.12. For a

decent performance, the CPU and RAM specifications must be good enough as well as

the device need to be in good operating condition. The device condition can also be

considered one of the reasons, which effect the device’s performance.

Devices according to the conditions are categorized as, brand new, good

condition, reliable, poor condition, broken. The DuT in the experiments are Samsung

Galaxy A5 which is good in condition after passing through the initial test. A good

phone is the one having no visible scratches, battery health good and not much used. A

reliable phone is the one which works 100 % but having some visible scratches, used

longer and battery condition not very good. Also, due to continuous use of the device,

processing speed get slower due to heated up ICS. The ASUS Zenfone5 is reliable in

condition which affects the experiment’s result.

Now to distinctly analyse the differences of results, the processor of Samsung

Galaxy A5 is Quad-core while ASUS Zenfone5 is Dual-core. In Addition, the condition

of Samsung Galaxy A5 is good while ASUS Zenfone5 is reliable. The RF CAL

(manufacturing year) of Samsung Galaxy A5 shows the device is latest while ASUS

Zenfone5 used longer and reliable only in condition. Due to all these specification’s

differences and the devices conditions, the ET results of both the devices in all three

scenarios are slightly different. The ET results of Samsung Galaxy A5 is slightly better

than ASUS Zenfone5, as shown in Figure 5.19, Figure 5.20 and Figure 5.21.

Table 5.12 Specifications of Samsung Galaxy A5 and ASUS Zenfone5

D. Name Processor RAM Storage Battery D. Condition RF CAL

Galaxy A5 Quad-core

1.2 GHz

2 GB 16 GB 2300mAh Good 2015.02.06

ASUS Z5 Dual-core

1.2 GHz

2 GB 8 GB 2110mAh Reliable 2014.01.22

156

Figure 5.19 Execution Time (ms) Comparisons of Galaxy A5 and ASUS Z5 in Local

Execution

Figure 5.20 Execution Time (ms) Comparisons of Galaxy A5 and ASUS in

Traditional Offloading

0

20000

40000

60000

80000

100000

120000

140000

1
6

0
x1

6
0

1
8

0
x1

8
0

2
0

0
x2

0
0

2
2

0
x2

2
0

2
4

0
x2

4
0

2
6

0
x2

6
0

2
8

0
x2

8
0

3
0

0
x3

0
0

3
2

0
x3

2
0

3
4

0
x3

4
0

3
6

0
x3

6
0

3
8

0
x3

8
0

4
0

0
x4

0
0

4
2

0
x4

2
0

4
4

0
x4

4
0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Matrix Size

Galaxy A5 ASUS Z5

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

1
6

0
x1

6
0

1
8

0
x1

8
0

2
0

0
x2

0
0

2
2

0
x2

2
0

2
4

0
x2

4
0

2
6

0
x2

6
0

2
8

0
x2

8
0

3
0

0
x3

0
0

3
2

0
x3

2
0

3
4

0
x3

4
0

3
6

0
x3

6
0

3
8

0
x3

8
0

4
0

0
x4

0
0

4
2

0
x4

2
0

4
4

0
x4

4
0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Matrix Size

ASUS Z5 Galaxy A5

157

Figure 5.21 Execution Time (ms) Comparisons of Galaxy A5 and ASUS in REST-

Offload

Based on the results and specifications of the devices, it is concluded that

Samsung Galaxy A5 for all three scenarios is better in executing the task compare to

ASUS Zenfone5. Here, in the second part of this section, the comparisons of both the

devices in terms of energy consumption (EC) in all three scenarios is going to analyse.

Table 5.13 consist of the EC results of all three scenarios conducted with both the

devices. Similar to ET, the EC results of Samsung Galaxy A5 observed in all three

scenarios are lower than that of ASUS Zenfone5. In other words, executing a complex

task in any of the given scenario, Samsung Galaxy A5 drain less power and therefore is

energy efficient compare to ASUS Zenfone5.

The energy consumption cost of executing the task at surrogate server, offloaded

through Traditional Offloading methods observed closely identical using both the

devices. There is only (1-2) J of jump of each higher intensity while processing each

intensity. In case of executing the task locally, the EC of Galaxy A5 and ASUS Z5

having a jump of 1-2 J during processing of each intensity. Similarly, during REST-

Offload method the EC of Galaxy A5 is efficient then ASUS Z5. For lower intensities

the EC difference between both the devices is about 1 J while for higher intensities the

difference reaches up to 3 J. The overall analysis of comparison as shown in Table 5.13,

shows that Galaxy A5’s results are better and efficient than ASUS Z5.

0

10000

20000

30000

40000

50000

60000

70000

1
6

0
x1

6
0

1
8

0
x1

8
0

2
0

0
x2

0
0

2
2

0
x2

2
0

2
4

0
x2

4
0

2
6

0
x2

6
0

2
8

0
x2

8
0

3
0

0
x3

0
0

3
2

0
x3

2
0

3
4

0
x3

4
0

3
6

0
x3

6
0

3
8

0
x3

8
0

4
0

0
x4

0
0

4
2

0
x4

2
0

4
4

0
x4

4
0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Matrix Size

ASUS Z5 Galaxy A5

158

Table 5.13 EC Comparisons of Samsung Galaxy A5 and ASUS Zenfone5

Local Execution, Traditional Offloading and REST-Offload results of Table

5.13 plotted in Figure 5.22, Figure 5.23 and Figure 5.24 respectively. Galaxy A5 drains

less battery than ASUS Z5 and again of many other reasons like specification and

condition of the device, the battery status and health is important to consider which

Matrix

Size

EC (J) of Local Exec. EC (J) of Traditional-Off. EC (J) of Rest-Off

Galaxy A5

ASUS Z5

Galaxy A5

ASUS Z5

Galaxy A5

ASUS Z5

160x160 4.58 5.54 7.72 8.56 3.48 4.64

170x170 6.26 7.4 9.14 9.72 3.83 4.86

180x180 6.725 7.78 10.24 11.64 4.45 5.52

190x190 7.44 8.72 11.18 12.58 4.68 5.86

200x200 7.56 8.44 11.5 13.4 5.55 6.46

210x210 9.54 10.54 16.74 17.46 6.33 7.58

220x220 10.3 11.66 15.06 18.4 7.05 8.82

230x230 11.5 12.68 19.48 19.52 8.18 10.24

240x240 12.3 13.5 21.8 21.4 8.65 10.72

250x250 13.36 14.54 21.52 22.7 8.40 11.42

260x260 14.54 15.62 23.56 24.48 9.48 11.78

270x270 15.74 16.58 25.92 26.44 10.08 12.46

280x280 17.12 18.46 26.34 27.8 10.78 12.72

290x290 18.36 19.52 29 29.14 11.33 12.74

300x300 19.62 20.38 30.36 31.6 11.50 13.16

310x310 20.72 21.54 33.52 33.46 12.68 13.74

320x320 22.16 23.58 35.48 34.34 13.03 14.4

330x330 23.32 24.68 37.6 38.54 14.20 15.68

340x340 24.66 25.46 40.82 41.6 15.33 16.54

350x350 26.34 26.6 43.28 44.58 15.78 17.18

360x360 27.58 28.48 43.62 45.4 16.00 18.38

370x370 29.48 30.5 46.56 47.62 17.20 19.3

380x380 31.36 32.62 50.6 51.62 18.38 20.4

390x390 33.16 34.52 58.08 58.42 19.03 21.76

400x400 34.3 35.7 61.08 61.38 19.23 22.3

410x410 36.5 37.64 66.88 68.54 21.78 23.3

420x420 38.46 39.42 72.56 73.5 22.05 24.48

430x430 41.2 42.48 77.96 78.46 23.08 25.36

440x440 43.46 44.66 88.66 88.62 24.40 26.414

450x450 45.4 48.4 102.08 102.74 25.35 28.32

159

affects battery consumption. Similarly, in case of ASUS Z5 the battery health is normal

only compare to a good battery health of Galaxy A5.

Figure 5.22 Energy Consumption (J) Comparisons of Galaxy A5 and ASUS Z5 in

Local Execution

Figure 5.23 Energy Consumption (J) Comparisons of Galaxy A5 and ASUS Z5 in

Traditional Offloading

0

10

20

30

40

50

60

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Matrix Size

Galax A5 ASUS Z5

0

20

40

60

80

100

120

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Matrix Size

ASUS Z5 Galaxy A5

160

Figure 5.24 Energy Consumption (J) Comparisons of Galaxy A5 and ASUS Z5 in

REST-Offload

5.9 Efficiency Comparisons of REST-Offload against Existing Framework

In order to compare the efficiency of REST-Offload against different method

level computational offloading frameworks/models the results collected of three method

level computational offloading models. The result evaluated based on the execution

time and energy consumption in both the scenarios; local execution and offloaded

execution. The average execution time and energy consumption values calculated and

the efficiency determined for each method level model against the local execution.

Firstly, the Table 5.14 consist of the prototype application, the developed model, the

average local execution time and remote execution time, and the efficiency calculated.

Similarly, Table 5.15 shows, the energy consumption comparison; the average local

energy and offloaded energy calculated and efficiency observed for all the three method

level offloading approaches.

5.9.1 Efficiency Comparisons of Execution Time

Table 5.14 consist of the results and efficiency comparisons of previous method

level offloading solutions against the proposed lightweight REST-Offload Model. It

included the prototype application developed for testing. Based on the observed average

values of local execution and remote executions the efficiency calculated. Kosta et al.,

(2009) developed N-queen puzzle for puzzling numbers. The average local execution

time of the puzzle game is 15s while the same offloaded to remote server at distant

0

5

10

15

20

25

30

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Matrix Size

ASUS Z5 Galaxy A5

161

Table 5.14 Efficiency Comparison of Execution Time

Framework/Model Prototype %Average Ex. Time of Local

and Offload Execution(s)

Efficiency in

Percentage

(%) Local Offload

ThinkAir Framework

(Kosta et al., 2012)

N-Queen Puzzle 15 9 40%

Cuckoo

(Kemp et al., 2010)

eyeDentify object-

recognition application

100 50 50%

DECOF

(Shiraz et al., 2014)

Matrices Multiplication 108 97 11%

REST-Offload Matrices Multiplication 111 49 56%

cloud and the average execution time observed is 9s. It shows 40 % efficiency of

execution time against local execution.

Similarly, Kemp et al., (2010) developed an eyeDentify object recognition

application. The application tested for both scenarios. The local average execution time

observed is 100s while the remote execution time is 50s. It shows 50 % efficiency

against the local execution. Likewise, Shiraz et al., (2014) used an application for

multiplying two matrices and observed the execution time. The local execution time is

108s while the remote execution time is 97s. It gives 11 % efficiency against the local

execution of the same application.

Figure 5.25 Efficiency Comparison of Execution Time

0

20

40

60

80

100

120

Local Offload

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Matrices Length

ThinkAir Framework Cuckoo

DECOF REST-Offload Framework

162

In contrast to the previously developed three method level frameworks/models,

the proposed REST-Offload discussed at the end. REST-Offload tested for the same

matrix multiplication application. The results of local execution observed is 111s while

of remote execution is 49s. The efficiency is 56 % against the local execution. In

addition, the comparison of REST-Offload ET results against all the three method level

offloading approaches, are shown in Figure 5.25. The calculated efficiency of all the

three methods depicts that REST-Offload model is efficient than all the rest approaches

with the highest execution time efficiency of 56 %.

5.9.2 Efficiency Comparisons of Energy Consumption

Table 5.15 consists of the results and efficiency comparisons of energy saving

against previous method level offloading frameworks and models. Based on the

observed average values of local execution and remote executions the efficiency in

terms of energy consumption calculated. The energy consumption values gathered for

N-queen puzzle of Kosta et al., (2009). The average local energy consumptions of the

puzzle game is 78 J while the same offloaded to remote server at distant cloud and the

average energy consumption observed is 41 J. It gives 48 % efficiency of energy saving

against the local execution.

Similarly, the eyeDentify object recognition application of Kemp et al., (2010)

shows, 100 J of energy consumption in local execution while 50 J in offloaded

execution. It shows 50 % energy efficiency against the local executions. Likewise,

matrix multiplication of Shiraz at al., (2014) tested for energy consumption during local

execution and it gives the consumptions 91 J while the same execution at remote is 65 J.

The efficiency derived here is 29 %.

Table 5.15 Efficiency Comparison of Energy Consumption

Framework/Model Prototype % Average Energy

Consumption of Local and

Offload Execution(J)

Efficiency in

Percentage

(%)

Local Offload

ThinkAir Framework

(Kosta et al., 2012)

N-Queen Puzzle 78 41 48%

Cuckoo

(Kemp et al., 2010)

eyeDentify object-

recognition application

100 50 50%

DECOF

(Shiraz et al., 2014)

Matrices Multiplication 91 65 29%

REST-Offload Matrices Multiplication 45 25 45%

163

Figure 5.26 Efficiency Comparison of Energy Consumption

On the other hand, REST-Offload tested for a similar matrix multiplication

application. The results observed of energy consumption in local execution is 45 J while

of remote execution is 25 J. The efficiency is 45 % against the local execution. In

addition, the comparison of REST-Offload energy consumption against all the three

method level offloading approaches are shown in Figure 5.26. The calculated energy

efficiency of three methods depicts that REST-Offload Model falling in the third place

in terms of energy efficiency, compare to the rest. The energy consumption of different

applications is different based on the level of complexity of application. As the matrix

multiplication application is more complex than the N-Queen Puzzle and eyeDenetiy

application, therefore the energy consumption is slightly higher than both.

5.10 Specification Comparisons of REST-Offload and Existing Approaches

The specification of REST-Offload is compared with the previously developed

method level offloading frameworks and models as shown in Table 5.16. Seven main

components are selected here to compare and contrast REST-Offload against others.

Five main components such as partitioning, data size reduction, service call, predefine

parameters selection mechanism and remote execution environment are considered.

All the previous works developed the models based on these parameters where REST-

offload model addresses the lacking features of the exiting models to propose a

different approach for each component.

0

20

40

60

80

100

120

Local Offload

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Matrices Length

ThinkAir Framework Cuckoo

DECOF REST-Offload Framework

164

Table 5.16 Specification Comparison of REST-Offload against Existing

Frameworks / Models

All the existed solutions and the proposed model are going to briefly describe

according to the models/framework specifications, as given in Table 5.16.

a) Partitioning: This point is to know which method is adopted to partition the

application before offloading. There are two possible ways to partition

application static partition, dynamic partition.

b) Service Call: It defines what type of service call adopted to delegate the

computational intensive tasks. It could be SOAP, REST or RPC.

c) Communication Medium: It describes the channels used to delegate the task

for remote execution. It is important to consider, as a low bandwidth network

will hit the communication interface and will waste mobile resource.

Ultimately, the battery will drain.

d) Remote Server: Which type of remote server configured to receive intensive

tasks and execute. Server could be a cloud server or cloudlet. Cloud server

resides at multi hop distance which increases the communication time and

therefore increases RTT.

e) Predefine Parameters Mechanism: This component defines the basic

parameters to include in taking decision before offload. Most of the

Framework /

Model

Partition Service

Call

Commu-

nication

Medium

Remote

Server

Predefine

Parameter

Mechanism

Data Size

Reduction

Contribution

Dynamic

Compilation

and Method

Execution

(Chen et al.,

2004)

Dynamic SOAP 3G/4G Cloud

Server

No Data

Compression

(e

java.util.zip)

Energy

Saving

Cuckoo

(Kemp et al.,

2010)

Dynamic SOAP

(RPC)

Wi-Fi Cloud

Server

No n/a Reduce

Energy

Consumption

DCOF

(Shiraz et al.,

2014)

Static SOAP

(RPC)

Wi-Fi Cloud

Server

No Deployment

of SaaS

Model and

remote

services

Reduce Data

size and

energy

consumption

REST-Offload

Proposed

REST-Offload

Model

Static REST Wi-Fi Surrogate

Server

`Yes Replaced

XML by

JSON

Reduce

Energy

Consumption

165

frameworks/models lacks in considering this component, therefore the ultimate

results are, sometime not efficient in energy savings.

f) Data Size Reduction: It is very important to reduce the data size before offload

the task. If the communication data size is huge, it needs more time to offload.

g) Strategy for energy offloading; It defines the model strictly goal that is, the

model developed to save energy or to achieve any other goal.

To address the lacking (dynamic partitioning of application, huge

communication data size, remote service call and longer RTT) of previously developed

models and frameworks this study proposed a lightweight computational offloading

model. REST-Offload deployed five distinct components to counter the gaps of those

frameworks/models. Further, unlike the mentioned method level computational

offloading approaches, this research study is focus to understand first where and how

the energy drains. Based on the observation of power analysis and critical review of

the existing models, a lightweight method level REST-Offload model proposed. In

order to reduce the consumption of local resources the novel dynamic application

partitioning technique indulged which carries some static features.

Further, RTT reduction is considered the main focus because increasing RTT

has a key effect on battery consumption (Cuervo et al., 2010). Also by Teka et al.,

(2004), minimizing the RTT between mobile device and remote server results in

increasing the benefits of computational offloading. Therefore, remote execution

environment is configured at a single hop distance which eliminates the long run RTT.

Secondly, REST deployed as a service call carrier protocol which replaces SOAP.

REST is lightweight and eliminates the XML data carrier by JSON. JSON is easy to

parse and easy to read. JSON is smaller in size than XML and hence it reduces the

data size to be offloaded. An additional component deployed for considering the

predefine parameters before offload. As computational offloading always not energy

efficient, it was observed by the experimental results of analysis of power

consumption of mobile devices. Therefore, an algorithm proposed in order to select

the best possible time based on the available bandwidth, availability of remote server,

computations required and available battery level to offload. Hence, by reducing the

communication data size, deploying a server at single hop, static partitioning of

application and REST as a service call, the REST-Offload model is expected to

166

produce efficient results compare to the previous developed method level

computational offloading models.

5.11 Threats to Validity

Empirical research sometime encounters many threats to validity which leads to

unwarranted conclusions. In this research sufficient efforts have been taken to minimize

those threats. Further, the implementation of this study was done based on three main

experiments Local Execution, Traditional Offloading and REST-Offload. All three the

experiments are evaluated based on Execution Time (ET) and Energy Consumption

(EC).

Prior to discuss about the threats, it is important to recall the experiments setup

here. Fist Experiment: Local Execution where the application is thoroughly executed in

the mobile device. Second Experiment: Traditional Offloading where the experiments

are designed based on offloading the intensive tasks to multi-hop cloud server using

SOAP techniques. Lastly, REST-Offload is the proposed setup where the intensive tasks

are offloaded to a single-hop server using REST techniques.

The validity threats to each set of experiment are arranged as: Firstly, the Usage

Scenario Threats which perhaps varies the results while running the same simulated

tool in all the three experiments. Secondly, the DuTs Specification Threats which if

change may possibly change the results in all three experiments. Thirdly, Single-hop

Surrogate Threat, which affect REST-Offload only. Lastly, EC and ET Estimation

Threats where a Stopwatch used to observe the ET and a Power Meter used to observe

EC in all three experiments.

5.11.1 Usage Scenario Threats

Power consumption strongly relates to the using location, different age groups,

different generation of Smartphones, climate and geographical regions. Moreover, the

energy consumption of different mobile components also relates to the user activity, for

instance, a user playing video game offline will hit the CPU and LCD only in term of

consumption while an online video game player will hit the Wi-Fi as main energy

167

drainer. These are some of the factors which affect battery consumption. In the

experiment design phase of this research, the mobile device used to be in a single

physical location. Further, the usage scenario varied with different age groups. It is

established that young age group’s usage timing and the choice of interactions with

mobile device are different than the elder group of users and it inevitably affect the

consumptions level. This level of threats probably affects the results in all three

experiments.

5.11.2 DuTs Threats

 The Devices under Test (DuTs) threats comprises of mobile device’s

specification threats and battery’s specification threats. The mobile devices selected are

Samsung Galaxy A5 and Asus Zenfone5. The reason of running the simulations on two

different devices was to counter the specification differences and the observed

variations of results. Likewise, battery condition of each mobile device needs to

investigate, as if the condition of batteries change due to calendar fade or cycle fade, it

affects the consumption level.

5.11.2.1 Mobile Device’s Specifications Threats

In fact, mobile devices manufactured by different companies carrying

considerable differences. The differences are in terms of power consumption owing to

different versions of operating systems and features incorporated in different models.

Few of the mobile components like LCDs, Air Interfaces, Sensors, and Audio/Video

Calls are considered power-intensive in various analysis and experiments. Few of the

researchers established screen brightness is one of the key factors which drain battery

too fast, such as, display screens of mobile systems usually consume a considerable

amount of energy.

The display along with (backlight, touch screen and LCD panel) consumes about

400 mW, which is one of the energy-intensive component. This research also

established that the contents displayed on screen affects the total LCD energy

consumption such as 33.1mW energy consumption with white screen while 74.2mW

with a black screen. Therefore, the screen brightness level and the background graphics

168

are kept constant throughout the experiments. Moreover, speakers, touch key’s light,

vibration, sensors, system sounds and network types are the adjustable parameters

which may considerably change the battery level of consumption. Hence, all these

parameters are kept constant while offloading the tasks to surrogates.

GSM, 3G/4G and Wi-Fi: A faster medium always reduces consumption

compare to a slow transmitting medium. The GSM voice services are 46 % better in

energy saving compare to UMTS (3G) networks. However, 3G+ (4G) technologies are

more energy efficient for transmitting big volumes of data. Selection of transmission

medium affects the ET and EC results, this research therefore opted the communication

medium to be W-Fi in order to reduce the transmission time of data.

As, mobile device is the main component in each type of experiment, therefore

the mobile specifications threats are expected to affect all three type of experiments.

5.11.2.2Mobile’s Battery Specifications Threats

Amongst other threats to validity, battery specification is one of the main threat

which likely affect the battery consumption level. Some specification threats of the

battery are:

Battery Model: Non-removable, 2300mAh: In the experiments 2300mAh and

2400mAh batteries investigated. The mAh is taken as a parameter which change device

to device. More mAh (Milliamp per Hour) means more energy the battery can supply on

a full charge and more energy supply is directly proportional to a longer battery life,

although more current the battery produces, the more voltage across the internal resistor

drops according to Ohm’s law (V=IR). Thus, the higher the voltage the more charge to

consume and it will therefore change the consumption level.

Battery Health: A battery is known to be in good health if it stays active and keep the

systems running till sufficient hours during usage, or if it satisfies the mentioned

working hours in the device’s manual. Two factors deteriorate the performance of

battery, one is time and the other is usage. The performance weakening over time is

called “Calendar Fade”, while the performance deterioration with usage is known as

169

"Cycle Fade". Furthermore, the lifespan or the battery calendar life is the elapsed time

before the battery become useless whether it is in use or not. The batteries used in this

research were brand new in one device and used one in the other device. The power

consumption of both the devices is therefore slightly different from each other. Hence,

battery health is important which may vary the consumption level.

Battery Temperature: One of the main factors influencing the battery calendar life is

the battery temperature. Lithium Ion batteries perform poorly if it gets warm or stays

warm, leaving to a damaging affect. Having a protective case on device does not allow

the heat to escape and to decrease battery temperature. It will then result in cell

oxidation which shrinks the capacity and shortening battery’s lifespan. Once the battery

is damaged by heat, the capacity cannot be restored. Smartphone devices are intended to

perform well in an extensive variety of encompassing temperatures, with 62° to 72° F or

16° to 22° C as the perfect safe place. It is particularly imperative to abstain the device

from surrounding temperatures higher than 95° F 35°C, where the battery capacity can

permanently be damaged. In case of this research the mobile device used in optimal

temperature between 16° to 22° C to counter the threat of battery temperature.

Battery Voltage: Lithium-Ion batteries affect from low voltage. It is essential to

partially charge or drain the batteries like from 20 % to 90 % than to fully charge and

fully drain. Complete charge or fully draining affect the cycle life of battery, which

shrinks and reduces the overall efficiency. Additionally, the relationship between

voltage and current produced by a battery has no affect together on the amount of

energy either the values increases or decreases by the same inverse ratio. Such as, high

voltage and low current equals to low voltage and high current. Power in watts is still

the same. For example, Battery A: 3600mAh * 3.7V = 13Wh and Battery B: 3200mAh

* 4.3V=13Wh. If a Smartphone consumes 10W per hour it will work 1 hour and 18

minutes with battery A or B. The consumption of mobile device may change due to any

of the above battery related parameters.

As both the DuTs, which were equipped with Li-Ions batteries, used to conduct

the experiments, therefore, this threat is common to all three type of experiments. To

counter the threat, the simulation ran 20 consecutive times in order to acquire the mean

consumption level which is expected to be closer to the real consumptions.

170

5.11.3 Single-Hop Surrogate Threats

The single hop surrogate is the modified concept of existing cloudlet. The hop

distance would affect RTT. This had been analyzed by Aiguo et al., (1998) who stated

in their findings that if hope count increased, the packets would have to go through

many routers. At each router, the packets would have to consume a certain amount of

time to be routed for the next router and this would be repeated continuously until

reaching the destination. Thus, at each router, packet delay would occur and this would

increase the overall delay as the hop count increase.

The multi-hop which consists of unlimited hops is the initial concept where the

distant cloud server has to serve as a remote computer. The cloudlet concept presented

by Satyanarayanan et al., (2009) has brought the cloud closer to the computing

environment which is multi-hop (limited) and thus reduced RTT. Single hop, is the

modified concept of this research which brings the computing to a single hop and

reduces RTT further. Due to changing of geographical position and distance between

mobile device and the counterpart server, the RTT varies which is considered threat to

validity in this research. This threat relates to the experiments of REST-offload only,

where the intensive tasks are delegated for execution to a single hop server.

5.11.4 Energy and Time Estimating Tools Threats

To estimate the EC and ET, there are different tools available. Some tools are in

the form of software while some are off-target hardware tools. Using different tools

possibly grasp slightly different values for the same data set. The EC and ET threats are

discussed as:

5.11.4.1Energy Consumption Estimation Threats

PowerTutor, which is an open source built in software power estimating tool

for Android devices available in Google Play Store. It uses information about the power

discharge rate of the voltage-curve to calculate the power consumption. As it works

manually, such as, with each instance of the experiment it needs to start by clicking run

and stop by clicking break. The calculated time between stop and start is unpredictable

171

due to possible occurrence of few milliseconds difference. Moreover, PowerTutor runs

in the background and log data on power utilization for each application by combining

all the hardware power modes. While running in the background the power

consumption of the tool itself sometime affect the estimated power consumptions.

Instead to use the software estimating tool an off-target device works more accurate.

Therefore, an off-target Monsoon Power Monitor was used to observe better

results and exclude the milliseconds difference which is usual to happen in Power

Tutor. The Monsoon Power Monitor application provides the popular off-target power

consumption estimation. It is also capable of measuring the current, voltage and power

and then connected to a special Monsoon Power Application (Computer Software)

which gives control over power data and collect and display the data in the form of a

graph automatically. As, Monsoon Power Monitor used to observe the power

consumption during each experiment therefore, this threat relates to all three

experiments.

5.11.4.2Exectuion Time Estimation Threats

To record the ET of each offloading task a stop watch TimeLeft used. It ran with

each offload concurrently. There is a possibility of fractional difference of ET in each

attempt due to manual use, while recording the ET. To surface the ET difference in

results, each task is therefore run approximate 20 times and calculated the mean ET.

Further, ET is one of the main parameter to evaluate in all the experiments, therefore,

this threat is common to all three type of experiments.

5.12 Summary

The two developed components; Local Execution and Traditional Offloading of

the prototype application created to generate bench mark for the proposed solution

REST-Offload. The focus was to check the Execution Time (ET) and Energy

Consumption (EC) of the prototype application which generates two random matrices at

mobile device, multiplies the matrices and displays the resulted matrix at UI. The

prototype application ran in all three scenarios Local Execution, Traditional Offloading

172

and REST-Offload. The ET efficiency of REST-Offload against the benchmarks Local

Execution and Traditional Offloading is 54.63 % and 62.01 % respectively.

If consider the energy consumption cost, the EC efficiency of the proposed

REST-Offload model against both the benchmark Local Execution and DCOF is 43 %

and 60.14 % respectively. The last sections of the Chapter included the efficiency

comparisons and comparative analysis of REST-Offload model against the previously

developed method level computational offloading models and frameworks.

Comparatively analysis yields that the proposed computational offloading model

is easy to develop and lightweight compare to the traditional computational offloading

approaches. It can successfully offload the computational intensive tasks of mobile

applications to the surrogate servers and can save a significant amount of energy as well

as reduce the execution time.

173

CHAPTER 6

CONCLUSION

6.1 Overview

This chapter re-evaluates the problem statement, research objectives and reviews

the contribution of the research. It also reflects the limitations and future research work

of this study. The chapter is organized into six main sections. Section 6.2 consists of the

discussion part which includes goal of the research and re-assessment of the research

objectives. Section 6.3 presents the revisiting of objectives. Section 6.4 presents overview

of the contributions. Section 6.5 describes the scalability of the research. Section 6.6

discusses the limitations and future research work.

6.2 Discussion

The focus of this research was to: curtail the use of extra resources of mobile

device during offloading; to reduce the size of communication data; and to utilize the

closest computing environment in order to curtail battery consumption. Several research

frameworks/models have been developed in the past with the intension to reduce the

computational load of mobile devices through computational offloading. In principal, it

is true that computational offloading may free the processor of mobile device from

processing the given task. However, it should be kept in mind that mobile device has to

spend a significant amount of energy while establishing the connection to remote server,

send the request and offloading data through a fluctuating bandwidth. It also has to wait

until the result comes back to the device. If the energy consumption during this whole

process is less than the one consumed in processing the task locally, then computational

offloading will be an energy saving solution for mobile devices. Unfortunately, many of

174

the previously developed models failed to encompass the three basic parameters B, C,

and D, hence have become energy harvesting approach instead of energy saving.

This research is all about addressing the limitation of mobile devices through a

new lightweight method level computational offloading model. The previous

computational offloading frameworks/models were based on VM migration, whole

application migrations and traditional method level offloading. The traditional

offloading frameworks based on either static or dynamic partitioning while XML used

as a carrier file, have been simulated and observed experimentally. The experiments

have been conducted in order to know which component of the existing approaches

causes overhead computation and hence causing the offloading to be a resources

intensive approach. In order to achieve the goal, a lightweight method level

computational offloading model has been designed and developed.

6.3 Revisit of the Research Objectives

There are three main objectives which collectively accomplish the process to

reach the goal; a lightweight method level computational offloading model. The first

objective is, to develop a novel dynamic application partitioning method, for

reduction of computations and handling of the dynamic network changes. To

achieve the first objective, an analysis has been conducted and the cost estimation

models of existing static and dynamic application partitioning techniques have been

developed. Based on the analysis, a novel approach was proposed, which is to combine

the positive features of both static and dynamic. The existing static and dynamic

techniques are concluded to be inefficient in reducing RTT and hence cannot reduce the

power consumptions. Static approach does not need any additional computations due to

compile time partitioning. Dynamic partitioning however, is good in bringing

automation and coping the dynamic changes, yet increases computations due to

continuous changing of the execution pattern.

Therefore, this research proposed a novel dynamic technique which is dynamic

in nature, however, inherits some static features. In the proposed partitioning technique,

the application is partitioned statically by a manual annotation similar to the static

partitioning approach. In addition, an algorithm is proposed to deploy a mechanism for

175

the selection of predefined parameters. This algorithm copes with the changes that occur

in the environment dynamically. It is important because offloading every time by using

any bandwidth network to any status of remote server is not energy efficient. The novel

dynamic partitioning is a middle level approach, which costs more than the static

technique while less than the dynamic technique, in terms of Execution Time (ET) and

Energy Consumption (EC).

 The second objective of the research is, to design the cloud server/surrogate

machine for the execution of intensive tasks to reduce long run RTT. The previous

research mostly configured the remote server at distant cloud. It is a fact, that cloud

environment is resources rich. The server at cloud is equipped with powerful resources,

however, the delegation of tasks to distant cloud increases RTT. It is also established by

the previous researches, that long run RTT drains power. To reduce RTT, this research

modifies the concept of cloudlet presented by Satyanarayanan et al., (2009).

Satyanarayanan proposed Cloudlet where the distant cloud is brought closer to the mobile

environment in order to reduce RTT. As the hop count decreases, it decreases the RTT,

yet the Cloudlet is still situated in multi hop distance. This research has designed the

cloudlet/surrogate to be more closer to the mobile device. A surrogate machine at a single

hop distance was configured next to IEEE 802.11 access point. The surrogate machine

is further connected to cloud to fetch any necessary data from the internet. Hence, the

RTT is reduced further and this has ultimately reduced the power consumption during

delegation of tasks to remote (surrogate) computer.

The last objective of the study is, to develop and evaluate a lightweight

offloading method for size of communication data reduction. The existing method for

offloading the task to remote executions normally become intensive due to increasing size

of communication data and due to additional computation required at mobile device. In

the previous research works, the SOAP offload trigger was normally used. SOAP

offload supports XML file to trigger with offload for carrying data from client device

to remote servers. With the analysis of SOAP testing, as a carrier protocol, it is observed

that SOAP is heavy to execute and complex to parse. Although SOAP and XML based

offloading is considered more secure compared to the RPC, RIC and REST, it however

increases the communication data and hence increasing computations at mobile device.

176

Therefore, in order to reduce the data size during communication at both sides

of mobile device and remote server, a new lightweight offloading technique REST-

offloading is proposed, based on the analysis carried out between many different

offloading protocols. Normally, XML and JSON have been used in many different

problems, however, a technique based on the combination of REST, JSON and WSDL

is proposed here to reduce complexity, computations and size of communication data.

The intention of using REST and JSON here is due to the low computing ability of

mobile device. This technique reduces the communication data size and cuts the

computations and RTT. REST is simple to write due to HTTP and some CRUD (Create,

Read, Update, and Delete) operations. Nevertheless, REST is less secure as compared

to SOAP, as REST inherits the security from the underlying transport while SOAP

defines its own WS-Security (Web services Security).

After accomplishing each objective, the model was then implemented in lab

environment by developing a prototype application. The prototype application consists of

Local Execution, Traditional Computational Offloading Method and the proposed REST-

Offload. Each component of the prototype consists of matrix multiplication where two

random matrices were taken as input by the application, the matrices were then

offloaded to surrogate/cloud server to multiply and the result was taken back on the

mobile screen. It was tested for ET in milliseconds (ms) and power consumption in

Joules (J) as discussed in Chapter 4 (Section 4.6). The results of three pre-defined

scenarios which are Local Execution, Traditional Computational Offloading Method and

the proposed REST-Offload Method were collected and compared to validate the

proposed lightweight method level computational offloading model. The REST Offload

is significantly useful compared to both local execution and traditional methods and it has

saved about 50% ET and reduced approximately 38% energy consumption compared to

ET and EC of task locally executed.

 The comparative analysis has been conducted in two ways. Firstly, the

efficiency of REST-Offload was compared to the rest in terms of ET and EC. Secondly,

the REST-Offload model was compared by specification against the three closely

related method level computational framework/models. It has been observed from the

efficiency comparison results, that REST-Offload is 56 % efficient in ET against local

177

execution, which is highest in efficiency compared to all the three frameworks/models.

Similarly, in terms of the energy efficiency of REST-Offload, it shows that, REST-

Offload is 45 % efficient in energy consumption against local execution of the task. The

efficiency of REST-Offload is higher than ThinkAir and Cuckoo, while less than

DCOF.

6.4 Contributions of the Research

This research ought to contribute sufficiently to the sphere of research which are

further discussed in this section. This research contributes in the existing method level

computational offloading frameworks/models in order to improve the existing

frameworks/models to be a lightweight solution. The main contribution of this research

is A Model for Power Efficiency of Mobile Device through Lightweight Method Level

Computational Offloading. This model addresses the overhead computation of

traditional method level frameworks/models. It provides a lightweight solution for

executing the computational intensive tasks at surrogate server. The model consists of

two main components; client component and server component. The client component

is deployed at client device while server component is configured at surrogate server.

Both are synchronized to communicate for execution of intensive tasks. Sub

contributions of the research are:

There are few sub contributions for the achievement of main contributions. First

sub contribution is the development of novel dynamic application partitioning technique.

It eliminates the overhead computation by inheriting the static feature of existing

techniques. It also carries the dynamic features by deploying an algorithm for the

selection of pre-defined parameters. This technique reduces the additional computation

and copes with the dynamic changes in execution environment at the same time. The

second sub contribution is the development of single hop surrogate model. Based on the

existing cloud computing models and cloudlet, a single hop surrogate model is

developed which reduces the long run RTT. The third sub contribution of the research

is the development of lightweight REST-Offloading technique. This technique

eliminates the additional computational and communication overhead due to easy

configuration and of reduced data size. It costs less than the available techniques in term

of ET and EC.

178

There are two supportive contributions. First, a prototype REST-Offload

application is developed. REST-Offload implements the proposed algorithm and

lightweight method level computational offloading model. REST-Offload has been

used in real mobile cloud environment to observe the intensity of application processing

in terms of ET and EC. Second, the proposed algorithm for the selection of the

predefined parameters. Offloading in any circumstances is not always energy efficient,

therefore a monitoring mechanism is needed to check all the predefined parameters and

take right decision before delegating intensive components. For this purpose, a

lightweight computational offloading algorithm has been proposed, to monitor and

verify all the predefined conditions before offloading. It also ensures to statically

partition the application and delegate the computational intensive components only

which releases the resources management and communication overhead.

6.5 The Scalability of Proposed Model

REST-Offload is scalable and can adopt changes due to mobility or changing

network topology. The mechanism defined for the selection of predefined parameters

supports the model to work in heterogeneous kind of environment. Although there are

some limitations such as 3G network being excluded as a medium due to its limited

bandwidth, the model can still be used to operate in the environment of 4G, WiMAX and

Wi-Fi. The surrogate needs to be active and available with each access point. In case of

the absence of surrogate server, the model turns the application to run in local

environment.

6.6 Limitations and Future Work

Conclusively, this research has studied different approaches towards the

conservation of energy in resources constrained mobile devices. The research is first

carried out by examining the fundamental energy-related issues with respect to executing

the tasks on local mobile device. Subsequent intention was to resolve the energy

consumption issues with local processing through a new proposed and developed

lightweight method level offloading model. Secondly, a thorough study of the

computational offloading frameworks took place and the results were compared with

local consumption of the device while task executed locally. From the critical analysis

179

and observation of the results, a gap has been found, which is, minimizing the resources

management and transmission overhead can save a significant amount of energy. This

research started the work to fill in that gap.

Therefore, the focus of this research is to address the limitations of mobile devices

through lightweight method level computational offloading in Mobile Cloud Computing.

This research emphasizes to minimize the additional resources utilization of mobile

computing devices in traditional computational offloading frameworks. However, this

research lacks in addressing issues related to security and services availability through

low bandwidth networks. The resources scarcity or mobile inefficiency in computations

and several other limitations exist in mobile devices due to portability and mobility are

required to be further addressed in the ongoing research. Nevertheless, the scope of this

work is focused to address the issues related to ET and battery consumption. This research

also lacks in addressing the issues related to mobility and services availability in case of

limited bandwidth. The medium of communication used is Wi-Fi and by research

observations, the limited bandwidth networks are not suitable for offloading due to longer

RTT, therefore 3G as an offloading medium has been avoided here. Security and

consistency in parallel execution between client device and remote servers are inadequate

for heterogeneous mobile devices. The future research will include addressing the low

bandwidth issues and to make computational offloading services available for any kind

of mobile device anywhere. The security concerns will also be the focus to make data

processing safe at remote location.

180

REFERENCES

Aamazon S3 (March 14, 2016). Retrieved from (http:// www.amazon.com).

Abolfazli, S., Sanaei, Z., & Gani, A. (2012). Mobile cloud computing: A review on

smartphone augmentation approaches. The 1st International Conference on

Computing, Information Systems, and Communications, Singapore.

Abolfazli, S., Sanaei, Z., Alizadeh, M., Gani, A., & Xia, F. (2014). An experimental

analysis on cloud-based mobile augmentation in mobile cloud computing. IEEE

Transactions on Consumer Electronics, 60(1), pp. 146-154.

Adrees, M. S., Omer, M. K. A., & Sheta, O. E. (2016). Cloud Computing architecture for

higher education in the third world countries (republic of the sudan as model).

Ahmed, E., Gani, A., Sookhak, M., Ab Hamid, S. H., & Xia, F. (2015). Application

optimization in mobile cloud computing: Motivation, taxonomies, and open

challenges. Journal of Network and Computer Applications, 52, pp. 52-68.

Anand, A., Manikopoulos, C., Jones, Q., & Borcea, C. (2007). A quantitative analysis of

power consumption for location-aware applications on smart phones. The 2007

IEEE International Symposium on Industrial Electronics,Vigo Spain.

Ardito, L., Procaccianti, G., Torchiano, M., & Migliore, G. (2013). Profiling power

consumption on mobile devices. The 3rd International Conference on Smart

Grids, Green Communications and IT Energy-aware Technologies, Lisbon

Portugal.

Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., & Yang, H.-I. (2002). The

case for cyber foraging. The 10th Workshop on ACM Sigops European workshop,

pp. 87-92, France.

Balan, R. K. (2004). Powerful change part 2: reducing the power demands of mobile

devices. IEEE Pervasive Computing, 3(2). pp. 71-73.

Balan, R. K., Gergle, D., Satyanarayanan, M., & Herbsleb, J. (June 11-14, 2007).

Simplifying cyber foraging for mobile devices. The 5th International Conference

on Mobile Systems, Applications and Services, pp. 272-182, New York USA.

Balan, R. K., Satyanarayanan, M., Park, S. Y., & Okoshi, T. (2003). Tactics-based remote

execution for mobile computing. The 1st international Conference on Mobile

Systems, Applications and Services, pp. 271-286, San Francisco, CA, USA.

181

Balasubramanian, N., Balasubramanian, A., & Venkataramani, A. (2009). Energy

consumption in mobile phones: a measurement study and implications for

network applications. The 9th ACM Sigcom Conference on Internet Measurement

Conference, pp. 280-293, Chicago USA.

Begum, Y. M., & Mohamed, M. M. (April 12-14, 2010). A DHT-based process migration

policy for mobile clusters. The 7th International Conference on Information

Technology: New Generations (ITNG), pp.12-14 DOI: 10.1109/ITNG.2010.157,

Las Vegas, Nevada, USA.

Bertozzi, D., Raghunathan, A., Benini, L., & Ravi, S. (2003). Transport protocol

optimization for energy efficient wireless embedded systems. The Conference on

Design, Automation and Test in Europe, Muenchen, Germany.

Bheda, H. A., & Lakhani, J. (2013). Application Processing Approach for Smart Mobile

Devices in Mobile Cloud Computing. International Journal of Advanced

Research in Computer Science and Software Engineering, 3(8).

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as

the 5th utility. Future Generation Computer Systems, 25(6), pp. 599-616.

Carroll, A., & Heiser, G. (2010). An Analysis of Power Consumption in a Smartphone.

The Annual Technical Conference on Usenex 2010, pp. 21-21, Boston, USA.

Chen, G., Kang, B.-T., Kandemir, M., Vijaykrishnan, N., Irwin, M. J., & Chandramouli,

R. (2004). Studying energy trade offs in offloading computation/compilation in

java-enabled mobile devices. IEEE Transactions on Parallel and Distributed

Systems, 15(9), pp. 795-809.

Chu, H.-h., Song, H., Wong, C., Kurakake, S., & Katagiri, M. (2004). Roam, a seamless

application framework. Journal of Systems and Software, 69(3), pp. 209-226.

Chun, B.-G., Ihm, S., Maniatis, P., & Naik, M. (2010)Clonecloud: boosting mobile device

applications through cloud clone execution. arXiv preprint arXiv:1009.3088. v(2).

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). Clonecloud: elastic

execution between mobile device and cloud. The 6th International Conference on

Computer Systems, pp. 301-314, Universitätsaula Salzburg, Austria.

Chun, B.-G., & Maniatis, P. (2009). Augmented Smartphone Applications through Clone

Cloud Execution. The 12th conference on Hot Topics in Operating Systems. pp.

8-8, Monte Verità, Switzerland.

Chun, B.-G., & Maniatis, P. (15-18 June 2010). Dynamically partitioning applications

between weak devices and clouds. The 1st ACM Workshop on Mobile Cloud

Computing & Services: Social Networks and Beyond, San Francisco, USA.

http://dx.doi.org/10.1109/ITNG.2010.157
http://www.visit-salzburg.net/sights/alte-universitaet.htm

182

Chun, W. (June 2016). What is google app engine? Euro Python 2011. Retrieved from

(https://ep2013.europython.eu/conference/talks/google-app-engine-best-

practices-latest-features).

Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019

White Paper (June 2016). Retrieved from

(http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/white_paper_c11-520862.html).

Claybrook, B. (July 2016). Mobile cloud apps vs. native apps: The developer’s

Perspectives. Retrived from

http://searchcloudapplications.techtarget.com/feature/Mobile-cloud-apps-vs-

native-apps-The-developers-perspective).

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R., &

Bahl, P. (2010). MAUI: making smartphones last longer with code offload. The

8th International Conference on Mobile Systems, Applications, and Services, pp.

49-62, Kraków, Poland.

Cui, Y., Ma, X., Wang, H., Stojmenovic, I., & Liu, J. (2013). A survey of energy efficient

wireless transmission and modelling in mobile cloud computing. Mobile

Networks and Applications, 18(1), pp. 148-155.

De Giorgio, T., Ripa, G., & Zuccalà, M. (2010). An approach to enable replacement of

SOAP services and REST services in lightweight processes. Current Trends in

Web Engineering, pp. 338-346.

De Lara, E., Wallach, D. S., & Zwaenepoel, W. (2001). Puppeteer: Component-based

Adaptation for Mobile Computing. The 3rd Conference on Usenex Symposium on

Internet Technologies and Systems, vol-3, pp. 14-14, San Francisco, California,

USA.

Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2013). A survey of mobile cloud computing:

architecture, applications, and approaches. Wireless Communications and Mobile

Computing, 13(18), pp. 1587-1611.

Dou, A., Kalogeraki, V., Gunopulos, D., Mielikainen, T., & Tuulos, V. H. (2010). Misco:

a mapreduce framework for mobile systems. The 3rd International Conference on

Pervasive Technologies Related to Assistive Environments, Samos, Greece.

Ewens, W. J., & Grant, G. R. (2001). Computationally intensive methods. In Statistical

Methods in Bioinformatics, pp. 349-363, New York USA.

Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A

survey. Future Generation Computer Systems, 29(1), 84-106.

https://ep2013.europython.eu/conference/talks/google-app-engine-best-practices-latest-features
https://ep2013.europython.eu/conference/talks/google-app-engine-best-practices-latest-features
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://searchcloudapplications.techtarget.com/feature/Mobile-cloud-apps-vs-native-apps-The-developers-perspective
http://searchcloudapplications.techtarget.com/feature/Mobile-cloud-apps-vs-native-apps-The-developers-perspective

183

Ferreira, Denzil, Anind Dey, and Vassilis Kostakos (2011). "Understanding human-

smartphone concerns: a study of battery life." Pervasive Computing, 19-33.

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures. Doctoral Dissertation Architectural Styles and the Design of

Network-based Software Architectures University of California, Irvine.

Flinn, J., Park, S., & Satyanarayanan, M. (2002). Balancing performance, energy, and

quality in pervasive computing. The International Conference on Distributed

Computing Systems, pp. 217, 2002, Vienna, Austria.

Flinn, J., & Satyanarayanan, M. (1999). Energy-aware adaptation for mobile applications.

The 17th ACM Symposium on Operating Systems Principles. Vol. 33(5), pp. 48-

63, Charleston, South Carolina, USA.

Flores, H., Hui, P., Tarkoma, S., Li, Y., Srirama, S., & Buyya, R. (2015). Mobile code

offloading: from concept to practice and beyond. IEEE Communications

Magazine, 53(3), pp. 80-88.

Frattasi, S., Fathi, H., Fitzek, F. H., Prasad, R., & Katz, M. D. (2006). Defining 4G

technology from the users perspective. IEEE Network, 20(1), pp. 35-41.

Garlan, D., Siewiorek, D. P., Smailagic, A., & Steenkiste, P. (2002). Project aura: Toward

distraction-free pervasive computing. IEEE Pervasive Computing, 1(2), pp. 22-

31.

Giurgiu, I., Riva, O., Juric, D., Krivulev, I., & Alonso, G. (2009). Calling the cloud:

enabling mobile phones as interfaces to cloud applications. The 10 International

Conference on Distributed Systems Platforms and Open Distributed Processing,

pp. 83-102, Urbana, IL USA.

Goraczko, M., Liu, J., Lymberopoulos, D., Matic, S., Priyantha, B., & Zhao, F. (2008).

Energy-optimal software partitioning in heterogeneous multiprocessor embedded

systems. The 45th Annual Design Automation Conference. pp. 191-196, Anaheim,

CA, USA.

Goyal, S., & Carter, J. (2004). A lightweight secure cyber foraging infrastructure for

resource-constrained devices. The 6th IEEE Workshop on the Mobile Computing

Systems and Applications. pp. 186-195, Cumbria UK.

Griera Jorba, M. (2013). Improving the reliability of an offloading engine for Android

mobile devices and testing its performance with interactive applications, Master

Thesis, Freie Universität Berlin.

Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., & Milojicic, D. (2004). Adaptive

offloading for pervasive computing. IEEE Pervasive Computing, 3(3), pp. 66-73.

https://en.wikipedia.org/wiki/Vienna
http://upcommons.upc.edu/browse?value=Freie%20Universit%C3%A4t%20Berlin&type=contributor

184

Guillaume. (2016). How heat and loading affect battery Life. Retrieved from:

http://batteryuniversity.com/learn/article/how-heat-and-harsh-reduces-battery-

life . Accessed Date: July 2016).

Herrmann, R., Zappi, P., & Rosing, T. S. (2012). Context aware power management of

mobile systems for sensing applications. The 11th ACM/IEEE International

Conference on Information Processing in Sensor Networks, April 16–20, 2012,

Beijing, China.

Huang, D., Zhang, X., Kang, M., & Luo, J. (2010). MobiCloud: building secure cloud

framework for mobile computing and communication. The 5th IEEE International

Symposium on Service Oriented System Engineering, pp. 27-34, Nanjing, China.

Huerta-Canepa, G., & Lee, D. (2008). An adaptable application offloading scheme based

on application behavior. The 22nd International Conference on Advanced

Information Networking and Applications, GinoWan, Okinawa, Japan.

Huerta-Canepa, G., & Lee, D. (2010). A virtual cloud computing provider for mobile

devices. The 1st ACM Workshop on Mobile Cloud Computing & Services: Social

Networks and Beyond, San Fransisco USA.

Hung, S.-H., Shih, C.-S., Shieh, J.-P., Lee, C.-P., & Huang, Y.-H. (2012). executing

mobile applications on the cloud: Framework and issues. Computers &

Mathematics with Applications, 63(2), pp. 573-587.

Izaki, M. (2002). U.S. Patent No. 6,405,062. Washington, DC: U.S. Patent and

Trademark Office.

Kemp, R., Palmer, N., Kielmann, T., & Bal, H. (2010). Cuckoo: a computation offloading

framework for smartphones. The International Conference on Mobile Computing,

Applications, and Services., vol-76. pp. 59-69, CA USA.

Kim, K.-H., Min, A. W., Gupta, D., Mohapatra, P., & Singh, J. P. (2011). Improving

energy efficiency of Wi-Fi sensing on smartphones. The IEEE Proceedings

Infocom, Changhai China.

Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012). Thinkair: Dynamic

resource allocation and parallel execution in the cloud for mobile code offloading.

Proceeding of IEEE Conference Infocom, Florida USA.

Kravets, R., & Krishnan, P. (2000). Application‐driven power management for mobile

communication. Wireless Networks, 6(4), pp. 263-277.

Kristensen, M. D. (2007). Enabling cyber foraging for mobile devices. Proceedings of

the 5th MiNEMA Workshop: Middleware for Network Eccentric and Mobile

Applications. Magdeburg University.

http://batteryuniversity.com/learn/article/how-heat-and
http://www.city.ginowan.okinawa.jp/2735/2410.html
http://www.ocvb.or.jp/index.php?current=General_Page&action=Top_Page&mode=isel&lang=en
http://www.jnto.go.jp/eng/

185

Kristensen, M. D. (2008). Execution plans for cyber foraging. The 1st Workshop on

Mobile Middleware: Embracing the Personal Communication Device. Article no.

2.

Kristensen, M. D. (2010). Empowering mobile devices through cyber foraging. Aarhus

University (Ph. D. Thesis), Department of Computer Science, Aarhus University,

pp. 242.

Kristensen, M. D. (2010). Scavenger: Transparent development of efficient cyber

foraging applications. The 8th IEEE International Conference on Pervasive

Computing and Communications. Mannheim Germany.

Kumar, K. (2011). Application-based energy efficient mobile and server computing. PhD

Dissertation, Purdue University West Lafayette, Indiana.

Kumar, K., Liu, J., Lu, Y.-H., & Bhargava, B. (2012). A Survey of Computation

Offloading for Mobile Systems. Mobile Networks and Applications, 18(1), pp.

129-140. Doi: 10.1007/s11036-012-0368-0.

Kumar, K., & Lu, Y.-H. (2010). Cloud computing for mobile users: can offloading

computation save energy? Computer, 43(4), pp. 51-56.

Lai, C.-C., & Ko, R.-S. (2010). Dishes: A distributed shell system designed for ubiquitous

computing environment. International Journal of Computer Networks &

Communications, 2(1), pp. 66-83.

Liu, J., Kumar, K., & Lu, Y.-H. (2010). Trade-off between energy savings and privacy

protection in computation offloading. The 16th ACM/IEEE International

Symposium on Low Power Electronics and Design, Austin TX USA.

Liu, Q., Jian, X., Hu, J., Zhao, H., & Zhang, S. (2009). An optimized solution for mobile

environment using mobile cloud computing. The 5th International Conference on

Wireless Communications, Networking and Mobile Computing, Beijing China.

Liu, X., Shenoy, P., & Corner, M. (2005). Chameleon: application level power

management with performance isolation. The 13th Annual ACM International

Conference on Multimedia, Singapore.

Lu, Y., Li, S., & Shen, H. (2011). Virtualized Screen: A Third Element for Cloud&#

x2013; Mobile Convergence. IEEE Multimedia, 18(2), pp. 4-11.

Mack, C. A. (2011). Fifty years of Moore's law. IEEE Transactions on Semiconductor

Manufacturing, 24(2), pp. 202-207.

Magurawalage, C. M. S., Yang, K., Hu, L., & Zhang, J. (2014). Energy-efficient and

network-aware offloading algorithm for mobile cloud computing. Computer

Networks, V(74), pp. 22-33.

186

Mell, P., & Grance, T. (2011). The NIST definition of Cloud Computing. Special

Publication (NIST SP), pp. 800-145.

Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, T. J., & Gu, X.

(2002). Towards a Distributed Platform for Resource-constrained Devices. The

22nd International Conference on Distributed Computing Systems, Vienna

Austira.

Metri, G. (2014). Energy efficiency analysis and optimization for mobile platforms. PhD

Dissertation Wayne State University January.

Mollick, E. (2006). Establishing Moore's law. IEEE Annuals of the History of Computing,

28(3), pp. 62-75.

Moghimi, M., Venkatesh, J., Zappi, P., & Rosing, T. (2012). Context-aware mobile power

management using fuzzy Inference as a service. The 7th International Conference

on Mobile Computing, Applications, and Services, pp . 314-327, Krakow, Poland.

Murarasu, A. F., & Magedanz, T. (2009). Mobile middleware solution for automatic

reconfiguration of applications. The 6th International Conference on Information

Technology: New Generations, pp. 1049-1055, Las Vegas, Nevada.

New semiconductor research may extend integrated circuit battery life tenfold,. (Aug,

2016). retrieved from (http://phys.org/news/2013-01-semiconductor-circuit-

battery-life-tenfold.html).

Newton, R., Toledo, S., Girod, L., Balakrishnan, H., & Madden, S. (2009). Wishbone:

profile-based partitioning for sensornet applications. The 6th USENIX Symposium

on Networked Systems Design and Implementation. pp. 395-408. Boston

Massachusetts USA.

Orlando, F. (October 8, 2013). Gartner Identifies the top 10 strategic technology trends

for 2014. Retrieved from (http://www.gartner.com/newsroom/id/2603623).

Othman, M., Madani, S. A., & Khan, S. U. (2014). A Survey of Mobile Cloud Computing

application models. IEEE Communications Surveys & Tutorials, 16(1), pp. 393-

413.

Ou, S., Yang, K., & Liotta, A. (2006). An adaptive multi-constraint partitioning algorithm

for offloading in pervasive systems. The 4th Annual IEEE International

Conference on Pervasive Computing and Communications, pp. 116-125, Pisa,

Italy.

Ou, S., Yang, K., & Zhang, Q. (2006). An efficient runtime offloading approach for

pervasive services. The IEEE Wireless Communications and Networking

Conference. Volume: 4, pp. 3-6, Las Vegas NV, USA.

http://phys.org/news/2013-01-semiconductor-circuit-battery-life-tenfold.html
http://phys.org/news/2013-01-semiconductor-circuit-battery-life-tenfold.html
http://www.gartner.com/newsroom/id/2603623

187

Peltonen, E., Lagerspetz, E., Nurmi, P., & Tarkoma, S. (2015). Energy modeling of

system settings: A crowdsourced approach. The IEEE International Conference

on Pervasive Computing and Communications, St. Louis, Missouri, USA.

Perrucci, G. P., Fitzek, F. H., Sasso, G., Kellerer, W., & Widmer, J. (2009). On the impact

of 2G and 3G network usage for mobile phones' battery life. The European

Wireless Conference, 2009, Aalborg Denmark.

Perrucci, G. P., Fitzek, F. H., & Widmer, J. (2011). Survey on energy consumption

entities on the smartphone platform. The 73rd IEEE Vehicular Technology

Conference (VTC Spring), Hungary.

Prelas, M., Boraas, M., Aguilar, F. D. L. T., Seelig, J.-D., Tchouaso, M. T., &

Wisniewski, D. (2016). Potential applications for nuclear batteries and

radioisotopes, Springer International Publishing. pp. 285-305.

Qi, H., & Gani, A. (2012). Research on mobile cloud computing: Review, trend and

perspectives. The 2nd International Conference on Digital Information and

Communication Technology and its Applications, Bangkok, Thailand.

Rachuri, K. K., Mascolo, C., Musolesi, M., & Rentfrow, P. J. (2011). Sociable sense:

exploring the trade-offs of adaptive sampling and computation offloading for

social sensing. The 17th Annual International Conference on Mobile Computing

and Networking, pp. 73-84, Las Vegas, Nevada USA.

Rahman, M., Gao, J., & Tsai, W.-T. (2013). Energy saving in mobile cloud computing.

The IEEE International Conference on Cloud Engineering, Boston,

Massachusetts, USA.

Ravi, N., Scott, J., Han, L., & Iftode, L. (2008a). Context-aware Battery Management for

mobile phones. The 6th Annual IEEE International Conference on Pervasive

Computing and Communications. pp. 224-233. doi:10.1109/percom.2008.108,

Hong Kong.

Ravi, N., Scott, J., Han, L., & Iftode, L. (2008b). Context-aware battery management for

mobile phones. The 6th Annual IEEE International Conference on Pervasive

Computing and Communications, pp. 17-21, Hong Kong.

Rim, H., Kim, S., Kim, Y., & Han, H. (2006). Transparent method offloading for slim

execution. The 2006 1st International Symposium on Wireless Pervasive

Computing., Hilton Phuket Thailand.

Rudenko, A., Reiher, P., Popek, G. J., & Kuenning, G. H. (1998). Saving portable

computer battery power through remote process execution. ACM Mobile

Computing and Communications Review, 2(1), pp. 19-26.

188

Saha, D., & Mukherjee, A. (2003). Pervasive Computing: a paradigm for the 21st century.

Computer, 36(3), pp. 25-31.

Sathan, D., Meetoo, A., & Subramaniam, R. (2009). Context aware lightweight energy

efficient framework. International Journal of Humanities & Social Sciences, pp.

64-70.

Satyanarayanan, M. (1996). Fundamental challenges in mobile computing. The 15th

Annual ACM Symposium on Principles of Distributed Computing. pp. 1-7,

Philadelphia, PA, USA.

Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. IEEE Personal

Communications, 8(4), pp. 10-17.

Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based

cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), pp. 14-23.

Shin, Y., Lee, H.-J., Shin, K., Kenkae, P., Kashyap, R., Seo, D., Millar, B., Kwon, Y.,

Iyengar, R., & Kim, M.-s. (2013). 28nm high-K metal gate heterogeneous quad-

core CPUs for high-performance and energy-efficient mobile application

processor. The International SoC Design Conference, Busan Korea.

Shiraz, M., Abolfazli, S., Sanaei, Z., & Gani, A. (2013). A study on virtual machine

deployment for application outsourcing in mobile cloud computing. The Journal

of Supercomputing, 63(3), pp. 946-964.

Shiraz, M., & Gani, A. (2014). A lightweight active service migration framework for

computational offloading in mobile cloud computing. The Journal of

Supercomputing, 68(2), pp. 978-995. doi:10.1007/s11227-013-1076-7.

Shiraz, M., Gani, A., Ahmad, R. W., Shah, S. A. A., Karim, A., & Rahman, Z. A. (2014).

A lightweight distributed framework for computational offloading in mobile

cloud computing. PloS one, 9(8), e102270.

Shiraz, M., Gani, A., Khokhar, R. H., & Buyya, R. (2013). A review on distributed

application processing frameworks in smart mobile devices for mobile cloud

computing. IEEE Communications Surveys & Tutorials, 15(3), pp. 1294-1313.

Shiraz, M., Gani, A., Shamim, A., Khan, S., & Ahmad, R. W. (2015). Energy efficient

computational offloading framework for mobile cloud computing. Journal of Grid

Computing, 13(1), pp. 1-18.

Sharifi, M., Kafaie, S., & Kashefi, O. (2012). A survey and taxonomy of cyber foraging

of mobile devices. IEEE Communications Surveys & Tutorials, 14(4), 1232-1243.

189

Shuja, J., Gani, A., Naveed, A., Ahmed, E., & Hsu, C.-H. (2016). Case of ARM emulation

optimization for offloading mechanisms in Mobile Cloud Computing. Future

Generation Computer Systems. http://dx.doi.org/10.1016/j.future.2016.05.037.

Shuja, J., Gani, A., ur Rehman, M. H., Ahmad, R. W., Ahmed, E., Madani, S. A., Khan,

M. K., & Ko, K. (2016). Towards native code offloading based MCC frameworks

for multimedia applications: A Survey. Journal of Network and Computer

Applications. DOI: 10.1016/j.jnca.2016.08.021.

Shye, A., Scholbrock, B., & Memik, G. (2009). Into the wild: studying real user activity

patterns to guide power optimizations for mobile architectures. The 42nd Annual

International Symposium on Microarchitecture, New York USA.

Son, Y., & Lee, Y. (2017). Offloading method for efficient use of local computational

resources in mobile location-based services using clouds. Mobile Information

Systems, 2017.

Su, Y.-Y., & Flinn, J. (2005). Slingshot: deploying stateful services in wireless hotspots.

The 3rd International Conference on Mobile Systems, Applications, and Services,

pp. 79-92, Seattle, WA, USA.

Nick, T. (2015). How to tell if your smartphone's battery is healthy or bad (iPhone and

Android guide). Retrieved from (http://www.phonearena.com/news/How-to-tell-

if-your-smartphones-battery-is-healthy-or-bad-iPhone-and-Android-

guide_id65591).

Teka, F. A. (2014). Seamless live virtual machine migration for cloudlet users with.

carleton University Ottawa. Master Thesis in Electrical and Computer

Engineering, Carolon University Otawa, Ontario.

Tsirkel, A., Bradski, G., & Davies, R. (2001). Method and apparatus to adjust the

brightness of a display screen: Google Patents.

Vallina-Rodriguez, N., & Crowcroft, J. (2013). Energy management techniques in

modern mobile handsets. IEEE Communications Surveys & Tutorials, 15(1),

pp.179-198.

Wang, K., Rao, J., & Xu, C.-Z. (2011). Rethink the virtual machine template. The 7th

ACM International Conference on Virtual Execution Environments. pp. 39-50.

Newport Beach, CA, USA.

Wang, W., & Dey, T. (2011). A survey on arm cortex a processors. Retrieved from

(http://www. cs. virginia. edu1~ skadron. Accessed Date: July 2016).

What is Windows Azure? (2010). retrieved from

(http://www.microsoft.com/bizspark/azure/. Accessed Date: 13th June 2016).

http://dx.doi.org/10.1016/j.future.2016.05.037
http://www.phonearena.com/news/How-to-tell-if-your-smartphones-battery-is-healthy-or-bad-iPhone-and-Android-guide_id65591
http://www.phonearena.com/news/How-to-tell-if-your-smartphones-battery-is-healthy-or-bad-iPhone-and-Android-guide_id65591
http://www.phonearena.com/news/How-to-tell-if-your-smartphones-battery-is-healthy-or-bad-iPhone-and-Android-guide_id65591
http://www.microsoft.com/bizspark/azure/

190

Wolski, R., Gurun, S., Krintz, C., & Nurmi, D. (2008). Using bandwidth data to make

computation offloading decisions. The 2008. The IEEE International Symposium

on Parallel and Distributed Processing, Rome Italy.

Woollaston, V. (2014). Forget 3D screens and fingerprint scanners, customers really want

better battery life and waterproof screens, poll reveals. Retrieved from

(http://www.dailymail.co.uk/sciencetech/article-2715860/Mobile-phone-

customers-really-want-better-battery-life-waterproof-screens-poll-reveals.html.

Accessed Date: 23rd June 2016).

Xian, C., Lu, Y.-H., & Li, Z. (2007). Adaptive computation offloading for energy

conservation on battery-powered systems. The International Conference on

Parallel and Distributed Systems, National Tsing Hua University Hsinchu,

Taiwan.

Xiao, Y., Hui, P., Savolainen, P., & Ylä-Jääski, A. (2011). CasCap: cloud-assisted

context-aware power management for mobile devices. The 2nd International

Workshop on Mobile cloud Computing and Services. pp. 13-18, Bethesda, MD,

USA.

Yang, K., Ou, S., & Chen, H.-H. (2008). An effective offloading services for resource-

constrained mobile devices running heavier mobile internet applications. IEEE

Communications Magazine, 46(1), pp. 56-63.

Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., & Chan, A. (2013). A Framework for

partitioning and execution of data stream applications in fobile cloud computing.

ACM SIGMETRICS Performance Evaluation Review, 40(4), pp. 23-32.

Zhang, L. (2013). Power, performance modelling and optimization for mobile system and

applications. PhD Dissertation in Computer Science and Engineering. The

University of Michigan.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao, Z. M., & Yang, L. (2010).

Accurate online power estimation and automatic battery behavior based power

model generation for smartphones. The 8th IEEE/ACM/IFIP International

Conference on Hardware/software Code Sign and System Synthesis. pp. 105-114,

Scottsdale, AZ, USA.

Zhang, X., Jeong, S., Kunjithapatham, A., & Gibbs, S. (2010). Towards an elastic

application model for augmenting computing capabilities of mobile platforms.

The 3rd International Conference on Mobile Wireless Middleware, Operating

Systems, and Applications. pp. 161-174, Chicago IL, USA.

Zhang, X., Kunjithapatham, A., Jeong, S., & Gibbs, S. (2011). Towards an elastic

application model for augmenting the computing capabilities of mobile devices

with cloud computing. Mobile Networks and Applications, 16(3), pp. 270-284.

http://www.dailymail.co.uk/sciencetech/article-2715860/Mobile-phone-customers-really-want-better-battery-life-waterproof-screens-poll-reveals.html
http://www.dailymail.co.uk/sciencetech/article-2715860/Mobile-phone-customers-really-want-better-battery-life-waterproof-screens-poll-reveals.html

191

Zhao, B., Xu, Z., Chi, C., Zhu, S., & Cao, G. (2010). Mirroring smartphones for good: A

feasibility study. The 7th International Conference on Mobile and Ubiquitous

Systems: Computing, Networking, and Services, pp. 26-38, Sydney Austrailia.

Zhuang, Z., Kim, K.-H., & Singh, J. P. (2010). Improving energy efficiency of location

sensing on smartphones. The 8th International Conference on Mobile Systems,

Applications, and Services. pp. 315-330, San Francisco CA, USA.

192

Appendix A

Table A.1 Energy Consumption Cost EC1 of Offloading Matrix Multiplication

Service in Traditional Computational Offloading

Matrix

Size

Energy Consumption Cost (J) Standard

Deviation

(SD)

Confidence

Interval CPU (J) LCD (J) Wi-Fi (J) Total

consumption (J)
160x160 3.9 1.4 2.5 7.72 0.420714 7.8(+/-)0.966

170x170 4.1 1.5 3.2 9.14 0.568331 8.8(+/-)1.311

180x180 4.8 1.9 3.4 10.24 0.585662 10.1(+/-)1.351

190x190 4.9 2.2 3.5 11.18 1.712308 10.6(+/-)3.951

200x200 6.0 2.4 3.4 11.5 0.223607 11.8(+/-)0.516

210x210 6.8 3.0 6.9 16.74 0.450555 16.7(+/-)1.040

220x220 7.3 3.3 6.7 15.06 1.301153 17.3(+/-)3.003

230x230 7.8 3.8 6.8 19.48 1.645296 18.4(+/-)3.797

240x240 8.6 3.9 7.7 21.8 1.189538 20.2(+/-)2.745

250x250 9.8 3.9 8.1 21.52 0.216795 21.8(+/-)0.500

260x260 11.0 4.1 8.4 23.56 0.371484 23.5(+/-)0.857

270x270 11.7 4.5 8.9 25.92 1.077961 25.1(+/-)2.488

280x280 13.2 4.4 8.4 26.34 0.31305 26(+/-)0.722

290x290 15.2 4.8 8.7 29 0.738241 28.7(+/-)1.704

300x300 16.2 5.2 8.9 30.36 0.240832 30.3(+/-)0.556

310x310 18.5 5.4 9.1 33.52 0.356371 33(+/-)0.822

320x320 19.7 5.4 9.5 35.48 0.766159 34.6(+/-)1.768

330x330 21.4 5.8 9.8 37.6 0.424264 37(+/-)0.979

340x340 23.2 6.1 10.4 40.82 1.482228 39.7(+/-)3.420

350x350 26.3 6.2 10.8 43.28 0.549545 43.3(+/-)1.268

360x360 26.9 6.4 10.3 43.62 0.363318 43.6(+/-)0.838

370x370 29.5 6.7 10.7 46.56 0.31305 46.9(+/-)0.722

380x380 33.2 7.0 10.1 50.6 0.524404 50.3(+/-)1.210

390x390 37.8 7.2 12.4 58.08 0.637966 57.4(+/-)1.472

400x400 41.2 7.1 12.5 61.08 0.756307 60.8(+/-)1.745

410x410 45.7 7.5 13.8 66.88 1.037786 67(+/-)2.395

420x420 51.7 7.4 13.2 72.56 0.270185 67(+/-)0.623

430x430 55.4 7.6 14.5 77.96 0.630872 77.5(+/-)1.456

440x440 64.8 7.8 15.1 88.66 0.95289 87.7(+/-)2.199

450x450 78.4 7.9 15.2 102.08 8.517159 101.5(+/-)1.388

193

Appendix B

Table B.1 Time Consumption Cost TC1 of Offloading Matrix Multiplication Service

in Traditional Computational Offloading

Matrix Size Execution Time

 Milliseconds (ms)

Standard Deviation

(SD)

Confidence Interval

160x160 9608 535.7891 9608 (+/-)1236.39

170x170 10544.8 313.4002 10544.8 (+/-)723.21

180x180 11152.8 171.0956 11152.8 (+/-)394.82

190x190 13448.2 382.5588 13448.2 (+/-)882.80

200x200 14286.2 402.2328 14286.2 (+/-)928.20

210x210 16406.8 326.287 16406.8 (+/-)752.94

220x220 17200.2 140.4482 17200.2 (+/-)324.10

230x230 18931.8 183.9489 18931.8 (+/-)424.48

240x240 20687.8 442.4536 20687.8 (+/-)1021.15

250x250 23727 506.9122 23727 (+/-)1169.76

260x260 26968.2 370.9699 26968.2 (+/-)856.05

270x270 29593.8 528.0177 29593.8 (+/-)1218.46

280x280 33056.6 631.9401 33056.6 (+/-)1458.27

290x290 35777 606.8299 35777 (+/-)1400.33

300x300 40627.4 1042.291 40627.4 (+/-)2405.21

310x310 46807.4 1081.437 46807.4 (+/-)2495.54

320x320 52168.8 909.6099 52168.8 (+/-)2099

330x330 58184.4 849.8919 58184.4 (+/-)1961.23

340x340 63449.8 701.4454 63449.8 (+/-)1618.67

350x350 70335.2 1286.772 70335.2 (+/-)2969.81

360x360 76010.6 1611.518 76010.6 (+/-)3718.77

370x370 87753.2 1720.307 87753.2 (+/-)3969.81

380x380 101338.6 4000.621 101338.6 (+/-)9231.92

390x390 120554.6 3948.49 120554.6 (+/-)9111.62

400x400 136166 2742.36 136166 (+/-)6328.33

410x410 148291.4 1998.916 148291.4 (+/-)4612.74

420x420 165687.2 2785.926 165687.2 (+/-)6428.86

430x430 173176.8 1495.201 173176.8 (+/-)3450.35

440x440 182196.4 1792.104 182196.4 (+/-)4135.49

450x450 189523.8 2089.393 189523.8 (+/-)4821.52

 194

 AUTHOR’S BIODATA

Mushtaq Ali was born in Shangla (Swat) Pakistan. He received his Bachelor

degree in Computer Sciences from University of Peshawar, Pakistan, in 2003; Master

from Hazara University Mansehra Pakistan, in 2006. Currently he is pursuing his PhD

Candidature under Scholarship from the Ministry of Higher Education, Malaysia and support

from University Malaysia Pahang (UMP). He started his career as an IT-Instructor in 2007

at Pak Swiss Technical Center Mingora Swat Pakistan. He held last position as a

Network Administrator in 2012 at AL-Khayrin Group Trading & Construction W.L.L,

Doha Qatar. He has published 9 Journal articles in different Journal including ISI

impact factor Journal and presented 4 papers in national & International conferences.

His Research interests includes Cloud Computing, Distributed Systems, Mobile

Security, Smartphone Efficiencies and Water Marking.

 195

 THE LIST OF PUBLICATIONS

JOURNALS

Mushtaq Ali, Jasni Muhamed Zain, Muhamad Fadli Zolkipli, & Gran Badshah, (2015).

Mobile Cloud Computing & Mobile's Battery Efficiency Approaches: a

Review. Journal of Theoretical and Applied Information Technology, 79(1),

pp. 153.

Mushtaq Ali, Jasni Muhamed Zain, Muhamad Fadli Zolkipli, & Gran Badshah (2015).

Taxonomy of Computational Offloading in Mobile Devices. World Applied

Sciences Journal, 33(12), pp. 1798-1805.

Mushtaq Ali, Jasni Muhamed Zain, Muhamad Fadli Zolkipli, & Gran Badshah (2018).

Analysis of Power Consumption in Mobile Devices. Journal of Computer

Communications, Elsevier, 2016 (ISI Impact Factor 2.38). (Under Review)

Mushtaq Ali, Mazlina Abdul Majid, Jasni Mohamad Zain, Mohamad Fadli Zolkipli,

Shahid Anwar Safi (2018). “Mobile Cloud Computing with SOAP and REST

Web Services.” Journal of Physics: Conference Series. (Accepted).

Gran Badshah, Siau-Chuin Liew, Jasni Mohamad Zain, Mushtaq Ali (2015).

“Watermark Compression in Medical Image Watermarking Using Lempel-

Ziv-Welch (LZW) Lossless Compression Technique.” Journal of Digital

Imaging, 29(2), pp. 216.

Gran Badshah, Siau-Chuin Liew, Jasni Mohamad Zain, Mushtaq Ali (2015). “Secured

Telemedicine Using Whole Image as Watermark with Tamper Localization

and Recovery Capabilities.” Journal of Information Processing Systems,

11(4), pp. 601-615.

Gran Badshah, Siau-Chuin Liew, Jasni Mohamad Zain, Mushtaq Ali (2016).

“Watermarking of ultrasound medical images in tele radiology using

compressed watermark.” Journal of Medical Imaging, 3(1), pp 25.

Juluis Odili, Mohamad Nizam Mohamad Kahar, Shahid Anwar, Mushtaq Ali (2017).

“Tutorials on African Buffalo Optimization for Solving the Travelling

Salesman Problem.” International Journal of Software Engineering and

Computer Sciences” v (3).

Shahid Anwar, Mohamad Fadli Zolkipli, Jasni Mohamd Zain, Zakira Inayat, Julius

Odili, Mushtaq Ali (2018). Android Botnets: A Serious Threat to Android

Devices.” Pertanika Journal of Science and Technology” v 26(1).

 196

CONFERENCES

Mushtaq Ali, Jasni Muhamed Zain, Muhamad Fadli Zolkilpli and Gran Badshah

(2014). Mobile Cloud Computing and Mobile’s Battery Augmentation

Techniques. IEEE Student Conference on Research and Development

(SCOReD) 2014. Pages 1-6, Peneng Malaysia.

Mushtaq Ali, Jasni Muhamed Zain, Muhamad Fadli Zolkilpli and Gran Badshah

(2015). Battery Efficiency of Mobile Devices through Computational

Offloading. IEEE Student Conference on Research and Development

(SCOReD) 2015, pp 317 – 322, Kuala Lumpur Malaysia.

Muhammad Wasfi Nabeel, Abdullah Embong, Mushtaq Ali (2015). “Computational

Offloading in Smart Internet Devices.” 4th International Conference on

Software Engineering and Computer Systems, Kuantan Malaysia.

