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ABSTRAK

Konsep kumpulan hasil darab tensor tak abelan bermula daripada teori K-algebra dan
juga teori homotopi. Konsep ini ditakrifkan sebagai tindakan yang serasi antara satu
sama lain. Pasangan tindakan serasi yang berbeza boleh menghasilkan satu hasil darab
tensor tak abelan yang berlainan. Bilangan maksimum hasil darab tensor tak abelan
yang berbeza bergantung kepada bilangan pasangan tindakan yang serasi. Oleh itu,
kajian ini memberi tumpuan bagi, menentukan bilangan pasangan tindakan yang serasi
antara dua kumpulan kitaran terhingga yang berperingkat kudsamanap adalah
nombor perdana ganjil. Penyelidikan ini bermula dengan menentukan syarat-syarat
perlu dan cukup untuk tindakan-tindakan yang berperingkat kuasatindak serasi.
Seterusnya, bilangan automorfisma yang berperingkat kuaseari bagi kumpulan

yang sedemikian, yang mana mewakili tindakan. Dengan menggunakan syarat-syarat
perlu dan cukup, bilangan pasangan tindakan serasi telah dikenalpasti berdasarkan
peringkat bagi tindakan. Tambahan pula, graf tindakan serasi dan subgrafnya telah
diperkenal bagi kumpulan kitaran terhingga berperingkat kpaSalepas itu, beberapa

ciri bagi graf tindakan serasi juga diberikan.



ABSTRACT

The concept of the nonabelian tensor product of groups has its origins in the algebraic
K-theory and the homotopy theory. This concept is defined on the actions which are
compatible to each other. A different compatible pairs of actions can give a different
nonabelian tensor products. Therefore, the maximum different nonabelian tensor
product depends on the number of compatible pairs of actions. Thus, this research
focuses on determining the number of compatible pairs of actions between two finite
cyclic groups ofp-power order, wherg@ is an odd prime. This research starts with
determining the necessary and sufficient conditions for the actions thapmveer

order to be compatible. Then, the number of the automorphisms that hapdiver

order for such type of groups, which present the actions are found. By the necessary and
sufficient conditionsthe number of the compatible pairs of actions has been determined
according to the order of the action. Furthermore, the compatible action graph and its
subgraph were introduced for the finite cyclic groupg-@ower order. Then, some
properties of the compatible action graph are also presented.
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CHAPTER 1

INTRODUCTION

1.1 An Overview

This chapter is an introduction chapter to the whole thesis, which contains research
background, problem statement, research objectives, research scope, research

significance, and thesis organization.

1.2 Research Background

The concept of the nonabelian tensor product of groups was introduced by Brown
and Loday (1984). This concept is defined for a pair of groupsd3H which acts on
each other, providing the actions that satisfies the following compatibility conditions:

Mg =@ gy and ="y

for all g,g'JG andh,h"0H . The originated of this concept was in connection with a

generalized Van Kampen Theorem. Then, the structure of this concept has its origins in
the algebraic K-theory and also in the homotopy theorg dndH are groups that act
compatibly on each other, then, the nonabelian tensor prd@sicH is a group

generated by the symbotsl] h with relations:

g9’ Oh=(°g'0°h)(gCh) and gOhh'=(gOh)("gO ")

forall g,g'0G andh,h'00H.



The research on the group theoretical aspects of the nonabelian tensor product was
initiated by Brown and Loday (1987). They focused on the group theoretic properties,
specifically on the computation of the nonabelian tensor square. Also, they gave a list
of open problems concerning the nonabelian tensor product and the nonabelian tensor
square which include a problem in the cyclic group. Thus, the open problems, which
have been given by Brown and Loday (1987) were the motivation for many researchers
as well as this research to investigate the group theoretical aspects of the nonabelian

tensor product of groups.

The nonabelian tensor squ&élG has been established by Brown and Loday
(1984), which is finite for the finite grou@. Then, Ellis (1987) extended the results to
the nonabelian tensor product and he showed that the nonabelian tensor product is of
power order ifG andH are of thep-power order. McDermott (1998) computed the
nonabelian tensor produ@ [ H whenG is ap-group andH is g-group, wherep and
g are prime numbers and he only focused on the bound of the nonabelian tensor product
of G andH. Moreover,Visscher (1998xontinued the study on the nonabelian tensor

product of thep-power order which focused on the casepot 2 for the cyclic groups

and he not account the number of the compatible pairs of nontrivial actions for such
type groups. Mohamad (2012) studied the compatibility conditions and the nonabelian
tensor product of the finite cyclic groups of {Mpower order, wherp is an odd prime

as well as p =2, and he used the order of the action as one of the conditions to provided
a necessary and sufficient conditions for the pair of two finite cyclic groups to act
compatibly on each other. Mohamad (2012) also he never determined how many
compatible pairs of nontrivial actions for the given nonabelian tensor product for such
type of groups. Meanwhile, Sulaiman et al. (2015) continued with Mohamad’s work
and focused only on the number of the compatible pairs of nontrivial actions that have
the 2-power order for the finite cyclic groups of 2-power order and its subgroup. The
details of the literature review are discussed in Chapter 2. Thus, this research is
focusing on the case of tipepower order for such type of groups, wheres an odd

prime in order to investigate the number of the compatible pairs of nontrivial actions

that have the p-power order.



1.3 Problem Statement

The nonabelian tensor product of groups is defined for a pair of groups, which acts
on each other, such that the actions satisfying the compatibility conditions. According
to the definition of the nonabelian tensor product, the pair of the actions are required to
be compatible in order for the nonabelian tensor product to be computed. Thus,
different compatible pairs of actions can give different nonabelian tensor product. Many
researchers considered the nonabelian tensor product with trivial actions. However,
only some of them are considered the nontrivial actions for computing the nonabelian
tensor product. Others computed the nonabelian tensor product and the compatibility
conditions of nontrivial actions for the finite cyclic groups of phgower order, where
p is an odd prime. In this research, the finite cyclic groups op{be@wer order, where
p is an odd prime are considered in order to find and prove the exact number of the
compatible pairs of actions for the given nonabelian tensor product for such type of
groups, which gives the maximum number of different nonabelian tensor product for
any two finite cyclic groups of thp-power. Then, the results have been extended to
introduce a types of graph, namely the compatible action graph and its subgraph for the
nonabelian tensor product of such type of groups by studying the relationship between
the group theory and graph theory to present all pairs of compatible actions as edges

and the actions as vertices.

1.4 Research Objectives

The objectives of this study are:

0] to determine the necessary and sufficient conditions for a pair of finite cyclic
groups of thep-power order, wherp is an odd prime to act compatibly on each
other.

(i) to find the number of the automorphisms of the finite cyclic groups opthe
power order, where p is an odd prime with a specific order.

(i)  to find the exact number of the compatible pairs of actions for the finite cyclic
groups of the p-power order, whgyés an odd prime.

(iv)  to find the properties of the compatible action graph and the intersection of its
subgraph for the finite cyclic groups of tpepower order, wherg is an odd

prime.



1.5 Research Scope

This research focused on the compatible actions, and the groups considered are

limited to the finite cyclic groups of the p-power order, where p is an odd prime.

1.6  Research Significance

The contribution of this thesis is to provide a necessary and sufficient conditions
on the pair of finite cyclic groups of theepower order, which act compatibly on each

other.

In addition, new results in determining the number of the compatible pairs of
actions for the finite cyclic groups of tipepower order, wher@ is an odd prime are
presented. Furthermore, the number of the automorphisms with a specific order for such

type of groups have been determined by using some properties in number theory.

The results have been extended to introduce a new types of graph, which is
called the compatible action graph and its subgraph by using the theoretical relationship
between group theory and graph theory. Some properties of the compatible action graph

and its subgraph are also provided.

1.7  Thesis Organisation

Chapter one presented as an introduction chapter to the whole thesis. This
chapter containsesearch background, problem statement, research objectives, research

scope, and research significance.

Chapter 2 focuses on the details of literature reviews on the compatibility
conditions and the concept of the nonabelian tensor product of groups with some recent

works had done on the relation between group theory and graph theory.

Some definitions and preliminary results of the automorphism groups,
compatibility conditions, and graph theory are given in Chapter 3. By using Groups,
Algorithms and Programming (GAP) software, the compatible actions and the number
of the compatible pairs of actions are found. All results in this chapter are used in

subsequent chapters to prove the new results.



Chapter 4 focuses on the automorphism and the compatible actions for the finite
cyclic groups of thg-power order, wherp is an odd prime. This chapter then included
some properties of the automorphism of such type of groups and the necessary and
sufficient conditions for a pair of actions that hgvpower order to act compatibly on

each other. Furthermore, some examples are presentedGvhéh and G #H, to

illustrate the compatible actions for the finite cyclic groups ofptpewer order, where

p is an odd prime.

The main results of this thesis are given in Chapter 5, which is divided into two
parts. The first part, concerning the number of the automorphisms of the finite cyclic
groups of theg-power order with the specific order, while the second part is concerning
the number of the compatible pairs of actions for the finite cyclic groups pfgbever
order, wherg is an odd prime. The results illustrated that the number of the compatible
pairs of nontrivial actions for a given nonabelian tensor product of such type of groups

are equal.

Chapter 6 shows the connection between the group theory and the graph theory.
In this chapter, a new graph, namely the compatible action graph and its subgraph have
been presented and some theoretical properties of the compatible action graph for the

finite cyclic groups of goower order are given.

Lastly, Chapter 7 contains the summary of this research and some suggestions

for future research.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents the details of the literature review on the compatible
actions, the nonabelian tensor product of groups and some related results in graph

theory.

2.2  Compatible Actions and The Nonabelian Tensor Product of Groups

The concept of the nonabelian tensor product of groups has been discussed since
1984. Brown and Loday in 1984 and 1987 were the researchers who introduced the
concept of the nonabelian tensor product to extend the ideas of Whitehead (1950). This
concept is defined by a pair of grougsandH, providing that the groups act on each
other in such a way where the actions are satisfying the compatibility conditions. The
paper by Brown et al. (1987) has motivated many researchers to investigate the group

theoretical aspects of the nonabelian tensor product.

A study by Brown et al. (1987) focused on the group theoretic properties,
precisely to compute the nonabelian tensor square. They also provided a list of open
problems concerning the nonabelian tensor product and the nonabelian tensor square
and one of the open problems concerning to the cyclic groups, which stated that
whether the nonabelian tensor product of two cyclic groups is cyclic. Thus, our focus in
this research is on the compatible actions without computing the nonabelian tensor

product. Again, Brown et al. (1987) established that the nonabelian tensor square



GOG is a finite for a finiteG. In addition, they showed that the nonabelian tensor

square of a nilpotent group is nilpotent.

In addition, some result on the nonabelian tensor product forGatidH with
p-power order was proven. Furthermore, the computation of the nonabelian tensor
square for groups of order up to 30 was given by using GAP programming. Meanwhile,
Ellis (1987) extended the results for the nonabelian tensor product without any
analytical proof. Furthermore, he shows that the nonabelian tensor product igof the

power order if Gand Hare of the p-power order.

Gilbert and Higgins (1989) studied the concept of the nonabelian tensor product

of groups and they found that there is an isomorphism from the sub[@o&tf’] of

n(G,H) onto the nonabelian tensor product such E@h”’] - gUh for gG and

hOH. This isomorphism is useful to study the nonabelian tensor product inside of

n(G,H). Two years later, Rocco (1991) gives a bound for the order of the nonabelian

tensor squareGG if G has orderp”. Bacon and Kappe (1993) studied the
nonabelian tensor squai®[1G and determined the nonabelian tensor square of
2-generatop-groups of nilpotency class 2, whevas an odd prime. In addition, they
also showed that i& is a nilpotent group of class 2, then the nonabelian tensor square
GOGis abelian.

Ellis and Leonard (1995) modified a method which can be used to compute the
nonabelian tensor produ@[IH for all pairs of normal subgrougs andH of order

up to 14. They also computed the nonabelian tensor square and Schur multiplier of
Burnside groups, which arB(2,4) and B(3,3) of order2”and 3, respectively.
However, they provided an alternative description for the nonabelian tensor product
which stated that, there is an isomorphi@ ] H)xH)xG OGOH/J, wherex is

the semi-direct product anilis the subgroup o [IH.Then, their results concluded

that there is an isomorphis@ ] H OGNH,whereG andH are the normal closure in

GOH/Jof Gand H

An overview on some of the developments on the nonabelian tensor product of

groups since the appearance of the paper of Brown et al. (1987) with literature results



up to 1997 was illustrated by Kappe (1997). After that, McDermott (1998) developed
an algorithm to compute the nonabelian tensor pro@udtH and implemented the
algorithm with the help of GAP software. Meanwhile, he also determined the order of
the nonabelian tensor prod@t] H by using GAP software for all normal subgroup G
andH of the quaternion group of order 32. In addition, he gave both the nonabelian
tensor product of quaternion group and dihedral group of order eight and split them into
two cases, such that the actions act compatibly on each other and the actions do not act
compatibly on each other. Besides that, Ellis and McDermott (1998) improved the
Rocco’s bound in 1991 and extended it to the case of the nonabelian tensor product

GO H of prime power groups @nd H

Extended from Ellis and McDermott’'s work, Visscher (1998) continued the
study on the nonabelian tensor product of pigower order and he focused on the
cyclic groups. He clarified more descriptions of the action for the cyclic group of prime
power orderin the first part of his thesis before using theulssto compute the
nonabelian tensor product. Moreover, he computes some of the nonabelian tensor
product of cyclic groups of the-power order and presents a complete classification of
all nonabelian tensor product of cyclic groups of 2-power order with mutual nontrivial
actions of order two. In addition, Visscher (1998) gave the bounds on the nilpotency

class and solvability length @ [0 H, provided such information is given in context
with G andH. The bounds are given in terms Bf (G), the derived subgroup @&

afforded by the action oH on G and D;(H), the analogue’s subgroup .

Furthermore, Visscher (1998) determined the characterisation of the compatibility
condition and provided some necessary and sufficient number in theoretical conditions
for a pair of cyclic groups of thp-power order, where is an odd prime, as well as

p = 2 to act compatibly with each other. Then, he determined the compatibility

conditions for the cyclic groups only when one of the actions is trivial or both actions

are trivial.

Nakaoka (2000) studied the nonabelian tensor product of solvable groups, and
gave the description of the derived and the lower central seri@$ldfl . Besides that,
Nakaoka (2000) obtained the bound for the ordeGafG for a finite solvable group



G. As a result, she obtained that there is an isomorphism from the subjgepH] of

n(G,H)to GOH such that§ b’ |- gOhforgdG andhOH.

Nakaoka and Rocco (2001) studied the nonabelian tensor product for two
groups, which are the nilpotent groups, where the actions act on each other in the
nilpotently way. In addition, they also present that the nonabelian tensor square for
finite group G is cyclic. Besides that, Morse (2005) gives an overview and literature
study on some of the developments and computation on the nonabelian tensor square of

groups.

The nonabelian tensor product of polycyclic groups has been studied by
Moravec (2007) and he showed that the nonabelian tensor pi@duét is polycyclic
whereG andH are two polycyclic groups that act compatibly with each other. Besides
that, Moravec (2008) proved that the exponent of the nonabelian tensor product of two
locally finite groups can be bounded in terms of exponents in the given groups. He
presented that the exponent of the nonabelian tensor square divides the expGnent of

when Gis a group ohilpotent of the class 3 and of the finite exponent.

Blyth and Morse (2009) developed a theory for computing the nonabelian tensor
squareG G and related computations for finitely presented groups, specialising on
the polycyclic groups. The results gave the computations and the basis of an algorithm
for computing the nonabelian tensor square for any polycyclic group. Meanwhile,
Moravec (2009) studied the nonabelian tensor square for powgidubups. He
provided some fundamental properties of nonabelian tensor square focuses on powerful
p-groups such like, it5 is powerful, then the exponent GL1 Gdivides the exponent
of G.

Thomas (2010)ntroduced a homology free proof that the nonabelersor
product of two finite groups is finite, which gives an algebraic proof for the study by
Ellis (1987). Besides that, he provided an explicit proof that the nonabelian tensor
product of two finitep-groups is a finitgp-group. Later on, Blyth et al. (2010) studied
the nonabelian tensor squded 1 G for the class of group @nd they characterised the
exterior squards (G in terms of a presentation & They also applied the results to
some classes of groups, such as the classes of free solvable and free nilpotent groups of

finite rank, as well as some classes of the fipHgroups. Furthermore, Russo (2010)

9



showed that the nonabelian tensor product of two Chernikov groups is Chernikov
group. Then, Moravec (2010htroduced the notion of powerful action ofpagroup

upon anothep-group. In addition, he derived some properties of powerful actions and
studied faithful powerful actions. Then, he showed that the nonabelian tensor product of
powerful p-groups acting powerfully and compatibly upon each other is again a

powerful p-group.

Russo (2011) proved that &,H Uy, thenGLU H U Y, where x represent a

given classes of groups, such as the class of all finite groups, nilpotent groups,
polycyclic groups, locally finite groups, and Chernikov groups. In additidrgmas

(2012) introduced a generalisation to the concept of theahelian tensor product,
which is called the box-tensor product and denote@&yH . However, he extended
various results for the concept of the nonabelian tensor product to the box-tensor
product, such as the finiteness of the product when each factor is finite. Besides that, he
showed that the finiteness of the box-tensor pro@&tH when both Gand Hare

finite. Then, he also proved th& [1H is finite if the mutual actions are half

compatible.

Mohamad (2012) studied the concept of the nonabelian tensor product and
focused on the finite cyclic groups. He proved that the nonabelian tensor product of
finite cyclic groups of the-power order are cyclic whgmis an odd prime. Mohamad
(2012) also showed that the nonabelian tensor product of cyclic groups of 2-power
order with two-sided actions is also cyclic, when both actions have order greater than

two. In addition, Mohamad et al. (2012) studied the computation of the nonabelian
tensor product for cyclic groups of ordpf wherep is an odd prime. They provided

the necessary and sufficient conditions for the finite cyclic groups qf-tiwever order
that act on each other in the compatible ways where the order of the actions is included

as one of the conditions. Moreover, they showed that the nonabelian tensor product of

the finite cyclic groups of ordep® is also cyclic when the actions have order p.

Next, Otera et al. (2013) investigated some algebraic and topological properties
for the nonabelian tensor product in viewpoint of the classes of a group. Besides that,
Rashid et al. (2013tudied the nonabelian tensor square and its capability, focusing on

the groups of order 8q whetgis an odd prime. They also computed the capability of

10



the group using the Schur multiplier of the groups of order 8q. Fauzi et al. in (2014)

computed the nonabelian tensor square of Biebierbach group of dimension five with
dihedral point group of order eight denoted B{5). They also proved that the

nonabelian tensor square of the first Biebierbach group of dimension five with a
dihedral point group of order eight can be generated by ten elements and they verified

the results by using the GAdeftware.

Sulaiman et al. (2015) computed the exact number of compatible pairs of
actions between the two cyclic groups of 2-power order. In addition, he used some
necessary and sufficient number theoretical conditions for a pair of cyclic groups of 2-
power order with nontrivial actions that act compatibly on each other to investigate
some properties in finding the exact number of compatible pairs of actions. He also
provided some results on the compatible pairs of nontrivial actions of order two and
four. In the same year, Donadze et al. (2015) investigated the closure and the finiteness
properties for the nonabelian tensor product of groups. They showed that some classes
are closed under the formation of the nonabelian tensor product, such as solvable by
finite, nilpotent by finite, polycyclic by finite, nilpotent of nilpotency classand super

solvable groups.

Next, Shahoodh et al. (2016) computed the compatible pairs of nontrivial
actions for two finite cyclic groups of 3-power order. Meanwhile, Jafari (2016)
categorised the nonabelian tensor square for the fpigeoups by the order. In
addition, he also computed the Schur multiplier and showed&haE for the finite
generalised extra speciaigroups are not capable. In 2016, Russo studied the topology
of the nonabelian tensor product of profinite groups. Then, he proved the nonabelian
tensor products of projective limits of finite of such type of groups. In the same year,
Sulaiman et al. determined the exact number of the compatible pairs of actions for the
finite cyclic groups of 2-power order and he only focused for a case when one of the
actions has an order greater than two. In 2016 Sulaiman et al. have studied the
compatible pairs of the nontrivial actions for the finite cyclic groups of 2-power order.

Ghorbanzadeh et al. (2017) investigated the nonabelian tensor squageoops of
order p*, then they obtained the Schur multiplier, exterior center and the tensor center

of such type of groups. However, Mohamad et al. (2017) provided the exact number of

the compatible pairs of nontrivial actions for the same cyclic groups of 2-power order
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with the actions that have the same order. Furthermore, in the following table, we

summarized the most related researches that are works on the compatible actions and

the finite cyclic groups of the-power order.

Table 2.1

The Most Related Researches That Works on The Compatible Actions and

The Finite Cyclic Groups of the p-Power order.

Author year Focus group Findings
p-groups. - For thep-groups, he only focused on
the bound of the order @& [ H.
Dihedral group of For the Dihedral and quaternion groups
McDermott 1998 order 8 and both of order 8, he computed all the
quaternion  grou possible pairs of actions betweeépand
of order 8. Q, by finding all possible images of their
generators in the respective
automorphism groups.
- He found that there are 28 possible
actions ofQ;on D,and 76 ofD,onQ,
and giving all together 2128 different
pairs of actions betweenD, and Q; .
Then, he found that only 292 are
compatible pairs.
Finite cyclic 2-| - Find the necessary and sufficient
groups. conditions for the actions of 2-power
order to be compatible on each other.
Visscher 1998 Finite cyclic p- |- Find the necessary and sufficient

groups, where is

an odd prime.

conditions for the actions op-power
order to be compatible on each other.

- Find the nonabelian tensor product
when both actions have order 1.

- Find the nonabelian tensor product

when both actions that have order 2.
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the

Table 2.1  Continue.
Author year Focus group Findings
Finite cyclic 2-| - Necessary and sufficient conditions for
groups. the actions to be compatible where the
order of the action included as one of the
Mohamad 2012 Finite cyclic p- | conditions
groups, wher@ is | - Proved the nonabelian tensor product
an odd prime. for finite cyclic p-groups wherep is an
odd prime .
- Proved the nonabelian tensor product is
cyclic when the actions have order
greater than 2.
- Find the exact number of
compatible pairs of nontrivial actions that
have 2-power order.
Sulaiman 2017 Finite cyclic 2| Provided the compatible action graph
groups and its subgraph for such type of groups.
- Find the number of the compatible pairs
of actions for the subgro&;’.)zn,i 0 sz,i
of the groufC,. LJC,,. .
- Necessary and sufficient conditions for
the actions that have p-power order to be
compatible on each other.
Mohammed | This research| Finite cyclic p- | - V€W generator for such type of groups

groups, where is

an odd prime.

of p-power order.

- Some actions that have even order
satisfying the compatibility conditions.
-Find the exact number of the compatible

pairs of actions that have p-power order
for C,UC ,.
p p
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- Find the number of the compatible pairs

of actions for the subgroup
Cpa_i O Cpﬁ_i. of the groupCpa O Cpﬁ.

- Find the number of the compatible pairs

of the actions in the intersection between

C. 0OC, andC_ 0C,.
p p p p

- Find the compatible action graph and its
subgraph for the finite cyclic groups of p-

power order.

In the next section, the previous works on the relationship between group theory

and graph theory are presented.
2.3 Some Relations Between Group Theory and Graph Theory

The study of an algebraic structure motivated many researchers to investigate
the properties of the graphs such as Moghaddamfar et al. (2005) defined the non-

commuting graph, which is denoted biG) and is defined as follows: the set of
vertices ofJ(G)is G\ Z(G) with two verticesx andy joined by an edge whenever the
commutator ok andy is not the identity. They proved for some finite gréupndH if
0(G) OO(H) then|G|=|H|. However, Abdollahi et al. (2006) studied the associate
graph, which is called the non-commuting graplGoflenoted by, whereG is the
nonabelian group and(G) is the centre o6. As the results, some of the properties of
the non-commuting graph are determined, such asre Hamiltonian and planarity

when Gis an isomorphic to one of the groufs D, or Q,.

Iranmanesh and Jafarzadeh (2007) constructed some graphs, which are called
the commuting graph, the non-commuting graph, and the prime graph of theGroup

which are denoted respectively by ,(G)andl,,. In addition, they studied the

relation between the commuting graph and the prime graph for the finite groups and

they showed that i€ is any finite group, such that,,, OF ., thenM UG, whereM
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be a finite simple group. Zhang and Shi (2009) proved the conje&ANes, which

stated that, “IfM is a finite nonabelian simple group a@lis a group such that
0(G) OO(M), thenG OM, " is also true for some simple groups with the connected
prime graph. This conjecture was provided by Abdollahi et al. (2006). In the same year,
Darafsheh (2009) extended the work on the non-commuting grapltbypinvestigating

the groups with the same non-commuting graph. Then, he provided {Gat|H |

thenG UH. Besides that, he illustrated that the graph isomorpliisall’,, implies

G OH. Jahandideh et al. (2015) studied the conditions on the edges and vertices of the
non-commuting graph. Furthermore, they provided some properties of the non-
commuting graph such as the number of the edges, which is denoFEd’Qyj,the

degree of the vertex of the non-commuting graph and the number of the conjugacy class
of the finite group.

In the connection between the group theory and graph theory, a paper by
Mansoori et al. (2016) defined the non-coprime graph associated to theGyranich

is denoted byﬂGWhere the vertex set 1S \{e} and two distinct vertices are adjacent

connected by the edge with the orders, relatively the non-prime. Besides that, they
investigated some properties of the non-coprime graph for the nilpotent and abelian
groups, and the relation between the non-coprime graph and known prime are
presented. They determined the general properties of the non-coprime graph, such as
diameter, girth, connectivity, Hamiltonian, independence number, domination number,
and planarity when it is isomorphic to one of the grodpsZ ,,7Z ,,Z ,xZ ,,Z ¢,Z s Of

S,. In the same year, Sarmin et al. (2016) computed the probability that an element of
G denoted by the dihedral group of ord&r fixes the sefQ under the regular action
whereQ is the set of all subsets, which of all commuting elements of size two in the

form of (a,b)wherea andb commute anda| =|b|=2.The results was obtained by

applying the probability into the generalised conjugacy and orbit grdpln addition,

the properties of the graph, such as the chromatic number and the clique are determined.
Also in the same year, Zamri et al. (2016) computed the probability that a group
element fixes a set focused on the metacyclic 3-groups of negative type of nilpotency
class at least three. By applying the orbit graph, the result was obtained. Then, the

metacyclic 3-groups of negative type have been found by using the conjugate action.
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From the literature some researchers defined the specific graph on the groups
and studied the graph properties for the group, such as Jahandideh et al. (2015) and
Mansoori et al. (2016). Thus, one of the main parts of this research is to investigate the
theoretical relationship between group theory and graph theory. Therefore, we
determine some properties of the compatible action graph and its subgraph for the finite
cyclic groups of thg-power order, wherp is an odd prime, and an extension from the
compatible actions for such type of groups and the number of the compatible pairs of
actions by representing the vertex as an automorphism and the edge as a compatible

pairs of actions.

2.4  Conclusion

In this chapter, the literature on compatible actions, nonabelian tensor product of
groups and graph theory are presented. Some researchers studied the compatibility
conditions for the finite cyclic groups of tleepower order, wher@ is an odd prime
with nontrivial actions, but none of them stated the exact number of compatible pairs of
actions for a given nonabelian tensor product for such type groups. Furthermore, some
researchers have investigated the theoretical relationship between the group theory and
the graph theory but none of them had studied the compatible action graph as an
extension from the compatible actions for the finite cyclic groups gb-th@wer order,
wherep is an odd prime. Therefore, this research will focus on the number of the
compatible pairs of actions. Therefore, some preliminary results on the automorphism
groups, number theory, compatibility conditions, graph theory, and GAP software are

stated in the following chapter.

16



CHAPTER 3

PRELIMINARY RESULTS

3.1 Introduction

This chapter presents the preliminary results of related past works which
contains some definitions and related works on the automorphism groups, number
theory, compatibility conditions, graph theory and GAP software. By using GAP
software, the number of the compatible pairs of actions are then determined. The

results in this chapter will be used in verifying the main results in the next chapters.

3.2  Some Properties of Automorphism Groups

It is well known that the actions are required to be compatible with each other
before determining the nonabelian tensor product. Since the finite cyclic groups of the
p-power order are considered in this research, then according to the definition of the
compatible actions for the cyclic groups, the actions are automorphisms. Hence, an

automorphism for such type of groups is introduced first.

Let G andH be the finite cyclic groups generated by a single elergén®
andh[lH respectively. Then, the automorphism group of the gi@Guig denoted by
Aut(G), which is defined as a mapping:G — G such thatp(g) =g' wheret is an

integer andjcd( ,|g|): 1. The automorphism group of the finite cyclic group of phe

power order is a direct product of two finite cyclic groups as given in the following

theorem.
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Theorem 3.1 (Dummit and Foote, 2004)

Let p be an odd prime an@dN. If G is a cyclic group of ordep”, then
Aut(G) OC,; xC ., OC o and|Aut(G)| = ¢(p”) = (p-1)p"™.
The next theorem describes the isomorphism property for the cyclic groups.

Theorem 3.2 (Fraleigh, 2003)

Let G be a cyclic group with generater If the order ofG is infinite, thenG is

isomorphic to(Z, +). If G has finite order n, then @ isomorphic to(Z,,, +, ).

Now, the Euler Phi-function for a given positive integer is stated in the

following definition.
Definition 3.1 Euler’s ¢-function (Burton, 2005)

For m=1, the Euler's Phi-function, denoted Ig{m), is the number of the positive

integers not exceeding tinat are relatively prime with.m

The following theorem described the order of any integer a, as stated bellow.
Theorem 3.3 (Burton, 2005)
If the integera modulon has ordekk and h > 0, then a" has orde{mj

modulo n.

Next, all known results on the compatible actions that will be used in the next

chapters are given.
3.3  The Compatibility Conditions

In this section, some definitions and previous results on the compatible
conditions that are stated. We start with the definition of the action of the Gromp

the group Hwhich is given as follows.
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Definition 3.2 Action (Jackson, 2016)
Let G and H be groups. An action of the group on the groupH is a mapping
®:G - EndH ) such that®d(gg')(h) = ®(g)(P(g')(h)) forall g,g' 0GandhlIH.

In the case of the groufid andH are finite cyclic groups, the actigh of the
groupG on the grougH is required to have the proper®(1;)=id,,, such that it is the

identity mapping on the groupl. Therefore, from this point, the action will be a

homomorphism® from the group Go the Aut(H).

Next, the definition of the compatible pairs of actions between the two groups is

given.

Definition 3.3 Compatible Action (Brown and Loday, 1987)

Let G andH be the groups, which act on each other and each of which acts on itself by

conjugation. Then these mutual actions are said to be compatible if

Mg=9(("g) 3.1
and

Con = "E("h)) 3.2
forall g,g'0Gandh,h'CH .

In the case of the abelian groups, the compatibility conditions can be simplified

and given in the following proposition.

Proposition 3.1 (Visscher, 1998)

Let G and Hbe groups, which act on each other. 1&@&IH are abelian, then the mutual

actions are compatible if and only if
(gh) g' = hg' and (hg)h': gh'

forall g,g'0Gandh,h'OH.
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Next, in order to prove the mutual actions of the graa@sdH on each other
are compatible, it is enough to show that the compatibility conditions is satisfied for the

generators of the grou@and H This case is presented in the following proposition.

Proposition 3.2 (Visscher, 1998)

Let G:<X|R> andH :<Y|S> be groups with generating se{sandY and relationR

and S respectively. Furthermore, suppoSeand H act on each other. If the
compatibility conditions (3.1) and (3.2) hold for elemeKiandY, then the mutual
actions are compatible.

The following corollary showed that wh&his abelian, then the trivial action is

always compatible with any other action.

Corollary 3.1 (Visscher, 1998)

Let G andH be groups. Furthermore, |€ act trivially onH. If G is abelian, then for

any action of Hon G, the mutual actions are compatible.

The next proposition gives the necessary and sufficient conditions for the

actions of two finite cyclic groups to be compatible on each other.

Proposition 3.3 (Visscher, 1998)

Let G=(x) OC, andH ={y) OC , be finite cyclic groups. Then there exist mutual

actions ofG andH on each other such thak = x“ and *y =y for k,1 0Z if and only

if the conditions (i) and (ii) below are satisfied. These actions are compatible if and only

if condition (iii) is satisfied as well.

()  gedk,p”)= ged( p? F :
(i) k" =1 (modp?) and!™ =1 (modp”)
(i) kK'™*=1(modp?) andl**=1 (modp”).
For the case of two finite cyclic groups of thpower order, wherp is an odd

prime, the following theorem stated the compatibility for the pair of the actions that

have the p-power order.
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Theorem 34 (Mohamad, 2012)
Let G=(g) 0C, and H =(h) [C, be groups such that, 5> 3. Furthermore, let

oUOAut(G) with o] = p*, wherek=1,2,...a - Jand &’ DAut(H) with |o’| = p“ where
k'=12,..8-1 Then (0,0’) is a compatible pair of actions if and only if
k+k' <min{a,s}.

The following corollary shows that for the finite cyclic groups of even order and

with the actions that have order two, then the actions are always compatible.

Corollary 3.2 (Mohamad, 2012)

Let G=(x) OC, andH =(y) JC, wherem andn are even integers with both actions

of y on xandx on yhaving order two. Then, the actions are compatible.

The next lemma shows that@ andH are the finite cyclic groups of the

power order, wher@ is an odd prime and each of which act on the other so that
*y=yP" and Yx=xP", then the actions are compatible with some conditions are
fulfilled.

Lemma 3.1 (Mohamad, 2012)

Let G=H OC , be the finite cyclic groups witl® =(x) andH =(y), p>2, where

*y=yP and Yx=xP*", then the actions are compatible and the following conditions

are hold.
“y=y and ¥ x=x 3.3

X

y?P=yP and YxP =xP 3.4

In the next section, some fundamental concepts in graph theory are used to

investigate the theoretical properties between the group theory and the graph theory.
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3.4  Basic Properties on Graph Theory

Let G and Hbe finite cyclic groups. In order to investigate the compatible action
graph for the nonabelian tensor product®fand H, we need to use some basic
concepts in graph theory in order to define each action as a vertex and each pair of
actions as an edge in the compatible action graph. Hence, in this section, some of these
fundamental concepts that are needed in this research are given. These basic concepts
can be found in (Rosen, 2012) and (Bollobas, 2013).

A graphG is a mathematical structure containing two sets, which are denoted

by V(G) and E(G) which are called the set of the vertices and the set of the edges
respectively. Then, the order of the graphis the number of the vertices in the graph

G which is denoted bi)(/(G)\. Furthermore, a grap® is connected if there is a path
between every pair of distinct vertices, and is disconnected otherwise. On the other
hand, the graplG, is said to be complete if each ordered pair of the vertices are

adjacent to each other and denoteddyywhere n is the number of adjacent vertices.

Additionally, a simple grapls is called Bipartite graph, if its vertex set can be
partitioned into two disjoint set¢ andV, such that every edge in the graltonnects
vertex inV, and vertex inv,, and no edge in the graghconnects either two vertices
in V,or two vertices inv,. The directed graph, is the graph consist of the set of vertices
and the set of directed edges, such that the directed edges are associated with the
ordered pair(u,v) is said to start at and end at, whereu,vV. Moreover, the
degree of the vertex in the directed graph has two types, the out-degree and the in-
degree. The out-degree is denoteddeyg ( )which is the number of the edges with
as their initial vertex, while the in-degree is the number of the edgesvvaishtheir
terminal vertex which is denoted laleg ). For the directed grapB, the path of the
lengthn from u to v, wheren is positive integer, is defined as a sequence of edges

8,6,...,.6, of G such thate is associated witlix,, X,), €, is associated witlix,, x,) and

so on, withe, is associated witlix _,, x,), wherex, =uand x, = V.
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Next, the definition of the compatible action graph for the nonabelian tensor

product of two finite cyclic groups of 2-power order is given as follows.

Definition 3.11 Compatible Action Graph (Sulaiman, 2017)
Let G=(g)andH =(h) be the two finite cyclic groups of 2-power order émg’) be

the pair of the compatible actions for the nonabelian tensor produetidfl where
oOAut(G) and o'OAut(H). Then, I, =(V(Tgqn ), (E(Mspy)) Is a compatible

action graph with the set of verticegl ., ), which is the nonempty set @&fut(G)
and Aut(H) , and the set of edgeS(l..,) , which is the nonempty set of all

compatible pair of actions.

The next section, some of the results on the finite cyclic groups @plogver
order, wherep is an odd prime, by using the GAP software for computing the

compatible pairs of actions for the finite cyclic groups of the p-power order.
3.5 The Groups, Algorithms and Programming (GAP) Software

The Groups, Algorithms and Programming (GAP) is a free software package for
computation in discrete abstract algebra with particular emphasis on computational
group theory (GAP, Version 4.8.8, 2017). The GAP software provides a programming
language with many functions implementing algebraic algorithm written in the GAP
language. The GAP programming is used in the research and teaching for studying
groups and their representations, rings, vector spaces, algebras, and combinatorial
structures. This system includes the source, which is free, can be easily modified and

extended for a special use.

GAP algorithms is constructed base on Definition 3.3, where the inputs are only
the order of each group pair. All possible actions or automorphisms defined first as
shown in Figure 3.1 line 6 and find the order of each actions as shown in Figure 3.1 line
10-27. Then, line 30-32 are determination whether the pair of the actions are compatible
or not, base on the definition of compatible actions in Definition 3.3. From the outputs,
the number of the automorphisms respective to it order are list in the following table.
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Table 3.1  Number of Automorphisms with Their Respective Orders

p a Order of Number of Elements
Elements
2 3 2
3 2
3 9 6
3 2
3 4 9 6
27 18
3 2
5 9 6
27 18
54 81
2 5 4
5 4
3 25 20
5 4
5 4 25 20
125 100
5 4
5 25 20
125 100
625 500
2 7 6
7 6
3 49 42
7 6
7 4 49 42
343 294
7 6
5 49 42
343 294
2401 2058

From Table 3.1, we can conclude the following conjecture.

Conjecture 1. There arg(p—1)p*“*automorphism of ordep*wherek =1,2,...a- 1

This conjecture has been proved in Proposition 5.1.
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NumberCompatibleAction:=
function(m,n)
local k,I,ghg,hgh,a,b,x,y,p,q,z ;
z:=0;
forkin [2..m-1] do
forlin [2..n-1] do
a:=k;
b:=I;
if Ged(m, k)=1 and Gced(n, 1)=1 then
for xin [1..m] do
if a<>1 then
a:=kAx mod m;

fi;
if a=1 then
p:=X;
break;
fi;
od;
foryin [1..n] do
if b<>1 then
b:=I"y mod n;
fi;
if b=1 then
q:=y;
break;
i
od;

fi;
ghg:=k* mod m;
hgh:=I"k mod n;
if ghg=k and hgh=I then
2:=z+1;
Print(“k=",k,” (order action=",p,”)",”,I=",1,” (order action=",q,”)");
Print(“ Compatible”,”\n");
fi;
od;
od;
Print("No of Compatible",z);
end;

Figure 3.1 GAP Coding for The Number of Compatible Actions
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Next, by using Theorem 5.1 in Chapter 5, the exact number of the compatible
pairs of actions that have tipgpower order for the finite cyclic groups of thepower

order, wherep is an odd prime are given in Table 3.2. Hence, Table 3.2, shows the

exact number of the compatible pairs of actionsCfg,rD Cpﬂ with the same prime

and a, SIN.
Table3.2 The Number of Compatible Pairs of Actions (‘opg U Cpﬂ.
: No. .
s l\lic;i rcs)f . Pce)lir(;f yog P I\Fl’c:;irc;f
3 3 54 4 3 54 5 3 54
3 4 90 4 4 226 5 4 226
3 5 198 4 5 334 5 5 810
3 3 6 522 3 4 6 658 3 5 6 1134
3 7 1494 4 7 1630 5 7 2106
3 8 4410 4 8 4546 5 8 5022
3 9 13158 4 9 13294 5 9 13770
3 3 300 4 3 300 5 3 300
3 4 700 4 4 2000 5 4 2000
3 5 2700 4 5 4000 5 5 12500
5 3 6 12700 5 4 6 14000 5 5 6 22500
3 7 62700 4 7 64000 5 7 72500
3 8 312700 4 8 314000 5 8 322500
3 9 1562700 4 9 1564000 5 9 1572500
3 3 882 4 3 882 5 3 882
3 4 2646 4 4 8232 5 4 8232
3 5 14994 4 B 20580 5 5 72030
, 3 6 101430 5 4 6 107016 - 5 6 158466
3 7 706482 4 7 712068 5 7 763518
3 8 4941846 4 8 4947432 5 8 4998882
3 9 34589394 4 9 34594980 5 9 34646430
Example 3.1

Let G=C,and H =C_ be the two finite cyclic groups of 3-power order. Table 3.2,

illustrates that there are 90 compatible pairs of action&fdH whereas there are 54

compatible pairs of actions fdd [1G. SinceGUH #H G, therefore, the number of

the compatible pairs of actions for the finite cyclic groups ofptpewer for the given

nonabelian tensor produ@[]H and H [J G is not necessary equal wh&w H. Only
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the case that all the actions are nontrivial it will be the same numb& ddd and
H OG for the actions that have tipgpower order for the finite cyclic groups of the

power order, where p is an odd prime.

3.6 Conclusion

In this chapter, all related results by the previous researchers were given. The
GAP software have been used to find the compatible actions. The GAP outputs can
provide the compatible actions with their orders for the finite cyclic groups gf-the

power order.
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CHAPTER 4

AUTOMORPHISM AND THE COMPATIBLITY CONDITIONS

4.1 Introduction

In this chapter, the necessary and sufficient conditions of the compatible mutual
actions for a pair of finite cyclic groups of tpepower order, wherg is an odd prime
to act compatibly with each other are provided. Some results on the automorphism of
the finite cyclic groups of thep-power order are found and presented before

characterising the compatible mutual actions.

4.2  Characterisation of an Automorphism for Cyclic Groups of p-Power Order

The compatible actions are important before computing the nonabelian tensor
product of groups. According to Definition 3.3, the actions are automorphisms for the
finite cyclic groups. In this section, some properties of the automorphism that have the
p-power order for the finite cyclic groups of thgower order, wherp is an odd prime

are given. We start with the following number theory result.

Lemma 4.1
Let p be an odd prime number. Then
(2p+1)7" =4, 2p"+ 2" + 1

for some integeln, wherenz 2.
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Proof:

The proof is by the induction om For n=2,the statement is true by lettirsg = 0.

Next, assume that the statement is true for some&. By Corollary of Fermat's
theorem (Burton,PP,88, 2005), observe that

:((2p+ ])an)p
=(a2p"+2p" + )"

=((a,p+1)2p"*+1)".

Now, by using the Binomial theorem, we have

p( n-2)+1

(2p+1)

(P20 =((@ps) 20" +| T (m.p+ 9200 1o
+[ pplj(anp+1) 2p"t +1.

= ((5\1+1IO+1) 2p”‘1)p +[EJ((an+lp+1) an-l)P-l .
(

+(a,,2p™ +2p") + 1.

Without loss of generality, let

((a\mp+1) 2p”‘1)p +(Ej((a“+lp+l) 2p”’1)p7l +...+(an+12p”*1+ 2p") +1=K 2p™*
except the ternﬁa\qﬂz prt + 2p”) + 1 for some integeK. Then, we have

K2p™ +a,,2p"™" +2p" + 1

=a,,2p"" +2p"+1,
wherea ,, =K +a, and K is some integer. Thus, the claim is true forl> 2. By the

principle of the mathematical induction, it follows that the claim is true fonal.o

The automorphism group of the finite cyclic groups of gh@ower order is the

direct product of the two finite cyclic groups as given in Theorem 3.1. Theorem 3.1 also

proved that, the automorphism of thgower order is isomorphic to the gro(ﬂ%,_1

whereg [IN. Thus, the generator of the finite cyclic groups of ph@ower order that
give the order of the automorphisms that havepthewer order need to be found and

is given in the following theorem.
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Theorem 4.1

Let G=(g) [C ., be a group wittp is an odd prime and > 2. Then,o : g - ¢**" is

an automorphism of ordep”™.

Proof:

Let G:<g>DCpa with |G|=p?, p be an odd prime and >2. By Theorem 3.1,

Aut(Cpa) OC,  xC#OC | .- and‘Aut(Cpa) =(p-1)p“*.To prove our claim that

(1)
o is of order p?™, it can be shown as follows:

M  (@p+D" =1 (modp”),

(i)  (2p+1" # 1 (modp?).
By Lemma 4.1, if the equation is raised to the power of p, then

(2p+1)® =a,,, 2p""+ 2p° + 1= 1 (modp®)

which hold for all @ =2. Hence, (ii) follows by Lemma 4.1. This implies that

o” " (g)=g and ™ (g) # g which is a proof thaw'is an automorphism of order

-1
a. O

Y
The generators of the automorphism groups ofptpewer order are important

because they explain the structure of the automorphisms of the finite cyclic groups of

the p-power order, which is defined as an action for the nonabelian tensor prodsict. If

is a finite cyclic group of th@-power order generated by the single elemgiiG,
then any automorphism of the groupissgiven by the mapping: g — g',wheret is

an integer withgcd¢ ,p” )= 1.

Therefore, the general descriptions of the inteder every automorphisms of
the finite cyclic groups op-power order cannot be determined in this research because

we have seen from Theorem 3.1 tlmn(Cpa) DCp_lxcpH. We have tried to provide

the general presentation of an automorphism of the finite cyclic groups pipiveer
order but there is no general pattern. Thus, our focuses in this research is the second

part of the direct product of an automorphism group ofptpewer order. In addition,

we can determine thgcd¢ — 1,p” ), which is the order of the automorphisms of the
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finite cyclic groups of thep-power order that have the order of thgower. The
immediate result on thgedt — 1,p” )for the automorphisms of the finite cyclic groups

of the ppower order that have ordg” *with k =1,2,...a — 1is given in the following

proposition.
Proposition 4.1

Let o be an automorphism of a groGp, =(g) of order p”“with k=1,2,..g- 1

2p+1 il

Then o= 0" with p(g)=g**** where gcd(,p” )= p“* with | is positive integer.

Furthermoregcdt — 1,p” )= p* wheret = (2p+1) .
Proof:

Let o be an automorphism of a gro(IE))g of order p®*with k=1,2,...0- 1 By

2Pl is an automorphism of ordgs”™. Thus,o = p' generates

Theorem 4.10(9) =g
all automorphisms op-power order. Ifl | p?, then clearlygcd( ,p” )= 1. Consider
|| p?, then | | p?*. Thus gcd(,p” )= p“* by Theorem 3.3. Let=(2p+1), then
gedt-1,p7 )= ged((®+ 1) 7 ¥ p' o

Next, the following lemma contains a pair of number theoretic results, where the
proof can be found in Bacon (1992). The purpose of this lemma is to rewrite the action

of p-power order in other form, in order to satisfying the compatibility conditions for

the finite cyclic groups of p-power order where p is an odd prime. Note[rﬂgtis the

highest p-power dividing n, whene[N.
Lemma 4.1

Let p,r,y,MON where p is an odd prime andgcd(P,s)=1 Then

[(2p+1)”’y - 1} =Mp"*.

p

The next lemma, give a description of the form of the action of one finite cyclic
group of the p-power order upon the other.
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Lemma 4.2

Let G:<g> DCp,, and H :<h> DCpﬂ be finite cyclic groups of thp-power order withp
is an odd prime and, 5=3. If G acts onH , then there exist[1Z so that the action is

given by °h=h and| :(2p+1)kpy where K, YN such thatgcdk,p)=1and max

QLL-a-H<sy<sp-1.
Proof:

Since G acts onH, then there exist an actio®:G - Aut(H). By Theorem 3.1,

Aut(C,,) OC,, xC,,, OC

(1) and by Theorem 4.1, the direct factﬁlfpﬂ_1 is

generated by the automorphigmH — H which is defined byp(h) = h***?,

Now, since the actio®:G - Aut(H) is homomorphism, the®(G) is a cyclic

subgroup ofAut(H) of the p-power order. Thus®(g) =¢'® for somek, yON with
gedk ,p)=1 Since [¢=p”" it follows that y<B-1. Again, since|d|=p’" we
obtaina + y= -1 or equivalentlyy= 3-a -1. Since y is positive integer, so we

have the bound mdkB-a-1)<y</B-1. Finally, with| =(2p+1)® ,we have
*h=(g)(h) = 4 () =h®" =1 o

The next section is the necessary and sufficient number theoretical conditions
for the pair of finite cyclic groups of thepower order, wherp is an odd prime to act

compatibly on each other are presented.
4.3 The Necessary and Sufficient Conditions for The Compatible Actions

In this section, the necessary and sufficient conditions for the compatible mutual
actions for the pair of the finite cyclic groups of fipower order to act compatibly on
each other are given. The characterisation has been developed according to the
necessary and sufficient conditions. This characterisation includes the new generator for

the finite cyclic groups of the-power order, which makes a difference with the
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previous results obtained by Mohamad (2012). The characterisation is presented in the

following theorem.

Theorem4.2
Let G=(g) OC, and H =(h) OC, be finite cyclic groups of the-power order,

wherep is an odd prime ang, 5=3. Furthermore, lef5 and Hact on each other so

that

hg =g and  9h=h@”
for k,I,),000N with gecdk,p)= gcd( p F 1 Then,G and H act compatibly on each
other if and only if y+0= ma{a-2,5-3 .

Proof:

Let G andH be cyclic groups op-power order and each of which act on the other

such that

hg:g(zpﬂw and  “h=her” 4.1
for eachk,l,y,000N with gcdk,p)=gcd( p F 1By Lemma 4.2, the bounds of

andd aremax(@ - - 1< y<a - land max(B—-a—- 1< d< - lrespectively.

Next, let ®:G - Aut(H) and T:H - Aut(G) be the actions o6& and H on

each other. The actions can be written as follows:
T(h)(g) =g®*" 42

b(g)(h) =h® 4.3
By Proposition 3.2, the mutual actions are compatible if and only if the
compatibility conditions are satisfied on the generators of the giGuasd H.Since

the groupsG and H are abelian, by Proposition 3.1, then the mutual actions are

compatible if and only hghg = "g and "Yh= 9, Therefore, by the notation & and

T for the actions of and H act compatibility on each other if and only if
T(@(g)(h))(g) = T(h)(g)- 4.4
®(r(h)(g)(h) = @(g)h) 4.5
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By using Eq (4.3), we obtain for the right-hand side of Eq (4.4),

T(®(g)() (@) =T )g).
Combining Eq (4.2) and the fact th&tis a homomorphism yields the following

congruence between the exponents of gin Eq (4.4)

,\(2p+f .
(@p+1) " = @p+1f" (modp”).
By Lemma 4.1, we hav(=>2p+l)'pa =Mp’>*+1, whereM OZ such thaggcdM ,p)=1
Thus,

Mp6+1 +1

((2 D+ l)kpy )(2P+1jp(5 _ ( (2p ) 1)@V)

=(p+1*" (2p+ 2
Again, by using Lemma 4.1(2p+1"""" = Np"**?+1, where NOZ such that
gcd(N,p)=1 Thus,

)(2 p+1

v )Ipa +0+2 4
(@p+1 )" = (N2 + 1)+ 1F

Np"*?(2p+1)* + (2p+ 1f”
(2p+1)* (modp”).

Now, notice thaged(p, (2p+ 1 )= . and recall thaff(h)(g) = g(zp”)my, thus we have

T(®(0)(h)(9) = g“ " T(h)(g),
where K[7Z such thatgedK ,p)=1 Thus, Eq (4.4) is holds if and only if

)+

Kp?*o+2 :1<g>. Since‘g‘:pa’ this holds if and only ify+5+220’, or equivalently

y+o0=a-2. Similarly Eq (4.5) holds if and only ig+J=> -2. We conclude tha&®

and H act compatibility on each other if and only ji+d> max{a-2,5-3 . O

The following corollary focuses on the special case in which the gl H

act compatibly on each other when the actions on each other having th2gerin
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Corollary 4.2

Let G=<g> andH :<h> be the finite cyclic groups of thepower order withp is an

odd prime ands=H Dsz. Furthermore, let the actions 6fandH and on each other

such that?h=h?""* and "g = g?***. Then, the actions are compatible.

Proof:

Let G and Hbe the finite cyclic groups of thegower orderLet the actions of G
and Hon each other as in the hypothesis. By Lemma 3.1, it follows that the actions are

compatible. O
In the next section, some examples on the compatibility conditions

4.4 Some Examples on The Compatible Actions

In this section, some examples of the same and different groups are presented to
clarify the characterisation of the compatible mutual actions for the finite cyclic groups
of the p-power order. By using Theorem 4.1, the compatible pair of actions for such

type of groups have been determined wigrH and G# H, then summarized in
Table 4.1 and Table 4.2 respectiveRecall that, ifG=H [C, be the finite cyclic

groups of 3-power order, then the compatible pairs of actions have been determined as

follows.

By Theorem 4.1, the actions on each other such fhat h?*Y* and
"g= g(”’”)'pé. Furthermore, letk=1=1, then gcd(l 3 gcd(L,3F . Now, since
a = [=3, then by Lemma 4.2, we have the boundsjfanddare as follows.
max(1,3-3-1x y< 3 and max(1,3-3-1x0< 3 or equivalentlyl<y<?2 and
1<d<2.

Now, since y=0=1, then the actions on each other can be written as

= = mo an =g’ = mo roposition 3.1, the actions
“h=h"" =h" (mod & Jand "g =g =g* (mod 3 ) By Prop 3.1, th
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are compatible if"'g ="g and °h =°h.

conditions.

"g ="g
— 9
=g~ since 9= 19 (mod
=%,

4
(N

Now, consider the first compatibility

Similarly with the second compatibility conditions. Thus, we conclude that the actions

“h=h"and"g =g" are compatible irC, 0 C_. Next, if G#H,then by the similar

way, the compatible pair of actions for the finite cyclic groupp-pbwer order have

been determined and presented in Table 4.2.

Table4.1 Compatible Pairs of Actions for Cyclic GroupgePower Order when
G=H.
Groups p k y g p | o) h (9,h)
3 1 1 19 3 1 1 19 (19,19)
G=H=C, 3 4 1 10 3 1 2 1 (10,1)
3 5 2 1 3 7 1 19 (1,19)
3 8 2 1 3 7 2 1 (1,1)
5 1 1 51 5 1 1 51 (51,51)
G=H-=-C. 5 2 1 101 5 2 2 1 (101,1)
1 5 6 2 1 5 8 1 26 (1,26)
5 12 2 1 5 16 2 1 (1,1)
7 1 1 99 7 1 1 99 (99,99)
GoH=C, 7 2 2 1 7 4 1 50 (1,50)
’ 7 6 1 246 7 8 P 1 (246,1)
7 10 2 i 7 12 2 1 (1,1)
11 il 2 1 11 1 1 243 (1,243)
GoH-C 11 2 2R oSt 811 4 1 969 (485,969)
& 11 3 2 ik 11 2 1 485 (1,485)
11 6 2 il 11 10 2 1 (1,1)
13 1 1 339 13 1 1 339 (339,339)
G=H=C 13 4 1 1353 13 2 2 1 (1353,1)
¥ 13 6 2 1L 13 4 1 1353 (1,1353)
13 10 2 1 13 8 2 1 (1,1)
17 1 1 579 17 1 1 579 (579,579)
G=H=C_ 17 2 1 1157 17 4 2 1 (1157,1)
a 17 6 2 1 17 2 1157 1 (1,1157)
17 8 2 1 17 10 2 1 (1,1)
19 1 1 723 19 1 1 723 (723,723)
19 2 2 1 19 4 2 1 (1,1)
G=H=Cs; 19 34 1 2889 19 6 2 1 (2889,1)
19 8 2 1 19 10 1 362 (1,362)
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Table4.2 Compatible Pairs of Actions for Cyclic GroupgpaPower Order when

G#H.
Groups P k y g P | o) h (9,h)
G=C, 3 1 1 19 3 1 1 19 (19,19)

and 3 2 2 1 3 4 1 73 (1,73)
H=C, 3 4 1 19 3 2 3 1 (19,1)

3 8 2 1 3 6 2 28 (1,1)
G=C. 5 1 1 51 5 1 1 426 (51,426)
and 5 2 2 1 5 4 1 451  (101,451)

a 5 4 1 76 5 2 2 501 (76,501)
H=C, 5 8 2 1 5 6 3 1 (1, 1)
G=C. 7 1 2 1 7 1 2 687 (1,687)

- 7 2 1 197 7 4 1 50 (197,50)

v 0 =™ 7 8 1 99 (295,99)
H=C. e 0 1 7 1 (1,1)
G=C._. 11 1 2 1 11 1 1 12222 (1,12222)

g 1 2 1 485 11 4 2 10649 (485,10649)
and 11 6 1 122 11 8 2 6656  (122,6656)
H=C, 11 3 2 1 11 2 3 1 (1,1)
G=C 13 1 2 1 13 1 2 4395  (1,4395)
= 13 8 1 508 13 @ 2 1 20450 (508,20450)

ang 13 2 1 677 13 4 3 1 (677.,1)
H=C 13 6 2 1 13 3 1 8789  (1,16394)
G=C. 17 1 1 579 17 1 2 9827 (579,9827)

ar d” 17 6 2 1 17 2 3 1 (1,1)

Al 17 8 1 4625 17 3 3 1 (4625,1)
H=C. 177 10 1 88 17 6 1 28034 (868,28034)
.- 19 1 1 723 19 1 2 13719 (723,13719)

19 19 2 2 1 19 3 3 1 (1,1)

and e 1 5777 19 2 3 1 (5777,1)

H=C, 19 4 2 1 /19 10 1 362 (1,362)

In the next section, some related results on the compatible actions are discussed.
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4.5 Compatible Actions That Have Even Order of Actions

In this section, more results on the compatible actions for the finite cyclic

groups are presented. By Theorem Hé\lut(Cpﬁ) DCp_1><Cp,3_1 which can give some
actions that have even order. Thus, in this section we focus on the first part of the
automorphism group of such type groups whih,. Therefore, the following

proposition shows that the groups are compatible with different prime numbers and

both actions have order two.

Proposition 4.2

Let G :<g> 0UC,, andH :<h> 1C,,, wherep andq are different prime numbers that

are greater than three with actionsgobn hand h on g are having order two. Then,

the actions are compatible.

Proof:

Let G=(g)0C,, andH =(h)C

+1» Wherep andq are different prime numbers that
are greater than three with actionsgobn hand h on g having order two and given

by

%h = h' and"g = ¢"
where | and k are positive integers. We need to prove that the actions satisfy the
compatible conditions as stated in Proposition 3.1. SthemdH are groups of even
order then the values d&nd k must be odd sincged(—- 1) )= gcdp— Xk ¥ for the

automorphisms. Hencé=2s+1and k=2t +1 for the positive integessandt. Thus,

| =1(mod) p—1 andk =1 (mod) q-1. Since the actions have order two, it follows

Corollary 3.2 that"g ="g and "h =9, Thus, the actions always act compatibly if

they have order two. O

The following corollary is the specific case from Proposition 4.2, whenedq

are equal.
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Corollary 4.3

Let G=HUC,_, be the cyclic groups with as an odd prime greater than three. If

both actions o on Hand Hon Ghave order two, then, the actions are compatible.

Proof:

Suppose thaG =H LC_ , with p as an odd prime greater than three and both actions

of G on H andH on G have order two. From Proposition 4.2, it follows that if the

actions having order two, then, the actions are always compatible. O

The following corollary shows the actions are compatible where one of the

actions is trivial.

Corollary 4.4

Let G=(g)OC,, andH =(h) OC

« Dbe the finite cyclic groups with andq are
different prime numbers and each of which acts on the other. If one of the actions is

trivial, then any pair of actions o€, andC__, are compatible.

Proof:

Let G=(g)OC,, and H =(h) OC, , be the finite cyclic groups witp and q are
different prime numbers and each of which acts on the other. Without loss of generality,
let the action ofg on his trivial, that is®h = h and the action oh on g be"g = g*

with kis any positive integer. We need to show that the actions satisfy the compatibility
conditions in Proposition 3.1. Sinédé = h observe that"g = "g, then, the first

condition is hold. Since the action gfon h is trivial, observe that

(k-1)-times
———

"h = Ip = 9999 = 9.

then the second condition is hold. Thus, the actions are compatible. O
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4.6 Conclusion

In this chapter, the characterisation of the compatible mutual actions for a pair
of the finite cyclic groups of thp-power order to act compatibility on each other has
been characterised. Some examples also have been presented to explain the
characterisation of the compatible mutual actions with same and different groups that

act compatibly with each other.
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CHAPTER 5

THE NUMBER OF AUTOMORPHISMS AND COMPATIBLE ACTIONS

51 Introduction

In this chapter, the automorphisms of the finite cyclic groups optpewer
order, wherg is an odd prime are investigated. Some number theory results are used in
order to find the number of the automorphisms. This chapter contains the number of the
compatible pairs of actions for the finite cyclic groups ofgipower ordeby using the
necessary and sufficient conditions for a pair of such type of groups to act compatibly

with each other.

5.2  The Number of Automorphisms with Specific Order

In this section, the number of the automorphisms of such type of groups with
their specific order are found. Since our consideration groupS arelH be the finite
cyclic groups of thg-power order, then, the action of the graan the grougH is a
homomorphism fronG to Aut(H) and the action of the group on the groups is a
homomorphism froniH to Aut(G). Therefore, the number of the automorphisms of such
type of groups need to be found before the number of the compatible pairs of actions
can be determined. Hence, the number of the automorphisms for the finite cyclic groups

of the p-power order with the respective order is given in the following proposition.

41



Proposition 5.1

Let G DCpa be a finite cyclic group of thp-power order withp is an odd prime and
a=2. Then, there exis{p-1)p** automorphisms with respective ordpf where
k=12,.0-1

Proof:

Let G DCpa be a finite cyclic group of thp-power order withp is an odd prime and

a = 2. Without a loss of generality, suppose tkiabe a finite cycligp-subgroup oiG

such thajH|= p‘wherek =1,2,... - 1 Thus, each element that relatively prime with

p“ has an orderp. Since H is a cyclic subgroup, then by Definition 3.1,

#(p) =(p-1)p“™, which gives the number of the automorphisms that have g'der

O

Next, the following proposition gives the total number of the automorphisms
that have the-power order for any finite cyclic group of tipegpower order where is

an odd prime.

Proposition 5.2

Let G DCp[, be a finite cyclic group of thp-power order withp is an odd prime and
a=2. Then, the total number of the automorphisms that have-fraver order is
pa_l_l.

Proof:

Let G DCpH be a finite cyclic group of thp-power order withp is an odd prime and

a=2. From Proposition 5.1, there afp—1)p“* automorphisms of ordep* where
k=12,..a-1 By using the generating function, the total number of the

automorphisms that have tphgower is

a-1 a a+l-1
Z(p_l pk—l z (p 1) 1- p -1|= pa_l_l. 0
k=1 k=1 1- p
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The next proposition shows that there is one element that has order two in each
automorphism group of the finite cyclic group of the p-power order.
Proposition 5.3
For any automorphism group of the finite cyclic group of ph@ower order, there is

only one element of order two.

Proof:
Let G=(g) [C,, be a finite cyclic group of thp-power order witfp is an odd prime

, and by Theorem 3.2, any

p-1)p”"

anda =2. By Theorem 3.1Aut(Cp[,) DCp_lxcpH DC(

finite cyclic group of even order is an isomorphic Zg,. Thus, C(p_l)pa_l

0Z,,.
Therefore, the element that have order twdZiy is the solution of the congruence
g=0 (mod n). Hence, the only element that has order two Zy), is [n]Zn.

O

By Theorem 3.1, the automorphism of the finite cyclic groups optpewer
order is the direct product of two finite cyclic groups. Thus, in this research only the

second part of the direct product whiCtF')na_1 of an automorphism group of such type

groups are considered because we have focus on the compatible actions thatfrave the
power order and the trivial action. However, we include some result on the first part of

the direct product whiclt,_, in the following corollary.

Corollary 5.1

Let C,, be a finite cyclic group of even order. Then, thereg(ie-1) elements that

have orderp—1.

Proof:

Let C,, be a finite cyclic group of even order. Furthermore,gétC . Without loss
of generality, ifgcd(@,p-1)# 1 then|g| is one of the factors op-1. Otherwise,
|g|= p-1.Thus, by Definition 3.1, there am(p-1)elements that have ordgr-1.

O
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Next, Table 5.1 illustrates the number of the elements with their specific orders.

Table5.1 Number of Elements with Specific Orders.

Order of element Number of elements
1 1
2 1
p* (p-1)p*
(p-1)p° #(p-1)(p-1)p*
(p~1) ¢(p-1)

The following example provides an explanation for the number of the

automorphisms with their orders.
Example 5.1
Let G=(g) OC,. Then
(1) Aut(G) has only one automorphism of order one.

(i) Aut(G) has only one automorphism of order two.

(i)  Aut(G) has3 ™" -1= 8 automorphisms that have 3-power order.

The next section explain about the number of the compatible pairs of actions for the

finite cyclic groups of the p-power order.

5.3  The Number of Compatible Pairs of Actions

In this section, the number of the compatible pairs of actions can be determined
by using the necessary and sufficient number conditions for the two finite cyclic groups
of the p-power order, wherg@ is an odd prime to act compatibly with each other.
According to the order of the actions, the number of the compatible pairs of actions has

been computed.

The following proposition gives the number of the compatible pairs of actions

for such type of groups where one of the actions has an order one.
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Proposition 5.4
Let G DCpa and H DCpﬂ be the finite cyclic groups of thepower order wherg is an

odd prime such that, 321. If one of the actions jgwhere oOAuUt(G) and|0 =1,

then the number of the compatible pairs of actior{pis1)p” ™.

Proof:

Let pUAut(G) Where|,0| =landa,f=1. By Corollary 3.1, ifG acts trivially onH,
then any action oH on G, the mutual actions are compatible. By Theorem 3.1,

|Aut(H)| = (p-1)p”™, which is the number of the compatible pairs of actions. o

Next, the number of the compatible pairs of actions for the two finite cyclic
groups of thg-power order, wherp is an odd prime has been determined when one of

the actions has an ordgr* where k=1,2,...c- 1 By using the necessary and

sufficient number theoretical conditions for such type groups, the number of the
compatible pairs of actions for the specific value kofs given in the following

proposition.

Proposition 5.5

Let G DCpg and H DCp/i be finite cyclic groups op-power order where is an odd
prime such thata,$23. Furthermore, let pOAuUt(G) with |o|=p* where

k=1,2,..a—-1 Then, the number of the compatible pairs of actions is

(p-Dp*+(p-1)p** > (p=1p " where r =min{a, B} -k andk=1,2,..a- 1

i=1

Proof:

Let G DCpg and H DCpﬂ be finite cyclic groups op-power order wherg is an odd
prime. Furthermore, let pOAUt(G) with |p|=p“ where k=1,2,..a-1 and

o OAut(H)with a, 8= 3. By Proposition 5.1, there afg—1)p*™* automorphisms of

order p*wherek =1,2,...a - land by Theorem 3.4, the actions are compatible with

|| =1and |p|= p¥. Thus, we shall consider the two cases as follow:
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Case t Suppose thdio| =1, then by Corollary 3.1, when one of the actions is trivial,

then the actions are compatible. Thus, there(prel) p*™* compatible pairs of actions
under this case.

Case II: Suppose thafo'| = p* wherek' =1,2,...,8- 1and by Theorem 3.4, the actions
are compatible whek +k' < min{a,,B} . Hence, the number of the compatible pairs of

actions for everk is the summation of the possibilities of the actions to be compatible,

which are

[((p-Dp=*+(p=Dp**+ (p-p*") +((p- D+ (= Dp*?) +( o= 1p™) | +--+

[(p=Dp™ A" =3 (p-1)p"™
i=1
wherer =min{a, 5} -k. By Proposition 5.1, there afg@-1)p“" automorphisms of

order p. Thus, there arép-1)p**>_ (p-1)p"" compatible pairs of actions under this

i=1
case Therefore, in total there agp—1)p*™* + (p—1) pk‘lz (p—-1p'" compatible pairs
i=1

of actions withr = min{a, B} - k. D

The following proposition gives the total number of the compatible pairs of
actions for two finite cyclic groups of theepower order when one of the actions has the

p-power order.

Proposition 5.6

Let G DCp,, and H DCpE be finite cyclic groups op-power order wherg is an odd

prime such thata,5=3. Then, the total number of the compatible pairs of actions is

a-

1 a-1r
(p—l)pk_{1+zz (p—1)pi‘1} where r=min{a,B} -k andk=1,2,..4-1

k=1 k=1 i=1

Proof:

Let G DCpa and H DCpﬂ be the finite cyclic groups of thepower order wherp as an

odd prime such that,3>3. Furthermore, letodAut(G) and o' JAut(H) with

lo|=p“ where k=12..0-1 From Proposition 55, there are
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(p-1)p+(p-Dp*D (p-1p'™ compatible  pairs  of actions  where

i=1
r=min{a,B} -k andk =1,2,...a - 1Thus, in total if allk's are considered, then the

number of the compatible pairs of actions are given in the following.

(P-Dp +(p-DpY (p-Dp” :( (P-Dp+ (- 1)p1‘12 - 1)pi‘lj+

i=1

(p-1)p**+ (p—l)p“i (p- 1)p“1j +

[
(

(p-)p“ ™+ (p-1) p(”‘”‘li (p-1)p' ‘1J

”z[w 1P+ (p-)p**Y (p-Dp" j

k=1 i=1

a- a-1 r

—Z(p 1)p"1+2(p DPY > (p-Dp™

k=1 i=1

=5 (p- 1)p“[1+§2(p 1)p'1}

k=1 k=1 i=1

a-1 r

Therefore, there areZ(p 1)pk{1+22(p 1)p‘1} compatible pairs of actions

k=1 i=1

wherer =min{a,8} -k andk=1,2,..0 - 1 o

In general, the number of the compatible pairs of actions for two finite cyclic
groups of thep-power order, wher@ is an odd prime for a given nonabelian tensor

productha [ Cpﬁ can be found. The result is given in the following theorem.

Theorem 5.1

Let G DCpg and H DCpﬂ be the finite cyclic groups of thepower order wherp as an

odd prime such that a,[=3. Then, there exist

a-1r

(p-1)p* l+Z(p 1)p* {1'*22 (p-p' 1} compatible pairs of actions with one

k=1 i=1

of the actions has ordes“wherek =1,2,...a - Tandr =min{a,} -
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Proof:

Let G DCpa and H DCp,; be the finite cyclic groups of thepower order wherg is an

odd prime. Furthermoréet pJAut(G) wherea, 5= 3. The number of the compatible

pairs of actions with specific order can be determined by separating them into two cases

as follows.

Case t Suppose thdtol =1. By Proposition 5.4, when one of the actions is trivial,

then, the number of the compatible pairs of actiois1)p”™.

Case Il Suppose thalo|= p“wherek =1,2,...o = 1 By Proposition 5.6, the total
a-1 a-1 r

number of the compatible pairs of actiond i§p 1) p"‘{1+ > (p—l)p“l} where

k=1 k

=1i=1

r=min{a,B} -k andk=1,2,..a- 1

Hence, in total, the number of the compatible pairs of actions for the finite

cyclic groups of th@-power order, where p is an odd prime are

(p-1)p” +HZ:l(p-l)pk‘{l+§:Zr) (p- 1)pi‘l} ,

k=1 i=1
wherer =min{a, 8} -k andk=1,2,..a- 1 O

By using Theorem 5.1, the number of the compatible pairs of actions for the

finite cyclic groups of the p-power order, wheres@n odd prime has been determined.

Next, with the help of GAP code in Figure 3.1, by input the different finite

cyclic groups of 3-power order which a@, andC,,, the followingtable illustrated the

output of GAP which represented the compatible pairs of actions with their orders for

the nonabelian tensor product@;‘s and C34.
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Tableb.2.

Compatible Pairs of Actions f@, CIC,,.

o) k 1 o] o) k I o]
1 1 1 1 1 1 68 54
1 1 2 54 1 1 70 27
1 1 4 27 1 1 71 18
1 1 5 54 1 1 73 9
1 1 7 27 1 1 74 54
1 1 8 18 i 1 76 27
1 1 10 9 1 1 77 54
1 1 11 54 1 1 79 27
1 1 13 27 1 1 80 2
1 1 14 54 9 4 1 1
1 1 16 27 9 4 28 3
1 1 17 18 9 4 55 3
1 1 19 9 9 7 1 1
1 1 20 54 9 7 28 3
1 1 22 27 9 7 55 3
1 1 23 54 3 10 1 1
1 1 25 27 3 10 10 9
1 1 26 6 3 10 19 9
1 1 28 3 3 10 28 3
1 1 29 54 3 10 37 9
1 1 31 27 3 10 46 9
1 1 32 54 3 10 55 3
1 1 34 27 3 10 64 9
1 1 85 18 3 10 73 9
1 1 37 9 9 13 1 1
1 1 38 54 9 13 28 3
1 1 40 27 9 13 55 3
1 1 41 54 9 16 1 1
1 1 43 27 9 16 28 3
1 1 44 18 9 16 55 3
1 1 46 9 3 19 1 1
1 1 47 54 3 19 10 9
1 1 49 27 3 19 19 9
1 1 50 54 3 19 28 3
1 1 52 27 3 19 37 9
1 1 53 6 3 19 46 9
1 1 55 3 3 19 55 3
1 1 56 54 3 19 64 9
1 1 58 27 3 19 73 9
1 1 59 54 9 22 1 1
1 1 61 27 9 22 28 3
1 1 62 18 9 22 55 3
1 1 64 9 9 25 1 1
1 1 65 54 9 25 28 3
1 1 67 27 9 25 55 3
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From Table 5.2 there ai® compatible pairs of actions f&; LIC,. Hence,

the result from Theorem 5.1 is equivalent with the number of the compatible pairs of

actions given in Table 5.2.

Next, an example is given by illustrating the number of the compatible pairs of

actions for the given two finite cyclic groups of the p-power order.
Example 5.2

Let GOC, and H [C,, be the finite cyclic groups of 3-power order. Now, consider the
actions ofG andH act on each other such tiat=h' and"g = g“for g0G andhOH
withk,| ON. From Theorem 5.1, the number of the compatible pairs of actions, when
the actions that have order one &idwherek =1, 2 is given as follows:

(1) when the action has order one, then the number of the compatible pairs of
actions is(p-1)p”* = (3-1)3'=54
(i) when the action has ordéf k =1,2,then the number of the compatible
pairs of actions is
a- a-1min{a B} -k

(=D + S (p-0p S Y (p-Dp”

k= k=1 i=1

=Y 3-13 7+ 35S 3 13

k=1 i=1
= 36

Hence, in total there are 54 + 36 = 90 compatible pairs of actions.

In the next section, the number of the compatible pairs of actions when the

groups are the same are presented.
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5.4  The Number of Compatible Pairs of Actions When G=H

It is well known from the definition of the nonabelian tensor product that when
two groups are the same, the nonabelian tensor product is the nonabelian tensor square.
Thus, from Theorem 5.1, the number of the compatible pairs of actions is given in the

following corollary.

Corollary 5.2

Let G=H DCpa be the finite cyclic groups of thepower order wherg is an odd

prime anda = 3. Then there are

(p—l)p“+”2(p—l)pk-{lfz'i (b~ 1)pi'1}

k=1 k=1 i=

=~

compatible pairs of actions.

Proof:
Let G=H DCp,, be the finite cyclic groups of the-power order withp as an odd

prime anda =3. SinceG =H, then a =min{a,a}.Therefore, from Theorem 5.1,

a-1 a-1a-k
there are(p-1) p"‘1+2(p—1)pk‘{1+zz (s 1)pi‘1} compatible pairs of actions.
k=1

k=1 i=1

O

In particular, the number of the compatible pairs of nontrivial actions for a given

nonabelian tensor produ(‘lpa [ Cpﬂ and Cpﬂ 0 Cpa for the finite cyclic groups of the

p-power order is equal. This result is given in the following corollary.

Corollary 5.3

Let G :<x> DCpa and H :<y> DCpﬁ be the finite cyclic groups of thp-power order

with p as an odd prime and = 3. Then, the number of the compatible pairs of
nontrivial actions that have thp-power order for the nonabelian tensor products,

C.,0C  ,andC ,C , are equal.
p p p p

51



Proof:

Let G=(x) OC,andH OC, (y) be the finite cyclic groups of the p-power order

where p is an odd prime and = 3. From proposition 5.6, there are
a-1 a-1r
(p-1 pk’lzz (p—1)p'™" compatible pairs of nontrivial actions where

k=1 k=1 i=1

k=12,..a- landr =min{a, 8} -k. Sincer =min{a, 8} —k = min{ B ,a} -k, then
for any given nonabelian tensor prodl@:pt, [ Cpﬂ and Cp/, 0 Cpa, the number of

compatible pairs of nontrivial actions are the same. O

55 Conclusion

In this chapter, the number of the automorphisms of the finite cyclic groups of the
p-power order with the respective order were determined. Furthermore, the number of
the compatible pair of actions that have phgower order between the two finite cyclic
groups of the-power order, wherp is an odd prime were determined. By using the
necessary and sufficient conditions, the number of the compatible pairs of actions has

been computed according to the order of the action.
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CHAPTER 6

THE COMPATIBLE ACTION GRAPH AND ITS SUBGRAPH

6.1 I ntroduction

The theoretical relationship between group theory and graph theory has been
studied in this chapter. By extending the results on the compatible actions for the finite
cyclic groups ofp-power order with actions that have ghgower order, a new graph
and its subgraph are defined. Thus, some properties of the compatible action graph for

such type of groups are given.
6.2  Motivation of Study the Compatible Action Graph

The idea which makes us investigate the compatible actions graph for the
subgroup of the finite cyclic groups of tpepower order is that, usually we think that
the compatible pairs of actions for the subgrblufpom the groups should be all exists
in the groupG, but it Is not necessary. Thus, the following example is given to show

that there are compatible actions which are existed in subgoupC_, but not in the

groupC, [1C,.

Example 6.1
Let G=(g) UC, and H =(h) OC, be finite cyclic groups of 3-power order.

By referring to Definition 3.3, lefh = h*® and"g = g'°, then, need to check is it hold

be a pair of actions. Now, for the first compatibility condition,
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hgh - gloh
=
=n* since 1= 91 (mod:
# °h.

Hence, the actionpand p' are not compatible i€ 0 C.

Next, let G=(g)0C, and H =(h)C,, be finite cyclic groups of 3-power
order where GndH are subgroups o, . Again, let®h = h'® and"g = g, then by

Proposition 3.1, the actions are compatible”ifj = "gand " =9, Now, consider
the first compatibility conditions.
hgh — gloh
= h*
=nv since 1= 10 (mod:
=
Similarly with the second compatibility conditions. Thus the actignsnd o' are

compatible inC, C,, .

More generally, the example below is given to illustrate the idea and the
intersection between the group and the subgroup.

Example 6.2

Let G UC, be a finite cyclic group of 3-power order, and ktlC_, be a subgroup of
G. For the nonabelian tensor product of the subgr@yd]C,,, the pairs(10,10).
(19,19), (37,37), (46,46), (64,64) and (73,73) are compatible irC, [JC,, but not in
C,0C,. However, the pairg10,28), (10,55). (19,28), (19,55), (28,10), (28,19),

(28,28), (28,37), (28,46), (28,55), (28,64), (28,73). (37,28), (37,55). (46,28),
(46,55), (55,10), (55,19), (55,28), (55,37), (55,46), (55,55), (55,64), (55,73),
(64,28),(73,28)and(73,55) are compatible and all represent the intersection between
C,0C; andC, OC,.
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Therefore, to find the number of the compatible pairs of actions that exist in the

groupG as wellas its subgroupl, the compatible action graph has been defined.

In the next section, the properties of the compatible action graph are presented.

6.3 The Properties of the Compatible Action Graph

In this section, the theoretical properties of the compatible action graph for the
nonabelian tensor product of two such type of groups has been studied. Thé graph
can be described as a discrete structure consisting of two non-empty sets, which are the

set of vertices, which is denoted BYI") and the set of edges connect these vertices,

which is denoted by(IN).

This research is focusing on the compatible actions for the finite cyclic groups
of the p-power order with the actions that have the p-power order. Thus, a graph namely

chpamcpﬂ is introduced to present the compatible action graph with actions that have

the p-power order. Thus, the following definition is extended from Sulaiman (2017) to
the finite cyclic groups of thp-power order with all the actions that have pagower

order, where p is an odd prime and is given as follows.

Definition 6.1 Compatible Action Graph of p-Power Order

Let G andH be two finite cyclic groups of thp-power order withp is an odd prime.
Furthermore, let(p, o) be a pair of the compatible actions for the nonabelian tensor
product of GOH, where pOAut(G) and o OAut(H). Then,
rpcpaucpﬂ = (\/(chpamcpﬂ), (E(I'pcpampﬁ )) is a compatible action graph with the set of
verticesV(I'pCpaDCpﬂ), which is the set oAut(G) and Aut(H), and the set of edges,

E(",c oc,) that connects these vertices which is the set of all compatible pairs of
p7 T Tp

actions (p,0). Furthermore, two verticeso and p'are adjacent if they are

compatible.

The order of the compatible action graph for the finite cyclic groupspaiwer
order are studied. According to the definition of the order of the géapgthe order of
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the graphG is defined as the number of the vertices in the g@phihich is denoted by

|V(G)|. Hence, the order of the compatible action graph has been determined and is

denoted by‘V(chaDCpﬂ)‘. Therefore, the order of the compatible action graph is

considered into two cases, which a2 H and G=H. Thus, the order of the

compatible action graph is given in the following proposition.

Proposition 6.1

Let G DCpa and H EICpﬂ be the finite cyclic groups gfpower order wherp is an odd

prime anda, 8= 3. Then, the order of the compatible action graph is;

=(p-1(p“*+p”?) if GEH.

0 M e,

@ M(ye,ee,)|=(p-Dp" if G=H.

Pr oof:

Let G DCPH and H DCP,, be the finite cyclic groups gFpower order wherp is an odd

prime such thatr, 8= 3. From the definition of the order of the graph, the order of the

compatible action graph is the number of the vertices(in, . ¢ ﬁ). Furthermore, by
Definition 6.1, V(I ;¢ ¢ ﬂ) Is the nonempty set ohut(G) and Aut(H). Thus, there

are two cases needed to be considered, whicharél and G =H.

Casel: Suppose thatG # H. Then,

Mrpcpﬂcpﬂ) =|Aut(G)| +|Aut(H)[=(p-1)p" " + (p-p" ™ = (p- ("™ + ™).

Case Il: Suppose thaG =H. Without loss of generality, letr be the order where

a=p, thenV(F e e, =|AUG) = (P-Dp".

Therefore, | =(p-1(p°*+p”™*) when G#H and =(p-Dp*

r
Cc ,0cC Cc ,0c
p p pﬂ p p? p/?

whenG =H. O
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Since the action of the gro@pon the grougH is the mappingd: G - Aut(H),

then the compatible action graph of the finite cyclic groups ofptpewer order is
considered as a directed graph.

The cardinality of the edge of the compatible action graph for the finite cyclic
groups of thep-power order need to be found. Thus, the next proposition gives the

number of the edges of the compatible action graph.

Proposition 6.2
Let G DCpa and H DCpﬂ be the finite cyclic groups gf-power order wher@ is an

odd prime andxz, 8= 3. Then,
a-1 a-1 r .
‘E(rpc Lac 5)‘ = (p_l) p'g_l +Z (p—l)pk_1|:1+z (p— 1)p"1} ,
L k=1 k=1 i=1

wherer =min{a,5} -k andk =1,2,..a- 1

Pr oof:
It follows from Definition 6.1 and Theorem 5.1. m]

In the directed graphs the edges have directions and the initial vertex of the
direction is called as the initial vertex and the ending vertex is the terminal vertex.
Thus, the compatible pairs of actiorip, p') is defined as a directed edge of the
compatible action graph. Therefore, according to the definition of the directed graph,

the vertexp is considered as an initial vertex @, p')and o' is the terminal vertex of

(p.P).

In addition, the out-degree of the vertexn the directed graph is denoted by
ded (). where it needs to be found in order to investigate the number of the edges with

v as their initial vertex. Thus, the number of the directed edges, the out-degree of the

vertex vis presented in the following proposition.
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Proposition 6.3
Let G DCPH and H DCP,, be the finite cyclic groups of thepower order where is an
odd prime anda,f=3. Furthermore, letvOV(I . .c,) where vOJAut(G)and

|v| = pk. Thended )is one of the following;

O (p-1)p’* if k=0
i) (p-1p“*t+ (p—l)p"‘li (p-1p™, with r =min{a, B} -k

if k=1,2,..a0-1

Pr oof:

It follows from Propositions 5.4 and 5.5 O

From Theorem 3.4, the actions that have fhpower order are always

compatible wherk + k' <min{a, #}. Thus, we conclude that the out-degree and the in-

degree for the compatible action graph are the same. This result is given in the

following corollary.

Corollary 6.1
Let G andH be the finite cyclic groups of thepower order where is an odd prime

andvOV(T ¢ c,) - Then,deg {)= deg ¥ for Moc,nc,-

Pr oof:

Let G andH be the finite cyclic groups of thepower order wherg as an odd prime.
From Propositions 6.3, for anyOV(T,. ,.,) where vOAut(G)and |v=p",
we have ded )= (p- )p*"* if k=0, and when k=12,..g-1 then
deg ¢/)= (p- p**+ - p**>. - 1p™ wherer =min{a, 5} k. By Theorem

i=1

3.4, the actions are compatible whier k' < min{a, £, which present that the vertices
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are adjacent. Similarly, whenJ Aut(H) and |v| = p*. Therefore,deg /)= deg Y for
r |

C,0Cg,"
p o7 o

Next, the connectivity of the compatible action graph is studied. The graph is
connected when there is a path between the pair of the vertices. Thus, the connectivity
of the compatible action graph for the finite cyclic groups of the p-power order, where p

is an odd prime are presented in the following proposition.

Proposition 6.4
Let G EICPH and H EICP,, be the finite cyclic groups of thepower order where is an

odd prime such that, 5= 3. Then, Is the connected graph.

C ,0cC
Phpatts

Pr oof:

Let G DCpa and H DCpﬂ be the finite cyclic groups of thepower order where is an

odd prime such thatr, 8= 3. Furthermore, let, OV(I" ;¢ ¢ ﬂ) with v, 0 Aut(G) and

v, is trivial action. By Proposition 6.3ded" ¢, )= (p— Dp”" Similarly, if we have

v, DV(FPCPH DCpﬁ) such thatv, JAut(H) and v, is trivial action, thenv, is compatible

with everyvOAut(G). Thus, I Is the connected graph. O

&= 1C
Phpa=tpp

The graph is called bipartite graph, if its vertices set can be partitioned into two

nonempty disjoint set§; andV,, such that every edge in the graph connects a vertex in
V, and a vertex inv,. Thus, the compatible action graph is a bipartite graph when

G # H. Therefore, this result is presented in the following proposition.

Proposition 6.5
Let G DCp[, and H DCpﬂ be the finite cyclic groups of thepower order where is an

odd prime such thatr, 3> 3. Then, I is the bipartite graph if and only if

Cc ,0cC
p o7 o8

G#H.
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Pr oof:

Let G DCpa and H DCpﬂ be the finite cyclic groups of thepower order where is an

odd prime such thatr, S = 3. First need to show that if the compatible action graph

r is a bipartite graph the® # H. By contradiction method, assume that

Cc ,0cC
p o o

G =H, then Aut(G) = Aut(H). Thus, there exist a loop which cannot be partitioned

into two disjoint sets, which contradicts on the assumption. TGusH .

Next, if G# Hthen anyv[JAut(G) only compatible with some/ (] Aut(H).
Thus, clearly it can be partitioned into two disjoint sets Gugnd Aut{) respectively.
Therefore,l Is a bipartite graph. O

C HC
Popa b

The complete graptK, contains exactly one edge between each pair of the

vertices. As a result, the compatible action graph is not a complete graph. This result is

given as follows.
Proposition 6.6
Let G DCp,, and H DCp,; be the finite cyclic groups of thepower order where is

an odd prime andr, 5= 3. Then, IS not a complete graph.

pCpaDCpﬂ
Proof:
By Proposition 6.1, there argp=1)(p“™+ p”*) number of vertex in,c .. . If
Moc.oc, IS a complete graph, then there e>{i$p—l)(p“+ IO’H)]2 edges.

By Proposition 6.2,

ECye,c,) =(p—l)p"‘lfz_(p—l)pk‘{lfz' r (p—l)pi‘l}s[(p— DEt+

k=1 k=1 i=1

Thus, T is not a complete graph. O

Cc ,0cC
p pa p[?

In the next section, the subgraph of compatible action graph for the finite cyclic

groups of p-power order has been introduced.
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6.4  Subgraph of Compatible Action Graph

Let Cpa and Cp/, be two finite cyclic groups of thepower order where is an
odd prime andx, 8 = 3. Furthermore, suppose th@%ﬂ and Cpﬂ,i are two subgroups of
C, and C, respectively with i=1,2,...mifa B} - 2 Then, the subgraph of
compatible action graph has been defined for the subgr@k;psand Cpﬁ,i by reducing
i values from the power of the grous, and C ,where i =1,2,...,mi{a B} - 2

Meanwhile, this section concern on the intersect between the compatible action graph

and its subgraph which afe, . .. andTl . .. = toinvestigate the number of the

edges and vertices. Therefore, this section presented the necessary and sufficient
conditions for the cyclic subgroups of tipepower order acting on each other in a
compatible way when the order of the subgroups are reduced by the same power order
from the order of the groups. Then the order of the subgraph and the number of the
edges of the subgraph of compatible action graph are investigated. Thus, the following

proposition shows the necessary and sufficient conditionS:gpir and Cpﬁ_i to act

compatibly on each other.

Proposition 6.7
Let G DCp,, and H DCpﬁ be the finite cyclic groups of thepower order where is

an odd prime andr, 8= 3. Furthermore, le{p, p') is a compatible pair of actions for
Cpa DCpﬂ where p ¢ =g and g’ f1)=h' with k,ION. Then, (p,p') is a compatible
pair of actions forC ., [JC . where p(g)= g™ and p'(h)=h""™"" with

i=12,...mifa g} - 2

Pr oof:

Let G DCpa and H DCpﬁ be the finite cyclic groups of thepower order where is

an odd prime andr, 8= 3. Furthermore, le{p, p') is a compatible pair of actions for

C,OC, wherep @ )= g“ and o' f)=h" with k,| ON. Without loss of generality,
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assume thatC,, <C_, and C,, <C,, then C . =(g') and C =(h') for some
g'0JG and h'OH. Since (p,p') is a compatible pair of actions f(@pa DCpp, then
there exist a mutual actions GfandH on each other such th&g =g and®h=nh' for

k,| ON. In order to prove thap(g) = g* ™" and p'(h)=h' ™" is a compatible

pair of actions foGC,,,, [ Cpﬂ,, , by Proposition 3.3, there are three conditions need to be

satisfied as follows.
(i) gcd(k,p"")= gcc(l pﬁ"): 1

Define that p:G — G with p(g)=g* and k[ONis an automorphism if and only if
gcdk,p? )=1 Sincep?is an odd number becaugeis odd, thenk must be even.
Therefore,ged(k ,p”" )= 1. Similarly, there exist a mutual actions®fandH such that
Sh=Hh. Since ged( ,p” )= 1, then ged(,p?)=1 Hence,

gedk,p?™ )= ged( p?” F 1 and the first condition is satisfied.

) K" =1 (modp)and!” =1 (mod pf).

Let H acts onG, then there exist a mutual action léfon G such that"g = g*, then
1H hpﬂ_i kpﬁ_i B-i - .. )

g= ""g= g=g¢ . Thusk” =1 (modp“"). Similarly, if G acts onH, there

exist a mutual action @ onH such thah=h', thenl” =1 (modp”"). Hence, the

second condition is satisfied.

-1

(i) =1 (modp™ ) andi*t =1 (modP” ).

h

By Proposition 3.1G andH act compatibly on each other if and only {f”g= "g
and “9h= %h. From the first condition, "g= "g=g" and "g=g*. Thus
k' =k (modp”™) or equivalentlyk'™ =1 (modp“™ ) since gcd(k p? ) =1 Similarly

for thesecond condition i =1 (modp”™) or equivalently
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1** =1 (modp?™) sinceged( ,p”” )= 1 Hence, the third condition is hold. Therefore,

0(g) = g* ™" and p'(h) =h' ™" is a compatible pair of actions f@, 0C,, .o

Next, the order of” /. .. = is investigated. From Proposition 6.1, the order
pa—l p =l

of I is considered into two cases which &&= H and G#H. Thus, the

p Cpafl O Cp/;,,

following proposition gives the order fdr, € pnC 5 -

Proposition 6.8
Let G DCp,, and H DCp,; be the finite cyclic groups of thepower order where is

an odd prime anda,f=3. Furthermore, Ietrpcpampﬁ and |'pcpﬂ_iDC ,, be two

p

compatible action graphs with=1,2,..., min{a ,4}-2. Then, the order of the subgraph

of compatible action graph is

1

r

p cpafi ﬂCprl p cpa Dcpﬁ

Pr oof:

Let G DCPH and H DCP,, be the finite cyclic groups gFpower order wherp is an odd

prime and a, 8= 3. From Proposition 6.1, the order of the compatible action graph

considered into two cases which &@e H andG # H. Thus, two cases are considered

as follows.

Case I: Suppose thaG # H. By Proposition 6.1(),l",c . ,|= (p-D(p* ™+ p* ™).
a-i- T oy - - 1

ThUS, rpcpﬂfimcpﬁfi :(p_l)(p T+ p[” l) :%(p L+ pﬁ l) :_i rpCPaDCpﬂ !

=(p-1)p°™". Thus,

Casell: Suppose thaG = H. From Proposition 6.1(ii)

r
Y p Cpa Dcpﬂ

r - (p_il) pa—l

. O

=(p-1)p""

-1
pi

C ,0C 4, Cc ,0cC
p - ph-i p o P
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The next proposition shows the number of the edges of the subgraph of

compatible action graph. From Theorem 5.1, are two cases are considered as follows.

Proposition 6.9
Let G DCpa and H DCpﬂ be the finite cyclic groups of th@power order where is

an odd prime anda,=3. Furthermore, Ietrpcpampﬂ and rpcpmmcpﬁ-ﬁ be two

compatible action graphs wheire 1, 2,..., minfa ,5}- 2.

O I deg ()= =17 thenfe(r, o, =B pr

(i)  If deg” )= (p— Lp“ '+ (- 1)0"‘12 (- 1p'" then

a-1 r

E(rpCpa,,DCp/;,, )‘ = aj(p‘l)pk_{Hz (p- 1)pi‘1} whenr = min{a -i,3-i} -k.

k=1 i=1

Pr oof:

Let G DCpg and H DCpﬁ be the finite cyclic groups of thepower order where is an

odd prime and, 8= 3. Furthermore, lef” . .. andl . .. be two compatible

p

action graphs where=1,2,...,minfa ,S}-2 andvOV(l ¢ ¢ ., then two cases are

considered as follows.

Case |: By Proposition 6.3(i),ded ()= (p—1p”" and v represent the trivial
automorphism. By Corollary 3.3, is compatible with any vertex and by Proposition

5.4, there exist(p—1)p”" compatible pairs of actions. Thus,

= _ _l _:
‘E(rpcpa.ﬂcpﬂ_i )‘ =(p-Dp’ :% s

Case II: By Theorem 3.4, the actions are compatible wikernk’' <min{a,5}. By

Proposition 6.3(ii),
deg ¢/)= (p- Lp**+ (- 1)p“2 O- 1p

wherer = min{a, B} —k. From the assumption we havell'. .. . Thus,
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a-1r

E(chpa_iucpﬁ_i )‘ =§(p—1)pk‘{l+z (p—l)p“l} , with r =min{a -i,8-i} -k.o

k=1 i=1

Next, the number of the compatible pairs of actions in the intersection between
two subgroups can be presented as the intersection of the compatible action graph and
its subgraph which has been determined. Thus, for this case only whknis
considered as a reduce for the power of the subgroups of the finite cyclic groups of
p-power order. Therefore, when one of the actions is trivial, then the number of the
edges in the intersection between the compatible action graph and its subgraph is

presented in the following lemma.

Lemma6.1

Let I ¢ 0c, and rpcpﬁmpw be two compatible action graphs wherds an odd

prime anda, 5 = 3. Furthermore, lev be a vertex il ;¢ ¢ , LIPS ,, such that
P P P p

—1\pPL
ded )= (p— p’" Then, there are% number of edges in

r r .
pC,0C N PCoa0C 5

Pr oof:

Let rpcpamcpﬁ and I'pcpa_lmpﬁ_l be two compatible action graphs wherds an odd
prime and a,=3. Furthermore, letbe a vertex inrpcpaucpﬂﬂrpcpﬁmpm. By
Proposition 6.3())ded )= (p— Lp”* SinceCpﬁ and Cle are subgroups frorﬁ:pa
and Cpﬁ, then, the vertexy must be inrpcpﬁmpm. By Proposition 6.10(i), when one

(p-1)

of the vertex has out-degré@—1)p®™*,then there are—— p”™ number of edges in
p
rC (p_l) L-1

oc - Since i=1, then there areTp number of edges in

pH’I

rpcpnmcp,, N rpcpl,_lmcpﬂ_l- o

The next lemma gives the number of the compatible pairs of actions in the

intersection between the compatible action graph and its subgraph when one of the
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actions has thp-power order. Thus, this case can be represented as the intersection of

the compatible action graph same as in Lemma 6.1, but now we consider the vertex

vOAut(G) and|v|= p“, where k=1,2,..a- 1

Lemma6.2

Let chpaﬂcpﬂ and rpcpmmcpw be two compatible action graphs whegrds an odd

prime anda,3>3. Furthermore, letv be a vertex iancpaDcpﬁ ﬂrpcpa_lucpﬁ_l such

thatdeg ¢)= (p—- p* "'+ (p- 1)3“2 - 1p™ with r =min{a,8} -k and

i=1

a-2 a-2 r .
k=1,2,..a -1 Then, there ar) (p-1) p“{ﬂzz (p—l)p"l} number of edges
k=1 k=1 i=1

in chpaucpﬁ Ar,c 0C 5 ! where r = min{a,8} -k-1andk=1,2,...a— 2

pafl

Pr oof:

Let I' c,0C and rpcpa-lmcpm be two compatible action graphs wherds an odd
prime anda, 52 3. Furthermore, lev be a vertex il ¢ ¢ Ar,c fc ., Since
o7 e pa T A

Cle and C ,, are subgroups frorGCa and Cp/,, then, the vertexvmust be in

pﬁfl

Moc,.c,, By Proposition 6.3(i), deg ()= (- p*+ (- 10" p- 1p~

i=1
with r =min{a,8} ~kandk =1,2,...a - 1 By Proposition 6.10(ii), when
vOV(T ¢ e, )With vOAut(G) and V| = p“,wherek =1,2,...a - 1then the number
a-1 a-lr .

of the edges in the subgraff,c .., is Z(p—l)pk‘{hzz(p—l)p"l},

# k=1 k=1 i=1
where k=1,2,...a - Jand r = min{a -i,8~i} -k. Sincek is hold for each values of
1,2,..0-1 thenk is also hold forl,2,...a— 2 Sincethe order of the actions is

reduced, then the bound=min{a,B} -k -i, where @ and S represent the power of

a-2 a-2 r
the order of the subgroups. Therefore, there Eep—l)p"’{hz (p—l)p“l}
=1

k=1 k=1 i

66



number of edges inl . .. NT,c o, Wwhere r=min{a,f}-k-1 and

k=12,..0- 2 O

In general, the number of the edges in the intersection between the compatible
action graph and its subgraph for the finite cyclic groups opthewer order where
is an odd prime has been found. Thus, the following theorem shows the number of the

compatible pairs of actions that exist in the groupss@vell as its subgroup.

Theorem 6.1

Let I ¢ 0c, and rpcpﬁmpﬁﬂ be two compatible action graphs whegrds an odd

@=2

prime anda, 3=3. Then, there are(p Dp” +Z(p 1)p* 1{ +
p

i (p- 1)pi‘1}

k=1 i=1

number of edges inl,. .. NI,c ., where r=min{a,f}-k-1 and

k=12,.0- 2

Pr oof:

Let I'pcpampﬂ and |'pcpa_1mp/H be two compatible action graphs wherds an odd

prime anda, £ = 3. The number of the edges in the intersection between the compatible

action graph and its subgraph can be determined by separating into two cases as

follows.

Case |: Suppose that the vertexv in Fcamcﬂﬂrcﬁmcm such that

ded ()= (p- 1p”" By Lemma 6.1, there ar(p )p‘” number of edges in
p

r C,0C nr, C aa0C 4"

Case II: Suppose that the vertew in T . Dcﬂﬂrpc oc,, such that
p7 T pT A

deg ¢)= (P— Dp*+ - 1p**> p-1p™* By Lemma 6.2, there are

a-2 r

(p 1)pk 1|:1+22(p 1)p' l:| number of edgeS ”h-pC oe, ﬂrpcplﬂgcpﬂil'

k=1 i=1

a-2

k=1
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- (P-p”" & e .S
Thus, in total, there are——"—+> (p-1)p“*|1+)
p k=1

-2r
k=1 i=1

(p- 1)pi‘1} number of

edgesin chpnmcpﬁ ﬂrpcpn_lmcp,;-l’wherer =min{a,B} -k-1andk=12,..a4- 2 o

6.5 Conclusion

In this chapter, the compatible action graph and it is subgraph for the finite
cyclic groups of thep-power order, wher@ is an odd prime are introduced. Some
properties of the compatible action graph are presented, such that the cardinality of the
edge, the order of the compatible action graph, the number of the directed edges from
the in-degree and the out-degree of the verfeke bipartite graph, the connectivity of
the compatible action graph, and the compatible action graph is not complete.
Furthermore, new necessary and sufficient conditions for the subgraph of compatible
action graph to act compatibly on each other are provided. Meanwhile, the order of the
subgraph of compatible action graph and its cardinality are presented. Then, the

intersection between the compatible action graph and its subgraph are also given.
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CHAPTER 7

SUMMARY AND CONCLUSION

7.1  Summary of the Resear ch

This thesis started with the first chapter, which is an introduction chapter. This
chapter contains research background, problem statement, objectives of the research,

research scope, research significance, and thesis organisation.

Chapter 2 focuses on the literature review of this research, which concentrated
on the compatible actions and the nonabelian tensor products of the groups. Various
works related to the compatible actions, nonabelian tensor product of groups, and graph

theory by different researchers were discussed in this chapter.

Some definitions and preliminary results on the automorphisms of the finite
cyclic groups of the@-power order, compatible conditions, number theory, graph theory
and GAP coding are given in Chapter 3. By using the GAP software, the number of the
compatible pairs of actions for the finite cyclic groups of gigower order has been
computed and it is then verified with the theorem. All results in this chapter are used in

the next chapters in order to prove the new results.

Meanwhile, some properties of the automorphisms for the finite cyclic groups of
the p-power order, where is an odd prime, are presented in Chapter 4. However, the
necessary and sufficient conditions for a pair of actions that hayegbeer order to
act compatibly on each other have been determined. This chapter contains the
compatibility for the actions that have order two.
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Chapter 5 focuses in determining the number of compatible pairs of actions for
the finite cyclic groups of thp-power order, where is an odd prime. The number of
the automorphisms for the finite cyclic groups of gagower order, where is an odd
prime with the specific order were given first. According to the order of the actions,
there are two cases in determining the number of the compatible pairs of actions for
such type of groups, which are the trivial action and the actions that hapetiheer
order. From the results, the number of the compatible pairs of nontrivial actions that
have thep-power order for the given nonabelian tensor product for such type of groups

are the same.

In Chapter 6, the compatible action graph and its subgraph have been defined
for the nonabelian tensor product®@andH, whereG andH are finite cyclic groups of

the p-power order. This graph is denoted By, ] and consists of two sets; the set
of the verticesvV (I ;. ¢ ). which is the set of Au&) and Autfl), and the set of the
edgesE(l ;¢ e ) which is the set of all the compatible pairs of actipnso’). Then

two verticespand o' are adjacent if they are compatible on each other. Consequently,
this chapter is contains the order of the compatible action graph and its subgraph with
the number of the edges for the graph and the subgraph. Some necessary and sufficient
conditions for the subgroups of such type of groups to act compatibly on each other are
also provided. Then, the number of compatible pairs of actions which represents the

intersection between the compatible action graph and its subgraph has been given .
7.2 Recommendation for Future Research

This research focuses only on the finite cyclic groups ofptpewer order,
wherep is an odd prime. The main concern of this research is to find the maximum
different nonabelian tensor product by determining the exact number of the compatible

pair of actions foGCa [ Cpﬂ without finding the nonabelian tensor product. Thus, some
suggestions for further research are presented as follows:
(1) determine the general presentation for the automorphism group of the finite
cyclic groups of the ypower order, where p is an odd prime.

(i) determine the compatible actions for the finite cyclic groups opihewer

order, where p is an odd prime by representation as a matrix.
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(iii)

(iv)

v)

find the compatible actions for the finite cyclic groups of giower order,
where p is an odd prime with the actions that have an even order.

find the nonabelian tensor product for the finite cyclic groups opipewer

order, where pis an odd prime when the actions that have even order.

find the intersection between the compatible action graph and its subgraph
for the finite cyclic groups of thp-power order, wher@ is an odd prime

when the value of greater than one.
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APPENDIX A

THE OUTPUT OF GAP SOFTWARE

The outputs for the GAP coding given in Figure 34 stated as below. This
output presents the list of the automorphisms with their specific order that satisfying the
compatible conditions and the total of the number of the compatible actions.

gap> CompatibleAction(9,9);

k=4 (order action=3),I=4 (order action=3) Compatible
k=4 (order action=3),I=7 (order action=3) Compatible
k=7 (order action=3),I=4 (order action=3) Compatible
k=7 (order action=3),I=7 (order action=3) Compatible
No of Compatible4

gap> CompatibleAction(27,27);

k=4 (order action=9),I=10 (order action=3) Compatible
k=4 (order action=9),I=19 (order action=3) Compatible
k=7 (order action=9),I=10 (order action=3) Compatible
k=7 (order action=9),I=19 (order action=3) Compatible
k=10 (order action=3),I=4 (order action=9) Compatible
k=10 (order action=3),I=7 (order action=9) Compatible
k=10 (order action=3),I=10 (order action=3) Compatible
k=10 (order action=3),I=13 (order action=9) Compatible
k=10 (order action=3),I=16 (order action=9) Compatible
k=10 (order action=3),I=19 (order action=3) Compatible
k=10 (order action=3),I=22 (order action=9) Compatible
k=10 (order action=3),I=25 (order action=9) Compatible
k=13 (order action=9),I=10 (order action=3) Compatible
k=13 (order action=9),I=19 (order action=3) Compatible
k=16 (order action=9),I=10 (order action=3) Compatible
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k=16 (order action=9),I=19 (order action=3) Compatible
k=19 (order action=3),I=4 (order action=9) Compatible
k=19 (order action=3),I=7 (order action=9) Compatible
k=19 (order action=3),I=10 (order action=3) Compatible
k=19 (order action=3),I=13 (order action=9) Compatible
k=19 (order action=3),I=16 (order action=9) Compatible
k=19 (order action=3),I=19 (order action=3) Compatible
k=19 (order action=3),I=22 (order action=9) Compatible
k=19 (order action=3),I=25 (order action=9) Compatible
k=22 (order action=9),I=10 (order action=3) Compatible
k=22 (order action=9),I=19 (order action=3) Compatible
k=25 (order action=9),I=10 (order action=3) Compatible
k=25 (order action=9),I=19 (order action=3) Compatible
No of Compatible28

gap> CompatibleAction(25,25);

k=6 (order action=5),I=6 (order action=5) Compatible
k=6 (order action=5),I=11 (order action=5) Compatible
k=6 (order action=5),I=16 (order action=5) Compatible
k=6 (order action=5),I=21 (order action=5) Compatible
k=11 (order action=5),I=6 (order action=5) Compatible
k=11 (order action=5),I=11 (order action=5) Compatible
k=11 (order action=5),I=16 (order action=5) Compatible
k=11 (order action=5),I=21 (order action=5) Compatible
k=16 (order action=5),I=6 (order action=5) Compatible
k=16 (order action=5),I=11 (order action=5) Compatible
k=16 (order action=5),I=16 (order action=5) Compatible
k=16 (order action=5),I=21 (order action=5) Compatible
k=21 (order action=5),I=6 (order action=5) Compatible
k=21 (order action=5),I=11 (order action=5) Compatible
k=21 (order action=5),I=16 (order action=5) Compatible
k=21 (order action=5),I=21 (order action=5) Compatible
No of Compatible16

gap> CompatibleAction(49,49);

k=8 (order action=7),I=8 (order action=7) Compatible
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k=8 (order action=7),I=15 (order action=7) Compatible

k=8 (order action=7),I=22 (order action=7) Compatible

k=8 (order action=7),I=29 (order action=7) Compatible

k=8 (order action=7),I=36 (order action=7) Compatible

k=8 (order action=7),I=43 (order action=7) Compatible

k=15 (order action=7),I=8 (order action=7) Compatible

k=15 (order action=7),I=15 (order action=7) Compatible
k=15 (order action=7),I=22 (order action=7) Compatible
k=15 (order action=7),I=29 (order action=7) Compatible
k=15 (order action=7),I=36 (order action=7) Compatible
k=15 (order action=7),I=43 (order action=7) Compatible
k=19 (order action=6),I=19 (order action=6) Compatible
k=19 (order action=6),I=31 (order action=6) Compatible
k=22 (order action=7),I=8 (order action=7) Compatible

k=22 (order action=7),I=15 (order action=7) Compatible
k=22 (order action=7),I=22 (order action=7) Compatible
k=22 (order action=7),I=29 (order action=7) Compatible
k=22 (order action=7),I=36 (order action=7) Compatible
k=22 (order action=7),I=43 (order action=7) Compatible
k=29 (order action=7),I=8 (order action=7) Compatible

k=29 (order action=7),I=15 (order action=7) Compatible
k=29 (order action=7),|I=22 (order action=7) Compatible
k=29 (order action=7),I=29 (order action=7) Compatible
k=29 (order action=7),I=36 (order action=7) Compatible
k=29 (order action=7),I=43 (order action=7) Compatible
k=31 (order action=6),I=19 (order action=6) Compatible
k=31 (order action=6),I=31 (order action=6) Compatible
k=36 (order action=7),I=8 (order action=7) Compatible

k=36 (order action=7),I=15 (order action=7) Compatible
k=36 (order action=7),I=22 (order action=7) Compatible
k=36 (order action=7),I=29 (order action=7) Compatible
k=36 (order action=7),I=36 (order action=7) Compatible
k=36 (order action=7),I=43 (order action=7) Compatible
k=43 (order action=7),I=8 (order action=7) Compatible
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k=43 (order action=7),I=15 (order action=7) Compatible
k=43 (order action=7),I=22 (order action=7) Compatible
k=43 (order action=7),I=29 (order action=7) Compatible
k=43 (order action=7),I=36 (order action=7) Compatible
k=43 (order action=7),I=43 (order action=7) Compatible

No of Compatible40

gap> CompatibleAction(121,121);

k=12 (order action=11),I=12 (order action=11) Compatible
k=12 (order action=11),I=23 (order action=11) Compatible
k=12 (order action=11),I=34 (order action=11) Compatible
k=12 (order action=11),I=45 (order action=11) Compatible
k=12 (order action=11),I=56 (order action=11) Compatible
k=12 (order action=11),I=67 (order action=11) Compatible
k=12 (order action=11),I=78 (order action=11) Compatible
k=12 (order action=11),I=89 (order action=11) Compatible
k=12 (order action=11),I=100 (order action=11) Compatible
k=12 (order action=11),I=111 (order action=11) Compatible
k=23 (order action=11),I=12 (order action=11) Compatible
k=23 (order action=11),I=23 (order action=11) Compatible
k=23 (order action=11),I=34 (order action=11) Compatible
k=23 (order action=11),I=45 (order action=11) Compatible
k=23 (order action=11),I=56 (order action=11) Compatible
k=23 (order action=11),I=67 (order action=11) Compatible
k=23 (order action=11),I=78 (order action=11) Compatible
k=23 (order action=11),/1=89 (order action=11) Compatible
k=23 (order action=11),I=100 (order action=11) Compatible
k=23 (order action=11),I=111 (order action=11) Compatible
k=34 (order action=11),I=12 (order action=11) Compatible
k=34 (order action=11),I1=23 (order action=11) Compatible
k=34 (order action=11),I=34 (order action=11) Compatible
k=34 (order action=11),I=45 (order action=11) Compatible
k=34 (order action=11),I=56 (order action=11) Compatible
k=34 (order action=11),I=67 (order action=11) Compatible
k=34 (order action=11),I=78 (order action=11) Compatible
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k=34 (order action=11),I=89 (order action=11) Compatible
k=34 (order action=11),I=100 (order action=11) Compatible
k=34 (order action=11),I=111 (order action=11) Compatible
k=45 (order action=11),I=12 (order action=11) Compatible
k=45 (order action=11),I=23 (order action=11) Compatible
k=45 (order action=11),I1=34 (order action=11) Compatible
k=45 (order action=11),I=45 (order action=11) Compatible
k=45 (order action=11),I=56 (order action=11) Compatible
k=45 (order action=11),I=67 (order action=11) Compatible
k=45 (order action=11),I=78 (order action=11) Compatible
k=45 (order action=11),I=89 (order action=11) Compatible
k=45 (order action=11),I=100 (order action=11) Compatible
k=45 (order action=11),I=111 (order action=11) Compatible
k=56 (order action=11),I=12 (order action=11) Compatible
k=56 (order action=11),I=23 (order action=11) Compatible
k=56 (order action=11),I=34 (order action=11) Compatible
k=56 (order action=11),I=45 (order action=11) Compatible
k=56 (order action=11),I=56 (order action=11) Compatible
k=56 (order action=11),I=67 (order action=11) Compatible
k=56 (order action=11),I=78 (order action=11) Compatible
k=56 (order action=11),I=89 (order action=11) Compatible
k=56 (order action=11),I=100 (order action=11) Compatible
k=56 (order action=11),I=111 (order action=11) Compatible
k=67 (order action=11),I=12 (order action=11) Compatible
k=67 (order action=11),/1=23 (order action=11) Compatible
k=67 (order action=11),I=34 (order action=11) Compatible
k=67 (order action=11),I=45 (order action=11) Compatible
k=67 (order action=11),I=56 (order action=11) Compatible
k=67 (order action=11),I=67 (order action=11) Compatible
k=67 (order action=11),I=78 (order action=11) Compatible
k=67 (order action=11),I=89 (order action=11) Compatible
k=67 (order action=11),I=100 (order action=11) Compatible
k=67 (order action=11),I=111 (order action=11) Compatible
k=78 (order action=11),I=12 (order action=11) Compatible
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k=78 (order action=11),I=23 (order action=11) Compatible
k=78 (order action=11),I=34 (order action=11) Compatible
k=78 (order action=11),I=45 (order action=11) Compatible
k=78 (order action=11),I=56 (order action=11) Compatible
k=78 (order action=11),I=67 (order action=11) Compatible
k=78 (order action=11),I=78 (order action=11) Compatible
k=78 (order action=11),I=89 (order action=11) Compatible
k=78 (order action=11),I=100 (order action=11) Compatible
k=78 (order action=11),I=111 (order action=11) Compatible
k=81 (order action=5),I=81 (order action=5) Compatible
k=89 (order action=11),I=12 (order action=11) Compatible
k=89 (order action=11),I=23 (order action=11) Compatible
k=89 (order action=11),I=34 (order action=11) Compatible
k=89 (order action=11),I=45 (order action=11) Compatible
k=89 (order action=11),I=56 (order action=11) Compatible
k=89 (order action=11),I=67 (order action=11) Compatible
k=89 (order action=11),I=78 (order action=11) Compatible
k=89 (order action=11),I=89 (order action=11) Compatible
k=89 (order action=11),I=100 (order action=11) Compatible
k=89 (order action=11),I=111 (order action=11) Compatible
k=100 (order action=11),I=12 (order action=11) Compatible
k=100 (order action=11),I=23 (order action=11) Compatible
k=100 (order action=11),I1=34 (order action=11) Compatible
k=100 (order action=11),I=45 (order action=11) Compatible
k=100 (order action=11),I=56 (order action=11) Compatible
k=100 (order action=11),I=67 (order action=11) Compatible
k=100 (order action=11),I=78 (order action=11) Compatible
k=100 (order action=11),1=89 (order action=11) Compatible
k=100 (order action=11),I=100 (order action=11) Compatible
k=100 (order action=11),I=111 (order action=11) Compatible
k=111 (order action=11),I=12 (order action=11) Compatible
k=111 (order action=11),I=23 (order action=11) Compatible
k=111 (order action=11),I=34 (order action=11) Compatible
k=111 (order action=11),I=45 (order action=11) Compatible
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k=111 (order action=11),I=56 (order action=11) Compatible
k=111 (order action=11),I=67 (order action=11) Compatible
k=111 (order action=11),I=78 (order action=11) Compatible
k=111 (order action=11),I=89 (order action=11) Compatible
k=111 (order action=11),I=100 (order action=11) Compatible
k=111 (order action=11),I=111 (order action=11) Compatible
No of Compatible101

gap> CompatibleAction(169,169);

k=14 (order action=13),I=14 (order action=13) Compatible
k=14 (order action=13),I=27 (order action=13) Compatible
k=14 (order action=13),I=40 (order action=13) Compatible
k=14 (order action=13),I=53 (order action=13) Compatible
k=14 (order action=13),I=66 (order action=13) Compatible
k=14 (order action=13),I=79 (order action=13) Compatible
k=14 (order action=13),I=92 (order action=13) Compatible
k=14 (order action=13),I=105 (order action=13) Compatible
k=14 (order action=13),I=118 (order action=13) Compatible
k=14 (order action=13),I=131 (order action=13) Compatible
k=14 (order action=13),I=144 (order action=13) Compatible
k=14 (order action=13),I=157 (order action=13) Compatible
k=22 (order action=13),I=22 (order action=13) Compatible
k=27 (order action=13),I=14 (order action=13) Compatible
k=27 (order action=13),I=27 (order action=13) Compatible
k=27 (order action=13),I=40 (order action=13) Compatible
k=27 (order action=13),/1=53 (order action=13) Compatible
k=27 (order action=13),/1=66 (order action=13) Compatible
k=27 (order action=13),I=79 (order action=13) Compatible
k=27 (order action=13),I1=92 (order action=13) Compatible
k=27 (order action=13),I=105 (order action=13) Compatible
k=27 (order action=13),I=118 (order action=13) Compatible
k=27 (order action=13),I=131 (order action=13) Compatible
k=27 (order action=13),I=144 (order action=13) Compatible
k=27 (order action=13),I=157 (order action=13) Compatible
k=40 (order action=13),I=14 (order action=13) Compatible
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k=40 (order action=13),I=27 (order action=13) Compatible
k=40 (order action=13),I=40 (order action=13) Compatible
k=40 (order action=13),I=53 (order action=13) Compatible
k=40 (order action=13),I=66 (order action=13) Compatible
k=40 (order action=13),I=79 (order action=13) Compatible
k=40 (order action=13),I1=92 (order action=13) Compatible
k=40 (order action=13),I=105 (order action=13) Compatible
k=40 (order action=13),I=118 (order action=13) Compatible
k=40 (order action=13),I=131 (order action=13) Compatible
k=40 (order action=13),I=144 (order action=13) Compatible
k=40 (order action=13),I=157 (order action=13) Compatible
k=53 (order action=13),I=14 (order action=13) Compatible
k=53 (order action=13),I=27 (order action=13) Compatible
k=53 (order action=13),I=40 (order action=13) Compatible
k=53 (order action=13),I=53 (order action=13) Compatible
k=53 (order action=13),I=66 (order action=13) Compatible
k=53 (order action=13),I=79 (order action=13) Compatible
k=53 (order action=13),I=92 (order action=13) Compatible
k=53 (order action=13),I=105 (order action=13) Compatible
k=53 (order action=13),I=118 (order action=13) Compatible
k=53 (order action=13),I=131 (order action=13) Compatible
k=53 (order action=13),I=144 (order action=13) Compatible
k=53 (order action=13),I=157 (order action=13) Compatible
k=66 (order action=13),I=14 (order action=13) Compatible
k=66 (order action=13),I=27 (order action=13) Compatible
k=66 (order action=13),I=40 (order action=13) Compatible
k=66 (order action=13),I=53 (order action=13) Compatible
k=66 (order action=13),I=66 (order action=13) Compatible
k=66 (order action=13),I=79 (order action=13) Compatible
k=66 (order action=13),I=92 (order action=13) Compatible
k=66 (order action=13),I=105 (order action=13) Compatible
k=66 (order action=13),I=118 (order action=13) Compatible
k=66 (order action=13),I=131 (order action=13) Compatible
k=66 (order action=13),I=144 (order action=13) Compatible
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k=66 (order action=13),I=157 (order action=13) Compatible
k=79 (order action=13),I=14 (order action=13) Compatible
k=79 (order action=13),I=27 (order action=13) Compatible
k=79 (order action=13),I=40 (order action=13) Compatible
k=79 (order action=13),I=53 (order action=13) Compatible
k=79 (order action=13),I1=66 (order action=13) Compatible
k=79 (order action=13),I=79 (order action=13) Compatible
k=79 (order action=13),I=92 (order action=13) Compatible
k=79 (order action=13),I=105 (order action=13) Compatible
k=79 (order action=13),I=118 (order action=13) Compatible
k=79 (order action=13),I=131 (order action=13) Compatible
k=79 (order action=13),I=144 (order action=13) Compatible
k=79 (order action=13),I=157 (order action=13) Compatible
k=92 (order action=13),I=14 (order action=13) Compatible
k=92 (order action=13),I=27 (order action=13) Compatible
k=92 (order action=13),I=40 (order action=13) Compatible
k=92 (order action=13),I=53 (order action=13) Compatible
k=92 (order action=13),I=66 (order action=13) Compatible
k=92 (order action=13),I=79 (order action=13) Compatible
k=92 (order action=13),I=92 (order action=13) Compatible
k=92 (order action=13),I=105 (order action=13) Compatible
k=92 (order action=13),I=118 (order action=13) Compatible
k=92 (order action=13),I=131 (order action=13) Compatible
k=92 (order action=13),I=144 (order action=13) Compatible
k=92 (order action=13),I=157 (order action=13) Compatible
k=105 (order action=13),I=14 (order action=13) Compatible
k=105 (order action=13),I=27 (order action=13) Compatible
k=105 (order action=13),I1=40 (order action=13) Compatible
k=105 (order action=13),I=53 (order action=13) Compatible
k=105 (order action=13),I=66 (order action=13) Compatible
k=105 (order action=13),I=79 (order action=13) Compatible
k=105 (order action=13),1=92 (order action=13) Compatible
k=105 (order action=13),I=105 (order action=13) Compatible
k=105 (order action=13),I=118 (order action=13) Compatible
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k=105 (order action=13),I=131 (order action=13) Compatible
k=105 (order action=13),I=144 (order action=13) Compatible
k=105 (order action=13),I=157 (order action=13) Compatible
k=118 (order action=13),I=14 (order action=13) Compatible
k=118 (order action=13),I=27 (order action=13) Compatible
k=118 (order action=13),I1=40 (order action=13) Compatible
k=118 (order action=13),I1=53 (order action=13) Compatible
k=118 (order action=13),I=66 (order action=13) Compatible
k=118 (order action=13),I=79 (order action=13) Compatible
k=118 (order action=13),I1=92 (order action=13) Compatible
k=118 (order action=13),I=105 (order action=13) Compatible
k=118 (order action=13),I=118 (order action=13) Compatible
k=118 (order action=13),I=131 (order action=13) Compatible
k=118 (order action=13),I=144 (order action=13) Compatible
k=118 (order action=13),I=157 (order action=13) Compatible
k=131 (order action=13),I=14 (order action=13) Compatible
k=131 (order action=13),I=27 (order action=13) Compatible
k=131 (order action=13),I=40 (order action=13) Compatible
k=131 (order action=13),I=53 (order action=13) Compatible
k=131 (order action=13),I=66 (order action=13) Compatible
k=131 (order action=13),I=79 (order action=13) Compatible
k=131 (order action=13),I=92 (order action=13) Compatible
k=131 (order action=13),I1=105 (order action=13) Compatible
k=131 (order action=13),I=118 (order action=13) Compatible
k=131 (order action=13),I=131 (order action=13) Compatible
k=131 (order action=13),I=144 (order action=13) Compatible
k=131 (order action=13),I=157 (order action=13) Compatible
k=144 (order action=13),I=14 (order action=13) Compatible
k=144 (order action=13),I1=27 (order action=13) Compatible
k=144 (order action=13),I=40 (order action=13) Compatible
k=144 (order action=13),I=53 (order action=13) Compatible
k=144 (order action=13),I=66 (order action=13) Compatible
k=144 (order action=13),I=79 (order action=13) Compatible
k=144 (order action=13),1=92 (order action=13) Compatible

85



k=144 (order action=13),I=105 (order action=13) Compatible
k=144 (order action=13),I=118 (order action=13) Compatible
k=144 (order action=13),I=131 (order action=13) Compatible
k=144 (order action=13),I=144 (order action=13) Compatible
k=144 (order action=13),I=157 (order action=13) Compatible
k=157 (order action=13),I=14 (order action=13) Compatible
k=157 (order action=13),|1=27 (order action=13) Compatible
k=157 (order action=13),I=40 (order action=13) Compatible
k=157 (order action=13),I=53 (order action=13) Compatible
k=157 (order action=13),I=66 (order action=13) Compatible
k=157 (order action=13),I=79 (order action=13) Compatible
k=157 (order action=13),I=92 (order action=13) Compatible
k=157 (order action=13),I=105 (order action=13) Compatible
k=157 (order action=13),I=118 (order action=13) Compatible
k=157 (order action=13),I=131 (order action=13) Compatible
k=157 (order action=13),I=144 (order action=13) Compatible
k=157 (order action=13),I=157 (order action=13) Compatible
No of Compatible145
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