SURFACE WATER QUALITY ASSESSEMENT OF THE CHINI RIVER

HUSAM JALAL MEHDAWI

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

(Supervisor's Signature)

Full Name: DR. MIR SUJAUL ISLAMPosition: SENIOR LECTURERDate: 8th JANUARY 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at University Malaysia Pahang or any other institutions.

(Student's Signature)

Full Name : HUSAM JALAL MEHDAWI

ID Number : AA13307

Date : 8th JANUARY 2018

SURFACE WATER QUALITY ASSESSEMENT OF THE CHINI RIVER

HUSAM JALAL MEHDAWI

Thesis submitted in fulfillment of the requirements

For the award of the

Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JAN 2018

ACKNOWLEDGEMENTS

In the name of Allah SWT, most Grateful and most Merciful,

Alhamdulillah, thank to Allah SWT for giving me strength and endurance in finding my thesis. This dissertation would not have been possible without the guidance of several individuals who extended their valuable assistance in preparation and completion of this study.

My sincere gratitude to my supervisor Dr. MIR SUJAUL ISLAM, who had given guidance for my work and came up with some inspiring suggestion, in the meantime, his patience in guidance me and for all his knowledge sharing, advices, enable me to develop an understanding of the subject. I also sincerely thanks to Dr. MIR SUJAUL ISLAM for the time spent proofreading and correcting my many mistakes. It is an honour for me to thanks for everything, sir. Also thank to all the staff that help me in many way and their excellent cooperation especially during preparation and testing sample at laboratory, with their helps and guidance I have accomplished the testing according to the time.

A million thanks to my beloved parents, JALAL NAZMI MEHDAWI & GHADAH ABDULLAH MEHDAWI and my brother OSAMA JALAL MEHDAWI for their understanding, support during my hard time, and also a source of encouragement and inspirational to me.

Lastly, I would like to express my gratitude to all dear friends and classmate especially fellow student of Civil Engineering for their heart whelming in giving idea in many ways, and support during this study. Thank you very much to all. Hopefully this research can be shared and thus provide benefits to the needy.

TABLE OF CONTENT

TITL	E PA	GE	
ACK	NOW	/LEDGEMENTS	ii
ABST	RAC	CT	iii
ABST	RAC	CT	iv
TABI	LE O	F CONTENT	v
LIST	OF 1	ΓABLES	viii
LIST	OF F	FIGURES	ix
1. II	NTR	ODUCTION	1
1.1	Ba	ackground	1
1.2	Pr	oblem statement	2
1.3	O	bjectives	3
1.4	Sc	cope of study	3
1.5	Si	gnificant of study	4
2 L	ITEI	RATURE REVIEW	5
2.1	In	troduction	5
2.2	A	nthropogenic activities and pollution	6
2.3	Ri	iver water pollution	6
2.4	Sc	purces of water pollution	7
2	.4.1	Point source of pollution	7
2	.4.2	Non point source of pollution	8
2.5	W	ater quality classification	8
2.6	Pa	arameter	9
2	.6.1	PH value	9
2	.6.2	Dissolved Oxygen (DO)	10
2	.6.3	Biochemical Oxygen Demand (BOD)	11

	2.6	.4	Chemical Oxygen Demand (COD)	12
	2.6	.5	Total Suspended Solid (TSS)	12
	2.6	.6	Water Temperature	13
	2.6	.7	Ammoniacal Nitrogen (NH3-N)	14
	2.6	.8	Turbidity	15
	2.6	.9	Heavy Metals	16
3	Me	ethod	lology	17
	3.1	Intr	roduction	17
	3.2	Stu	dy area	18
	3.3	Me	thodology flow chart	19
	3.4	Set	up of sampling station	20
	3.5	Stu	dy approaches	20
	3.5	.1	In situ test	20
	3.5	.2	Lab test	21
	3.6	Wa	ter Quality index (WQI)	24
	3.7	Nat	tional Water Quality Standard (NWQS)	25
4	RE	SUL	T AND DISCUSSION	26
	4.1	Intr	oduction	26
	4.2	Phy	vsical parameter	28
	4.2	.1	TSS (first day)	28
	4.2	.2	TSS (second day)	29
	4.2	.3	Turbidity (first day)	30
	4.2	.4	Turbidity (second day)	31
	4.2	.5	Temperature (first day)	32
	4.2	.6	Temperature (second day)	33
	4.2	.7	Electrical Conductivity (first day)	34
	4.2	.8	Electrical Conductivity (second day)	35

4	.3	Che	emical parameters	36	
	4.3.	1	Chemical Oxygen Demand (first day)	36	
	4.3.	.2	Chemical Oxygen Demand (second day)	37	
	4.3.	.3	Biochemical Oxygen Demand (first day)	38	
	4.3.	.4	Biochemical Oxygen Demand (second day)	39	
	4.3.	.5	Ammonical Nitrogen (first day)	40	
	4.3.	6	Ammonical Nitrogen (second day)	41	
	4.3.	7	Dissolved Oxygen (first day)	42	
	4.3.	8	Dissolved Oxygen (second day)	43	
	4.3.	9	pH (first day)	44	
	4.3.	10	pH (second day)	45	
4	4.4	Cor	nparison between the first day and second day of sampling	46	
	4.4.	1	Physical Parameters	46	
	4.4.	2	Chemical Parameters	50	
	4.4.	.3	Heavy metals	55	
	4.4.	.4	Comparison of water quality standard based on WQI	55	
5	CO	NCI	LUSION AND RECOMENDATIONS	57	
5	5.1	Cor	nclusion Error! Bookmark not defin	ied.	
5	5.2	Rec	commendations	58	
	5.2.	1	Campaign to protect the river	58	
	5.2.	.2	Basin protecting strategy	59	
RE	REFERENCES			60	
AP	APPENDIX A 6				
AP	APPENDIX B 64				

LIST OF TABLES

Table 4.1: Heavy metals results	55
Table 4.2 Table 4.2: WQI results of the three stations	56
Table 0.1: comparison of the physical parameters in the first and second day	62
Table 0.2: comparison of the chemical parameters in the first and second day	62
Table 0.3: values of WQI in different stations	63
Table 0.4: classes of parameters based on the NWQS	64
Table 0.5: classes of heavy metals based on NWQS	64
Table 0.6: DOE Water Quality Classification Based On Water Quality Index	65
Table 0.7: Water Classes and Uses	65

LIST OF FIGURES

Figure 3.1: Map of sampling locations	18
Figure 3.2: Methodology Flow Chart	19
Figure 4.1: Map of the stations in Chini River	27
Figure 4.2: TSS concentration results on the 1st day	28
Figure 4.3: TSS concentration results on the 2st day	29
Figure 4.4: Turbidity concentration results on the 1st day	30
Figure 4.5: Turbidity concentration results on the 2st day	31
Figure 4.6: temperature results on the 1st day	32
Figure 4.7: temperature results on the 2st day	33
Figure 4.8: electrical conductivity concentration results on the 1st day	34
Figure 4.9: electrical conductivity concentration results on the 2st day	35
Figure 4.10: COD concentration results on the 1st day	36
Figure 4.11: COD concentration results on the 2st day	37
Figure 4.12: BOD concentration results on the 1st day	38
Figure 4.13: BOD concentration results on the 2st day	39
Figure 4.14: AN concentration results on the 1st day	40
Figure 4.15: AN concentration results on the 2st day	41
Figure 4.16: DO concentration results on the 1st day	42
Figure 4.17: DO concentration results on the 2st day	43
Figure 4.18: pH concentration results on the 1st day	44
Figure 4.19: pH concentration results on the 2st day	45
Figure 4.20: comparison of TSS concentration in the first and second day	46
Figure 4.21: comparison of Turbidity concentration in the first and second day	47
Figure 4.22: comparison of Temperature in the first and second day	48
Figure 4.23: comparison of Electrical Conductivity concentration in the first and sec	ond day
	49
Figure 4.24: comparison of COD concentration in the first and second day	50
Figure 4.25: comparison of BOD concentration in the first and second day	51
Figure 4.26: comparison of AN concentration in the first and second day	52
Figure 4.27: comparison of DO concentration in the first and second day	53
Figure 4.28: comparison of pH concentration in the first and second day	54

Figure 4.29: comparison of water quality standard based on WQI on the first day and the second day of sampling

55