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A B S T R A C  T

The present work investigates the performance of ZnO nanoparticles loaded on multiwall carbon nanotubes for removing of congo red dye from aqueous 
solutions. The prepared nanocomposites are characterized by XRD, TEM, FTIR, FESEM and EDX. The effect of various parameters such as contact time, 
temperature and adsorbent dosage are investigated and discussed. The obtained results show that the optimum adsorption conditions are contact time of 50 
min., 55 °C and dosage of 9 mg. These optimum parameters give a high removal ratio of 99.8%.The adsorption data were well fitted by pseudo-second-order 
model. The obtained results reveal that ZnO/MWCNTs is a promising, environmentally friendly and efficient adsorbent for some wastewater treatment. 
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synthesis of the ZnO/MWCNTs nanocomposites, and characterized by
XRD, TEM, FTIR, FESEM and EDX techniques. The composite perfor-
mance for the adsorption of congo red was studied and the effect of
different parameters including contact time, temperature and adsorbent
dosage on the adsorption performance was investigated in detail.
Adsorption kinetic analysis was carried out to investigate further into
the adsorption process.

2. Experimental procedure

2.1. Materials

Congo red (CR) is a sodium salt of benzidine diazo-bis-1-naphthy-
lamino-4-sulfonic acid. Its chemical structure is shown in Scheme 1 and
it is used as a biological substance and acid-base indicator. The ab-
sorption of CR in aqueous solution (pH=7) takes place at 497 nm
[17,28]. ZnO is a white powder mineral compound and it is found in
nature as zingit Connie which contains an especial amount of manga-
nese and other impurities creating a reddish yellow color. ZnO is a
thermo-chromic crystal that is under the influence of heat its white
color changes into yellow which reversible in cold and exposure to air.
The MWCNTs (average diameter: 20–30 nm, length > 2 μm,
purity > 97%, specific surface area: 160–200m2/g) and nitric acid
were purchased from Sigma (USA).

2.2. Applications

In the study, CR with a molecular mass of 407.979 g/mol was used
to prepare the aqueous solution. In 30mL of CR color solution, various
amounts (1–9mg) of adsorbents were used to study the effect of dosage.
In addition, different contact times and concentrations were studied.
After this, the soluble and adsorbent species were separated from each
other by a nanofilter paper. Adsorption measurements were carried out
by the UV–Vis device at 497 nm. After detected the concentration of CR,
the adsorbed amount (q (mg g−1)) and removal percentage (%) were
calculated using the following equations [24,29,30]:
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where Co, Ce and Ct (mg/L) are the liquid-phase concentrations of CR at
initial, equilibrium and time (t), respectively. V is the volume of the
solution (L) and m is the mass (g) of the adsorbent used. All the ex-
periments were performed in triplicate, and the mean values have been
used in calculations.

2.3. Preparation of ZnO nanoparticles and ZnO/MWCNTs nanocomposites

Isopropanol solvent (32.5mL) and monoethanolamine (1.2 mL)

Scheme 1. Congo red structure.

Fig. 1. XRD pattern (a) and TEM image (b) of MWCNTs.

Fig. 2. XRD pattern (a) FTIR spectrum (b) ZnO nanoparticles.
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were used to dissolve dehydrated zinc oxide (3.012 g). The solution was
heated at 75 °C and rotated magnetically for 1 h to produce a homo-
genous solution. The solution was kept for 24 h at room temperature.
Then the constant and stable solution was heated up slowly to 82 °C and
stirred by a magnetic mixer to vaporize the solution into a homogenous
and viscous gel. After 24 h, the final gel was heated at 550 °C in a
furnace for 2 h. The obtained material was coded as ZnO(D).

For ZnO loading on MWCNTs, MWCNTs were merged in a complex
solution of HCL and HNO3 with 1:1 proportion to remove their im-
purities. Then it is heated in an oven under 50 °C for 12 h. Then 0.1 g of

nanotubes and 0.1 g of ZnO were mixed with 5mL of ethanol and 2mL
of distilled water for 12 h by a powerful mixer, then was kept in ul-
trasonic for 4 h and for 12 h in reflux in 75 °C. The obtained nano-
composite was coded as ZnO(D)/MWCNTs.

In another procedure, dehydrated zinc acetate (0.735 g) and po-
tassium hydroxide (0.369 g) were dissolved in 32mL and 16mL of
methanol, respectively. Then the potassium hydroxide solution was
added to zinc acetate solution dropwise understeering by a powerful
mixer while the temperature of the solution is kept on 60 °C. The so-
lution is left for 2 h. The resultant sediments were mixed with 12.5mL
of methanol and 2.5mL of chloroform. Then the nanoparticles mixed in
chloroform are put in the ultrasonic unit, thereafter the solution was
kept in a nitrogen atmosphere for 12 h and finally transferred into a
drying oven for 3 h. The obtained material was coded as ZnO(AC).
Then, ZnO nanoparticles dissolved in chloroform were kept in the ul-
trasonic unit for 2 h and then 0.1 g of MWCNTs were put in the ultra-
sonic unit. After mixing, the mixture was put in a nitrogen atmosphere
and finally dried for 3 h. The obtained nanocomposite was coded as
ZnO(AC)/MWCNTs.

2.4. Characterizations

Phase structure and crystallinity of were identified by X-ray dif-
fraction (XRD) using PANalytical X'Pert Pro MPD X-ray diffraction with
monochromatic Cu-Kα radiation, tube voltage of 40 kV, tube current of
40mA and scanning range 2θ=10–70°. Transmission electron micro-
scopy (TEM) images were taken on a 100 kV JEOL JEM-1010 micro-
scope operated with AMT image capture engine software. The FTIR
spectra were analyzed using PerkinElmer Spectrum 100 FT-IR spec-
trometer in the range of 4000-400 cm−1. FE-SEM images were collected
using scanning electron microscope (Zeiss EVO MA-10 SEM operating

Fig. 3. FESEM images (a, b) and EDX analyses (c, d) for ZnO(D)/MWCNTs and ZnO(AC)/MWCNTs, respectively.

Fig. 4. Time optimization for CR adsorption on ZnO(D)/MWCNTs and ZnO
(AC)/MWCNTs.
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at 10.0 keV).

3. Results and discussion

3.1. Structural and morphological properties

Fig. 1a shows the phase structures of the MWCNTs. It displays the
strong diffraction peak at 26.4° could be attributed to the disordered (0
0 2) stacking layers and the typical pattern of amorphous carbon, in-
dicating the MWCNTs structure. Another important characterization
method for evaluating the characteristic of MWCNTs is the transmission
electron microscopy (TEM) as shown in Fig. 1b. It evidently shows a
general view of MWCNTs agglomerated and the fibers were tangled.

XRD of ZnO nanoparticles was also analyzed and the pattern of ZnO
(Fig. 2a) indicates the polycrystalline nature of the ZnO nanoparticles
and the peaks were indexed to (100), (002), (101), (110) and (103)
with respect to standard ICDD card no: 36–1451 [31]. The FTIR spec-
trum of ZnO nanoparticles is shown in Fig. 2b and the following peaks
were observed: 493 and 535 cm−1 (Zn-O stretching vibrations),
942 cm−1 (stretching of Zn-OH groups), 1646 and 3466 cm−1

(stretching and bending vibrations of O-H group), 2955 (stretching
modes of C]O) and 3435 cm−1 (O-H stretching vibrations).

The FE-SEM images of ZnO(D)/MWCNTs and ZnO(AC)/MWCNTs
are presented in Fig. 3a and b. The composites demonstrate a good
dispersion of the samples which are entangled one on the other with a
larger exposed surface making the material very suitable for adsorption.
In addition, it revealed that the samples have a uniform distribution of

ZnO nanoparticles of ∼25–45 nm for ZnO(D)/MWCNTs and ∼
35–45 nm for ZnO(AC)/MWCNTs. Furthermore, FESEM shows ZnO
nanoparticles loaded on the surface of MWCNTs to form an evenly
three-dimensional network like nanostructure and the morphology of
both samples are in keeping with that of MWCNTs. By comparison, ZnO
(D)/MWCNTs consists of spherical particles with poor agglomeration
and aggregation takes place during the particle growth process, while
the external surface of the sample ZnO(AC)/MWCNTs has a large
number of particle size with spherical morphology.

The overall characterization results confirmed the formation of a
microcrystalline rough surface morphology on CNTs and the agglom-
eration of the particles was seen in the FE-SEM images. Moreover, ZnO
is well dispersed on the CNTs surface in both samples, although some
aggregated ZnO are still visible while most parts exhibited the forma-
tion of irregular islands in MWCNTs surfaces [19,32]. The particle was
found spherical in shape and surface morphology was found homo-
genous in specific regions. This is because the functional group was
attached by ZnO adding experiment, which increased the number of
attached in the modified surfaces. However, to confirm that quantita-
tive analyses of C, Zn, O and N were performed by EDX for the for ZnO
(D)/MWCNTs and ZnO(AC)/MWCNTs samples and shown in Fig. 3c
and d. The percent of all elements in both samples is confirmed by EDX.
In addition, it was found that ZnO(D)/MWCNTs consists of 96.1% C,
3.0% Zn and 0.8% O. On the other hand, 47.5% Zn, 28.7% C, 21.7% O
and 1.8% N for ZnO(AC)/MWCNTs sample as shown in the insets of
Fig. 3c and d.

3.2. Adsorption properties

3.2.1. Effects of contact time
The adsorption time is one of the most important indexes for the

adsorption performance in wastewater treatment systems because it can
describe the process of adsorption and elucidate the possible adsorption
mechanism of sorption reactions. The effect of contact time on the
adsorption of CR is shown in Fig. 4. Although, the two samples ex-
hibited the adsorption rate was quite fast during the first 10min and
after that became slower gradually, with adsorption equilibria reached
within 50min. Also, the adsorption capacity increases rapidly at the
initial stage for the entire sample and reaches equilibrium quickly. In
addition, ZnO(AC)/MWCNTs has a higher adsorption capacity than
ZnO(D)/MWCNTs.

There is a considerable difference between CR adsorption and var-
ious contact time due to the presence of a large number of active sites
on the surface of ZnO(AC)/MWCNTs at the beginning of adsorption, so
the adsorption rate is faster than ZnO(D)/MWCNTs. The dye molecules
reach the boundary layer then they propagate on the adsorbent surface.
Then, they are distributed in the porous structure of the adsorbent and
this phenomenon becomes longer proportional to time. Finally, all the
active sites are occupied, the adsorption reached equilibrium, and the
adsorption capacity is not changed.

3.2.2. Effect of temperature
The adsorption capacity of ZnO(D)/MWCNTs and ZnO(AC)/

MWCNTs increases from 95.6 to 97.6% with increasing the temperature
from 25 to 55 °C (as shown in Fig. 5), indicating clearly that CR is
adsorbed endothermic on to both adsorbents. Its means, with the in-
crease in temperature, the molecular movement will increase too which
will increase the total energy of adsorbent molecules.

3.2.3. Effect of adsorbent dosage
The dosage of the absorbent is an important and effective factor in

surface adsorption processes and adsorption capacity is determined by
the initial concentration of adsorbent in practical conditions. The effect
of adsorbent dose is shown in Fig. 6. As could be seen, the removal rate
increased from 82.0% to 99.8% when the amount of ZnO(AC)/
MWCNTs increased from 1mg to 9mg. Beyond 9mg as dosage there is

Fig. 5. Temperature optimization for CR adsorption on ZnO(D)/MWCNTs and
ZnO(AC)/MWCNTs.

Fig. 6. Dosage optimization for CR adsorption on ZnO(AC)/MWCNTs.
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no adsorption took place. This development in surface adsorption re-
sults in an increase in adsorbent concentration and an increase in the
number of available and active sites for color ions as shown in Fig. 6.

3.2.4. Adsorption kinetics
For further investigation on the mechanisms of CR adsorbed onto

ZnO(D)/MWCNTs and ZnO(AC)/MWCNTs, the data were fitted to
pseudo-first-order [10,24,33] and pseudo-second-order [29,34,35] can
be written as Eqs. (3) and (4), and the data from both models are shown

Fig. 7. Pseudo-first-order (a, b) and pseudo-second-order (c, d) kinetics for ZnO(D)/MWCNTs and ZnO(AC)/MWCNTs, respectively.

Table 1
Kinetic parameters for the CR adsorption on ZnO(D)/MWCNTs and ZnO(AC)/MWCNTs.

Adsorbent Pseudo-first-order model Pseudo-second-order model

qe (mg g−1) k1 (min−1) R2 qe (mg g−1) k2 (gmg−1min−1) R2

ZnO(D)/MWCNTs 117.25 0.065 0.9143 119.32 0.179 0.9996
ZnO(AC)/MWCNTs 243.03 0.789 0.9423 249.51 0.129 0.9993

Table 2
CR adsorption capacities and removal percentages different adsorbents.

Adsorbent Adsorbate Adsorption capacity (mg g-1) Removal (%) Reference

Coir pith carbon CR 6.70 70.0 [36]
Anilinepropylsilica xerogel CR 22.62 77.4 [37]
Commercial anion exchange membranes (EBTAC) CR 11.01 98.0 [38]
Halloysite-magnetite-based composite CR 80.78 99.3 [39]
Rice husk carbon activated by steam CR – 99.0 [40]
Local natural clay CR 74.62 95.63 [41]
ZnO/MWCNTs CR 249.51 99.8 This work
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in Fig. 7.
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where qe and qt stand for the adsorbed amount of CR at equilibrium and
time t, respectively. k1 and k2 are pseudo-first-order (min−1) and
pseudo-second-order rate constants, respectively. The obtained values
were listed in Table 1. Based on the R2 values pseudo-second-order rate
model was found to be the best fitting of the experimental data [36].
The removal efficiencies of different adsorbents toward CR removal are
compared as listed in Table 2.

4. Conclusion

In the study, congo red dye is omitted from wastewater and aqueous
solutions by adsorption on ZnO/MWCNTs. With the increase of all
different parameters such as the amount of adsorbent, solution tem-
perature, the time the rate of adsorption increased. Contact time of 50
min., temperature of 55 °C and dosage of 9 mg were chosen as the
optimum adsorption conditions. These optimum parameters give a high
removal ratio of 99.8%. The results of the present study revealed that
ZnO/MWCNTs nanocomposite is a good candidate for dyes removal and
wastewater treatments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.physe.2018.10.030.
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