LIQUEFACTION RISKS ON BULK CARGOES CARRYING UNAMENDED & AMENDED GEBENG BAUXITE IN ACCORDANCE TO INTERNATIONAL MARITIME SOLID BULK CARGOES (IMSBC) CODE

MUHAMMAD FAT-HI AL JUWAINI BIN PAHROL

B.ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

LIQUEFACTION RISKS ON BULK CARGOES CARRYING UNAMENDED & AMENDED GEBENG BAUXITE IN ACCORDANCE TO INTERNATIONAL MARITIME SOLID BULK CARGOES CODE

MUHAMMAD FAT-HI AL JUWAINI BIN PAHROL

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF BACHELOR IN CIVIL ENGINEERING

FACULTY OF CIVIL ENGINEERING AND EARTH RESOURCES UNIVERSITI MALAYSIA PAHANG

2017

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons.) Civil Engineering.

Signature	:
Name of Supervisor	: ASSOCIATE PROF. DR. MUZAMIR BIN HASAN
Position	: SENIOR LECTURER
Date	: DISEMBER 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries, which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:
Name	: MUHAMMAD FAT-HI AL JUWAINI BIN PAHROL
ID Number	: AA14191
Date	: DISEMBER 2017

ACKNOWLEDGEMENT

Firstly, I would like to thank God for His greatness, give the ideas, energy, and dedication to me for complete this Final Year Project course.

I would like to express my highest sincere appreciation to my supervisor Dr Muzamir bin Hasan for his valuable supervision, continuous encouragement, cooperation and guide me to the right direction in making this research a success. His wide knowledge, experiences and skills in the has allowed me to perform better and sharpen my capabilities in many areas, especially in the field of Geotechnical Engineering.

I would also like to thank all the lab assistants in Soil and Geotechnics Laboratory, University Malaysia Pahang, En. Ziunizan, En. Nor Azmi and En. Haliman who provided me trainings and equipment during my laboratory testing to complete my project.

Next, I want to thank all my friends for their support, guidance, sharing and suggestions throughout my research, as their helps are important for the completeness of this project.

Finally, thank you to my family members especially my parents and the special one: Pahrol Bin Mohd Juoi, Mastura Binti Bakar and Siti Nur Fatihah Binti Abd Nasir for their love, moral supports and encouragement in completing this research work.

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Background of Research	1
1.2	Problem Statement	4
1.3	Objectives	5
1.4	Scope of Research	6
1.5	Significance of Research	7

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	8
2.2	Basic Properties of Bauxite	8
	2.2.1 Morphological Study on Bauxite	9
	2.2.2 Geotechnical Study on Bauxite	12
2.3	Mining of Bauxite Deposits	17
2.4	Beneficiation Process	21

2.5	Shipping of Bauxite	22
2.6	Amended Bauxite by Vermicompost and Gypsum	24
2.7	Relationship of Geotechnical and Liquefaction Risk	27
2.8	International Maritime Solid Bulk Cargoes Code	29

CHAPTER 3 METHODOLOGY

3.1	Introdu	ction	30
3.2	Sample	e Preparation	32
	3.2.1	Amended Bauxite	33
3.3	Determ	ination Properties of Materials	34
	3.3.1	Aggregate Stability Test	34
	3.3.2	Particle Size Distribution	35
	3.3.3	Specific Gravity	36
	3.3.4	Moisture Content Test	37
	3.3.5	Flow-Table Test	38
	3.3.6	Scanning Electron Microscopic (SEM-EDX)	43

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Introduction	44
4.2	Sieve Analysis Test	45
4.3	Hydrometer Test	51
4.4	Specific Gravity Test	55
4.5	Aggregate Stability Test	56
4.6	Morphological Properties of Bauxite	59

4.7 Comparison with IMSBC Code	
--------------------------------	--

CHAPTER 5 CONCLUSION

5.1	Conclusion	65
5.2	Suggestions and Future Study	67

REFERENCE

ix

62

68

LISTS OF TABLES

Table No.	Title	Page
2.1	Bauxite Peninsular, Malaysia Peninsular	10
2.2	Known Malaysia Bauxite compared to Specification	10
2.3	Chemical Composition of red mud	12
2.4	Approximate mineralogical compositions of lateritic and karst bauxite	13
2.5	Sieve size analysis of bauxite residue	15
2.6	World bauxite production and reserves	19
2.7	World bauxite resources by region (total world estimate 55– 75 billion tons)	20
2.8	Casualties of ship stability failures related to liquefaction of cargo	23
2.9	Investigation by Australian and Brazilian shippers regarding liquefaction	28
3.1	Tests and Standards for the materials	30
3.2	Quantity of bauxite samples for each testing	32
4.21	Result of sieve analysis for (B-200)	45
4.22	Result of sieve analysis for (B-2800)	46

4.23	Result of sieve analysis for (B-20160)	46
4.24	Result of sieve analysis for (B-280160)	47
4.25	Percentage of fine particles between unamend and amended	50
	Gebeng Bauxite	
4.31	Percentage of B-200 micro particles	51
4.32	Percentage of B-2800 micro particles	52
4.33	Percentage of B-20160 micro particles	52
4.34	Percentage of B-280160 micro particles	53
4.41	Specific gravity of unamend and amended sample.	55
4.51	Summarize of Mean Weight Diameter (mm) and Erodobility	57
	Factor (K)	
4.61	EDX summary on aluminum on all bauxites sample	62
4.71	The IMSBC Code	63
4.72	Comparison table of fine particles content with IMSBC code	63

LIST OF FIGURES

Figure No.	Title	Page
1.1	Map of highlighted Gebeng, Kuantan and Vung Tau, Vietnam	2
1.2	Bauxite sample location	6
2.1	(a) Bauxite differential volume percentage, (b) Bauxite gives	14
	the cumulative vol. percentage of PSD	
2.2	Bauxite Specific Gravity (Li & Rutherford, 1996)	15
2.3	Physical properties of samples	16
2.4	Bauxite mining process	18
2.5	Mineral Processing	22
2.6	X-ray Diffraction (XRD) spectra of residue samples: (B)	24
	unamend bauxite residue; (BG1) addition with gypsum (BG1F2): addition with gypsum and vermicompost	
2.7	Morphological structure and energy dispersive x-ray analysis	25
	spectrum obtained from the material coating macro aggregates	
	(2-1 mm). B: unamend bauxite residue, BG1: addition with	
	gypsum; BG1F2: addition with gypsum and vermicomposting.	
2.8	Morphological structure and energy dispersive x-ray analysis	26
	spectrum obtained from the material coating micro aggregates	
	(2-1 mm). B: unamend bauxite residue, BG1: addition with	
	gypsum; BG1F2: addition with gypsum and vermicomposting	

3.1	Flowchart of Project Methodology	31
3.2	Raw bauxite sample 6.5 kg	33
3.3	Vermicompost (right) and Gypsum (left) at domestic	33
3.4	Le Bissionnais's method	34
3.5	Bauxite sample in the Sieve Shaker	35
3.6	Sieve analysis set for sieve analysis	35
3.7	Hydrometer Test Equipment	36
3.8	Small pycnometer filled with bauxite in the vacuum chamber	37
3.9	Both amended and unamend bauxite being placed in oven at	37
	105 – 110 °C	
3.10	Bauxite being weighted for moisture content test	37
3.11	Showing increase in diameter plotted against moisture content	41
3.12	Apparatus of Flow-Table Test	42
3.13	The SEM (Quanta 450) equipment	43
4.21	Particle size distribution of B-200	48
4.22	Particle size distribution of B-2800	48
4.23	Particle size distribution of B-20160	49
4.24	Particle size distribution of B-280160	49

4.31	Graph of hydrometer test B-200 bauxite	53
4.32	Graph of hydrometer test B-2800 bauxite	54
4.33	Graph of hydrometer test B-20160 bauxite	54
4.41	Tabulation of average specific gravity	56
4.51	Graph of Mean Weight Diameter (mm) vs Sample	58
4.52	Graph of Erodibility (K) vs Sample	58
4.61	Magnification of Quanta 450 on sample B-200	59
4.62	Magnification of Quanta 450 on sample B-2800	60
4.63	Magnification of Quanta 450 on sample B-20160	60
4.64	Magnification of Quanta 450 on sample B-280160	61

LIST OF SYMBOLS

- *c'* Cohesion angle
- *o'* Friction angle
- τ_f Effective stress
- *u* Pore water pressure
- ω Moisture content
- *c'* Cohesion angle
- % Percentage
- *mm* Millimeter
- *m* Meter
- g Gram
- kg Kilogram
- °C Degree Celsius
- μ*m* Micrometer

LIST OF ABBREVIATIONS

Al	Aluminum
ASTM	American Society for Testing and Materials
Fe	Iron
FESEM	Field Emission Scanning Electron Microscope
IMSBC	International Maritime of Solid Bulk Cargoes
LI	Liquidity Index
LL	Liquid Limit
Na	Sodium
0	Oxygen
рН	Potential Hydrogen
PI	Plasticity Index
Ti	Titanium
Si	Silicon
XRF	X-Ray Fluorescence