2018

Paper ID: A230

Polymer-Clay Nanocomposites with Improved Thermal and Physical Properties by Free Radical Polymerization

Marwah N. Mohammed1*, K. Yusoh1, J. H. Haji Shariffuddin1

¹ Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia. *Corresponding author: marwahnoori85@gmail.com

EXTENDED ABSTRACT

A huge interesting to use the Poly(N-vinylcaprolactam) (PNVCL) as thermoresponsive polymer in the biomedical applications, mainly in drug delivery systems. The Poly(N-vinylcaprolactam) (PNVCL) are show a lower critical solution temperature (LCST) as a temperature responsive polymers which ranging from 32 to 34°C in aqueous solutions. In this study, free radical polymerization was used to polymerize the N-vinylcaprolactam (NVCL) with different types of the clay at 68°C. For this purpose, Organo-modified C20, B30 and unmodified sodium montmorillonite clay (MMT) were employed to produce polymer/clay nanocomposite. Commercial grade C20, B30 and (MMT) were added in a range of 1-5 wt %, in wPP to prepare polymer-clay nanocomposites, following the free radical polymerization method. Fourier transform infrared spectroscopy (FTIR) was engaged to evaluate polymer structure before and after the polymerization [1]. Thermogravimetric analysis (TGA) was used to analyse the thermal stability and thermal properties for the polymer-clay nanocomposites. FTIR measurements as shown in Figure 1 confirmed the presence of clay (C20) in the nanocomposite produced in this study. The C-H stretch bond peaks in the range of 2852- 2936 cm⁻¹ correspond to hydroxyl (C-H) group present on the surface of the composite. The band centered at \sim 1622 cm⁻¹ represents the stretch mode of carboxylic group (C=O) [2, 3]. Presence of the above carbonyl group indicates that organoclays are chemically linked to the polymer through hydrogen bonding and thereby forming the polymer/clay nanocomposite. To find the thermal degradation of the materials TGA testing can be use. The temperature was setting from 30 to 800°C, and the measured of the onset temperature on the degradation points 5%, 10% and 50%. The mass residue percentage can be measured on the temperature limits 500°C and 600 °C as shown in Table 1. The temperature at weight loss 5% can be use to select the initial thermal stability, this temperature was ranging from 34 to 71ºC. The non-volatile materials represented the last fraction of the thermal degradation measurement appeared at the temperature 600 °C. The comparison results for the FT-IR and TGA show that the best nanocomposite was found in the case of used 1% C20 as filler.

Fig. 1: FTIR spectra of the Monomer (NVCL), Polymer (PNVCL) and nanocomposite with different percentage of the organoclay C20.

|--|

	Temperatur/ ^o C at mass loss			Residue % at	
Sample	5%	10%	50%	500 ºC	600 ⁰C
PNVCL	53.24	81.01	147.14	1.158	0.425
NVCL+1%(C20)	66.95	93.87	147.80	2.371	0.907
NVCL+2%(C20)	37.54	56.84	141.88	3.056	1.474
NVCL+3%(C20)	42.93	61.88	141.94	2.437	1.604
NVCL+4%(C20)	42.01	60.54	139.08	4.091	2.960
NVCL+5%(C20)	71.18	94.21	144.72	5.838	4.310
NVCL+1%(B30)	60.38	92.52	148.66	2.62	0.618
NVCL+2%(B30)	58.06	86.58	141.57	2.17	0.582
NVCL+3%(B30)	59.49	82.83	143.97	2.95	1.240
NVCL+4%(B30)	59.05	86.08	143.19	4.77	3.113
NVCL+5%(B30)	56.93	82.40	146.16	5.28	3.560
NVCL+1%(MMT)	34.42	46.65	155.65	4.19	0.695

Keywords: Polymer; Clay; Nanocomposite; thermal; physical.

Acknowledgment

The authors would like to thank the Universiti Malaysia Pahang for providing laboratory facilities and financial support under research grant (RDU150398)

References

[1] Yurddaskal M, Celik E. (2018) Effect of halogen-free nanoparticles, *Composite Structures* 183: 381-88.

[2] Haraguchi K, Takada T. (2014 Polymer–Clay Nanocomposite. *Macromolecular Chemistry and Physics* 215: 295-305.

[3] Haraguchi K, Li H-j, Ren H-y, Zhu M. (2010) Modification of nancomposite gels. Macromolecules 43: 9848-53.