CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study

Gomaa A. M. Ali^{1,2,3,*}, Omar Abed Habeeb⁴, H. Algarni^{5,6}, and Kwok Feng Chong^{1,*}

¹ Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Malaysia ² Chemistry Department, Faculty of Science, Al–Azhar University, Assiut 71524, Egypt

³ Al–Azhar Center of Nanoscience and Applications (ACNA), Al–Azhar University, Assiut 71524, Egypt

⁴ Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Malaysia ⁵

Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia ⁶ Department of Physics, Faculty of Sciences, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia

ABSTRACT

This study presents the electrochemical studies of activated carbon prepared from palm kernel shell (ACPKS), with CaO impregnation. The CaO is obtained from chicken eggshell waste to produce CaO/ACPKS, which shows highly porous honeycomb structure with homogeneous distribution of CaO nanopar-ticles (30–50 nm in size). The prepared materials are evaluated as supercapacitor electrodes by testing their electrochemical characteristics. A high specific capacitance value of 222 F g⁻¹ at 0.025 A g⁻¹ is obtained for CaO/ACPKS, which is around three times higher than that for ACPKS (76 F g⁻¹). In addition, electrochemical impedance data show lower impedance for CaO/ACPKS. Lastly, a practical symmetrical supercapacitor is fabricated by CaO/ACPKS and its performance is discussed.