

A-STAR ALGORITHM IMPLEMENTATION

FOR ROBOTICS PATH PLANNING

NAVIGATION

EMIRUL RIDZWAN BIN NOR AZMI

BACHELOR OF MECHATRONICS ENGINEERING (Hons.)

(COLLABORATION PROGRAMME WITH KARLSRUHE UNIVERSITY

OF APPLIED SCIENCE, GERMANY)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : EMIRUL RIDZWAN BIN NOR AZMI

Date of Birth : 27 AUGUST 1994

Title : A-STAR (A*) ALGORITHM IMPLEMENTATION

 FOR ROBOTICS PATH PLANNING NAVIGATION

Academic Session : 2017/2018

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number

Date:

 (Supervisor’s Signature)

Name of Supervisor

Date:

THESIS DECLARATION LETTER

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

_____________________________ ___________________________

 (UMP Supervisor’s Signature) (HsKA Supervisor’s Signature)

Date: Date:

Stamp: Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name : EMIRUL RIDZWAN BIN NOR AZMI

Thesis Title : A-STAR ALGORITHM IMPLEMENTATION FOR ROBOTICS PATH

PLANNING NAVIGATION

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis/project and in our opinion, this

thesis/project is adequate in terms of scope and quality for the award of the degree of

Bachelor in Mechatronics Engineering (UMP-HsKA) in cooperation of Universiti

Malaysia Pahang with Karlsruhe University of Applied Science, Germany.

__________________________ __________________________

 (UMP Supervisor’s Signature) (HsKA Supervisor’s Signature)

Full Name : Full Name :

Position : Position :

Date : Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : EMIRUL RIDZWAN BIN NOR AZMI

ID Number : HA13024

Date :

A-STAR (A*) ALGORITHM IMPLEMENTATION FOR

ROBOTICS PATH PLANNING NAVIGATION

EMIRUL RIDZWAN BIN NOR AZMI

Thesis submitted in fulfilment of the requirements for the award of the degree of

Bachelor of Mechatronics Engineering (Hons.) (UMP-HsKA)

(Dual Award Programme with Karlsruhe University of Applied Science, Germany)

Faculty of Manufacturing & Mechatronics Engineering

UNIVERSITI MALAYSIA PAHANG

MARCH 2018

Specially dedicated to

My father (Nor Azmi Bin Abdul Rahman)

My mother (Sarimah Binti Abu Samah)

My beloved families

and

My Lecturers

Thank You!

ii

ACKNOWLEDGEMENTS

Alhamdulillah, all praises belongs to Allah, the Almighty and the most merciful for His

blessing to complete this thesis and bachelor degree successfully. Not to forget, Peace

and Prayer to the Prophet, Muhammad S.A.W.

First of all, with the most thankful heart, the author would like to thank Dr. Muhammad

Aizzat Bin Zakaria (Senior Lecturer at Universiti Malaysia Pahang, Malaysia) for his

encouragement, guidance and support from the initial to the final level of this project,

which enabling the author to develop an understanding of this project. This thesis would

not have been possible without his guidance and suggestions.

Next, the author would also like to express his gratitude towards Prof. Dipl.-Ing. Helmut

Scherf, (Lecturer of Karlsruhe University of Applied Science, Germany) for his time and

guidance throughout the process of making this project become successful. The author

really appreciated of his willingness to monitor the project’s progress every month, all

the way from Germany in order to make sure that the project is running smoothly without

much problems.

Lastly, the author owes his deepest gratitude to his families for their undeniable love,

understanding and sacrifice throughout his life. It is also a pleasure to thank author’s best

friends for their willingness of going through all ups and downs together.

iii

ABSTRACT

This thesis is about the implementation of Astar (A*) algorithm as path planning

algorithm used in robotics navigation. This Astar (A*) algorithm is a smart algorithm

which can produce a pathway with a minimum path score avoiding the obstacles within

its way. This algorithm also known as the most famous used algorithm in path planning

because of its ability to provide a collision-free pathway with a minimum path score. For

this project, the main objective is to design and implement an Astar (A*) algorithm. With

the used of MATLAB software, the algorithm should be able to provide an optimized

pathway and the pathway generated in this software should be a collision-free pathway.

In order to provide a real-time map, this project is equipped with a single camera to the

prototype of the functional area. This single camera will capture an image of the

environment and convert to a black and white map for the algorithm to work on. Other

than that, the project used random objects as to provide obstacles in the environment

(functional area). At the end of this project, the algorithm functions which to provide a

shortest pathway and also a collision-free pathway is verified. The factors (light intensity,

colors, position) that may affect the behavior of the Astar (A*) algorithm were identified

in the result section in this paper.

iv

ABSTRAK

Tesis ini adalah mengenai pelaksanaan algoritma Astar (A *) sebagai algoritma

perancangan jalan yang digunakan dalam navigasi robotik. Algoritma Astar (A *) ini

merupakan algoritma pintar yang boleh menghasilkan laluan dengan skor laluan

minimum dan mampu mengelakkan halangan dalam perjalanannya. Algoritma ini juga

dikenali sebagai algoritma yang paling terkenal digunakan dalam perancangan laluan

kerana keupayaannya menyediakan laluan bebas perlanggaran dengan skor jalan yang

minimum. Untuk projek ini, matlamat utama adalah untuk mereka bentuk dan

melaksanakan algoritma Astar (A*). Dengan menggunakan perisian MATLAB,

algoritma tersebut dapat memberikan laluan yang dioptimumkan dan jalur yang dijana

dalam perisian ini harus menjadi jalur bebas pelanggaran. Untuk menyediakan peta yang

menandakan keadaan semasa, projek ini dilengkapi dengan kamera tunggal untuk

prototaip kawasan berfungsi. Kamera tunggal ini akan menangkap imej persekitaran dan

menukar ia sebagai peta untuk algoritma kerjakan. Selain daripada itu, projek itu

menggunakan objek rawak untuk menyediakan halangan dalam kawasan sekitar

(kawasan fungsian). Pada akhir projek ini, fungsi algoritma yang menyediakan laluan

terpendek dan juga laluan-bebas-perlanggaran disahkan. Faktor (intensiti cahaya, warna,

kedudukan) yang mungkin mempengaruhi kelakuan algoritma Astar (A*) telah

dikenalpasti dalam bahagian hasil dalam kertas ini.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Background of Project 1

1.2 Problem Statement 3

1.3 Objective of The Study 3

1.4 Scope of The Study 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Path Planning in Robotics 5

2.3 Obstacle Avoidance 6

2.3.1 Ultrasonic Sensor as an Obstacle Detector 7

2.3.2 Single Camera as an Obstacle Detector 9

vi

2.4 Path Optimisation 10

2.5 Existing Algorithm 11

2.5.1 Dijkstra’s Algorithm 11

2.5.2 Basic Theta Algorithm 12

2.6 Application of Path Finding Algorithms 13

2.6.1 Path Finding Algorithms in Games and Virtual Tours 13

2.6.2 Driverless Vehicles 14

2.6.3 Path Finding Algorithms for Robot Motion and Navigation 16

CHAPTER 3 METHODOLOGY 17

3.1 Overall 17

3.1.1 Hardware Development 19

3.1.2 Software Requirement 21

3.2 System Flow Chart 22

3.3 Building the Initial Map 23

3.3.1 Identifying the Obstacles on The Map 24

3.4 Astar (A*) Algorithm Working Principle 25

3.4.1 Step 1: Identifying The Availability of Source and Goal Point on

The Map 27

3.4.2 Step 2: Identifying Workable Adjacent Squares from Neighbouring

Cells 28

3.4.3 Step 3: Choosing The Successor form The Open List Array 29

3.4.4 Step 4: Constructing Path with Smallest Path Score 29

3.4.5 Summary of Astar (A*) Algorithm Working Process 30

3.5 Graphical User Interface (GUI) 32

3.6 Conclusion 33

vii

CHAPTER 4 RESULTS AND DISCUSSION 34

4.1 Introduction 34

4.2 Shortest Path Scoring 35

4.3 Obstacle Avoidance 38

4.4 Effect of Complexity of The Maps with Computation Time. 41

4.5 Effect of Light Intensity Towards Astar (A*) Algorithm Behaviour 44

4.6 Effect of Colour Towards Astar (A*) Algorithm Behaviour 47

4.7 Effect of The Goal Position Inside The Obstacle Area 51

CHAPTER 5 CONCLUSION 53

5.1 Introduction 53

5.2 Conclusion 53

5.3 Recommendations 54

REFERENCES 56

APPENDIX A PROJECT GANTT CHART 59

APPENDIX B CODING OF A* ALGORITHM 60

viii

LIST OF TABLES

Table 3.1: List of item used for the prototype. 19

Table 4.1: List of tests that will be conducted for Astar (A*) algorithm. 34

Table 4.2: Different cases of map with different types of obstacles. 35

Table 4.3: Results of different path scored constructed by the algorithm. 37

Table 4.4: Result of Astar (A*) algorithm’s path scored. 38

Table 4.5: Different cases with different source and goal position. 39

Table 4.6: Result of path generated by Astar (A*) algorithm with obstacles

avoidance ability. 40

Table 4.7: THREE (3) different cases with different level of map complexity. 41

Table 4.8: Path generated by Astar (A*) algorithm for different level of map

complexity. 42

Table 4.9: Result of processing time of Astar (A*) algorithm respected to its

complexity of the map. 43

Table 4.10: Result of effect of light intensity to the Astar (A*) algorithm behaviour.45

Table 4.11: Result of effect of colour to the Astar (A*) algorithm behaviour. 49

ix

LIST OF FIGURES

Figure 2.1: (a) wave travel in short distance; (b) wave travel in longer distance 8

Figure 2.2: The resulting view of active area of transmitter. 8

Figure 2.3: Searching mechanism of Dijkstra’s algorithm 11

Figure 2.4: Searching mechanism of Basic Theta algorithm 12

Figure 2.5: View of 3D path generated in the research by Shafie and Hassan, 2004. 14

Figure 2.6: Framed-Quadtree approach in D* Algorithm. 15

Figure 2.7: Autonomous vehicle used in the D* algorithm trial. 15

Figure 2.8: The vehicle that become champion in DARPA championship in 2005. 16

Figure 3.1: Overall project management flow chart. 18

Figure 3.2: Frame for the prototype of functioning area for the map. 19

Figure 3.3: Final view of the prototype. 20

Figure 3.4: Type of camera used to capture the map. 20

Figure 3.5: The random objects used to create obstacles 21

Figure 3.6: The flow chart of the system. 22

Figure 3.7: (a) The original image capture from camera; (b) The converted black

and white image with obstacles spotted. 23

Figure 3.8: (a) Original image with presence of obstacles; (b) Map processing to

identify the obstacle area. 24

Figure 3.9: Astar (A*) algorithm flowchart. 26

Figure 3.10: Example of a valid source and goal point 27

Figure 3.11: Pop-up dialog box 27

Figure 3.12: Matrix of a possible connection of the algorithm movement. 28

Figure 3.13: The possible movement of the Astar (A*) searching algorithm 28

Figure 3.14: Pseudocode of Astar (A*) searching algorithm. 29

Figure 3.15: Example of the path generated by Astar (A*) algorithm. 29

file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661774
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661778
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661779
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661780
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661780
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661781
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661781
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661782
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661783
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661784
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661785
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661786
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661787
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661788

x

Figure 3.16: Development of Graphical User Interface for Astar (A*) algorithm. 32

Figure 3.17: Final look of the Graphical User Interface of Astar (A*) algorithm. 32

Figure 4.1: Possible direction of path score. 36

Figure 4.2: Original image recorded by camera. 38

Figure 4.3: Converted black and white map with a binary value. 1: obstacle-free

area; 0: obstacle area. 39

Figure 4.4: Position of the C170 Logitech web camera used in this project. 44

Figure 4.5: Path generated that penetrate through obstacles. 46

Figure 4.6: Dialog box that popped-up to notify an error. 46

Figure 4.7: Image recorded in case 1. 47

Figure 4.8: Image recorded in case 2. 48

Figure 4.9: Image recorded in case 3. 48

Figure 4.10: Goal point that located inside the obstacle area. 51

Figure 4.11: Black and white map shows goal point that located inside the obstacle

area. 51

Figure 4.12: Astar (A*) algorithm try to search for the way to reach the goal point. 52

file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661737
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661740
file:///C:/Users/Emirul/Desktop/FYP%202017/3.%20Thesis/HA13024_THESIS.docx%23_Toc506661741

xi

LIST OF SYMBOLS

A* Astar Algorithm

S Source point

G Goal point

F Total cost of the path between source and goal point

g Cost of the path from the start to current point node

ℎ Heuristic cost (estimated smaller cost from the

current point to goal point)

𝑣 Point/node on the graph

˚ Degree

D* Dynamic Astar Algorithm

cm centimetre

.bmp Bitmap

.fig Figure

s Second

≈ Approximately

xii

LIST OF ABBREVIATIONS

MIROS Malaysian Institute Road Safety Research

TOF Time of Flight

3D 3-Dimension

DARPA Defense Advance Research Projects Agency

CBAPPA Cognitive Based Adaptive Path Planning Algorithms

GUI Graphical User Interface

CHAPTER 1

INTRODUCTION

1.1 Background of Project

Automation is the technique, method, or system of operating or controlling a

process by electronic devices, which reducing human intervention. In Robotics, the

autonomous robotic referring to a technology (vehicle, machinery, navigation and etc.)

that can functions independently, without help of human. Focusing in navigation area,

autonomous navigation refers to the ability of the vehicle to be navigated from its starting

point to the directed point accurately and safely without the needs of human driver. In

this aspects, accuracy, reliability of automatic navigation and coverage are issues that

seriously being centralize.

Studies carried out by the Malaysian Institute Road Safety Research (MIROS)

claimed that 80.6% of accidents were attributed to human negligence while driving

(Chelvi, 2016) . In the study, it said reckless driving, speeding, inattentive and driving

under the influence of alcohol or driving when feeling tired are the main cause for

accidents. With awareness of this situation, autonomous navigation is seen as an initiative

to minimize the human intervention in navigation, in order to reduce human negligence

while driving. This is because, an autonomous technology is something that believes can

increase the safety and efficiency not only the driving also the traffics.

In order to provide a secure and effective navigation system, path planning is a

technology that highly use in autonomous navigation. According to the definition of path

planning by (The RoboRealm , 2006) path planning can be define as a module that has

been use to determine a route from one coordinate location to another coordinate location.

Path planning is something that requires the automation of mechanical systems that have

sensors, actuators and computation capabilities. Generally, path planning is a method that

2

widely used in many fields, such as artificial intelligence, control theory, and also

robotics. In artificial intelligence field, path planning is defined as “a search for a

sequence of logical actions that transform an initial robot state onto a desire goal state”

(Qidan Zhu, Yongjie Yan, and Zhuoyi Xing , 2006). In the control theory field, path

planning deals with many issues such as stability, feedback, and optimality (A. Smith,

Ding, Ulusoy, 2012). On top of that, in robotics, path planning playing a major role on

how to move a robot vehicle from one point to another point. Path planning is an

important primitive for autonomous navigation of the mobile robot which requires the

robots to finds the shortest and easiest way (avoiding all the obstacles) between the two

points (source and goal).

In order to plan the pathway for navigation, path planning requires the use of map

of the covering area in order to search the shortest way to the goals avoiding the obstacles

along the way. The most common map is occupancy grid map which the environment is

discretized into squares of arbitrary resolution on which obstacles are marked (Correll,

2011). This type of map is widely used in Astar (A*) algorithm’s application.

Astar (A*) algorithm is one of the most famous algorithms in path planning. It is

widely used in path planning of robotics navigation due to its ability to adopt the distance

used, altered or add another distance (Andrej Babinec, 2014). This resulting in wide range

of alternating the distance as it is the basic principle of this Astar (A*) algorithm. This

Astar (A*) algorithm operates by the combination of heuristic searching, and scanning

based on the shortest direction. The Astar (A*) algorithm is define as follows:

𝐹(𝑣) = 𝑔(𝑣) + ℎ(𝑣) 1.1

Where v = node on the graph

 F = total cost of the path between the source point to goal point

 g = cost of the path from the start node to current point node v

 h = heuristic cost (estimated smaller cost from the current point to goal

point)

3

1.2 Problem Statement

In autonomous navigation that requires the robot to be operate safely and

efficiently, the common issue that the developer face is it failed to avoid the obstacle with

the minimum pathway. In some cases, the robot with an obstacle avoidance technology

is able to avoid the obstacle but the question that remain in developer’s mind is the path

founded by the robot is the shortest? This is important to take into account the path that

being chosen by the robot is the shortest distance.

As mentioned by Vo Thi Huyen Trang and team, from Astrakhan State Technical

University, Russia, they state that, the problem is cause by “operating environment that

can be static (fixed obstacles and know in advance) or dynamic (obstacles may not be

fixed in advance or do not know)” (Vo Thi Huyen Trang,Tran Quoc Toan, A.A. Sorokin,

2017).

As a step to improve people way of live, this project will design and implement

an Astar (A*) algorithm for autonomous navigation system.

1.3 Objective of The Study

 The general purpose of this project is to develop an algorithm which is able to

provide the shortest path with ability to avoid any obstacles that presence along its way

from any two point (source and goal) of the map. The project specifically aims to

implement the set of rules of path finding for the autonomous navigation, which can be

implemented into any comparable navigation system. In this regard the specific

objectives of this project will include:

i. To implement the Astar (A*) algorithm for path planning.

ii. To analyse the Astar (A*) algorithm output using simulation and experiment.

iii. To verify the capability of the Astar (A*) algorithm for path planning navigation.

4

1.4 Scope of The Study

 This project Astar (A*) algorithm implementation for robotic path planning, aims

to implement a path finding algorithm that able to provide an optimised pathway between

two point that can detect and avoid the presence of obstacles along its way. The system

is provided with a real time image which act as a map that provide a searching space for

the system. Therefore, a small prototype with one single camera will be used in this

project. Random object will be used as to provide obstacle. MATLAB Software will be

used for the development and simulation of the Astar (A*) algorithm. This software will

also use as an image processing to convert the image taken by the camera into a black

and white image in order to provide the map for the pathfinder. The path generated by

the simulation of MATLAB software will be the result this project of Astar (A*)

algorithm.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Before designing the application and the system environment, this chapter gives

insight about the technique used in this project. Furthermore, general uses of the Astar

(A*) algorithm that related to this project will be specified through the applications of

this algorithm.

2.2 Path Planning in Robotics

Back to late 1940s, since then research in mobile robotics can be traced. However,

most of the effort related to path planning is more recent and it has been conducted during

the 1980s. In robotics, path planning is something that plays an important role in

autonomous robotic navigation. Planning itself refers to a preconceived scheme or

method of acting or proceeding. In other words, path planning in robotics can be defines

as an operative intelligence which include the set of operations that need to be consider

for its navigation. In an algorithm, path planning is done with respect to the functionality

of a mobile robot or an autonomous vehicle. It is very useful to design or scheme its

routing.

A robot is any machine that featuring a human and mechanical routine tasks

automatically upon a command. Since it is a machine, its functionality depends

completely upon the set of instructions given to it. These set of instructions programmed

for any particular robot, mobile or immobile, will defines its intelligence. In other words,

since the robot is a machine, it need set of instruction to tell it what should be done. This

will customize it for any specific functionality that the robot should behave.

6

As the field of mobile robotics expending, it gives the huge impact to the scope

of path planning. This is due to the most of the mobile robots are customized for specific

operation. For instance, an industrial robot is generally customized as demanded by the

industry which specific to their functionality. Rovers which to be used for exploration on

other planets are customized for data collection related jobs. Robots used in medical field

are customized for the specific surgery or any similar medical operation (Ghangrekar,

2009). Hence all such robots can be classified to have two parts of development. One part

deals with the overall development of the robot, while the other deals with structuring the

development as per the required customization of its functionality also its navigation.

Therefore, development of the path planning algorithm in navigation is highly

acknowledged as a significant tool to assist towards its desired functions. It creates details

need by the robots. This path planning algorithm will determine the logic or scheme need

for navigation of the robots.

2.3 Obstacle Avoidance

Obstacle avoidance is a primary requirement of any autonomous mobile robot.

An obstacle avoidance robot is design to allow robot to navigate in unknown environment

with ability of avoiding collisions. There is a rich literature on the autonomous navigation

of a mobile robot with obstacle sensing capability. Basically, a robot with this obstacle

avoidance ability will sense the presence of any obstacles in their path, avoid it and

resumes its running. All mobile robots feature with some kind of collision avoidance,

ranging from primitive algorithms that detect an obstacle and stop the robot in order to

avoid a collision. With some sophisticated algorithms, it enables the robot to detour

obstacles. There are several methods had been developed in autonomous robot vehicle

navigation with collision free function (e.g. wall following method, line following

method, edge detection method).

According to research conduct by Kirti Bhagat and her team, it states that a more

general and commonly used method for obstacle avoidance is based on edge detection.

“A disadvantage with obstacle avoidance based on edge detecting is the need of the robot

to stop in front of an obstacle in order to provide a more accurate measurement” (Kirti

Bhagat, Sayalee Deshmukh, Shraddha Dhonde, Sneha Ghag, 2016).

7

Additionally, there are various sensors that can be usefully employed for a mobile

robot. These is including:

 Ultrasonic sensor

 Camera as vision sensor

2.3.1 Ultrasonic Sensor as an Obstacle Detector

In order to provide a collision free pathway, the robot vehicle require a wide range

of sensors to obtain information about its working area. These sensors will determine the

position, velocity, acceleration and behaviour of the object that present at the robot

workspace. There are several different sensors used in an autonomous robot vehicle.

These sensors will be resulting in various functions of the robot. One of the most common

sensor used in rangefinders is the ultrasonic transducer (Polaroid Corporation, 1992).

This sensor is widely used in many experiments that requires the vehicle to navigate

automatically. It used as a primary means of detecting the boundaries within which the

vehicle must operate. An ultrasonic range finder can be built in a low cost but suffers

from low angular resolution. It may fail to identify a narrow open space like a doorway

if its distance from the sensor is not close.

 The working principle of an ultrasonic sensor which will transmits sounds waves

and receives sound that reflected from an object. When the ultrasonic waves are incident

on an object, it then will diffuse reflection of the energy over a wide solid angle which

might be as high as 180˚ degrees. Thus some fraction of the incident energy is reflected

back to the transducer in the form of echoes. The distance between the object and the

sensor plays a significant role when using an ultrasonic sensor. This is due to the

relationship between the distance of the sensor with the object and its time taken for the

reflected wave to be received back by the receiver. If the object is very close to the sensor,

the sound waves returns quickly, but if the object is far away from the sensor, the sound

waves takes longer to return. As shown in Figure 2.1 the situation in (a) resulting the

short time taken for the reflected wave to reach back to the sender compare to the situation

in (b).

8

Figure 2.1: (a) wave travel in short distance; (b) wave travel in longer distance.

Source : W.H.Munro. (1990). Ultrasonic Vehicle Guidance Transducers.

W.H. Munro, in his experiment had developed a vehicle guidance system using

this type of sensor. In his experiment, the unit used consisting of separate array of

transducers and resulting 60˚ degrees in view of active area of transmitter, as shown in

Figure 2.2 (W.H.Munro, 1990).

Figure 2.2: The resulting view of active area of transmitter.

Source : W.H.Munro. (1990). Ultrasonic Vehicle Guidance Transducers

The study to investigate the use of ultrasonic sensor as an obstacle detector has

been carried out by Intorobotics which then discovering several weaknesses of using

ultrasonic as a sensor to detect obstacles.

 Ultrasonic sensors must view a high density surface for good results. A soft

surface like foam and cloth has low density and absorb the sound waves emitted

by the sensor.

 Could have false responds for some loud noises such as air hoses.

9

 An ultrasonic sensor has a minimum sensing distance.

 Some changes in the environment can affect the response of the sensor

(temperature, humidity, pressure, etc.).

(Intorobotic, 2013)

2.3.2 Single Camera as an Obstacle Detector

Recently the introduction of time-of-flight (TOF) cameras have many advantages

for the autonomous navigation of a mobile robot. TOF camera provides 3D information

with a real-time frame rate and is much faster (Werner B, Surmann H, Pervolz K, 2006).

However, camera calibration and data pre-processing are necessary to get stable

measurement. In addition, TOF cameras are still expensive compared to other high tech

sensors like laser scanners. Stereoscopic 3D sensing has been a long time topic for

perceiving the space around a mobile robot (Chilian A, Hirschmuller H., 2009). This

Stereoscopic 3D sensing can be said as a natural way of sensing because most animals

and humans obtain information about their surroundings using two eyes. However, this

stereoscopy has a difficulty in providing reliable 3D information quickly due mainly to

stereo matching problem (Chilian A, Hirschmuller H., 2009).

In this era, the rapid advance in solid state electronics, cameras become smaller

and cheaper, and many mobile robots now possess visual sensing capability. Vision

sensing has certainly high potential for a robot to perceive its surroundings. When a single

camera is mounted on a mobile robot for the autonomous navigation, it is often used for

localization by detecting landmarks rather than obstacle detection because detecting

obstacles usually requires at least two cameras to obtain depth information. Nevertheless,

there are some attempts to find obstacles using a single camera. For example, in a research

done by Ulrich and Nourbakhsh, they have tried to detect obstacles based on colour cues.

Image pixels that have different colour values to those trained with an empty trapezoidal

area in front of the mobile robot are considered to belong to obstacles. This method is

simple and can produce a high-resolution binary detection image in real time. However,

the method is found quite sensitive to the colours of obstacles (Ulrich , Nourbakhsh,

2000).

10

When using camera as a vision sensing, there are some aspect need to be consider

which is like the position of the camera. This is because, the camera can be fixed position

on the wall, or the camera can be mounted on a mobile robot. In research done by

Konolige K, in their finding, they found that if a camera is in fixed position, there are

several effective and simple techniques to find moving objects in the scene, such as

background subtraction. However, if a camera is mounted on a mobile robot, such

techniques cannot be used because, in the scene images taken by a moving camera, no

entities look static (Konolige K, 1997).

2.4 Path Optimisation

 Path planning is an important primitive for autonomous robots that lets robots

find the shortest or optimal path between two points. Otherwise optimal paths could be

paths that minimize the amount of turning, the amount of braking or whatever a specific

application requires. Known as an intelligent and smart developing technology, path

planning appears to have huge attention of researcher in order to make it more reliable

and flexible to meet any specification of robotic industry. Thus, many algorithms are

being develop to meet this requirement. In path planning algorithm, there are generally

two different kinds of planning concerns based on the types of criterion (LaValle, 2006).

 Feasibility – find a plan that causes arrival of the robot from the source point to

its goal point.

 Optimality – find a path that optimized performance in some specified manner.

In the study carried out by Martin Florek and his team, he had defined some

optimal criterions to compare the performance of several types of algorithms. These

criterions are including:

 Computational time

 Path length

 Number of examined cells

 Symmetry of examined environment.

(Martin Florek, Andrej Babinec, Martin Kajan, 2014)

11

2.5 Existing Algorithm

Due to the rapid growth of artificial intelligence industries, path planning appears

to have huge attention of researchers. There are large number of researches has been done

to make this high technology to be more reliable, more intelligent and become more

flexible to fulfil any requirements of the market. Thus, many type of algorithms has been

design that give different outcome and acted as a reference to produce a more intelligence

algorithm.

2.5.1 Dijkstra’s Algorithm

 Dijkstra’s algorithm is one of the earliest and simplest algorithms. It is named

after its developer, E. Dijkstra Oliver J. back in 1959. Dijkstra's Algorithm is a chart

search algorithm that unravels the single-source shortest path delinquent for a plot with

non-negative edge path costs, producing a shortest path tree.

 Previously, Dijkstra’s algorithm is the most commonly used route finding method

for solving the shortest path (Sadeghi-Niaraki, A., Varshosaz, M., Kim, K., and Jung, J,

2011). The Dijkstra’s algorithm till enlarges the node that is at the extreme from the initial

node, so it finishes up “stumbling" into the goal node. Just like the breadth-first search, it

is certain to find the shortest path (Cormen, T., Leiserson, C., Rivest, R., and Stein, C,

2001). Figure 2.3 shows the example of the searching mechanism of Dijkstra’s algorithm.

Figure 2.3: Searching mechanism of Dijkstra’s algorithm.
Source: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

12

The Figure 2.3 shows the illustration on how the Dijkstra algorithm is working.

This algorithm will enlarge its searching mechanism to the nodes that were extremely far

from its initial point until its it reached to the goal nodes. This algorithm may cause in

extremely large number of examined nodes which then resulting in a very long

computational time (Martin Florek, Andrej Babinec, Martin Kajan, 2014).

2.5.2 Basic Theta Algorithm

 Basic Theta is an algorithm that has been published by Alex Nash. Kenny Daniel,

Sven Koenig and Ariel Felner. This algorithm is basically an extension of Astar (A*)

algorithm. It resides in the test of visibility between cells. In other words, this algorithm

will test if the cell has a direct visibility to the cell included in selected sequence, the cell

between them will be ignored. Thus, this algorithm making only the cells that robot has

to pass will be found.

Figure 2.4: Searching mechanism of Basic Theta algorithm.
Source : https://www.researchgate.net/figure/Basic-Theta-algorithm-Green-cell-is-a-initial-

state-red-cell-is-a-goal-state-black_fig2_270163652

In Figure 2.4 shows example of Basic Theta* algorithm. Green cell is an initial

point, red cell is a goal point, and the black cells represent the obstacles. In the second

step, the cell N has direct visibility to the cell P. That is why the cell A is ignored and the

cell P and N are directly connected (Martin Florek, Andrej Babinec, Martin Kajan,

2014).

13

However, this algorithm is found to have some issue with its computational time.

This because, the time of calculation for this algorithm is appear to be long compare to

the Astar (A*) algorithm (Martin Florek, Andrej Babinec, Martin Kajan, 2014).

2.6 Application of Path Finding Algorithms

 Path planning or path finding algorithms are very useful in the area of robotic

manipulation, as it can be used to control a robot around complicated terrain without the

need of human intervention (Carsten, 2007). It is indeed a profitable if a robot on a

different planet like Mars, that supposedly should be avoided some topography, but due

to the extremely further distance that involved, it makes difficult to guide it through

remote control because of too much delay in the radio transmission (Obara T., Yamamoto

K., Ura T., Maeda H., Yamato H, 1994).

 Besides that, it is also might be useful if the robot is being able to operated

underwater by itself, since the radio waves could not get to it. The path finding algorithm

might also be used in determining the shortest path to drive between the two positions on

a map.

2.6.1 Path Finding Algorithms in Games and Virtual Tours

Path finding is an important part of game programming. In gaming programme,

it moves according to the path they (or computer) calculate. There are some algorithms

used in the game changing with the complexity and purpose of the path calculation. The

most algorithm found currently in games today are the A* Algorithm. “What makes the

A* algorithm so appealing is that it is guaranteed to find the best path between any initial

point and any ending point, assuming that a path exists.” (David M. Bourg, Seeman G.,

2004). Users can arrange their visit path and algorithm calculates the route then the virtual

tour begins. In the research one by Shafie and Hassan (2004) they had work on this

scenario and developed an application capable of doing path planning process. They used

an A* algorithm to find the path (M. Shafie Abd. Latiff, and R. Hassan, 2004). The final

path can be seen in a 3D environment in Figure 2.5.

14

Figure 2.5: View of 3D path generated in the research by Shafie and Hassan, 2004.

Besides that, autonomous triangulation of virtual characters, is also an important

task to work on. It is required in order to prevent obstacles and proceed to their paths

without any destruction. This is because in a virtual environment not like the robotic

navigation, there is no data coming from sensors, there exist the site database only. In the

study done by Fr ِ ohlich and Kullmann in 2002, they have used Astar (A*) algorithm to

studies on the environmental modelling of the area and resolved that the uniform-sized

grid cell methodology is a better choice (T. Frohlich and D. Kullmann., 2002). They also

stated that A* algorithm works well in the environments where the world is flat, which

suits our environment well.

2.6.2 Driverless Vehicles

 Another area of application that involving the path finding algorithms is the

programmable vehicles that capable to discover its own way without making any contact

with the obstructions. Generally, this driverless vehicles technology is widely used in

military industry, but in this modern era, it can be implemented in diverse areas of

domestic life.

 In year of 2000, Yahja A and his friends has introduced the D* algorithm which

stands for Dynamic Astar (A*) which in this algorithm, they had use framed-quadtrees

to constructing their environment and as well as data structures. Figure 2.6 shows the

Framed-quadtree approach used in their study. They have verified their designed

algorithm as a self-directed vehicle as shown Figure 2.7 (Yahja A., Singh S., Stentz A.,

15

2000). This algorithm continuously transform itself when it gets fresh information about

the terrain.

Figure 2.6: Framed-Quadtree approach in D* Algorithm.

Figure 2.7: Autonomous vehicle used in the D* algorithm trial.

In United States, there was a race organised by The Defense Advance Research

Projects Agency (DARPA) that the contestants were the autonomous ground vehicles

came from around the globe. The race was held twice until 2007; one in 2004 where

none of the participants were capable to complete the course and the second one was

in 2005. During the race in 2005, 4 vehicles completed the 132-mile desert track, and the

winner is a VWTouareg which was developed by Stanford Racing Team. This car has a

processing system to calculate its route while on the road. On board, computers control

the vehicle from start to finish, and there was not any intervention from the race team.

The algorithms constantly modified the path according to the information it gets from its

16

sensors while it moves on the route. Figure 2.8 shown the VWTouareg that become the

winner on the race back in 2005.

Figure 2.8: The vehicle that become champion in DARPA championship in 2005.

2.6.3 Path Finding Algorithms for Robot Motion and Navigation

Technically, all mobile robot that designed to move in outdoor or indoor

environment must have their own programmed and navigational schemes. This is to make

sure that these robots are able to find their own pathway towards its desired destination.

This scenario makes the path finding algorithm to be inserted on the robot program so

that they can move by themselves. This type of technology is an important feature that a

robot should have which will make the robot become more reliable with its intelligence.

For example, this technology is widely used in military industry, which had been used as

a movable robot to detect the hazardous or explosive materials and to discover or

investigate the unknown areas.

In 2005, Razavian and Sun has proposed a new algorithm that called Cognitive

Based Adaptive Path Planning Algorithms (CBAPPA) and comparing it with Astar (A*)

algorithm. They used it to observe the behaviour of biological units and paid attention on

the behaviour of ignoring the irrelevant information from surroundings. This method may

not use optimum paths, but the results were efficient (Adam A. Razavian, Sun J, 2005).

This algorithm is also prepared for self-processing units, which can be a good example

for future works.

CHAPTER 3

METHODOLOGY

3.1 Overall

This final year project used three major steps to implement the project starting

from planning, developing and testing. The Figure 3.1 shows steps of methodology taken

to implement this project.

It starts with planning; defining and understanding the project background and

objectives of this project. Then, the summarization from reading journal, book and report

paper regarding to project title is done in literature review chapter.

The process is then being continue with design and developing; the development

of prototype of the functioning area, which include hardware and software development.

Last but not least, is analysing process, this include testing and analysing the

outcome of the project to identify the conclusion. The methodology in this project is

implemented step by step in order to achieve its objectives. The Gantt Chart of this project

can be referred in Appendix A.

18

START

Project Background

Literature Review:

Study the previous existing algorithms

Design/Develop Astar(A*) algorithm

Design a prototype of the functioning area

Testing Astar(A*) algorithm

Working?

Write a report

END

NO

YES

P
L

A
N

N
IN

G

D
E

V
E

L
O

P
IN

G

A
N

A
L

Y
S

IN
G

Figure 3.1: Overall project management flow chart.

19

3.1.1 Hardware Development

 In order to test the efficiency of this Astar (A*) algorithm with the real

environment, a prototype of the testing area is made. This is to provide a real time

situation for the algorithm. Thus, a set of hardware is being developed. Below are the

components used for the prototype.

1. Frame

 The prototype of the testing area is consisting of Hollow Aluminium profile and

Perspex. Figure 3.2 shows the frame of the prototype. The dimension of the frame is (ℎ ×

𝑙 × 𝑤: 30.5𝑐𝑚 𝑥 36𝑐𝑚 𝑥 36𝑐𝑚)

Figure 3.2: Frame for the prototype of functioning area for the map.

Table 3.1: List of item used for the prototype.

Item Quantity Description

Al Profile

(12 pcs)

Dimension:

4𝑝𝑐𝑠 × 30.5𝑐𝑚

8𝑝𝑐𝑠 × 32𝑐𝑚

Perspex

4 pcs Dimension:

𝑙 × 𝑤 × 𝑡 =

37.5𝑐𝑚 × 37.5𝑐𝑚 × 0.3𝑐𝑚

Wooden Stick

4pcs Dimension:

ℎ × 𝑤 × 𝑙 =

1.5𝑐𝑚 × 1.5𝑐𝑚 × 25𝑐𝑚

20

Figure 3.3: Final view of the prototype.

2. Camera

Brand LOGITECH

Model WEBCAM C170

Resolution Up to 1024 x 768 pixels

Part No. PN: 960-000761

Price RM 80.00

Quantity 1 pcs

Figure 3.4: Type of camera used to capture the map.

Camera

Testing area

21

3. Random Object

 In order to provide the obstacle, this project has been using the random object.

There are several types of item as shown in Figure 3.5 which has been used in this project

such as mini toys, car, and other mini objects.

3.1.2 Software Requirement

 For software requirement, this project is using MATLAB software. The version

used is MATLAB R2017a version. This software is used mainly to design the algorithm.

This software is used since it has a Graphical User Interface (GUI) Function which the

author familiar with. This software is also used for testing purpose after the algorithm has

been developed.

 MATLAB software has been selected as simulator since it equipped with the

image processing function. Basically, after the image has been captured by the camera,

this MATLAB software will process the image and convert it into the black and white

.bmp file. This is necessary since the image captured will be used as a map for the system

to generate the shortest path with collision free pathway.

Figure 3.5: The random objects used to create obstacles.

22

3.2 System Flow Chart

Figure 3.6: The flow chart of the system.

START

Capture

surrounding

Save image in

bitmap (.bmp)

Insert

Source: [X Y]

Goal: [X Y]

Load .bmp file and

convert to black and

white map

Any available

point; (Source and

Goal)?

YES

NO

NO

Astar (A*) First

Search Algorithm

Path

found?

Generate

path

END

NO

YES

YES

A

23

3.3 Building the Initial Map

 In order to plan a path, it is sometimes necessary to represent the environment in

the computer. According to Nikolaus Correll, in his research about path planning in

robotics he states that, there are two different complementary approaches of map

representation: discrete and continuous approximation. In discrete approximation, the

map is sub-divided into block of equal (e.g. a grid map or hexagonal map) or differing

sizes like rooms in a building (Correll, 2011).

 For this project, the discrete type of map is used. By assuming that all the

obstacles are lays on the ground in this Astar (A*) algorithms, the image captured by the

system will provide a top view of the covering area, then be stored in bitmap (.bmp) file.

This grid type of image will then be converted into black and white map, which will then

be used for the algorithm to provide an optimised path scoring with collision free

pathway. Figure 3.7 (a) shows the original image captured from the camera and Figure

3.7 (b) shows the converted black white image file.

For this Astar (A*) algorithm project, the bitmap (.bmp) type of image file is used

in this project since it will provide the grid type of map for the system. In this grid map,

the environment is discretised into squares of arbitrary resolution (240 X 320 pixels) map

size.

Figure 3.7: (a) The original image capture from camera; (b) The converted black and white

image with obstacles spotted.

(a) (b)

24

3.3.1 Identifying the Obstacles on The Map

Obstacle detection is one of the fundamental problems for the navigation of

mobile robots. In order to navigate in the real world, it is necessary to detect those

portions of the world that are dangerous or impossible to traverse. First and foremost, in

order to be able to provide a collision free pathway, the algorithm need to do a scanning

process which is to detect the presence and locate the position of the obstacles on the

map. Please be noted that in this project, the random objects were used to provide the

obstacles. The camera provided will capture the top view of the environment. Then, this

process continues with saving the image captured by the camera into bitmap file (.bmp).

This step will provide the image in form of grain-form-cell respected to the resolution of

saved image. This fine grain array of image file will be act as a map for the algorithm. In

this algorithm, the image will be resized to 240 X 320 pixel resolution. Next, the map

will be converted into black and white map. This black and white will give a binary value

of one (1) or zero (0) to cells appear on the map. Value of one (1) indicate the freeway

part of map, where the zero (0) value indicate part of the map that occupied with

obstacles. This process can be seen as shown in Figure 3.8.

From the above map shown in Figure 3.8 (b) , it clearly can be seen that the black

spot is where the obstacles lies on the map. These black spot will bring the binary value

of zero (0) to the cells on the map. Since the map resolution used for this Astar (A*)

algorithm is (240 X 320 pixels) of Resolution-Y and Resolution-X, that should be an

(b

)
(a)

Figure 3.8: (a) Original image with presence of obstacles; (b) Map processing to identify the

obstacle area.

25

array of 76800 squares. The cells should be appear smaller than the one in Figure 3.8 (b).

The above cells in Figure 3.8 (b) has been magnified so that it gives an array of 624

squares cells, for explanation purpose.

3.4 Astar (A*) Algorithm Working Principle

Astar (A*) algorithm is one of the most famous algorithms in path planning. It is

widely used in path planning of robotics navigation due to its ability to adopt the distance

used, altered or add another distance (Andrej Babinec, 2014). This resulting in wide

range of alternating the distance, as it is the basic principle of this Astar (A*) algorithm.

Basically, this Astar (A*) algorithm operates by the combination of heuristic searching,

and scanning based on the shortest direction. Astar (A*) algorithm can be defined by,

𝐹(𝑣) = 𝑔(𝑣) + ℎ(𝑣) 1.1

Where v = node on the graph

 F = total cost of the path between the source point to goal point

 g = cost of the path from the start node to current point node n

 h = heuristic cost (estimated smaller cost from the current point to goal

point)

This Astar (A*) algorithm work through these two lists; the open list and the

closed list. The open list is to hold the best small path score that have not yet been

consider. The algorithm will then select the lowest path score (successor) in the open list

and put it into the closed list. The node that has been put in closed list will not be

reconsider by the algorithm. The heuristic function is the one that estimate the best

possible node with smaller value to reach the goal. If the selected node (successor) is not

yet reach the goal, it will update all the valid neighbouring nodes onto the open list and

repeat the process. All the created nodes in closed list will keep a reference to their parent

cell. This make it possible to backtrack back the node to its starting point. The flow chart

of this Astar (A*) algorithm is as shown in Figure 3.9 .

E
N

D

S
T

A
R

T

P
ro

cessin
g
 In

p
u
t

S
o
u
r
c
e
:

[
X

Y
]

G
o
a
l
:

[
X

Y
]

F
o
r A

*

T
o
t
a
l
C
o
s
t
=

g
(
h
i
s
t
o
r
i
c
)

+

h
(
h
e
u
r
i
s
t
i
c
)

In
sertin

g
 th

e cu
rren

t

p
o
in

t in
to

C
l
o
s
e
d
L
i
s
t

(
n
)

Id
en

tify
 an

y
 w

o
rk

ab
le

n
ew

 ad
jacen

t tiles
(
n
e
w
P
o
s
t
)

A
d
d
 all p

o
ssib

le n
ew

p
o
sitio

n
 to

O
p
e
n
L
i
s
t

(
Q
)

S
elect th

e sm
allest co

st

(su
ccesso

r) fro
m

 o
p
en

 list
A
=
m
i
n
(
Q
,
[
]
,
1
)

W
h
ile size Q

 is b
ig

g
er th

an
 0

,
w
h
i
l
e

s
i
z
e
(
Q
,
1
)
>
0

U
p
d
ate th

e sm
allest

co
st in

to

C
l
o
s
e
d
L
i
s
t

(
n
)

S
u
c
c
e
s
s
o
r

(
A
)

is in
 C
l
o
s
e
d
L
i
s
t

?

h
e
u
r
i
s
t
i
c

C
o
s
t
=

0
?

N
O

N
O

Y
E

S

Y
E

S

A

F
ig

u
re 3

.9
: A

star (A
*
) alg

o
rith

m
 flo

w
ch

art.

27

From the flow chart of Astar (A*) algorithm shown in Figure 3.9, it shows the

working operation for this algorithm. Since Astar (A*) is the best first search algorithm,

there are several steps need to be consider. The working step of this Astar (A*) algorithm

will be explain in the following section.

3.4.1 Step 1: Identifying The Availability of Source and Goal Point on The Map

After providing the map which is in black and white map with a fine-grain array

structure, the next step is for the algorithm processing the inputs given by the user. The

inputs are; source and goal point, which the source indicate the initial position where the

robot lies, and the goal point is the final destination that the robot should be heading to.

For these inputs (source and goal), the algorithm will be processing in term of the

availability of these points on the map. It should identify whether the source point and

the goal point are not located inside the area of obstacles, or they were not situated outside

the map area.

If only the points are available on the map and they were not laying on the

obstacle, the algorithm will proceed to process of generating the pathway towards the

goal. Figure 3.10 shows the example of situation with a valid source and goal point. The

(S) sign indicate the source point, and the (G) sign indicate the goal point.

It is different with the situation where the source or the goal point is located on

the obstacle area, the system will give a pop-up dialog box to notify the user that the

points are not valid to be process. Figure 3.11 shows the pop-up dialog box for this

situation.

Figure 3.10: Example of a valid source and goal point.

Figure 3.11: Pop-up dialog box.

28

3.4.2 Step 2: Identifying Workable Adjacent Squares from Neighbouring Cells

The next step after identifying the availability of the source and goal point, is the

algorithm will then proceed with identifying any workable adjacent cell to the

source/current position. Firstly, the source/current point will be inserted to the closed list

so that the Astar (A*) algorithm will not have to reconsider the starting point anymore.

From this starting point, all the adjacent cells will be inserted into the open list. Since for

this project, it is possible for the algorithm to move diagonally instead of just in up, down,

left and right direction. The matric in Figure 3.12 shows in the possible connection of the

robot movement.

From the above possible movement connection of the robot in Figure 3.12, it

shows that the value of 2 in the matrix indicate the robot position, value 1 indicate the

possible movement of robot, and value 0 tells that the limitation of the robot movement.

Thus, and for (a) matrix, it tells the robot that it is possible for the robot to move in

diagonal direction, whereas for matrix (b) it’s have the limitation towards the robot

movement which it can just move in up, down, left and right direction. This can be seen

in the Figure 3.13, where the robot in this algorithm can move in diagonal direction.

From the Figure 3.13, the cells with orange border where the initial position of

the robot will be inserted into closed list, then all the workable adjacent cell the one with

green border will be update into open list array.

(a) (b)

Figure 3.12: Matrix of a possible connection of the algorithm movement.

Figure 3.13: The possible movement of the Astar (A*) searching

algorithm.

29

3.4.3 Step 3: Choosing The Successor form The Open List Array

After the algorithm verified the workable adjacent cells and update the cells into

the open list, the heuristic cost (h) which with the smallest estimated score towards the

goal will choose the successor from the open list. This successor point (A) will be inserted

into closed list. The latest successor point will indicate the current position of the robot.

The process will be repeated until it reaches the goal. Each time through the main loop,

it examines the vertex (v) that has the lowest f(v) = g(v) + h(v).

This process as shown in pseudocode in Figure 3.14 will repeating until the

heuristic cost (h) is equal to zero (0). This indicate that the algorithm has reach the goal

point. Then, the algorithm will be constructing the pathway with the smallest path score.

3.4.4 Step 4: Constructing Path with Smallest Path Score

The last step after the algorithm done do the searching process, when the

estimated heuristic cost (h) is equal to zero (0), the algorithm will then backtracking the

path with the smallest path score. This backtracking process were done by referring to

the parent successor node. This parent successor node is the one that exist in closed list.

The result of this path constructed by the algorithm can be seen in the example in Figure

3.15.

Figure 3.14: Pseudocode of Astar (A*) searching algorithm.

Figure 3.15: Example of the path generated by Astar (A*) algorithm.

30

3.4.5 Summary of Astar (A*) Algorithm Working Process

The quick overview on how this Astar (A*) algorithm is functioning can be seen

through the following example of the processes.

Set up the map for the Astar (A*) algorithm to work on.

Identify the position of obstacle on the map.

Define the initial position of the Astar (A*) robot

and the goal destination of the robot should be heading to

.

Next, identify the workable neighbouring cell on the map

from the starting point where the robot lies and put it into

the open list. For

𝐹(𝑣) = 𝑔(𝑣) + ℎ(𝑣)

Choose the cells that have the smallest value of heuristic

cost ℎ(𝑣) and put into the closed list.

Next, from the previous process, the successor will be the

current position of the nodes, in this case, the robot

is consider as Astar (A*) searching vehicle will occupy to

this successor point.

31

Again, the Astar (A*) algorithm will choose the cells with

the lowest path score and it will continue to iterate until the

goal point has been reached.

The algorithm know that the path has been found when the

heuristic value ℎ(𝑣) is equal to zero (0). For this example,

𝐹(𝑣) = 𝑔(𝑣) + ℎ(𝑣)

4 = 4 + 0

Next, the algorithm will repeat the process of best-first-

search towards the goal destination. For every forward

action, each cells will be computed with formula

𝐹(𝑣) = 𝑔(𝑣) + ℎ(𝑣)

Finally, the algorithm will backtracking all the previous

smallest scored nodes in closed list and generate a pathway

to navigate the autonomous robot to its goal destination

with a shortest pathway.

32

3.5 Graphical User Interface (GUI)

In order to make this algorithm is more user friendly, a graphical user interface

(GUI) has been created. This GUI is created using MATLAB software. This will allow

the algorithm to be more interactive with the users. Using this GUI, the user can freely

decide whether to capture new map or to load the existing map. As shown in Figure 3.16

is the (.fig) file of this Astar (A*) algorithm project. Meanwhile, the final product look of

this Astar (A*) algorithm project is as shown in Figure 3.17.

Figure 3.16: Development of Graphical User Interface for Astar (A*) algorithm.

Figure 3.17: Final look of the Graphical User Interface of Astar (A*) algorithm.

33

3.6 Conclusion

For this Astar (A*) algorithm project, in order for the algorithm to be workable,

there is necessary to provide a map for the algorithm to work on. The map in this project

can be provided using a prototype that create an example of surrounding. The camera

from this prototype frame will capture the image of environment. The image will then be

converted into black and white file to provide a map for this algorithm. Then, from the

map, the source and the goal point will be defined by the user. If only the points have

been verified by the algorithm, Astar (A*) algorithm will then start its searching process

towards the goal destination. Using this definition of Astar (A*) algorithm:

𝐹(𝑣) = 𝑔(𝑣) + ℎ(𝑣) 1.2

Firstly, the starting point of the robot will be inserted into the closed list. After

that, the algorithm will identify the workable adjacent cells and insert it to the open list.

From this open list, the heuristic cost (h) which the node with smallest score will be

selected to be a successor. This successor will be then inserted into the closed list. The

node that inserted in closed list will not be consider by the algorithm. The process is then

repeated until the heuristic cost (h) is equal to zero (0) which tell the algorithm that the

goal point has been reached. Then, the algorithm will backtrack the nodes to construct

the path with a smallest score (shortest pathway).

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In order to validate the ability of this Astar (A*) algorithm to be implemented as

a path planning for robotics navigation, several tests have been conducted. These tests

are including the ability of this Astar (A*) algorithm to provide the minimized pathway,

the ability to provide a collision-free pathway, the behaviour of the algorithm towards the

different complexity of map, different level of light intensity, different colours of

environment, and lastly the effect of the goal’s position on the map with the algorithm’s

behaviour. Thus, this chapter will provide the findings of all these cases. Table 4.1 will

explain briefly the determination of these investigations.

Table 4.1: List of tests that will be conducted for Astar (A*) algorithm.

Test Description

Shortest Path

Scoring

To validate the ability of algorithm to provide the shortest

pathway.

Obstacle Avoidance To verify the capability of the algorithm to provide a pathway

that avoiding the obstacles along its way.

Effect of Complexity

of The Map with

Computation Time

This test will investigate effect of map complexity level towards

the processing time of the algorithm to reach its goal destination.

Effect of Light

Intensity Towards

Astar (A*)

Algorithm Behaviour

This test will show the behaviour of this Astar (A*) algorithm to

the different level of light intensity. Since the map provided for

this algorithm is by using single camera, thus, this effect of light

intensity to the algorithm’s behaviour is important to be analysed.

35

Effect of Colour

Towards Astar (A*)

Algorithm Behaviour

This test conducted to investigate the effect of colours to the

algorithm’s behaviours. This Astar (A*) algorithm is an

algorithm that working through map provided by the camera,

thus, this test will figure out the relationship of ground’s colour

and obstacle’s colour with this algorithm’s behaviours.

Effect of Goal

Position Inside The

Obstacle Area

In this Astar (A*) algorithm, it’s searching behaviour is based on

the movable cells on the grid map provided. Thus, there will be

some cases where the goal point or source point is located inside

the area of obstacles. This test will verify the behaviour of this

algorithm when it facing this type of situation.

4.2 Shortest Path Scoring

In order to determine whether the path generated by the algorithm is a minimum

path score, the following investigation is conducted. This investigation was based on

three different cases. Considering that all the cases consists of the same starting point and

being directed to the same goal point, this is to analyses the behaviour of the Astar (A*)

algorithm which expected to be able to provide a short pathway connected the source and

the goal point. The behaviour of this cases is that they had been differ in the presence and

position of the obstacle. The Table 4.2 shows the three (3) different cases.

Table 4.2: Different cases of map with different types of obstacles.

CASE

CASE 1 CASE 2 CASE 3

Source X 150 Y 131

Goal X 186 Y 113

36

 Consider the position of the source and the goal point is a constant variable, and

the position and number of presence obstacles is being manipulated, the result of path

generated by the Astar (A*) algorithm is as shown in Table 4.3.

 Supposedly, there are two possible paths can be taken by the algorithm like shown

in Figure 4.1 in order to find the shortest pathway to the goal position. There are; path (a)

and path (b). This algorithm is smart enough to decide which way should it take that give

the best min path scoring. Figure 4.1 shows the possibilities of the path taken by the

algorithm.

Figure 4.1: Possible direction of path score.

37

Table 4.3: Results of different path scored constructed by the algorithm.

CASE PATH GENERATED

C
A

S
E

 1

*refer file Shortest Path Case 1 from video folder.

C
A

S
E

 2

*refer file Shortest Path Case 2 from video folder.

C
A

S
E

 3

*refer file Shortest Path Case 3 from video folder.

Referring Table 4.3 in case 1, the number of obstacle presence along the pathway

between source point and goal point is one and the shape its appear to be simpler

compared to case 2 and case 3. To proof that the algorithm is manage to find its shortest

path score towards the goal, it is by comparing the behaviour of the path generated

between case 1 and case 2. This is because, case 2 is where the algorithm is force to take

the (b) path like shows in Table 4.3, instead of (a) path taken in Case 1.

Video/Shortest%20Path%20Case%20%201.mp4
Video/Shortest%20Path%20Case%202.mp4
Video/Shortest%20Path%20Case%203.mp4

38

Table 4.4 shows the results of shortest path scoring. From this result, it is clear

that at the fix position starting and goal point, the algorithm is smart enough that it takes

path (a) direction with path score of ≈ 92 cells. This is shorter if compare to the path (b)

direction with ≈ 94 cells path score. Thus, this Astar (A*) algorithm were proven to be

able to provide the shortest path scoring.

 Table 4.4: Result of Astar (A*) algorithm’s path scored.

CASE NUM

OBSTACLE

PRESENCE

PATH

TAKE

PROCESSING

TIME [s]

PATH

LENGTH

[cells]

1 1 a 240.113 92.133

2 1 b 228.535 94.095

3 1 b 246.636 94.975

4.3 Obstacle Avoidance

In this algorithm, it is important for the algorithm to have the ability to avoid any

obstacle that present along its way. This feature is really important in order to provide a

collision free pathway for the robot. Figure 4.2 show the real map with obstacle presence

in it. From this real map, it will convert into black and white map and the algorithm will

then mark the map with value of 1; movable cell and mark as 0; died cell. Movable cell

is where it is accessible for the robot while navigate to the goal destination. Meanwhile,

died cell is where the obstacles lie. Figure 4.3 shows the marked map done by the Astar

(A*) algorithm.

Figure 4.2: Original image recorded by camera.

39

Figure 4.3: Converted black and white map with a binary value. 1: obstacle-free area;

 0: obstacle area.

Referring to the map in Figure 4.3, the algorithm will tell the robot to avoid with

the obstacle by providing a pathway that have no contact with the obstacle. This is to

make sure that the robot will be navigate with a collision free navigation.

Next is to provide the initial or current point of the robot and also the goal

destination for the robot. Two cases with different starting and end point were tested in

this part. Followings Table 4.5 shows the cases.

Table 4.5: Different cases with different source and goal position.

CASE 1 CASE 2

Source (45, 106) Source (140, 117)

Goal (193, 124) Goal (195, 117)

40

Table 4.6: Result of path generated by Astar (A*) algorithm with obstacles avoidance ability.

CASE PATH GENERATED

C
A

S
E

 1

* refer file Obstacle Avoidance Case 1 from video

folder.

C
A

S
E

 2

* refer file Obstacle Avoidance Case 2 from video

folder.

According to Maria Isabel Ribeiro, obstacle avoidance function in robotics is

methodologies of shaping the robot’s path to overcome unexpected obstacles without any

contact with the obstacles (Ribeiro, 2005). With the definition of this obstacle avoidance

by Maria Isabel Ribeiro, the following result can be verified. The result can be seen in

Table 4.6. From the result obtained, it is clear that the Astar (A*) algorithm manage to

generate a path that capable to avoid any obstacles along its way and making no contact

with the obstacles.

Video/Obstacle%20Avoidance%20Case%201.mp4
Video/Obstacle%20Avoidance%20Case%202.mp4

41

4.4 Effect of Complexity of The Maps with Computation Time.

 In order to investigate the effect of computation time towards the level of

complexity of the map, several types of maps with different number of obstacles presence

in the map. This is because high number of obstacles presence in the pathway between

the source and goal destination, producing a higher complexity level of the map. The

Table 4.7 shows the cases with different types of map with different level of map

complexity.

Table 4.7: THREE (3) different cases with different level of map complexity.

CASE 1

Source (61, 100) Goal (278, 100)

Number of Obstacle in Map 3 Obstacles

Number of Obstacle Along Pathway 0 Obstacle

CASE 2

Source (72, 30) Goal (260, 35)

Number of Obstacle in Map 6 Obstacles

Number of Obstacle Along Pathway 2 Obstacles

CASE 3

Source (72, 150) Goal (240, 155)

Number of Obstacle in Map 12 Obstacles

Number of Obstacle Along Pathway 3 Obstacles

42

Table 4.8: Path generated by Astar (A*) algorithm for different level of map complexity.

CASE PATH GENERATED

C
A

S
E

 1

*refer file Effect Map Complexity 1 from video folder.

C
A

S
E

 2

*refer file Effect Map Complexity 2 from video folder.

C
A

S
E

 3

*refer file Effect Map Complexity 3 from video folder.

Video/effect%20map%20complexity%201.mp4
Video/Effect%20map%20complexity%202.mp4
Video/Effect%20map%20complexity%203.mp4

43

 From the pathway generated by this algorithm as shown in Table 4.8, the effect

of map complexity to the computation time can be determined. As it can be seen from

path generated in Table 4.8, if the number of obstacle present in between the source point

and the goal point is high, which lead to complex map, thus, the time taken for the

algorithm to reach the goal point is longer. But, as the complexity of the map is at lower

level, the time taken for the algorithm to reach to its goal point is shorter. The result of

this investigation can be seen in Table 4.9. From the results, its clear that as for the case

1 which have the lowest level of complexity of the map gives the shortest processing time

(30.807 seconds) compare to case 3 with highest complexity level which give processing

time of (1370.550 seconds). This proven that regardless how long the path length

generated by the algorithm, if it is involving the high level of map’s complexity, it will

take longer computation time.

Table 4.9: Result of processing time of Astar (A*) algorithm respected to its complexity of the map.

CASE NUM

OBSTACLE

PRESENCE

MAP

COMPLEXITY

LEVEL

PROCESSING

TIME [s]

PATH

LENGTH

[cells]

1 0 low 30.807 217

2 2 high 991.542 220.284

3 3 highest 1370.550 216.514

44

4.5 Effect of Light Intensity Towards Astar (A*) Algorithm Behaviour

 Astar (A*) algorithm is an algorithm that work by scanning the surrounding

through the map provided. In this project, the map is being provided by the image taken

by the camera. The type of camera that has been used in this project is a web camera

model C170 from Logitech. The pixel value for this camera is only up to 5 megapixels

with software enhanced (Logitech, 2018). Since the camera is put on the top of the

prototype to get the top view of the surrounding, it is really dependent of the light

intensity. Figure 4.4 shows the position of the C170 Logitech web camera used in this

project.

Figure 4.4: Position of the C170 Logitech web camera used in this project.

 According to the position in Figure 4.4 it makes the light intensity as one of

significant aspect for this project. This is because, any excessive or deficiency amount of

light will affect the behaviour of this Astar (A*) algorithm. If there are excessive amount

of light detected by the camera, the algorithm will not be able to detect the presence of

obstacles. This is because, the obstacles will appear to be a white region when the map is

converted into black and white map. The situation is contradictorily when the camera is

receiving small amount of light intensity. This will make the map to appear as a black

region on the map. Thus, the algorithm will claim that the source or goal point is lay on

the obstacle. The result can be seen in the Table 4.10.

45

Table 4.10: Result of effect of light intensity to the Astar (A*) algorithm behaviour.

As shown in Table 4.10, the result of the effect of light intensity towards Astar

(A*) algorithm behaviour obtained. It is clear that for the excessive level of light case,

the map is appearing to be white even there are obstacles appear on the map. This is

something that called fatal error for the program since the path still can be generated even

though there is obstacle lies in between the source and goal point. The algorithm seems

not to be able to detect the presence of obstacles along its way. As a result, this may cause

huge collision between the robot and the obstacle. Thus, the robot navigation become

harmful whether to itself also to its surroundings. Figure 4.5 shows the situation where

the path generated just simply go through the obstacles.

LEVEL

OF LIGHT
ORIGINAL MAP CONVERTED B/W MAP

E
X

C
E

S
S

IV
E

M
E

D
IU

M

L
O

W

46

Contrarily with the situation with the low level of light intensity is applied to the

algorithm, this will resulting in the pop-up notification appear from the system. This

notification is from the algorithm to notify the user that the source or goal were lies on

the obstacles. This is due to the fact the map is appear to be black region (refer to Table

4.10 at low light case) that indicate there is the area of obstacle which impossible for the

robot to move through it. Figure 4.6 show the situation where the pop-up notification is

appeared due to this situation.

Figure 4.5: Path generated that penetrate through obstacles.

Figure 4.6: Dialog box that popped-up to notify an error.

47

4.6 Effect of Colour Towards Astar (A*) Algorithm Behaviour

 In every image captured by the camera, besides lighting, colour also is a

something that will affect the quality of image taken. This is due to the fact that colour of

the image recorded by the camera is highly dependent with lighting condition. Although

it is something that depending to each other, in this project, colour is something that will

give an impact towards the result. This is because, in order to mark the position of the

obstacles on the map, it is depending on the colour saturation of the random object. This

colour saturation is important to be comparable to each other in order to be make sure

that the conversion of image file to the black and white map is flawlessly.

 Since the Astar (A*) algorithm is a collision free pathway provider, thus it is

compulsory for the system to be able to distinguished between the obstacles and the non-

obstacles objects on the map. In this context, colour will plays a significant role for the

algorithm to be able to locating the obstacles. There are two important aspects for this

investigation:

 Aspect 1: The colour of ground in the map layout, and

 Aspect 2: The colour of random objects used to provide obstacles.

 These can be verified through the following cases:

CASE 1

Figure 4.7: Image recorded in case 1.

In this case, the colour used for ground in the map is same as the colour of random

objects used. The Figure 4.7 shows the image captured by the camera for this case.

48

CASE 2

Figure 4.8: Image recorded in case 2.

For this second case, the colour of the ground in the map were different with the

colour of the random objects used in this project. The Figure 4.8 shows the image capture

by the camera for this case.

CASE 3

Figure 4.9: Image recorded in case 3.

Lastly, for the third case, the colour of the ground layout is darker compared with

the colour of the objects used in this projects. This third case is to investigate whether the

algorithm is able to distinguish the free path and the obstacles area in the map if it a darker

colour of ground. The Figure 4.9 shows the image capture by the camera for this case.

49

Table 4.11: Result of effect of colour to the Astar (A*) algorithm behaviour.

CASE ORIGINAL IMAGE BLACK AND WHITE MAP

1

2

3

From the result shown in the Table 4.11, there are three different cases. For case

1, the colour of ground used is blue which is same as the colour of obstacle. Referring

back to the table of result for case 1, the red-circled mark shows that the missing obstacle

when the map is converted into black and white image. This is due to the same colour of

the obstacle with the road make it look transparent with the ground. Thus the algorithm

may read that there are no obstacles in that area.

50

Besides that, for case 2, the situation is that the ground colour is different with the random

object used. The result for this case can be seen by referring back to the result shows on

Table 4.11, where for this case, the image processing in this algorithm is able to locate

all the obstacles appear on the map. Note that the colour used for the ground colour of

this case is light yellow.

 Next, for the case 3, this situation is same as situation on case 2, but instead of

using the light colour of ground skin, a brown colour of ground has been used.

Technically, this brown colour ground is more saturated colour compared to the light

yellow colour used in cased 2. Unfortunately, the result obtained by using this colour is

as shown in Table 4.11 for case 3. When it converted into black and white map, the image

processing in this system do not consider the ground as a roadway for the algorithm, but

instead it considers the ground as obstacle area, and the light colour of obstacle is consider

as an obstacle-free area. This situation can be seen in the table of case 3.

 As a conclusion, for this investigation of the effect of colour to the Astar (A*)

algorithm behaviour, it can be said that the algorithm will able to work accordingly if the

map provided is containing the different colour of the ground and obstacles, also when

the colour of the ground is lighter. This is because, the system will provide the map for

the algorithm to work on by converting the recorded image file by the camera into a black

and white binary map file. Thus, if darker part in the object will be consider as a black

area by the system. That’s why the result of situation in case 3 shows that the algorithm

is confuse between obstacle-free area with the area that contain obstacle.

51

4.7 Effect of The Goal Position Inside The Obstacle Area

In Astar (A*) algorithm, there are some cases that resulting the algorithm didn’t

manage to find any shortest path towards the goal. One major example of the case is when

the goal point is placed within the obstacle area. Although the obstacle practically will

show the binary zero value at the area of obstacle on the map, but, some cases that the

obstacle area itself contain area that available for the algorithm to go through. For an

example, the fence-type of obstacle that shows the obstacle area is only at outer-side of

obstacle and at inner side, the area appears to be a non-obstacle area. This situation can

be seen as shown in Figure 4.10.

Figure 4.10: Goal point that located inside the obstacle area.

As shown in the Figure 4.10, the source position is outside the obstacle area, but

the position of the goal point is within the obstacle area. Note that, although it is an

obstacle area, it still has the available terrain for the algorithm to reach the goal, but

because of the goal point is surrounding by the obstacles, it makes it impossible for the

algorithm to reach the goal point. The situation in a map view can be seen in Figure 4.11

where it shows that the goal point is surrounded by the black area which is fence-type of

obstacle.

Figure 4.11: Black and white map shows goal point that located inside the obstacle area.

52

From this situation as shown in Figure 4.11, it can clearly seen that there is no

available pathway for the algorithm to penetrate into the obstacle area to reach the goal

point. As the result, the algorithm will get stuck and the searching process is then stop.

This is because, the algorithm can’t find any available way to reach the goal. The Figure

4.12 shows the result for this situation where the algorithm got stuck and stop it process.

Thus, for this situation, it is considering as a limitation to the Astar (A*) algorithm as it

not be able to identify that the goal point is within the obstacle area.

Figure 4.12: Astar (A*) algorithm try to search for the way to reach the goal point.
*refer file Goal in Obstacle Area from video folder.

Video/goal%20in%20obstacle.mp4

CHAPTER 5

CONCLUSION

5.1 Introduction

 This chapter will give a short and briefly summary for overall of the project and

also some recommendations for the future research.

5.2 Conclusion

 As a conclusion, the main objectives of this project which to implement an Astar

(A*) algorithm as a path planning for robotics navigation had been achieved. Basically,

this project which has been done at Universiti Malaysia Pahang. After a few discussion

sessions with UMP’s supervisor as well as HsKA’s supervisor, eventually the Astar (A*)

algorithm is functioning accordingly.

According to the real functions of this Astar (A*) algorithm, it is supposedly

should be able to provide a collision-free pathway with an optimised distance towards the

goal point. In the end of this project these functions have been tested and the result is

positive for both functions which reflected to the objectives of this algorithm. There are

two main functions which has been achieved by this Astar (A*) algorithms.

First and foremost, the Astar (A*) algorithm is able to provide a pathway with the

minimum path score. This function is successfully tested by using MATLAB software.

For this function, the algorithm managed to generate a pathway and find its way with a

shortest distance to the goal point.

54

Secondly, the main function of this Astar (A*) algorithm is to be able to provide

a collision-free pathway. In other word, the algorithm should be able to avoid any

obstacles that appear along its way. This function is tested by providing a real time

obstacles using any random objects. This situation with random objects as obstacle is

then captured using a single camera and the image recorded is converted as a black and

white map. The obstacles will be appeared as a black spot in the map, and this Astar (A*)

algorithm is manage to pass-by the obstacles with no contact with the obstacles.

However, despite of positive response of both function, there are also several

factors that need to be consider in order to implement this Astar (A*) algorithm. The

factors like light intensity, colours of environment, and position of the goal and source

point compulsory to be consider in this project. This is because, without considering to

these factors, it may result a faulty to the Astar (A*) algorithm searching behaviour.

 To conclude, this project Astar (A*) Algorithm Implementation for Robotics Path

Planning Navigation which has been carried out within three (3) months at Universiti

Malaysia Pahang is successfully done. This path planning algorithm is proven to be safe

to be implemented in robotics navigation.

5.3 Recommendations

 Although the project’s objectives were successfully achieved, but it is still has

several ways could be done in order to improve the result’s accuracy. Thus, several

recommendations can be considered for the good of future study. Due to the lack of time

and techniques, this project only focused on implementation of algorithm for robotic

navigation.

 For the first recommendation, in the future work of this project, the project scope

should be improvised, where the researcher can be applying to any robots. This is to

testify the ability of the robot to move follows the path that generated from this project.

If there are any issues appear during the process of applying this algorithm, the further

analysis can be conducted to solve the issues. This is because, there are some possibility

that the robot cannot follow the path generated by the algorithm in this project.

55

 In order to test whether the robot is able to follow the line generated in this project,

the researcher could also do some improvement to the algorithm so that it can include the

tolerance when considering the obstacles area. This is because, if we look at the way the

line is generated in this project when it’s avoiding the obstacles, it is really near with the

obstacle’s wall. This situation is a little bit sweating, because although the path generated

of this obstacle is successfully avoiding the obstacles, but, in the future when thin

algorithm is being apply to any robot, the researcher should include the size of the robot

itself because the robots may be difference in size, sometimes bigger and sometimes

smaller.

 Other than that, for the next recommendation, in the future, the researcher can

also include the sensors to the system, this is because, beside of the existing camera is

taking a top view of the system, the sensors also can be synchronized to the system where

it can detect the presence of the obstacles in a three dimensional (3D). This will make the

system to not to rely to the camera that very sensitive with the light and colours, it will

then detect the presence of the obstacle using waves (light or sound). As for example, the

type of sensors that can be use is laser sensor or ultrasonic sensor.

56

REFERENCES

Chilian A, Hirschmuller H. (2009). Stereo camera based navigation of mobile robots on rough

terrain. In H. H. Chilian A, Stereo camera based navigation of mobile robots on rough

terrain (pp. 4571-4576). St. Louis, USA: IROS.

Konolige K. (1997). Small vision systems: hardware and implementation. Hayama, Japan: Int.

Symp. Robotics Research,.

A. Smith, Ding, Ulusoy. (2012). Robust multi-Robot Otimal Path Planning With Temporal

Logic Constraints. Robotics and Automation (ICRA).

Adam A. Razavian, Sun J. (2005). Cognitive Based Adaptive Path Planning Algorithmfor

Autonomous Robotic Vehicles. Southeast Con, 8-10.

Andrej Babinec. (2014). Path Planning With Modified Astar Algorithm for a Mobile Robot.

ScienceDirect, 61.

Carsten, J. (2007). Global Path Planning on board the Mars Exploration Rovers. IEEE

Aerospace Conference.

Chelvi, S. T. (14 FEB, 2016). Road accidents mainly caused by human error, study reveals.

Retrieved from The Sun Daily: http://www.thesundaily.my/news/1692065

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Single-Source Shortest Paths

:Introduction to Algorithms. 2nd ed. Cambridge: 581-635.

Correll, N. (4 September, 2011). Introduction to Robotics #4: Path-Planning. Retrieved from

Correll Lab CU Computer Science: http://correll.cs.colorado.edu/?p=965

David M. Bourg, Seeman G. (2004). AI for Game Developer. O'Reilly.

Ghangrekar, S. Y. (2009). A PATH PLANNING AND OBSTACLE AVOIDANCE

ALGORITHM FOR AN AUTONOMOUS ROBOTIC VEHICLE. 14.

Intorobotic. (20 November, 2013). Intorobotic. Retrieved from Into Robotics:

https://www.intorobotics.com/types-sensors-target-detection-tracking/

57

Kirti Bhagat, Sayalee Deshmukh, Shraddha Dhonde, Sneha Ghag. (2016). Obstacle Avoidance

Robot. International Journal of Science, Engineering and Technology Research

(IJSETR), 1-2.

LaValle. (2006). Planning Algorithms. New York, USA: Cambridge University Press.

Logitech. (2018). C170 Web Camera by Logitech. Malaysia.

M. Shafie Abd. Latiff, and R. Hassan. (2004). An Efficient Virtual Tour- A Merging. Kuala

Lumpur.

Martin Florek, Andrej Babinec, Martin Kajan. (2014). Path Planning with Modified Astar

Algorithm for Mobile Robot. ScienceDirect, 61.

Obara T., Yamamoto K., Ura T., Maeda H., Yamato H. (1994). Development of an

Autonomous Underwater Vehicle R1 with a Closed Cycle Diesel Engine.

Polaroid Corporation. (1992). Ultrasonic Ranging Systems. Cambridge Massachusetts.

Retrieved from Cambridge Massachusetts.

Qidan Zhu, Yongjie Yan, and Zhuoyi Xing . (2006). Robot Path Planning Based on Artificial

Potential Field. College of Automation, Haerbin Engineering University.

Ribeiro, M. I. (2005). Obstacle Avoidance. 1-2.

Sadeghi-Niaraki, A., Varshosaz, M., Kim, K., and Jung, J. (2011). Real world representation of

a road network for route planning in GIS.

T. Frohlich and D. Kullmann. (2002). Autonomous and Robust Navigation for Simulated

Humanoid Characters in Virtual Environments. First International Symposium on

Cyber Worlds (CW'02).

The RoboRealm . (2006). The RoboRealm Vision for Machines. Retrieved from Path Planning:

http://www.roborealm.com/help/Path_Planning.php

Ulrich , Nourbakhsh. (2000). Appearance-based obstacle detection with monocular color vision.

AAAI.

58

Vo Thi Huyen Trang,Tran Quoc Toan, A.A. Sorokin. (2017). Using modification of visibility-

graph in solving the proble of shortest path for robot. 2017 International Siberian

Conference on Control and Communications (SIBCON), 1.

W.H.Munro. (1990). Ultrasonic Vehicle Guidance Transducers. ieeexplore, 349.

Werner B, Surmann H, Pervolz K. (2006). 3D time-of-flight cameras for mobile robotics. In 3D

time-of-flight cameras for mobile robotics (pp. 790-795). Beijing, China: IROS.

Yahja A., Singh S., Stentz A. (2000). An Efficient on-line Path Planner for Outdoor Mobile

Robots. Robotics and Autonomous Systems.

59

APPENDIX A

PROJECT GANTT CHART

60

APPENDIX B

CODING OF A* ALGORITHM

function varargout = GUI(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @GUI_OpeningFcn, ...

 'gui_OutputFcn', @GUI_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State,

varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

function varargout = GUI_OutputFcn(hObject, eventdata,

handles)

varargout{1} = handles.output;

% --- Executes just before GUI is made visible.

function GUI_OpeningFcn(hObject, eventdata, handles,

varargin)

handles.output = hObject;

imageOriginal=imread('logo2.jpg');

axes(handles.axes2);

imshow(imageOriginal);

axes(handles.axes3);

imshow('logo3.jpg');

set(handles.instruction,'string', '*Do you wish to

CAPTURE new map or LOAD MAP?','FontSize',12);

guidata(hObject, handles);

61

% --- Executes on button press in processload.

function processload_Callback(hObject, eventdata,

handles)

set(handles.edit7,'String','');

set(handles.edit8,'String','');

global source; global goal; global map; global path;

global n; global Q;

global closedList; global mapOriginal; global

resolutionX;

global resolutionY;global newPos; global A; global

filename;

mapOriginal=im2bw(imread(filename));

resolutionY=240;

resolutionX=320;

axes(handles.axes1);

imshow(mapOriginal);

startX= get(handles.startX,'string');

startX=str2double(startX);

startY= get(handles.startY,'String');

startY=str2double(startY);

source=[startY,startX];

goalX= get(handles.goalX,'String');

goalX=str2double(goalX);

goalY= get(handles.goalY,'String');

goalY=str2double(goalY);

goal=[goalY,goalX];

%================connection matrix===================%

% robot (marked as 2) can move left, right, up and

down (all 1s).

conn=[1 1 1 1 1; % another option of conn

 1 1 1 1 1;

 1 1 2 1 1;

 1 1 1 1 1

 1 1 1 1 1];

%================connection matrix===================%

display=true; % display processing of nodes

%%%%%%%%%%%%%%% parameters end here %%%%%%%%%%%%%%%%%%

62

mapResized=imresize(mapOriginal,[resolutionX

resolutionY]);

map=mapResized; % grow boundary by a unit pixel

for i=1:size(mapResized,1)

 for j=1:size(mapResized,2)

 if mapResized(i,j)==0

 if i-1>=1, map(i-1,j)=0; end

 if j-1>=1, map(i,j-1)=0; end

 if i+1<=size(map,1), map(i+1,j)=0; end

 if j+1<=size(map,2), map(i,j+1)=0; end

 if i-1>=1 && j-1>=1, map(i-1,j-1)=0; end

 if i-1>=1 && j+1<=size(map,2), map(i-

1,j+1)=0; end

 if i+1<=size(map,1) && j-1>=1, map(i+1,j-

1)=0; end

 if i+1<=size(map,1) && j+1<=size(map,2),

map(i+1,j+1)=0; end

 end

 end

end

source=double(int32((source.*[resolutionX

resolutionY])./size(mapOriginal)));

goal=double(int32((goal.*[resolutionX

resolutionY])./size(mapOriginal)));

set(handles.instruction,'string', 'A* Algorithm is

processing. Press CLEAR ALL to stop!','FontSize',12);

if ~feasiblePoint(source,map)

 errordlg('source lies on an obstacle or outside

map','Error');

 set(handles.instruction,'string',

'ERROR!','FontSize',12);

end

if ~feasiblePoint(goal,map)

 errordlg('goal lies on an obstacle or outside

map','Error');

 set(handles.instruction,'string',

'ERROR!','FontSize',12);

end

if length(find(conn==2))~=1, error('no robot specified

in connection matrix'); end

63

%**Part of these code is took from R. Kala(2014)*****%

%Code for Robot Path Planning using A* algorithm,

Indian Institute of Information Technology Allahabad

%structure of a node is taken as startY, startX,

historic cost, heuristic cost, total cost, parent

index in closed list (-1 for source)

Q=[source 0 heuristic(source,goal)

0+heuristic(source,goal) -1]; % the processing queue

of A* algorihtm, open list

closed=ones(size(map)); % the closed list taken as a

hash map. 1=not visited, 0=visited

closedList=[]; % the closed list taken as a list

pathFound=false;

tic

counter=0

colormap(gray(256));

grid;

set(0,'userdata',0)

while size(Q,1)>0

 pause(.01)

 if get(0,'userdata')

 return;

 end

 [A, I]=min(Q,[],1);

 n=Q(I(5),:) % smallest cost element to process

 Q=[Q(1:I(5)-2,:);Q(I(5)+1:end,:)]; % delete

element under processing

 if n(1)==goal(1) && n(2)==goal(2) % goal test

 pathFound=true;break;

 end

 if checkPath(n(1:2),newPos,map) %if path from

n to newPos is collission-free

 if closed(newPos(1),newPos(2))~=0 % not

already in closed

historicCost=n(3)+historic(n(1:2),newPos);

 heuristicCost=heuristic(newPos,goal);

 totalCost=historicCost+heuristicCost;

 add=true; % not already in queue with

better cost

 if length(find((Q(:,1)==newPos(1)) .*

(Q(:,2)==newPos(2))))>=1

 I=find((Q(:,1)==newPos(1)) .*

(Q(:,2)==newPos(2)));

 if Q(I,5)<totalCost, add=false;

 else Q=[Q(1:I-1,:);

64

 Q(I+1:end,:);];

 add=true;

 end

 end

 if add

 Q=[Q;newPos historicCost

heuristicCost totalCost size(closedList,1)+1]; % add

new nodes in queue

 end

 end

 end

 closed(n(1),n(2))=0;closedList=[closedList;n]; %

update closed lists

%***Part of these code is took from R. Kala(2014)****%

if display

 image((map==0).*0 + ((closed==0).*(map==1)).*125

+ ((closed==1).*(map==1)).*255);

 counter=counter+1;

text(source(2),source(1),strcat('S'),'color','b');

 text(n(2)-1,n(1),strcat('o'),'color','r');

 text(goal(2),goal(1),strcat('G'),'color','b');

 M(counter)=getframe;

 end

end

if ~pathFound

 warndlg('no path found!')

end

if pathFound

 warndlg('Operation Done. Press LOAD PATH to

continue.');

 set(handles.instruction,'string', '*Successful.

Press LOAD PATH to continue.','FontSize',12)

end

set(handles.edit8, 'String', toc);

65

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata,

handles)

set(handles.instruction,'String','');

global path; global pathLength; global prev; global n;

global closedList;

global mapOriginal; global resolutionX; global

resolutionY; global source; global goal;

global filename;

path=[n(1:2)]; %retrieve path from parent information

prev=n(6);

while prev>0

 path=[closedList(prev,1:2);path];

 prev=closedList(prev,6);

end

path=[(path(:,1)*size(mapOriginal,1))/resolutionX

(path(:,2)*size(mapOriginal,2))/resolutionY];

pathLength=0;

for i=1:length(path)-1,

pathLength=pathLength+historic(path(i,:),path(i+1,:));

end

fprintf('Path Length=%d \n\n',pathLength);

set(handles.edit7, 'String', pathLength);

axes(handles.axes1);

imshow(filename);

line(path(:,2),path(:,1),'linewidth',2,'color','r');

text(source(2)-

1,source(1),strcat('SOURCE'),'color','b');

text(goal(2),goal(1),strcat('GOAL'),'color','b');

% --- Executes on button press in capture.

function capture_Callback(hObject, eventdata, handles)

set(handles.instruction,'string','');

webcamlist

cam = webcam('Webcam C170')

cam.AvailableResolutions

cam.Resolution = '176x144'

preview(cam)

cam.Resolution = '320x240'

img = snapshot(cam);

axes(handles.axes1);

imshow(img)

imgname = sprintf('a_%s.bmp', datestr(now,'mm-dd-yyyy

HH-MM-SS'));

imwrite(img,imgname)

66

% --- Executes on button press in LoadImage.

function LoadImage_Callback(hObject, eventdata,

handles)

global filename;

set(handles.instruction,'string','');

cla(handles.axes1,'reset');

filename = uigetfile({'*.jpg;*.bmp;*.png;*.gif','All

Image Files';...

 '*.*','All Files' },'mytitle')

axes(handles.axes4);

imshow(filename);

set(handles.instruction,'string', '*Please select your

SOURCE point.','FontSize',12);

[x,y] = ginput(1);

h1 = text(x,y,'S', ...

 'HorizontalAlignment','center', ...

 'Color', [1 0 0], ...

 'FontSize',8);

set(handles.startX,'String',round(x(1,1)));

set(handles.startY,'String',round(y(1,1)));

set(handles.instruction,'string', '*Please select your

GOAL point.','FontSize',12);

[x,y] = ginput(1);

h2 = text(x,y,'G', ...

 'HorizontalAlignment','center', ...

 'Color', [1 0 0], ...

 'FontSize',8);

set(handles.goalX,'String',round(x(1,1)));

set(handles.goalY,'String',round(y(1,1)));

set(handles.instruction,'string', '*Press PROCESS to

continue.','FontSize',12);

% --- Executes on button press in ClearAll.

function ClearAll_Callback(hObject, eventdata,

handles)

set(0,'userdata',1)

set(handles.instruction,'string', '*Do you wish to

CAPTURE new map or LOAD MAP?','FontSize',12)

cla(handles.axes1,'reset');

cla(handles.axes4,'reset');

set(handles.startX,'String','');

set(handles.startY,'String','');

set(handles.goalX,'String','');

set(handles.goalY,'String','');

set(handles.edit7,'String','');

set(handles.edit8,'String','');

67

function edit7_Callback(hObject, eventdata, handles)

global path; global pathLength;

for i=1:length(path)-1,

pathLength=pathLength+historic(path(i,:),path(i+1,:));

end

fprintf(pathLength);

