The characterization and thermo-physical property investigations of $SiO_2/HFE7000$ nanorefrigerants

M.R.M. Nawi^{a,b}, M.Z.A. Rehim^a, W.H. Azmi^{c,*}, S.A. Razak^a

^a Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
^b Alternative Energy Research Centre (AERC), Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
^c Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

ABSTRACT

This paper presents the characterizations and thermo-physical properties investigation of $SiO_2/HFE7000$ nanorefrigerants for 0.005–0.02% volume concentrations and temperature ranges of 283–303 K. SiO_2

nanoparticles were dispersed in HFE70 0 0 refrigerants by utilizing the two-step method. The measure- ments of thermal conductivity and dynamic viscosity were performed by using KD2 Pro Thermal Prop- erties Analyzer and LVDV-III Rheometer, respectively. The SiO₂ /HFE70 0 0 nanorefrigerants shows high sta- bility with the SiO₂ nanoparticles remains suspended when observed for more than 90 days. The ther- mal conductivity is found increases by concentrations, but decreases by temperature. The highest ther- mal conductivity enhancement of 27% is observed at 0.02% volume concentration. Meanwhile, the dy- namic viscosity of SiO₂ /HFE70 0 0 nanorefrigerants increases by temperatures. The nanorefrigerants behaved as Newtonian fluids. As a conclusion, the present novel SiO₂ /HFE70 0 0 nanorefrigerants have potential in various heat transfer applications with great stability and thermo-physical properties behaviours.

Keywords: Nanorefrigerants SiO₂ nanoparticles HFE7000 refrigerants Thermal conductivity Dynamic viscosity