FORCE-MOMENT INTERACTION DIAGRAM AND STRUCTURAL ANALYSIS OF CONCRETE BRIDGE BOX GIRDER IN FINITE ELEMENT

MUHAMMAD HAZIM BIN MOHD ISA

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our* opinion, this thesis/project* is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

(Supervisor's Signature) Full Name : DR CHENG HOCK TIAN Position : Date : 22/12/2017

(Co-supervisor's Signature) Full Name : Position : Date :

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : MUHAMMAD HAZIM BIN MOHD ISA ID Number : AA13283 Date : 22/12/2017

FORCE-MOMENT INTERACTION DIAGRAM AND STRUCTURAL ANALYSIS OF CONCRETE BRIDGE BOX GIRDER IN FINITE ELEMENT

MUHAMMAD HAZIM BIN MOHD ISA

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JANUARY 2018

This study is especially dedicated to my beloved parents, brother and sisters, my relatives and fellow friends for their continuous support and care throughout my studies.

ACKNOWLEDGEMENTS

My most gratitude to Allah, with the blessing of The Almighty, this research study has successfully been completed. I wish to express my appreciation and gratitude to my supervisor, Dr. Cheng Hock Tian for his guidance, encouragement and support to complete this study. His valuable guidance and advice has been the key to the success of this project. I would like to thank him for the time he spends even though he always busy.

I also would like to thank my parents and my big family for endless support. Without them, there is no way that I could able to finish this final year project. Thank you for support me from financial to mental aspect. Thanks to KK4 for give me an accommodation in my final year.

Finally, I want to acknowledge my friends for their great support during the entire progress to accomplish this research. I am grateful to University Malaysia Pahang that provides me a chance to complete my study. Thanks you very much for sharing knowledge and experience with me.

TABLE OF CONTENT

DEC	LARATION		
TITI	LE PAGE		
ACK	NOWLEDGEMENTS	5	iii
ABS	TRAK		iv
ABS	TRACT		vi
ТАВ	LE OF CONTENT		viii
LIST	TOF TABLES		X
LIST	COF FIGURES		xi
LIST	T OF SYMBOLS		XV
LIST	COF ABBREVIATIO	NS	xvi
СНА	PTER 1	INTRODUCTION	
1.1	Background and Ove	rview	1
1.2	Problem Statement		2
1.3	Objective		2
1.4	Scope of Study		3
1.5	Expected Outcome		3
1.6	Significant Study		3
СНА	PTER 2	LITERATURE REVIEW	
2.1	Introduction		4
2.2	Shape of the Box Gir	der Bridges	5
2.3	Parametric Study of I	Design Variables	8

	2.3.1	Allowable Tensile Stresses at Service Load	8
	2.3.2	Girder Compressive Strength	8
	2.3.3	Deck Thickness	8
2.4	Superstructure Cost		8
	2.4.1	Proposed Procedure to Design the Superstructure at Minimum Cost	9
2.5	Finite	Elements Analysis	9
	2.5.1	Finite Element Analysis Function	10

CHAPTER 3 METHODOLOGY

3.1	Introd	uction	11
3.2	Mode	Information	12
3.3	Prepro	ocessing	14
	3.3.1	Set Code and Units	14
	3.3.2	Defining Element Types	14
	3.3.3	Defining Material	14
	3.3.4	Defining Section	17
	3.3.5	Reinforcing	17
	3.3.6	Defining Beam & Shell Properties	19
	3.3.7	Defining Nodes and Elements	20
	3.3.8	Span Construction	22
	3.3.9	Phase Construction	23
3.4	Soluti	on	24
	3.4.1	Define Analysis Type	24
	3.4.2	Apply Constraints	25
	3.4.3	Sol'n Controls	26
	3.4.4	Apply Loads	27

3.5 Postprocessing

3.5.1	Reaction Forces	30
3.5.2	Deformation	30
3.5.3	Deflection	31
3.5.4	Forces & Moments	32
3.5.5	Code Checking	34

30

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	37
	4.1.1 Determination Of Process Parameters	39
4.2	Random Input Variables	40
	4.2.1 PDF & CDF of Input Random Variable VERTICAL LOAD	40
	4.2.1.1 Vertical Load 1	40
	4.2.1.2 Vertical Load 2	41
	4.2.1.3 Vertical Load 3	42
	4.2.1.4 Vertical Load 4	43
	4.2.1.5 Vertical Load 5	45
	4.2.1.6 Vertical Load 6,7 and 8	45
	4.2.2 PDF & CDF of Input Variable Density	46
	4.2.3 PDF & CDF of Input Random Variable Elastic Modulus	46
	4.2.4 PDF & CDF of Input Random Variable Poisson's Ratio	48
	4.2.5 PDF & CDF of Input Random Variable Temperature	49
4.3	PROBABILISTIC ANALYSIS RESULT	50
	4.3.1 Statistic of the Probabilistic Result	50
	4.3.2 Sample History Plots	52
	4.3.3 Histogram Plots	53

4.3.3.1 Histogram of Input Parameter	54
4.3.3.2 Histogram of Output Parameter	62
4.3.4 Cumulative Distribution Function Plots	64
4.3.4.1 CDF Plots for Input Parameter	64
4.3.4.2 CDF Plots for Output Parameter	73
4.3.5 Sensitivity Plots	74
4.3.6 Linear Correlation Coefficients	76
4.3.7 Spearman Rank Order Correlation Coefficients	78

CHAPTER 5 CONCLUSION & RECOMMENDATION

5.1	Introduction	81
5.2	Conclusion	81
5.3	Recommendation	82
REFERENCES		
APPENDIX A SAMPLE APPENDIX 1		86
APPENDIX B SAMPLE APPENDIX 2		87

LIST OF TABLES

Table 3.1	Material Properties	13
Table 3.2	Section Detail	13
Table 3.3	Nodes with Coordinates	20
Table 3.4	Creating Span	23
Table 4.1	Statistical analysis of various input random variables for probabilistic design	40
Table 4.2	Statistical of Random Input Variables	52
Table 4.3	Statistical of Random Output Variables	52
Table 4.4	Linear Correlation Coefficients between Input Variables	78
Table 4.5	Linear Correlation Coefficients between Input and Output	
	Variables	79
Table 4.6	Spearman Rank Order Correlation Coefficients between Input Variables	80
Table 4.7	Spearman Rank Order Correlation Coefficients between Input and Output Variables	81

LIST OF FIGURES

Figure 2.1	Cross section standard prestressed box girders	6
Figure 2.2	Cross section multiple cells box girders	6
Figure 2.3	Portal Frame	6
Figure 2.4	Arc/Bow	7
Figure 2.5	Suspension/Cable-Stayed	7
Figure 2.6	Beam	7
Figure 2.7	Flow chart for proposed design step, Sami M. Fereig (1994)	9
Figure 3.1	Summary of Research Process	12
Figure 3.2	Girder Box 2D Model Geometry	12
Figure 3.3	Beam Cross Section	13
Figure 3.4	Code and Units	15
Figure 3.5	Define Element Type & Materials	16
Figure 3.6	Define Section	16
Figure 3.7	Reinforcing	17
Figure 3.8	Beam & Shell Properties	18
Figure 3.9	Nodes & Element	20
Figure 3.10	Creating of Model	22
Figure 3.11	Phase Construction	23
Figure 3.12	Type of Analysis	24
Figure 3.13	Apply Constrain	25
Figure 3.14	Sol'n Controls	26
Figure 3.15	Apply Loads	26
Figure 3.16	Solve Current LS	27
Figure 3.17	Plotting Element & Define Pressure	28
Figure 3.18	Plot Deformed Shape	29
Figure 3.19	Deformed Shaped	30
Figure 3.20	Contour Nodal Solution Data	30
Figure 3.21	Contour Plot of Deflection	31
Figure 3.22	Read Result by Load Step Number	31
Figure 3.23	Graph Force and Moment Results	32
Figure 3.24	Axial Force Diagram	32
Figure 3.25	Shear Force Diagram	33
Figure 3.26	Bending Moment Diagram	34

Figure 3.27	Check Model by Eurocode 2	35
Figure 3.28	Graph Concrete Results	35
Figure 3.29	Code Checking Result	36
Figure 4.1	Model Geometry and Finite Element Mesh	38
Figure 4.2	PDF & CDF of Input Random Variable VERTICAL LOAD1	42
Figure 4.3	PDF & CDF of Input Random Variable VERTICAL LOAD2	42
Figure 4.4	PDF & CDF of Input Random Variable VERTICAL LOAD3	43
Figure 4.5	PDF & CDF of Input Random Variable VERTICAL LOAD4	44
Figure 4.6	PDF & CDF of Input Random Variable VERTICAL LOAD5	44
Figure 4.7	PDF & CDF of Input Random Variable VERTICAL LOAD6	45
Figure 4.8	PDF & CDF of Input Random Variable DENSITY	46
Figure 4.9	PDF & CDF of Input Random Variable ELASTIC MODULUS	47
Figure 4.10	PDF & CDF of Input Random Variable POISSON'S RATIO	48
Figure 4.11	PDF & CDF of Input Random Variable TEMPERATURE	49
Figure 4.12	Mean Values History for Output Parameter MAXIMUM DEFLECTION	52
Figure 4.13	Sample Values for Output Parameter MAXIMUM DEFLECTION	53
Figure 4.14	Histogram of Input Variable VERTICAL LOAD1	54
Figure 4.15	Histogram of Input Variable VERTICAL LOAD2	55
Figure 4.16	Histogram of Input Variable VERTICAL LOAD3	56
Figure 4.17	Histogram of Input Variable VERTICAL LOAD4	56
Figure 4.18	Histogram of Input Variable VERTICAL LOAD5	57
Figure 4.19	Histogram of Input Variable VERTICAL LOAD6	58
Figure 4.20	Histogram of Input Variable VERTICAL LOAD7	58
Figure 4.21	Histogram of Input Variable VERTICAL LOAD8	59
Figure 4.22	Histogram of Input Variable DENSITY	60
Figure 4.23	Histogram of Input Variable POISSON	61
Figure 4.24	Histogram of Input Variable TEMP	62
Figure 4.25	Histogram of Output Parameter MAXIMUM DEFLECTION	63
Figure 4.26	Histogram of Input Variable Young Modulus	63
Figure 4.27	CDF of Input Variable VERTICAL LOAD1	65
Figure 4.28	CDF of Input Variable VERTICAL LOAD2	66
Figure 4.29	CDF of Input Variable VERTICAL LOAD3	66
Figure 4.30	CDF of Input Variable VERTICAL LOAD4	67
Figure 4.31	CDF of Input Variable VERTICAL LOAD5	68

Figure 4.32	CDF of Input Variable VERTICAL LOAD6	69
Figure 4.33	CDF of Input Variable VERTICAL LOAD7	70
Figure 4.34	CDF of Input Variable VERTICAL LOAD8	70
Figure 4.35	CDF of Input Variable POISSON	71
Figure 4.36	CDF of Input Variable DENSITY	72
Figure 4.37	CDF of Input Variable TEMPERATURE	72
Figure 4.38	CDF of Maximum Deflection	74
Figure 4.39	Pearson Linear Correlation Sensitivity Plot for MAXIMUM DEFLECTION	75
Figure 4.40	Spearman Rank Order Correlation Sensitivity Plot for MAXIMUM DEFLECTION	75

LIST OF SYMBOLS

d	Outside Diameter
t	Thickness
d/t	Ratio for Local Buckling
Α	Area of section
Ι	Moment of inertia
W_{pl}	Plastic modulus
i	Radius of gyration
Ν	Axial load
V	Shear force
Μ	Moment
I_T	Torsional Constants
γ <i>M</i> 0	Partial factor for resistance of cross-sections whatever the class is
γ <i>M1</i>	Partial factor for resistance of members to instability assessed by member checks
λ	Slenderness value
Ø	Value to determine the reduction factor
X	Reduction factor
Lcr	Buckling Length
Kzy	Interaction factor

LIST OF ABBREVIATIONS

2D	Two Dimensional
CIVIFEM	Civil Finite Element Method
EC2	Eurocode 2
LatBuck	Lateral Buckling
ChckAxis	Check Axis
BMSHPRO	Beam and Shell Properties
CS	Coordinate System
LS	Load Step
DOF	Degree of Freedom
PRES	Pressure
GAUS	Gaussian
DENS	Density
ELASTIC	Elastic modulus
POISON	Poison ratio
LOAD	Point load
TEMP	Temperature
PDF	Probabilistic density function
CDF	Cumulative distribution function
MAXIMUMDEFLECTION /MAX_DEFLECTION	Maximum Deflection