IMPLEMENTATION OF QUICK CHANGEOVER ON CHANGING NEW MODEL FOR CNC MACHINE

NOR AMIRAH BINTI MOHAMAD RADZUAN
HA13007

BACHELOR OF MECHATRONICS ENGINEERING (HONS.) COLLABORATION PROGRAMME WITH HSKA, GERMANY

UNIVERSITI MALAYSIA PAHANG
IMPLEMENTATION OF QUICK CHANGEOVER ON CHANGING NEW MODEL FOR CNC MACHINE

NOR AMIRAH BINTI MOHAMAD RADZUAN

Thesis submitted in fulfilment of the requirements for the award of the Bachelor of Mechatronics Engineering (HONS.) Collaboration Programme with HsKA, Germany

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

MARCH 2018
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and, in my opinion, this thesis is adequate in terms of scope and quality for the award Bachelor of Mechatronics Engineering (Hons.) Collaboration Programme with HsKA, Germany.

(Supervisor’s Signature)

Full Name: Assoc. Prof. Ir. Dr. Ahmad Razlan bin Yusoff
Position: Deputy Dean (Academic & Student Affairs) / Associate Professor of Faculty Manufacturing Engineering
Date:

ii
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__
(Student’s Signature)

Full Name : NOR AMIRAH BINTI MOHAMAD RADZUAN
ID Number : HA13007
Date :
Specially dedicated to

My father (Mohamad Radzuan bin Mat Nor)

My mother (Ruhani binti Junoh)

My beloved families

And

My Lecturers

Thank You!
ACKNOWLEDGEMENTS

First and foremost, I am most thankful to Allah for granting me good health to finish this project successfully. I would like to express my sincere gratitude to my respected supervisor, Assoc. Prof. Ir. Dr. Ahmad Razlan bin Yusoff from the Department of Manufacturing Engineering, Universiti Malaysia Pahang, for his guidance, motivation, encouragement and constructive criticism. His guidance helped me in all the time of research and writing of this thesis. I would also like to express my sincere gratitude to Prof. Dipl.-Ing. Helmut Scherf from Hochschule Karlsruhe University, Germany for his patience, motivation, enthusiasm, and immense knowledge for my project.

I would also like to express my deepest gratitude and special thanks to my industrial supervisor, Mr Kamarulzaman Mahmad Khairai, Industrial Engineer in TT Electronics Sdn. Bhd. who provides me with the opportunity to carry out my final project in TT Electronics Sdn. Bhd. I am extremely thankful and indebted to him for sharing expertise, and sincere and valuable guidance and encouragement extended to me. Besides that, I would like to express my gratitude to the whole staffs, operators and most importantly to the technical support team in TT Electronics Sdn. Bhd. who have been helpful and gave a consistent cooperation throughout my project.

I owe my deepest gratitude to my family for undeniable love, unceasing encouragement, support and attention throughout my life. I am sincerely grateful to my fellow colleagues for the willingness of going through this journey together. Lastly, I would like to thank all of those who supported me in any respect during my journey on completing my final year project and my thesis.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS

ABSTRACT

ABSTRAK

TABLE OF CONTENT

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.2 Problem Statement

1.3 Background of Company

1.4 Objectives of Project

1.5 Scopes of the Study

1.6 Summary

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

2.2 Lean Production System (LPS)

2.3 Single Minute Exchange of Die (SMED)
2.4 Stages of Single Minutes Exchange of Die (SMED)
 2.4.1 Preliminary Stage: Current Setup Study
 2.4.2 First Stage: Separating Internal and External Setup
 2.4.3 Second Stage: Converting Internal Setup to External Setup
 2.4.4 Third Stage: Streamlining all aspects of the setup process
2.5 Quick Changeover
2.6 Cost Saving Due to Quick Changeover

CHAPTER 3 METHODOLOGY
3.1 Introduction
3.2 Project Flow Diagram
3.3 Method of Data Collection and Information
 3.3.1 Literature Review Method
 3.3.2 Video Recording Method
 3.3.3 Interview Method
3.4 Stages of Quick Changeover
 3.4.1 Stage 1: Study current process
 3.4.2 Stage 2: Separation of Internal and External Elements
 3.4.3 Stage 3: Move external elements to external
 3.4.4 Stage 4: Shorten Internal Elements
 3.4.5 Stage 5: Shorten External Elements
 3.4.6 Stage 6: Standardize and Maintain New Procedure
3.5 Calculation on Time Reduction
3.6 Calculation on Cost Saving

CHAPTER 4 RESULTS AND DISCUSSION
4.1 Introduction 32

4.2 Implementation of Quick Changeover 32
 4.2.1 Stage 1: Study current process 33
 4.2.2 Stage 2: Separation of Internal and External Elements 35
 4.2.3 Stage 3: Move external elements to external 38
 4.2.4 Stage 4: Shorten Internal Elements 39
 4.2.5 Stage 5: Shorten External Elements 39
 4.2.6 Stage 6: Standardize and Maintain New Procedure 45

4.3 Reduction of Time in Changeover 46

4.4 Cost Saving after Implementing Quick Changeover 48

CHAPTER 5 CONCLUSION 50

5.1 Introduction 50

5.2 Conclusion 50

5.3 Recommendation 52

REFERENCES 53

APPENDIX A: GANTT CHART 55

APPENDIX B: STEPS ON CHANGEOVER PROCESS 56

APPENDIX C: SEPARATION OF INTERNAL AND EXTERNAL ELEMENTS 61

APPENDIX D: CHECKLIST ON CHANGEOVER PROCESS 66

APPENDIX E: REARRANGING STEPS ON CHANGEOVER PROCESS 67

APPENDIX F: NEW PROCEDURE ON CHANGEOVER PROCESS 74
LIST OF TABLES

Table 2.1 Eight types of waste in Lean Manufacturing 7
Table 2.2 Six big losses 18
Table 4.1 Tabulation of result on the changeover 47
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Logo of TT Electronics Sdn. Bhd.</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Lean manufacturing methods and tools</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Conceptual Stages of SMED</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Relationship between Just-In-Time and SMED</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>SMED conceptual stages and practical techniques</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Representation of changeover time</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Project Flow Diagram</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Stage 1: Study current process</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Spaghetti Diagram Example: Jet Machine Setup</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Stage 2: Separation of internal and external elements</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>Stage 3: Move External Elements to External</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Stage 4: Shorten Internal Elements</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Stage 5: Shorten Internal Elements</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Documenting the step of the setup process including the time of each step</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Spaghetti Diagram of the changeover</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Separation of Internal and External Elements</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>Tools that are required for the changeover</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Drawing and arrangement of tools for CNC toolbox</td>
<td>41</td>
</tr>
<tr>
<td>4.6</td>
<td>Foam mat for CNC tray following shadow board concept</td>
<td>42</td>
</tr>
<tr>
<td>4.7</td>
<td>Technical support taking tool from tray without any difficulty</td>
<td>42</td>
</tr>
<tr>
<td>4.8</td>
<td>List of tools in CNC toolbox</td>
<td>43</td>
</tr>
<tr>
<td>4.9</td>
<td>Before and after the 5S implementation for each tray</td>
<td>44</td>
</tr>
<tr>
<td>4.10</td>
<td>The tray could not be closed due to misplace of tools</td>
<td>45</td>
</tr>
<tr>
<td>4.11</td>
<td>The amount of changeover for model HM72A-12C325 LFTR to model HM55-313R0LF</td>
<td>48</td>
</tr>
<tr>
<td>4.12</td>
<td>Cost saving for each month and annual saving for 2017</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>s</td>
<td>seconds</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>SDN. BHD</td>
<td>Sendirian Berhad</td>
</tr>
<tr>
<td>LPS</td>
<td>Lean Production System</td>
</tr>
<tr>
<td>QCO</td>
<td>Quick Changeover</td>
</tr>
<tr>
<td>SMED</td>
<td>Single Minute Exchange of Die</td>
</tr>
<tr>
<td>EMS</td>
<td>Electronics Manufacturing Services</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Production System</td>
</tr>
<tr>
<td>JIT</td>
<td>Just-In-Time</td>
</tr>
<tr>
<td>TPM</td>
<td>Total Productive Maintenance</td>
</tr>
<tr>
<td>WIP</td>
<td>Work in Process</td>
</tr>
<tr>
<td>RM</td>
<td>Malaysian Ringgit</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar</td>
</tr>
</tbody>
</table>