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ABSTRACT 

 

Fast-growing scientific work is focusing on alternative sources to replace modern 

synthetic fibre materials due to the adverse effects caused by petroleum-based materials. 

Natural fibre possesses high potential as a replacement for synthetic fibre and petroleum-

based products. These materials are not only greener and environmental-friendly, but also 

safe for human health. As such, this study investigated the influence of compatibilising 

agent of maleated anhydride polyethylene (MAPE) on mechanical performance of 

pineapple leaf fibre (PALF) reinforced polylactic acid (PLA). The raw materials, such as 

PALF, PLA, and MAPE, were mixed by using a hot roller mixer machine and hot 

compression moulding at 190ºC. The specimens were then tested for water absorption 

and flexibility. The specimens were submerged in water for 0, 7, 14, and 21 days. Three 

types of tests were conducted, namely water absorption, tensile, and flexural assessments. 

The results of water absorption, tensile, and flexural tests for the untreated PALF 

composite (UPALF) and treated PLAF composite (TPALF) were recorded and explained. 

As a conclusion, composite materials based on hydrophilic natural fibre may reduce the 

tensile and flexural properties of the composite. 

 

Keywords: Mechanical properties; pineapple leaf fibre; polylactic acid; water 

absorption; maleated polyethyelene.  

  

INTRODUCTION 
 

Recently, academia, scientists, and researchers have been focusing on natural fibre 

reinforced composite partly to preserve the earth from further pollution due to the use of 

petroleum-based materials. The petroleum-based composite consumes enormous energy 

and causes problems at the end of its life cycle [1]. To date, the viable option to solve the 

problems related to petroleum-based composite is by implementing materials that are 

derived from natural resources. The natural fibre is well-known for its own advantages, 

such as renewability, biodegradability, high availability, high corrosion resistance, 

lightweight, and cost-effectiveness, when compared to synthetic fibre counterparts [2, 3]. 

Nevertheless, the main weaknesses of natural fibre are low thermal resistance and 
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vulnerable to water absorption due to the existence of polar group, which is root for 

hydrophilic nature of natural fibre [3, 4]. Despite that, a number of factors could drive the 

water absorption of natural fibre, such as fibre content, immersion temperature, exposure 

of area to water, void content, fibre orientation, and permeability of fibres [5, 6].  

The marriage of natural fibre with biodegradable matrix bio-polymer results in 

excellent green material that is compatible with the environment. Polylactic acid (PLA), 

which originates from natural source, such as corn and sugar, is a biodegradable polymer 

material that has excellent mechanical properties, such as high strength and modulus [7]. 

It degrades upon exposure to the environment in a short period, which is about two years, 

when compared to petroleum plastics that take an average of 8 years [8, 9]. Previous 

researchers had looked into the natural fibre reinforced PLA composite [10]. For instance, 

bamboo, vetiver grass and coconut fibres were used as reinforcement fibre for the 

composite [8, 11]. Flexible epoxy resins were used for surface treatment on the fibres. 

The epoxy resin with 1 wt.% of reinforcement was dissolved in acetone to reduce the 

viscosity prior to surface treatment process. After the fibres had been treated, they were 

left to dry at room temperature for one whole day. The fibres were prepared in 10, 20, 30, 

and 40% by weight [12]. Many researchers have performed numerous analyses upon the 

PLA with varied natural elements. Nevertheless, the study of pineapple leaf fibre (PALF) 

and PLA is relatively new and limited.  

PALF is a natural fibre that has potential to serve as an alternative to synthetic 

fibre due to its economic and renewable nature. PALF is seen to have superior mechanical 

properties because of its high content of α-cellulose. Furthermore, PALF is suitable to 

serve as reinforcing fibre in composite because of its excellent qualities compared to other 

natural fibres [13, 14]. The PALF, as reinforcement material, has high content of cellulose 

and exhibits outstanding mechanical performance, especially in terms of tensile, flexural, 

and impact, which is desirable for making high quality polymer composite. The PALF 

fibre has an average density of 1530 kg/m3 and tensile strength of approximately 290.61 

MPa [2]. The chemical composition of PALF fibre has about 70%-82% holocellulose, 

5%-12% lignin, and 1.1% ash [15]. Similar to other natural fibre, PALF is also susceptible 

to moisture absorption.  

Surface modification is necessary to overcome the hydrophilic nature of natural 

fibre. Surface modification will eventually reduce water absorption, besides enhancing 

interfacial adhesion of fibre and matrix polymer [8, 16]. Many options for treatment is 

available to perform surface modification on natural fibre, such as alkaline, 

compatibilising agent, permanganate, peroxide, and benzoylation [17, 18]. One favourite 

treatment among researchers is the compatibilising agent of maleic anhydride due to ease 

of processing and cost-effectiveness [19]. The most outstanding compatibilising agents 

are maleated anhydride of polyethylene (MAPE) and maleated anhydride polypropylene.  

However, literature on the performance of PALF reinforced PLA under excessive 

moisture condition is still limited to date especially with influence of compatibilising 

agent which is MAPE. Therefore, this study determined the dimensional stability of 

PALF reinforced PLA composite under the influence of excessive moisture condition. 

Moreover, the behaviour of water penetration into the composite was assessed by looking 

into its diffusivity, sorption coefficient, and permeability coefficient. In addition, the 

investigation was carried out with two different conditions, namely dry and wet 

conditions.  
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METHODOLOGY 

 

Materials 

 

This experiment employed three materials: biopolymer PLA as the matrix, PALF as the 

reinforcement material, and MAPE as the compatibilising agent. NatureWorks, USA 

supplied the thermoplastic biopolymer of PLA (IngeoTM Biopolymer 2003D) used in the 

study. The PLA with pellet shape had a density of 1.24 g/cm3 and melt flow index of 6 

g/min. The PALF was obtained from West Java, Indonesia. The PALF fibre used in this 

study had an exact density of 1.46 g/cm3. Lastly, the MAPE (OREVAC®18302N) was 

obtained from Tazdiq Engineering, Kuala Lumpur. The MAPE pellet had a density of 

0.912 g/cm3 and melt flow index of 1.2 g/10 min. 

 

Fabrication of Composites 

 

In order to prepare the composites, PALF was washed with clean water to remove any 

foreign material or residue on the surface that may affect the bonding strength. After 

washing, the fibres were dried under sunlight to remove the moisture. Then, the PALF 

was ground to acquire sizes that ranged between 2 and 4 mm. The vacuum oven was used 

to dry the PALF at 80 ºC for almost 24 hours. Next, the PALF was sealed in closed 

containers. The PLA, MAPE and untreated PALF (UPALF) / treated PALF (TPALF) 

were mixed based on the formulation described in Table 1.  

 

Table 1. Formulation for PALF reinforced PLA composite 

 

Group name Fibre weight 

content (%) 

Resin weight 

content (%) 

MAPE weight 

content (%) 

UPALF 10 90 0 

TPALF 10 88 2 

 

The mixing process of PALF and PLA was performed by using a roll mixer 

machine at 190 ºC and a constant speed of 50 rpm. Upon completion, the composite 

compound was cooled at room temperature. The process was continued with a different 

type of formulation. Then, the crusher machine was used to turn the PLA-PALF mixture 

into a pellet. After that, the composite pellet was stored in a container for the next process.  

The composite plate with a dimension of 20 cm × 20 cm × 0.3 cm was prepared 

via hot compression moulding. The temperature and pressure used for the compression 

moulding were190 ºC and 15 MPa, respectively. The finished product of PALF reinforced 

PLA composite was cut via table-saw into the dimensions as proposed in ASTM D638 

and ASTM D790. 

 

Water Absorption Analysis 

 

The water absorption testing was conducted according to ASTM D570-98 [20]. Distilled 

water at 25 °C was used in this testing. Five different time periods were set in this 

experiment: 0, 1, 7, 14, and 21 days. The weight of the specimen was measured by using 

a high precision balance based on the period and recorded accordingly. The experiment 

was halted when all the samples attained their saturation points, as they remained constant 
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in weight. Eq. (1) and Eq. (2) were employed to measure the thickness of swelling and 

the rate of water absorption.  

 

% Thickness Swelling = (
t2-t1

t1
)  ×100 

(1) 

 

As depicted in Eq. (1), t1 represents thickness of dry sample and t2 is thickness of wet 

sample at the set time. The percentage of water absorption is presented in Eq. (2).  

 

% Water absorption = (
w2 − w1

w2
) × 100 

        (2) 

 

In Eq. 2, w1 and w2 refer to samples before and after immersion in the distilled 

water at certain period. The diffusivity, permeability coefficient, sorption coefficient, and 

permeability coefficient parameters were determined by using the formula portrayed in 

Eq. (3), Eq. (4), and Eq. (5).  

 

Diffusion coefficient (D)=π (
t2m2

16w∞

) 

 

(3) 

Sorption coefficient (𝑆) =
𝑀∞

𝑀𝑡
 

 

(4) 

Permeability coefficient (P)=D×S 

 

(5) 

 

From Eq. (3), as described above, 𝑡 represents initial thickness of the composite 

in mm, and 𝑚constant is slope of initial linear portion of 
wt

w∞
versus √t . The𝑤∞is weight 

percentage of the sample at an infinite time. Besides, M∞ denotes percentage of mass at 

infinite time, while Mt is mass sample at initial time. The experimental data of the PALF 

composite were fitted in Eq. (6).  

 

log (
𝑤𝑡

𝑤∞
)=log m + n log t      (6) 

 

In Eq. (6), n is indication for diffusion mechanism. In the case of n=0.5, the 

diffusion is Fickian. In the case of non-Fickian or anomalous diffusion, the value of n is 

between 0.5 and 1.  

 

Tensile Test 

 

The tensile test on the PALF composite was carried out by adhering to ASTM 638 type 

4 [21]. The PALF composite had an overall length of 115 mm and thickness of 3 mm. 

The tensile testing was conducted by using a Universal Testing Machine (UTM) (Model 

3369, Instron, Norwood, MA). The crosshead speed for the tensile test was 1mm/min. A 

total of seven specimens were prepared for the test. The data retrieved from PALF 

composite analysis were calculated to obtain the average for each group of specimens.  
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Flexural Test 

 

The flexural test in this experiment was performed by adhering to ASTM D790 [22]. The 

UTM machine employed for tensile testing was used with minor adjustment. The 

crosshead speed was fixed at 2mm/ min. The support span of the sample was set up with 

a ratio of 1:16. A 30 kN load was used. The flexural test was repeated for seven times. 

The values of the flexural strength and modulus were analysed to acquire their averages.  

 

Analysis of Surface Fracture 

 

The fracture sample of tensile testing was carried out for the study of surface morphology 

via SEM (Evo® 50 Series, Carl Zeiss AG, Oberkochen, Germany). Before that, the 

sample was sputtered with titanium for about 10 minutes to ensure electric charging 

during the examination.  

 

RESULTS AND DISCUSSION 

 

Water Absorption on PALF/PLA Composites 

 

The specimen underwent a process of water absorption by submerging the sample into 

water for the following days: 0, 1, 7, 14, and 21 days. Each test consisted of 7 specimens. 

The effect of water absorption was determined from four different physical properties of 

a specimen, such as its weight, thickness, width and length. The measurements of width, 

length and thickness on UPALF and TPALF composites for 0, 1, 7, 14, and 21 immersion 

days are recorded in Tables 2 and 3, respectively.  

 

Table 2. Change in dimension and weight of UPALF composites. 

 

Day 

Average change of dimension 

Width 

(mm) 

Dimensional 

increase (%) 

Length 

(mm) 

Dimensional 

increase (%) 

Thickness 

(mm) 

Thickness 

swelling 

(%)  

Weight 

(g) 

Water 

absorption 

(%) 

0 12.86 - 127.25 - 2.45 - 4.90 - 

1 12.88 0.15 127.52 0.21 2.52 2.86 5.29 7.96 

7 12.89 0.23 127.62 0.29 2.69 9.80 5.66 15.51 

14 12.94 0.62 127.76 0.40 2.72 11.02 5.84 19.18 

21 13.00 1.09 127.77 0.40 2.73 11.43 5.84 19.18 

 

Table 3. Change in dimension and weight of TPALF composites. 

 

Day 

Average change of dimension  

Width 

(mm) 

Dimensional 

increase (%) 

Length 

(mm) 

Dimensional 

increase (%) 

Thickness 

(mm) 

Thickness 

swelling 

(%)  

Weight 

(g) 

Water 

absorption 

(%) 

0 13.00 - 127.37 - 2.72 - 5.26 - 

1 13.03 0.23 127.44 0.06 2.74 0.74 5.27 2.92 

7 13.19 1.46 127.46 0.07 2.82 3.68 5.43 6.05 

14 13.22 1.69 127.63 0.20 2.84 4.41 5.50 7.42 

21 13.24 1.85 127.63 0.20 2.84 4.41 5.50 7.42 

 

The dimensions for UPALF and TPALF composites can be compared from Tables 

1 and 2. The length and width of both UPALF and TPALF composites had no significant 
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changes. However, analysis on thickness swelling present that the TPALF composites 

have more dimensional stability compared UPALF composite. 

The water absorption result also presents that TPALF has better resistance in 

water absorption compared to UPALF composites. The results for 21-day immersion 

show that TPALF composites have 7.42% of water absorption compared to UPALF 

composites which result in 19.18%. Although TPALF composites show an enhancement 

in water absorption, the result is still higher compared with the previous study. The 

finding from Espert et al. (2004) presented that the composites consisted of 10% of 

combination cellulose fibre (sisal, coir and luffa sponge) reinforced polypropylene (PP) 

which had 6% of water absorption for 21-day immersion [23]. It is due to the water 

absorption in natural fibre composites being highly influenced by the type of polymer 

matrix, form of reinforcement material and different water parameter (acidity or water 

condition, and temperature) [24].  

Figure 1 shows that the UPALF and the TPALF composites recorded 11% and 

4% thickness of swelling. The thickness of swelling had a similar pattern with water 

absorption. Figure 1 indicates that the thickness swelling of PALF/PLA composites 

increases with longer immersion time. The water absorption affects the dimensional 

stability by a build-up of moisture in fibre cell wall, which causes the swelling of the fibre 

[13, 25]. Other factors that contribute to the high thickness swelling of PALF composite 

are the high content of lignocellulosic material and the capillary action [25]. Both factors 

seem to promote water intake on the composite material when soaked in distilled water. 

The dimensions of the specimen also alter due to the nature of PALF. The change in 

physical properties may affect the performance of PALF composite in tensile and flexural 

testing. However, the introduction of MAPE reduces the thickness of swelling for UPALF 

by 61%.  

 
 

Figure 1. Water absorption of UPALF and TPALF against the square root of time. 

 

Figure 2 illustrates the water absorption characteristics of UPALF and TPALF 

composites. The UPALF composite yielded about 19% percentage of water absorption, 

while the TPALF yielded about 7%, which is lower when compared to UPALF composite 

by 56.7%. Both UPALF and TPALF composites absorbed a significant amount of water 

in the early stage of immersion, but the absorption turned slow after hitting saturation 

point. Danladi and Shu’aib (2014) [26] who investigated PALF with HDPE composite 

also revealed similar finding and suggested that the high absorption of water by PALF 

was motivated by its rich cellulose content [27]. 
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The surface modification via MAPE had successfully reduced the moisture 

absorption of the composite. This finding displays agreement with a prior work that 

utilised the MAPE [28]. The TPALF fibre might absorb less moisture that directly 

improved its adhesion to the polymer matrix. MAPE generated bonding between PALF 

and matrix polymer, thus resulting in a change in its mechanical performance and the 

minimised sensitivity towards water.  

 

 
 

Figure 2. Water absorption of UPALF and TPALF against the square root of time. 

 

 
 

Figure 3. Curve fitting for diffusion kinetic for determining value ‘m’ and ‘n’ for 

UPALF and TPALF 

 

The value of ‘m’ for UPALF and TPALF were recorded to be around 0.00920 and 

0.00538, respectively. Meanwhile, the values of ‘n’ for UPALF and TPALF were 0.67 

and 0.71. The values of ‘n’ indicated that both composites experienced non-Fickian (0.5< 

‘n’ <1) diffusion. In the case of non-Fickian, the diffusion and relaxation are almost 

identical. Therefore, the trend of water absorption seem to never reach the equilibrium 
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[29]. The non-Fickian behaviour could be inherited from the existence of the micro crack 

on the surface and inside the PALF composite encourage the water transport mechanism 

becoming more active [30]. 

The values for all sorption coefficient, diffusion coefficient, and permeability 

coefficient are summarised in Table 4. The TPALF composite had the lowest sorption 

coefficient, when compared to that of the UPALF. The diffusion coefficient obtained on 

the experiment are in agreement as obtained by the researchers on the other polymer fibre 

reinforced composite [31, 32]. Table 3 shows that the TPALF composite has the lowest 

sorption coefficient, when compared to that of UPALF. This verifies that the TPALF 

composite displays better adhesion between fibres and matrix than that of UPALF fibre. 

However, the diffusion coefficient and the permeability coefficient of TPALF composite 

are significantly better. The value of sorption coefficient highly depends on the fraction 

of the PALF content, as well as the void content on the composite sample. 

 

Table 4. Change in dimension and weight of TPALF composites. 

 

 UPALF TPALF 

Sorption coefficient, S 1.191 1.046 

Diffusion coefficient, D (mm2/s) 2.72× 10-07 7.64× 10-07 

Permeability coefficient, P (mm2/s) 3.24× 10-07 7.99× 10-07 

 

Tensile Strength of PALF/PLA Composites 

 

The results of tensile strength and tensile modulus for UPALF and TPALF composites 

are presented in Figures 4 and 5, respectively. Tensile strength and tensile modulus for 

the UPALF composite before being immersed into water at room temperature were 

recorded at 35.6 MPa and 1.854 GPa. The value of UPALF obtained on the experiment 

are more significant compared to the result obtained by Munawar et al. (2015) [32] on 

different types of PALF (Moris Gajah, Jasopine, Maspine, and N36) reinforced PLA even 

though they possess similar fibre loading.  

Figure 4 shows that the tensile strength of UPALF decreased drastically by about 

52% when immersed on the first day. After 21 days, the UPALF composite lost about 

81.9% from the original value. The UPALF also became stiffer when immersed into water 

for an extended period. The value of Young modulus for UPALF had dropped by about 

49% at the end of the immersion time. The tensile properties of TPALF composite also 

deteriorated when exposed to water. The reduction in tensile performance when exposed 

to excessive water absorption are similar and common in many cases as shown by 

previous research work [33]. Nonetheless, the percentage drop of the tensile performance 

depended on many factors. As highlighted by Rashidi et al. (2009) [34], the composite 

with fibre reinforced containing higher cellulose suffered most on the mechanical 

performance due to the higher percentage of moisture uptake. Nonetheless, the volume 

fraction of PALF utilised on the study is slightly equal for both cases of UPALF and 

TPALF. The difference between the UPALF and TPALF composite could be inherited 

from the interfacial adhesion of PALF and PLA. When exposed to water, the interfacial 

between PALF and PLA weakened, which led to more degradation of the composite 

sample [6]. The water that penetrated into the composite disrupted the fibre-matrix 

bonding [35]. As a result of the addition of MAPE, the effect of water absorption on the 

TPALF composite was minimum than that of the UPLAF composite. The tensile strength 

of TPLAF composite only dropped by about 50% on the first day, reaching 73% after 21 
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days. The highest loss of tensile modulus of TPALF composite after 21 days was about 

30.95%.  

 

 
 

Figure 4. Tensile strength of UPALF and TPALF composites under the influence of 

water absorption. 

 

 
 

Figure 5. Tensile modulus of UPALF and TPALF composites under the influence of 

water absorption. 

 

The TPALF recovered the losses in tensile performance, which suggests 

enhancement of effectiveness with the addition of MAPE. Without MAPE, the PALF 

composite would be vigorously attacked by water absorption, thus becoming a weaker 

material.  

 

Flexural Strength of PALF/PLA Composites 

 

Figures 6 and 7 show the results obtained from flexural testing for UPALF and TPALF 

composites. Figure 6 presents that the UPALF composite had a flexural stress value at 

about 46.66 MPa, while for TPALF composite the value was 75.27 MPa. Besides, the 

flexural modulus for UPALF was about 2.63 GPa. After being immersed in distilled water 
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for 1, 7, 14, and 21 days, the value of the flexural strength seemed to have decreased. The 

UPALF loss was only about 5% of the original strength after a day of immersion and the 

loss continued up to 38% at the end of the immersion time. The highest flexural strength 

obtained was 75.27 MPa, while the flexural modulus was about 3.45 GPa. Therefore, the 

alkaline treatment did improve the UPALF composite by about 60% and 31% for flexural 

strength and flexural modulus, respectively. The TPALF composite dropped by about 3% 

and continued to decrease until 29% from the original strength after 21 days of immersion 

time. A similar pattern of decreasing flexural strength and flexural modulus was also 

observed for flexural modulus.  

 

 
 

Figure 6. Flexural strength of UPALF and TPALF composite under the influence of 

water absorption 

 

 
 

Figure 7. Flexural modulus of UPALF and TPALF composite under the influence of 

water absorption. 

 

PLA is relatively unstable when exposed to high moisture environment, thus 

influenced by immersion time and temperature. As a result, water absorption causes 
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rigidity loss. The drop in the flexural and flexural modulus is due to the water molecules 

that rapidly enter the composite as a result of capillary action. As a consequence, the 

bonding between the fibre and the matrix is weakened at the initial stage. After reaching 

the saturation point, the crack and the void on the composite were filled with water that 

acts as plasticiser, and it can be in favour of tensile strength. The reason for TPALF 

composite to have higher flexural strength and modulus than UPALF composite is due to 

the presence of void on the composite interface eliminated by MAPE. The roles of MAPE 

on flexural properties are similar to those in tensile properties. MAPE improves flexural 

properties by limiting water absorption and improving the interfacial adhesion on PALF 

and PLA [6].  

 

Surface Morphology of PALF Composite 

 

Figure 8 shows the surface morphology fracture sample obtained from tensile testing 

performed upon UPALF and TPALF composites. Figure 8 shows that no fibre pull-out 

was found on the composite surface, which indicated the strong bonding and interfacial 

adhesion between PALF and PLA composite. Nevertheless, as shown in Figures 8(a) and 

8(b), the void content on the surface is observed. Void in the composite is highly related 

to both mechanical performance and absorption capability. Therefore, the composite with 

less void volume usually exerts good mechanical performance and high resistance for 

water absorption [35]. As illustrated in Figure 8(a), the size of a void in the UPALF is 

bigger than that in the TPALF composite. The more significant appearance of a void in 

the UPALF reduced its tensile performance and flexibility. Therefore, MAPE treatment 

on the composite was able to minimise the void in terms of volume and size. The existence 

of void is due to the entrapped air and moisture inside the fibre bundle of PALF. As higher 

volume of air or moisture is trapped inside the composite, the composite will display poor 

mechanical performance. The images of sample fracture for both UPALF and TPALF 

appeared to be consistent with the results of tensile and flexural performance.  

 

 
(a) 

Void content 
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(b) 

 

Figure 8. Fracture image for PALF reinforced PLA: (a) UPALF (b) TPALF. 

 

CONCLUSION 

 

This study was performed by combining agricultural residue that consists of PALF and 

biopolymer of PLA. The exploitation of PALF and PLA opened a new type of bio 

composite that is harmless to the environment throughout its life cycle, from production, 

usage, and disposal. Generally, the PALF reinforced PLA is susceptible when exposed to 

the outdoor condition especially in excessive water due to the biodegradable properties 

of the PLA polymer. In the experiment, the influence of water absorption on the 

dimensional stability and mechanical performance was discovered. Moreover, the effect 

of compatibilising agent of MAPE was studied and compared to the untreated PALF 

reinforced PLA. Several key results were obtained: 

i. Low water absorption and changes in dimension had been recorded for the TPALF 

composite compared to the UPALF. Both specimens follow the non-Fickian 

behavior. 

ii. The tensile properties of UPALF and TPALF deteriorate when immersed in 

distilled water for a short period. 

iii. From the flexural testing, degradation of bonding between PLAF and PLA is the 

main reason for the drop in flexural performance. 

iv. The utilisation of MAPE successfully improved the tensile and flexural 

performance of the PALF reinforced PLA composite about 27.83% and 84.5% on 

the 21st day.  

v. SEM observation indicated that the size and distribution of the void content are 

minimised when MAPE was introduced to the PALF reinforced composite. 

Elimination of void content reduced the water penetrated via the capillary action.  

The finding can be summarised that MAPE successfully provides resistance to the 

water by promoting good adhesion between PALF and PLA composite. Future work 

should focus on other types of chemical treatment to reduce water absorption in PALF. 
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