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ABSTRACT This paper introduces a new single-agent metaheuristic optimization algorithm, named
single-agent finite impulse response optimizer (SAFIRO). This proposed algorithm is inspired by the
estimation ability of the ultimate iterative unbiased finite impulse response (UFIR) filter. The UFIR filter is
one of the variants of the finite impulse response (FIR) filter, whereby in state space models, the FIR filter
can be used as an option other than the Kalman filter (KF) for state estimation. Unlike the KF, the UFIR filter
does not require any noise covariance, error covariance, and initial condition to calculate the state estimate.
The UFIR filter also provides an iterative Kalman-like form to improve the estimation process. In the
SAFIRO algorithm, the agent works as an individual UFIR to find an optimal or a near-optimal solution,
where the agent needs to perform two main tasks; measurement and estimation. The performance of the
SAFIRO algorithm is evaluated using the CEC 2014 Benchmark Test Suite for single-objective optimization
and statistically compared with the several well-known metaheuristic optimization algorithms, such as
Particle Swarm Optimization algorithm, Genetic Algorithm, and Grey Wolf Optimization algorithm. The
experimental results show that the proposed SAFIRO algorithm is able to converge to the optimal and the
near-optimal solutions, and significantly outperform all the aforementioned state-of-the-art metaheuristic
algorithms.

INDEX TERMS Optimization, metaheuristics, single-agent, FIR, local search neighbourhood.

I. INTRODUCTION
Optimization is seen in many fields such as engineering,
social science, economics, and business. It is a process of
achieving an optimal solution to the problem. The optimal
solution can be either a minimum or a maximum solution.
In general, optimization methods can be divided into exact
methods and approximate methods [1]. The exact methods
may not be suitable for some complex optimization problems.
Thus, approximatemethods are the other option to solve these
problems. Approximation algorithms and heuristic algo-
rithms are subcomponents of approximatemethods. Heuristic
algorithms can be further classified into two classes: problem-
specific heuristics and metaheuristics [1]. Problem-specific
heuristics are problems-dependent algorithms whereas meta-
heuristics are more general algorithms and can be used to
solve various types of optimization problems with minimum
modification.

Metaheuristic algorithms have gained huge popularity and
attracted researcher’s attention because of its flexibility and
ability in solving large scale and variety of optimization prob-
lems [2], [3]. These algorithms have iterative and stochastic
behaviour. Some literature classified the metaheuristic algo-
rithms into two categories based on the number of agents:
single-agent and multi-agent [4]–[6].

Single-agent metaheuristics are more exploitation oriented
which intensify the search in local regions, whereas multi-
agent metaheuristics are more exploration oriented which
allow diversification in the whole search space [5].

In single-agent (also known as trajectory-based) meta-
heuristics, the search for an optimal or near-optimal solution
starts with a single initial solution by an agent. Then, this
agent moves away from the initial and creates a search path in
the search space [5]. A single solution is updated iteratively
until a stopping condition is met. The prominent examples of
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single-agent metaheuristic algorithms are shown in Table 1.
Tabu Search (TS) algorithm [7], [8] introduced by Glover
in 1986 depends on searching neighbouring solutions and
local memory. Vortex Search (VS) algorithm [9] and Mean-
VarianceMapping Optimization (MVMO) algorithm [10] are
examples of modern single-agent metaheuristic algorithms.
VS algorithm developed by Dogan and Olmez in 2013 is
inspired by the vortex flow of stirred fluids where the agent
uses an adaptive step size adjustment scheme as its search
behaviour.

Different from single-agent, multi-agent metaheuristics
employ a set of agents to search an optimal or a near-
optimal solution at each stage [5]. Basically, the process in
multi-agent algorithms starts with the initialization of the
population. Then, the solutions of this initial population are
evaluated. After that, the new population of candidate solu-
tions are iteratively generated to replace the current popula-
tion where these solutions will also be evaluated before the
search process begins. The iteration stops once the stopping
criterion is satisfied [1]. A few of familiar multi-agent meta-
heuristic algorithms are as listed in Table 1. Particle Swarm
Optimizer (PSO) algorithm [11], [12] pioneered by Eberhart
and Kennedy in 1995 mimics the behaviour of organisms,
such as bird flocking. Genetic Algorithm (GA) [13], [14]
developed by Holland in 1975, is inspired by the biological
evolution theory, which consists of selection, crossover, and
mutation steps. Grey Wolf Optimizer (GWO) [15] created by
Mirjalili et al. in 2013 is inspired by the leadership hierarchy
and hunting style of grey wolves.

TABLE 1. Metaheuristic classification and examples.

From another perspective, Fister et al. [16] classified meta-
heuristic algorithms into four source of inspiration which
are bio-inspired swarm intelligence (SI) based, bio-inspired
non-SI based, physics or chemistry-based, and non-nature
inspired based. Examples of the algorithms for these cate-
gories are shown in Table 1.Most of the proposedmetaheuris-
tic algorithms in the literature are nature-inspired [6], [17].
Grasshopper Optimization Algorithm (GOA) [18] and
Kidney Algorithm (KA) [19] are among new algorithms
that are categorized as bio-inspired algorithm as they are
inspired by the behaviour of grasshopper and kidney pro-

cess in the human body, respectively. Electromagnetic Field
Optimization (EFO) algorithm [20] and Ideal Gas Molec-
ular Movement (IGMM) algorithm [21] on the other hand
are categorized as physics or chemistry-inspired algorithms
because they are inspired by the behaviour of electromag-
nets attraction-repulsion force and movement-collision of gas
molecules, respectively.

The non-nature inspired algorithms are not very popular
and lacking in number compared to nature-inspired algo-
rithms. Hence, it is always interesting and beneficial to dis-
cover the source of inspiration by looking away from nature.
As stated by Wolpert and Macready in [22], there is no
optimization algorithm that is better than other algorithms
in solving all optimization problems. Thus, there is room
for exploring and developing new and effective optimization
algorithms for solving several types of problems. However,
the challenge in this field is how to get a good source of
inspiration from the existing knowledge either to improve the
existing algorithms or develop a new algorithm [20].

The aim of applying metaheuristic algorithm is to estimate
a near-optimal solution for an optimization problem. In some
cases, the metaheuristic algorithm is capable to estimate
an optimal solution. This estimation is done by an agent
during solution search process. In metaheuristic algorithm,
the agent is a problem solver or also known as an optimizer
that is responsible to find and estimate an optimal or a near-
optimal solution. This condition is identical to the concept
of estimation in state space model, whereby the estimator is
used to optimally estimate the state. Hence, the inspirational
source can also be triggered by the concept of estimation in
state space model. In state space models, there are two types
of estimators for state estimation: infinite impulse response
(IIR) filter including Kalman filter (KF) and finite impulse
response (FIR) filter [23]. Both are used as state estimator and
employ the mathematical state space model of the system and
state measurements to estimate the state.

KF estimator is able to give an optimal estimation in an
ideal situation where the noise covariance, the error covari-
ance and the initial value are known and need to be traced
starting from the zero-time index. Without this information,
KFmay produce error where this error will project to the next
time index of estimation process due to its infinite impulse
response structure. If this happens, KF will be unable to give
the best estimation for this particular situation. As an option,
FIR filter is used to estimate the state with its finite impulse
response structure and is capable to give an acceptable of a
near-optimal estimation for the state. Although FIR filter can
only provide a near-optimal and not an optimal estimation,
this filter is preferred compared to KF due to its robustness
and stability in its structures [36], [37]. FIR structural sta-
bility attracts researchers to explore, modify and improve
its structures over time. Since its introduction, many FIR
variants have emerged. One of these variants is the ultimate
iterative unbiased finite impulse response (UFIR) filter. This
UFIR filter has advantages over its previous basic structure.
Besides completely ignores noise statistics, error covariance
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FIGURE 1. The estimation process of UFIR filter for the first true estimation (by assuming N = 5).

and initial value to calculate the state estimate, UFIR filter
also comes with fast iterative Kalman-like in a simpler form
to improve the estimation process which can universally be
used for systems with or without the control inputs [38], [39].

Therefore, in this paper, a new metaheuristic optimiza-
tion algorithm inspired by the estimation ability of UFIR
filter, called Single-agent Finite Impulse Response Optimizer
(SAFIRO) is proposed. The SAFIRO algorithm works with
only one agent to find the best solution in solving a numerical
optimization problem. Experimental results show that the
proposed SAFIRO algorithm managed to significantly out-
perform PSO algorithm, GA algorithm, and GWO algorithm.

This paper is arranged as follows: after the introduction,
section II introduces the FIR and UFIR filter, whereas the
proposed SAFIRO algorithm is presented in section III. Next,
section IV explains the experimental procedure done to eval-
uate the performance of SAFIRO, followed by results and
discussion in section V. Section VI concludes the paper and
finally, section V exposes the future works.

II. FINITE IMPULSE RESPONSE FILTER
Estimation problems for numerous engineering application
can be represented in state space with general Discrete Time-
Invariant (DTI) linear model [40], as shown in (1) and (2)

xn = Axn−1 + Bwn (1)

yn = Cxn + Dvn (2)

where n is the discrete time index; J is the number of the state;
xn is the J × 1 system state vector (representing the system’s
variables of interest such as position, velocity or accelera-
tion); yn is the M × 1 measurement vector (represents mea-
surement observation); A is the J × J state transition matrix
(that projects the previous state, xn−1 to the present state, xn);
C is the M × J measurement transition matrix (that projects
themeasurements onto the state vector variables);wn is a J×1
system noise vector; vn is aM×1 measurement noise vector;
B is the J × J process noise matrix; and D is the M × M
measurement noise matrix.

As aforementioned, FIR filter and KF are generally con-
sidered as two different types of state estimators. FIR filter
is proposed by Jazwinski in 1968 as another option to KF
whereby FIR filter has finite impulse response structure,
to provide better robustness and stability. The idea in FIR
filter is to estimate the state vector based on a finite number
of recent measurement [41], [42]. In contrast to KF, FIR
filter does not require the initial condition and noise statistics.
Unlike KF that projects an estimation from one point to
another, FIR filter uses a finite number of inputs on the most
recent time interval called as the horizon length, N . The
accuracy of UFIR depends on the average of N , which must
be optimal [43].

FIR filter has been improved significantly from its basic
principle. For example, a receding horizon FIR filter was
composed by Ahn [44] and fast iterative forms for FIR
filter was introduced by Zhao et al. [45], [46]. Recently,
Shmaliy et al. have developed the UFIR filter to provide a
fast near-optimal estimation in a simple form [38]. This filter
works with two sets of mathematical equations. The first
set of equations is known as batch form equations whereas
the second set of equations is known as iterative form equa-
tions. The former is defined to generate the initial value of the
state estimate whereas the latter is applied for fast computa-
tion of the state estimation. UFIR is claimed in [38] and [43]
as the most robust among the FIR variants.

The estimation process in UFIR is executed in a finite
length according to its N . As illustrated in Fig. 1, the range of
state estimations of UFIR filter started from the time index,
t = N until the maximum time index, T . To get the first
state estimation value (known as a true estimate) at t = N ,
UFIR needs N most recent measurements (which starts from
point m until t).

The estimation process in UFIR begins with the genera-
tion of the initial state that is available from the batch form
(at point m = t − N + 1 and s = m + 1) and iteratively
updates the state estimation value (from point l = s + 1
until l = t).
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FIGURE 2. The estimation process of UFIR filter for the second true estimation (by assuming
N = 5).

The batch form can be computed in the discrete
convolution-based applied to measurement as shown in (3).
In state space,Hm,s represents gain or coefficient of the filter
impulse response and can be calculated as in (4). The Ym,s
represents the measurement value of point m and s, whereas
Cm,s is the measurement matrix from m to s. UFIR handles
all the measurements within the batch form points at a time.
Thus, the initial value is generated at point s by a convolution
process between the gain, Hm,s and the measurement, Ym,s.

xs = Hm,sYm,s (3)

Hm,s = (CT
m,sCm,s)

−1
C
T

m,s (4)

On the other hand, the iterative form can be calculated
as shown in (5). xl represents the estimated state vector at
present point, whereas xl−1 is the estimated state vector at
the nearest previous point. yl represents the value of measure-
ment at present point and C is a measurement matrix. K l is
called as Kalman-like correction gain and can be computed as
in (6). Kl−1 is the gain for the nearest previous point, whereas
A is a transition matrix of the iterative form.
As the number of iterative points is increased, the state

estimation value is improved by this Kalman-like gain.

xl = Axl−1 + K lCT (y l − CAxl−1) (5)

K l = [CTC + (AK l−1AT )
−1

]
−1

(6)

The true state estimate is taken when an iterative variable,
l reaches the present time index, t . The same procedures are
repeated to get the second true estimate at t = N + 1 as
illustrated in Fig. 2.

The similar procedures are repeated until the last true
estimation is reached at t = T , indicating that all the horizon
points have been estimated. As a matter of fact, there is
no relationship between the first, second until the last true
estimation because the estimation process is done in a finite
form (based on the horizon length). This makes the FIR filter
more robust compared with IIR filter whereby in the case
that there is an error in previous FIR estimation, the error is

TABLE 2. Analogy of UFIR filter with SAFIRO algorithm.

not projected to the next FIR estimation process. In addition,
the noise statistics are not required by this procedure in
performing the estimation process.

Table 2 shows the analogy between the UFIR filter with
the SAFIRO algorithm. In SAFIRO algorithm, UFIR filter’s
framework serves as an inspiration for the optimizer. Specif-
ically, the static model of DTI FIR is employed in modelling
the SAFIRO algorithm because the optimal solution to be
estimated is time independent. Therefore, the state vector
in (5) becomes a scalar which consists of only one variable
that holds an agent’s estimated position in the search space.

Different from UFIR filter that estimates the state using
the measurements which can be obtained from the sensor,
the agent of SAFIRO estimates an optimal or a near-optimal
solution by using simulated measurements from random
mutation and local neighbourhood method. The initial esti-
mation value for UFIR filter is generated from the batch form
whereas the initial value in SAFIRO algorithm is generated
randomly in the search space. As a result, UFIR filter gives
a near-optimal estimation for the state, whereas SAFIRO
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FIGURE 3. The principle of SAFIRO algorithm.

provides an estimation to an optimal or a near-optimal solu-
tion. Details of the process are explained in the following
section III.

III. SINGLE-AGENT FINITE IMPULSE RESPONSE
OPTIMIZER ALGORITHM
A. STRATEGY OF SAFIRO ALGORITHM
An agent plays an important role to find an optimal solution
in solving the optimization problem. The agent in SAFIRO
works as an individual UFIR to optimally improve its estima-
tion position. This estimation position represents a solution
for the given optimization problem. In order to find an optimal
solution, SAFIRO agent needs to perform two main tasks:
measurement and estimation. Figure 3 shows how the UFIR
works as an optimizer for iteration, t .
X_best_so_far holds the value of the best-so-far solution.

Y (t−N+1), . . . ,Y (t) are the measured positions of an agent
that represents the measured solution for the optimization
problem. The measurement position is simulated in SAFIRO
by using a random mutation of X_best_so_far together with
a local neighbourhood method. A uniformly distributed ran-
dom number in the range of [0, 1] is applied in this work.
A new measurement solution, Y (t) is produced for each new
iteration.

The estimation phase in SAFIRO is divided into two stages:
initial estimation and iterative estimation. X(t) is the esti-
mated position that represents the solution of the given opti-
mization problem for each iteration, t . Quality of the X(t)
is then evaluated using the objective function and compared
to X_best_so_far. If X(t) is found to be a better solution than
X_best_so_far, thenX_best_so_farwill be updated withX(t)
value. The process is repeated until the maximum iteration
is reached. Details of each phase of SAFIRO algorithm are
discussed in the following subsection.

B. PROCEDURE OF SAFIRO ALGORITHM
The overall process of SAFIRO algorithm is divided into
five main phases: initialization, measurement, estimation,

FIGURE 4. The flowchart of SAFIRO algorithm.

fitness evaluation, and update X_best_so_far, as depicted
in Fig. 4.

1) INITIALIZATION PHASE
In the initialization phase (at iteration, t = 0), the parameter
of N is defined. Like the FIR filter, SAFIRO needs N most
recent measurements to begin the estimation step. Further
explanation about parameter tuning ofN is explained at result
and discussion part. Based on the experiment that has been
carried out, the optimal value of N for SAFIRO is equal to 4.
Therefore, four random initial values are generated for Y (0),
Y (t − 1), Y (t − 2) and Y (t − 3). Equation (7) shows the
equation to generate the random initial value for Y(0). The
same equation is used to generate Y (t − 1), Y (t − 2) and
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Y (t − 3). Xmin is the lower limit whereas Xmax is the upper
limit of the search space.

Y (0) = rand (U [Xmin,Xmax]) (7)

The goal of using random values is to efficiently explore
the search space to find a near-optimal solution. Then, the fit-
ness of these random initial values is evaluated to determine
the initial X_best_so_far(0). For a minimization problem,
the initial measurement which has the smallest fitness value
is assigned as X_best_so_far, whereas for a maximization
problem, the initial measurement which has the largest fitness
value is assigned as X_best_so_far.
Besides the initial measurements, the maximum number of

iterations, T is also defined at this phase.

2) MEASUREMENT PHASE
As mentioned in section II, in a real operation of FIR filter,
the measurement readings can be taken from the sensor.
But in SAFIRO algorithm, measurement is simulated using
X_best_so_far. The measurements are simulated by using
random mutation of X_best_so_far and local neighbourhood
method. In the proposed method, each dimension of the prob-
lem to be optimized is associatedwith a random value ranging
from 0 to 1. The dimensions that have a random value greater
than 0.5 are selected to bemutated to produce a new candidate
solution. The mutation is conducted in a local neighbourhood
of X_best_so_far.

The pseudocode for measurement phase is given as in
Pseudocode 1, whereas the equation formeasurement is given
in (8).

Pseudocode 1 Measurement
for each dimension, d
if the dimension of an agent is selected for mutation

compute measurement value using (8).
else

compute measurement value using (10).
end
end

Here, a shrinking local neighbourhood method is used.
This concept is visualized in Fig. 5.

The local search process scales down the search area where
the search is centred around X_best_so_far. Equation (9)
gives the radius of the local neighbourhood, δ, where, t is the
number of current iteration; T is the number of maximum
iteration; Xmax is the upper limit of search space and β is
the adaptive coefficient value. Adaptive coefficient value is
employed to control how fast the size of the neighborhood
will be reduced. In this paper, the β = 10 is selected for
SAFIRO algorithm as recommended by [47]. Figure 6 shows
the plots for exponential term of the delta, δ with different
values of β. The bigger value of β leads to a faster transition
from exploration to exploitation.

The remaining dimensions that are not selected for muta-
tion process, will hold the value of the X_best_so_far as their

FIGURE 5. A local neighbourhood’s strategy in SAFIRO algorithm.

FIGURE 6. The plot of δ with different β values.

measurement value, as given in (10).

Yd (t) = X_best_so_fard (t − 1)+ rand(U [−δ, δ]) (8)

δ = e−β×
t
T ×

Xmax − Xmin
2

(9)

Yd (t) = X_best_so_fard (t − 1) (10)

3) ESTIMATION PHASE
The next phase is the estimation phase which updates the
position of an agent. The agent estimates the solution in a
finite length according to N .
As illustrated in Fig. 7, the agent estimates the position for

each iteration, t in a finite length according to N . In each t ,
the estimation is done by sub-iteration, k .
Unlike the real UFIR filter that computes an initial estima-

tion value by using the convolution-based method, the initial
estimation value, X̄(k = 2) in SAFIRO algorithm is gener-
ated randomly between [lower limit, upper limit] of the first
two points in sub-iteration, as shown in Pseudocode 2.
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FIGURE 7. A graphical view of the operation in SAFIRO algorithm (by assuming N = 4).

Pseudocode 2Generation of Initial Estimation, X̄(2) at k = 2
if Y (t − N + 1) < Y (t − N + 2)

X̄(2) = rand(U [Y (t − N + 1),Y (t − N + 2)])
else

X̄(2) = rand(U [Y (t − N + 2),Y (t − N + 1)])

Then, the solution of this initial estimation is improved
iteratively by (11), started at k = 3 until k = N . The
improvement is influenced by the measurement value, Y (t −
N + k) and the Kalman-like gain, K (k). X̄(k) is the estimated
solution for present point, whereas X̄(k − 1) is the most
recent sub-iteration point. As the state vector is reduced to a
scalar that contains only one variable (the estimated position
value), therefore the state transition matrix, A, in (5) and
(6) becomes 1. The measurement transition matrix, C in (5)
and (6) is assigned to be 1, indicates the same scale of mea-
surement and scale of state estimate, as in [39]. Therefore,
the equation of X̄(k) can be simplified as shown in (11).
(Y (t − N + k) − X(k − 1)) element represents a correction
based on theY (t−N+k) measurement while the Kalman-like
gain, K (k) adjusts the result. As stated in [48], the total value
of gain along the horizon length is equal to 1, and the value
is distributed uniformly. Thus, in SAFIRO, the value of gain
for each sub-iteration point is equal to 1

k as in (12). As the
sub-iteration, k increases, the value of K (k) gets smaller and
the estimation improved.

X̄(k) = X̄(k − 1)+ K (k)(Y (t − N + k)− X̄(k−1)) (11)

K (k) =
1
k

(12)

The sub-iteration stage is stopped when k = N . Then,
the final value of k is assigned as the estimation of iteration
(X (t) = X̄(k)). The estimated value of X(t) represents the
updated solution by an agent for that particular iteration.

4) FITNESS EVALUATION AND X_best_so_far UPDATE
The evaluation step evaluates the fitness level of the agent.
The fitness level is measured according to the objec-
tive function (or also known as the fitness function). The
objective function is the function of the given optimiza-
tion problem that needs to be solved by the optimization
algorithm.

The fitness of the estimated solution, X (t) is compared
to the fitness of X_best_so_far whereby X_best_so_far
will be updated if a better solution is found. For
minimization problem, X_best_so_far is updated when
fit(X(t)) < fit(X_best_so_far(t)) whereas for maximiza-
tion problem, X_best_so_far is updated when fit(X(t)) >
fit(X_best_so_far(t)).

The process of measurement and estimation are repeated
until themaximum iteration,T is reached. Once themaximum
iteration is reached, the X_best_so_far is return as the solu-
tion to the given problem.

The whole procedure of SAFIRO algorithm for minimiza-
tion problem is given in Pseudocode 3.

IV. EXPERIMENTAL SETUP
The SAFIRO algorithm is developed from scratch by using
MATLAB software. The performance of the proposed algo-
rithm is evaluated by solving a set of problems on the CEC
2014 Benchmark Test Suite [49] which contains 30 single
objective test functions that represent real optimization prob-
lems. These test functions are divided into four different
groups: unimodal functions, simple multimodal functions,
hybrid functions and composition functions, as can be seen
in Table 3. All the functions are minimization problems
and treated as black-box problems. The details of these
functions are specified in [49]. The MATLAB codes for
CEC 2014 benchmark suite can be downloaded from http://
www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014.
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Pseudocode 3 Procedure in SAFIRO Algorithm
Algorithm: SAFIRO algorithm for a minimization prob-
lem.
Requirement: horizon length, N
01: Initialization phase
02: while not maximum iteration do
03: ProcedureMEASUREMENT
04: Pseudocode 1
05: end Procedure
06: Procedure ESTIMATION
07: at sub-iteration, k = 2
08: Pseudocode 2
09: for k = 3: N
10: Iteration of estimation: as in (11) and (12)
11: end
12: X(t)← X̄(k)
13: end Procedure
14: Evaluate fitness for agent
15: t ← t + 1
16: end while
17: Return X_best_so_far

The parameter that needs to be set during initialization
phase in SAFIRO is the N . The optimal value of N is equal
to 4. The initial measurement for an agent is set to a random
value following the search space [−100, 100]. For bench-
marking of the results, three metaheuristic algorithms were
applied.

GA and PSO algorithms were chosen as both are very well-
known and established algorithms in the evolutionary compu-
tation category and swarm intelligence category, respectively.
Additionally, GWO algorithm is selected to represent mod-
ern metaheuristic algorithms. The original paper of GWO
algorithms has more than 780 citations since it is introduced
in 2013.

Regardless the number of agent, fair comparison of algo-
rithm performance can be done by setting the same number of
fitness evaluation. In this comparison, the number of fitness
evaluation for all algorithms is set to 500,000 while the prob-
lem dimension is set to 50. The stopping condition is set to
be the maximum number of iterations for all algorithms. The
evaluation is based on the average performance over 51 run
times on each test problem.

The Friedman test for multiple algorithms comparison is
then conducted to compare the results for all algorithms.
Friedman test is chosen because it is suitable for non-
parametric test, as the solutions yielded in this experi-
ment is not normally distributed. Friedman test defines the
null hypothesis as all tested algorithms are equal one to
another, with no significant differences [50]. In Friedman test,
the performances of all four algorithms were ranked statisti-
cally based on their mean fitness. After that, the significant
differences are observed.

The post hoc analysis using Holm’s method is applied as
recommended by Derrac et al. [51], in order to characterize

TABLE 3. The CEC 2014 Benchmark Test Suite. (source: [49].

the significant differences (between the algorithms’ perfor-
mance), as detected by the Friedman test. Holm’s method
rejects the null hypothesis if the statistical value is smaller
than the unadjusted p-value. The value of the significant
level, α is selected to indicate the significant difference of
the algorithms. Usually, the preferred value is either 0.01,
0.05 or 0.1. The smaller the value, the more rigid to determine
the significant difference. In contrast, the larger the value,
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the easier statistically to claim the significant difference [50].
Therefore, α = 0.05 is chosen to balance the opportunity
to get the significant difference with the rigid procedure in
detecting the significant difference.

In this work, KEEL Software Tool is used as a platform to
execute both Friedman and Holm Post Hoc tests. The KEEL
Software can be downloaded from http://www.keel.es.

V. RESULTS AND DISCUSSION
In this section, the results of the proposed SAFIRO algorithm
are discussed and analyzed.

A. PARAMETER TUNING
As previously stated, N is the parameter needs to be deter-
mined in SAFIRO. Simulation experiments have been per-
formed to identify the optimal value ofN. The value ofN = 4
until N = 10 are selected to be set in SAFIRO. With these
values, SAFIRO is tested to solve the optimization problems
in the CEC 2014 Benchmark Test Suite. The N = 4 is
chosen as the minimum value because the first two points of
the horizon length are used to randomly generate the initial
estimates, whereas the third point is used as a starting point of
the iterative estimation part. Thus, practically, the minimum
point for the horizon length is equal to 4.

The Friedman test is then applied to rank the performance,
followed by the Holm Post Hoc test to determine which N
is better in solving the optimization problems of CEC 2014.
As shown in Table 4 and Table 5, SAFIRO has an equivalent
performance for N = 4 and N = 5. Both are significantly
better than N = 6 until N = 10. Hence, even though N = 5
has a higher ranking, N = 4 is chosen to minimize the
computational time. Further explanation of Friedman test and
Holm Post Hoc test are explained in the statistical analysis
section.

TABLE 4. Average ranking of N.

B. STATISTICAL ANALYSIS
The performance of SAFIRO algorithm is evaluated by solv-
ing 30 benchmark functions as available in CEC 2014 Bench-
mark Test Suite. The mean and standard deviation values of
SAFIRO, PSO, GA, and GWO for each benchmark function
are recorded in Table 6. Result in bold font represents the best
fitness or solution for each function (Fn).

TABLE 5. Holm post HOC result of N value for α = 0.05

1) UNIMODAL FUNCTIONS (Fn1 TO Fn3)
As can be seen in Table 6, SAFIRO clearly shows a supe-
rior performance by producing the best solution compared
to other algorithms in all unimodal functions. Unimodal
functions are related to the rotation problems. According
to Mirjalili in [15], unimodal functions are correlated with
exploitation benchmarking. Thus, the results for unimodal
functions indicate that SAFIRO has an excellent performance
in exploiting the optimal solution especially in Fn3 (Rotated
Discus function), where SAFIRO was able to converge to
the ideal fitness of 300 (optimal solution). SAFIRO also
managed to obtain the best solution in solving Fn1 (Rotated
High Conditioned Elliptic function) and Fn2 (Rotated Bent
Cigar function) although the problems are difficult to be
solved, specifically for Fn1 because it involved a quadratic
ill-conditioned property [49].

2) SIMPLE MULTIMODAL FUNCTIONS (Fn4 TO Fn16)
SAFIRO algorithm also shows excellent performance in
solving simple multimodal functions by leading in 7 out
of 13 functions. Most of the simple multimodal functions are
related to shifting and rotation problems. These functions are
suitable for exploration benchmarking of an algorithm [15].
Hence, these results proved that apart from being great
in exploitation, SAFIRO is also very good in explo-
ration especially in Fn7 (Shifted and Rotated Griewank’s
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TABLE 6. The mean fitness and standard deviation values obtained by SAFIRO, PSO, GA and GWO algorithms. Numbers in bold indicate the best fitness.

function), Fn12 (Shifted and Rotated Katsuura function), and
Fn15 (Shifted and Rotated Expanded Griewank’s plus Rosen-
brock’s function), where SAFIRO successfully acquired the
value that is very near to the ideal fitness of 700, 1200, and
1500, respectively. Although SAFIRO ranked second behind
PSO for Fn13 (Shifted and Rotated HappyCat function)
and Fn14 (Shifted and Rotated HGBat function), SAFIRO
managed to provide a very near-optimal solution. The same
happens to Fn16 (Shifted and Rotated Expanded Scaffer’s
F6 function). Despite ranked third behind GWO and PSO,
SAFIRO was able to obtain a very near-optimal solution for
this function.

3) HYBRID FUNCTIONS (Fn17 TO Fn22)
In hybrid functions, the variables are divided into several
subcomponents randomly, where different basic functions are
used for different subcomponents [49]. The hybrid function
is a combination of several multimodal functions (Fn19,
Fn21, and Fn22), or it can be a combination of unimodal
functions with simple multimodal functions (Fn17, Fn18,
and Fn20). This makes the function more complicated to
be solved. The readings in Table 6 show that SAFIRO
has the capability to solve hybrid functions and obtain the
best solution compared to other algorithms in all hybrid
functions.
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4) COMPOSITE FUNCTIONS (Fn23 TO Fn30)
SAFIRO is able to provide very competitive results by lead-
ing on half of the composite functions: Fn23, Fn25, Fn27,
and Fn30. In composite functions, the capability of explo-
ration and exploitation of an algorithm can be benchmarked
concurrently due to many local optima contained the test
functions [15]. Therefore, with these results, SAFIRO algo-
rithm demonstrates a good balance between exploration and
exploitation. For Fn24 and Fn26, even though SAFIRO did
not rank first, but the solutions for both functions are close
to the near-optimal solutions. The Fn24 is a combination of
three simple multimodal functions which are Fn9 (Schwefel’s
function F10’), Fn10 (Rotated Rastrigin’s function F9’), and
Fn14 (Rotated HGBat function F14’). The Fn26 is a com-
bination of one unimodal function which is Fn1 and four
simple multimodal functions which are Fn6 (Rotated Weier-
strass function F6’), Fn7 (Rotated Griewank’s function F7’),
Fn11 (Rotated Schwefel’s function F11’), and Fn13 (Rotated
HappyCat function F13’).

Additionally, SAFIRO also shows a small standard devi-
ation value in most of the functions. Its standard deviations
values for Fn3 and Fn7 are equal to 0. These indicate that
SAFIRO is capable to achieve the ideal fitness for 51 runs for
both functions.

Next, the Friedman test is carried out as a statistical analy-
sis tool to rank the performance of SAFIRO algorithm against
the other three algorithms. The algorithm is ranked based
on the mean fitness value over 51 runs for all 30 bench-
mark functions. The average rank is calculated for each algo-
rithm where the lower rank value signifies a better algorithm
performance.

According to Table 7, SAFIRO is ranked first, followed
by PSO, GWO, and GA. The Friedman statistic is performed
considering reduction performance distributed according to
chi-square value of 31.05 with 3 degrees of freedom.

TABLE 7. Average ranking of the algorithms.

Based on the Friedman test performed, significant differ-
ences are detected between the algorithms. Hence, the null
hypothesis is rejected and further analysis with a Post
Hoc test [51] (using Holm’s method) is done to determine
whether the SAFIRO algorithm is better than the other algo-
rithm or vice versa.

The result of the Holm Post Hoc test with significant level,
α = 0.05 is tabulated in Table 8.
In this case, Holm’s procedure rejects those hypotheses that

have p-value smaller than 0.025. According to Table VIII,
the significant differences exist between the performances of

TABLE 8. Holm post HOC result for α = 0.05

SAFIRO, PSO, GWO, and GA. Thus, the null hypotheses
are rejected. The proposed SAFIRO algorithm is performed
significantly better than the other three algorithms with an
unadjusted p-value ≤ 0.025.

C. CONVERGENCE BEHAVIOR ANALYSIS
The graph of convergence curve is generated to observe the
ability of SAFIRO and other algorithms to reach to an opti-
mal or a near-optimal solution throughout the optimization
process. In this case, each convergence curve shows the mean
fitness of the best solution against 10,000 iterations over
51 runs.

Statistically, SAFIRO demonstrates a very good result
by leading in 20 out of 30 functions in solving the CEC
2014 Benchmark Test Suite. Among the functions that
SAFIRO ranked first, Fn3, Fn7, Fn19, and Fn23 functions
were selected to visualize the convergence curve of uni-
modal, simple multimodal, hybrid and composition func-
tions, respectively.

FIGURE 8. Convergence curves comparison for unimodal function (Fn3).

1) CONVERGENCE CURVE
Based on the graphs pattern in Fig. 8 to Fig. 11, it can be
shown that there are drastic changes at the beginning of the
search where the graphs decreased gradually over the course
of the iterations. These conditions reflect the exploration and
exploitation phases that occurred throughout the optimiza-
tion process, as stated by Berg in [52]. Then, the graphs
plateau after certain iterations until the end. These indicate
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FIGURE 9. Convergence curves comparison for simple multimodal
function (Fn7).

FIGURE 10. Convergence curves comparison for hybrid function (Fn19).

that the search agent moves from the exploration process to
the exploitation process before stopping the process to find a
better solution when it reaches the maximum iteration.

Themean fitness of SAFIRO (towards the end of iterations)
for Fn3, Fn7, Fn19, and Fn23 are about 300, 700, 1924 and
2645, respectively. These values are almost the same as the
mean fitness values tabulated in Table 6. As can be seen in
Fig. 8 to Fig.11, SAFIRO is able to find good solution within
lesser number of fitness evaluation.

In Fig. 9, although both SAFIRO and PSO are able to reach
the ideal fitness value (optimal solution) for Fn7, SAFIRO
needs fewer number of fitness evaluation compared to PSO.

The mutation and shrinking local search neighbourhood
method allow the search agent to converge, exploit and look
for a good solution within a subarea of the search space.
However, the fast convergence of SAFIRO is also the cause
for its second and third rank performance in the 10 other
test functions. This can be observed in Fig. 12 and Fig. 13,

FIGURE 11. Convergence curves comparison for composition
function (Fn23).

FIGURE 12. Convergence curves comparison for simple multimodal
function (Fn13).

which are the convergence curves for Fn13 and Fn29. The
fast convergence caused SAFIRO’s agent to be trapped in
local optima which prevents it to escape and look for a
better solution. On the other hand, PSO which shows gradual
convergence is able to find a better solution due to its ability
to explore more search area.

To specifically observe the behaviour of SAFIRO’s agent
over the course of iterations, the trajectory, search his-
tory, and fitness trend of the search agent are presented.
For this aim, SAFIRO algorithm is evaluated on the
two-dimensional version of CEC 2014 Benchmark Test
Suite, with 100 iterations only. All hybrid functions and
Fn29 and Fn30 of composition functions are excluded
in this experiment due to these functions are not speci-
fied in a two-dimensional domain. The selected functions:
Fn3, Fn7, Fn23 are captured graphically which represent
unimodal, simple multimodal and composition function,
respectively.
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FIGURE 13. Convergence curves comparison for composition
function (Fn29).

FIGURE 14. The trajectory of SAFIRO’s agent for one-dimensional of
unimodal function (Fn3) during the optimization process.

2) TRAJECTORY OF SAFIRO AGENT
The trajectory of the search agent for one and two-
dimensional solution are plotted to see the movement
of SAFIRO’s agent during the iterations. Two graphs
are produced for each dimension to observe the solu-
tion of search agent against the best-so-far solution
(X_best_so_far) throughout the process. It can be observed
in Fig. 14 to Fig. 19 that SAFIRO confirms the exploration
process during the first half of the optimization process
with obvious changes of the agent’s movement, whereas
the slow changes during the following iterations ensure the
exploitation process. The plateau graph towards the end
of the iteration shows that SAFIRO’s agent managed to
find the near-optimal solution before reaching the maximum
iteration.

3) SEARCH HISTORY OF SAFIRO AGENT
Next, the search history of the agent is also traced to
observe the capability of SAFIRO’s agent in exploring and

FIGURE 15. The trajectory of SAFIRO’s agent for two-dimensional of
unimodal function (Fn3) during the optimization process.

FIGURE 16. The trajectory of SAFIRO’s agent for one-dimensional of
multimodal function (Fn7) during the optimization process.

FIGURE 17. The trajectory of SAFIRO’s agent for two-dimensional of
multimodal function (Fn7) during the optimization process.

exploiting the search space, in finding the best solution.
Mobilities of SAFIRO’s agent are marked and plotted on the
contour map for two-dimensional functions of the selected
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FIGURE 18. The trajectory of SAFIRO’s agent for one-dimensional of
composition function (Fn23) during the optimization process.

FIGURE 19. The trajectory of SAFIRO’s agent for two-dimensional of
composition function (Fn23) during the optimization process.

FIGURE 20. Search history of the SAFIRO’s agent for unimodal function
(Fn3) during the optimization process.

unimodal, multimodal and composition problems as illus-
trated in Fig. 20 to Fig. 22. The star symbol indicates the
locations visited by the agent which represent the solution for

FIGURE 21. Search history of the SAFIRO’s agent for multimodal function
(Fn7) during the optimization process.

FIGURE 22. Search history of the SAFIRO’s agent for composition
function (Fn23) during the optimization process.

each iteration. The circle in each figure represents the final
best solution (X_best_so_far). It is shown that SAFIRO’s
agent is able to adequately explore promising areas of the
search space and then exploit around the best solution. As the
iteration increases, the agent moves towards the best-so-far
solution. This is due to the decrease in the radius of the local
neighbourhood, δ as stated in (9).

4) FITNESS TREND OF SAFIRO AGENT
Lastly, the fitness trend is generated to observe the pat-
tern of the agent’s solution against the best solution-so-far
(X_best_so_far) over 1 run for 100 iterations. Based on
Fig. 23 to Fig. 25, it can be concluded that SAFIRO’s agent
went through sufficient exploration at the beginning of the
search and decline slowly to have a better exploitation around
the improved best-so-far solution for unimodal, simple mul-
timodal and composition functions. This pattern ensures that
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FIGURE 23. Fitness trend of the SAFIRO’s agent for unimodal function
(Fn3) during the optimization process.

FIGURE 24. Fitness trend of the SAFIRO’s agent for multimodal function
(Fn7) during the optimization process.

SAFIRO algorithm eventually converges to the near-optimal
solution in the search area.

Overall, SAFIRO performs very well in solving uni-
modal and hybrid functions and demonstrates a highly
competitive yet promising performance in solving simple
multimodal and composition functions. SAFIRO shows a
good ability to reach the optimal and near-optimal solution
with a better number of best mean fitness value compared
to other algorithms. These results clearly proved that the
SAFIRO algorithm managed to iteratively estimate the opti-
mal and near-optimal solution for varieties of optimization
problems (unimodal, multimodal, hybrid and composition
functions) with different complexities and able to provide
great solutions by leading 20 out of 30 functions in solv-
ing the CEC 2014 Benchmark Test Suite. Despite work-
ing with a single-agent, SAFIRO is capable to outperform

FIGURE 25. Fitness trend of the SAFIRO’s agent for composition function
(Fn23) during the optimization process.

population-based algorithms under the same number of func-
tion evaluations.

VI. CONCLUSION
This paper introduces a new single-agent metaheuristic opti-
mization algorithm inspired by the estimation competency
of FIR filter, named Single-agent FIR Optimizer (SAFIRO)
algorithm. SAFIRO algorithm aims to find an estimate of
an optimal or a near-optimal solution for an optimiza-
tion problem. The proposed algorithm employed the two
steps in UFIR filter procedure: measurement and estima-
tion. Besides UFIR framework, SAFIRO uses a random
mutation of X_best_so_farwith local neighbourhood method
to improve its estimation of an optimal or a near-optimal
solution. In order to evaluate the performance of SAFIRO
algorithm, the CEC 2014 Benchmark Test Suite has been
applied. Experimental results indicate that SAFIRO is capa-
ble to converge to an optimal and a near-optimal solution
and significantly outperforms well-known algorithms such as
PSO, GA, and GWO in solving the CEC 2014 benchmark
problems.

It is important to notice, the proposed SAFIRO algorithm
contributes to new knowledge and provides a platform for
other researchers to explore, modify or hybrid this algo-
rithm with other algorithms to produce a better metaheuristic
algorithm in solving optimization problems. The SAFIRO
algorithm can also be used by other researchers to solve
optimization problems in various fields.

VII. FUTURE WORK
For future work, the strategy to escape from local optima
will be investigated and incorporated into SAFIRO. Other
than that, SAFIRO’s algorithm applicability will be tested
to solve real engineering optimization problems such as
tuning parameters in proportional-integral-derivative (PID)
controllers and solving printed circuit board (PCB) routing
problem.
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