

Paper ID: A363

High Conductivity of Novel Ti_{0.9}Ir_{0.1}O₂ Support for Pt as a Promising Catalyst for Low-Temperature Fuel Cell Applications

Tai Thien Huynh^{1,2}, At Van Nguyen², Vi Thuy Thi Phan², Hau Quoc Pham², Trinh Duy Nguyen³, Dai-Viet N. Vo⁴, Van Thi Thanh Ho^{*1} ¹Hochiminh City University of Natural Resources and Environment (HCMUNRE), Vietnam ²Ho Chi Minh City University of Technology (HCMUT), Vietnam ³NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam ⁴Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

*Corresponding author: httvan@hcmunre.edu.vn

EXTENDED ABSTRACT

The demand of robust and efficient catalyst for low temperature fuel cells has emerged in recent years to replace unstable commercial Pt/C catalyst. Here, Novel nanostructured $Ti_{0.9}Ir_{0.1}O_2$ was synthesized and utilized as a catalyst support for Pt. The novel $Ti_{0.9}Ir_{0.1}O_2$ support is synthesized by a facile synthetic route via low-temperature hydrothermal process with once step without using any surfactant and/or stabilizer as well as further heating treatment after preparation. Interestingly, $Ti_{0.9}Ir_{0.1}O_2$ being mainly of anatase phase possessed a uniform morphology of spherical nanoparticles with nanoparticle size of 10-20 nm. More importantly, the $Ti_{0.9}Ir_{0.1}O_2$ support with low content of Ir doped into the TiO₂, however, it possesses very good conductivity (1.6 10^{-2} S/cm) that enhance 10^{5} times compared to undoped TiO_2 (10⁻⁷ S/cm) and also much higher than that of the conductivity value of non-carbon support of previous work. The small Pt particle sizes over $Ti_{0.9}Ir_{0.1}O_2$ support was homogeneously found to be 3-4nm could be resulted from the intrinsic strong support interaction with Pt and high crystallinity and conductivity of support. As a result, the cyclic voltammogram indicated that $Pt/Ti_{0.9}Ir_{0.1}O_2$ exhibited high electrochemically specific surface area (ECSA) of 78.91 m²g⁻¹Pt, which was much higher than that of commercial Pt/C catalyst (49.09 m².g⁻¹Pt). These results indicate that the $Pt/Ti_{0.9}Ir_{0.1}O_2$ catalyst with extremely low content of iridium in $Ti_{0.9}Ir_{0.1}O_2$ but it possesses the good properties of catalyst that could be used as a novel catalyst for fuel cell application that can be enhance the activity and stability of traditional Pt/C catalyst.

Keywords: Ti_{0.9}Ir_{0.1}O₂, Iridium doped TiO₂, non-carbon catalyst supports.