An investigation on the abnormal trend of the conductivity properties of CMC/PVA-

doped NH4Cl-based solid biopolymer electrolyte system

N. F. Mazuki¹ • A. F. Fuzlin¹ • M. A. Saadiah^{1,2} • A. S. Samsudin¹

¹Ionic Materials Team, Advanced Materials, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

²Department of Chemistry, Centre for Foundation Studies, International Islamic University Malaysia, 26300 Gambang, Pahang, Malaysia

ABSTRACT

The present work was carried out to investigate the abnormal trend of electrochemical properties of solid biopolymer electrolytes (SBEs) system-based carboxymethyl cellulose (CMC) blended with polyvinyl alcohol (PVA)-doped NH₄Cl. The SBEs system was prepared via solution casting technique and analyzed through Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and electrical impedance spectroscopy (EIS). Complexation was observed with the changes of peaks at 1065 cm⁻¹, 1598 cm⁻¹, 2912 cm⁻¹, and 3396 cm⁻¹ that corresponds to C–O–C, C=O of COO⁻ stretching, C–H stretching, and O–H stretching, respectively, of CMC/PVA blend system upon the addition of NH₄Cl. The decrease of the amorphousness and the increase of weight loss demonstrated the abnormal observation of the ionic conductivity when (1–5 wt%) NH₄Cl was added in the SBEs system which was lower than the un-doped SBEs system. It was also observed that the highest ionic conductivity at 8.86×10^{-5} Scm⁻¹ was achieved by the sample containing 6 wt% of NH₄Cl. The temperature dependence of the SBEs system is found to be governed by the Arrhenius rule. Through the IR deconvolution technique, the conductivity of CMC/PVA-NH₄Cl SBEs system was shown to be primarily influenced by the ionic mobility and diffusion coefficient of the ions.

Keywords Solid biopolymer electrolytes (SBEs) · Abnormal conductivity · Thermal stability · Amorphous phase