FINITE ELEMENT ANALYSIS OF CORRUGATED WEB BEAM WITH OPENINGS

CHUNG JIA JIUNN

A thesis submitted in partial fulfillment of the requirement for the award of the degree of Bachelor of Civil Engineering

Faculty of Civil Engineering & Earth Resources
Universiti Malaysia Pahang

NOVEMBER 2010

ABSTRACT

In construction application, the web is usually carry most of the compressive stress and transmits shear in the beam while flanges support the major external loads. Therefore, web is usually investigated by comparing the thickness and the shape. There are various types of profile steel sheeting used in Malaysia, such as Spandek and Trimdek. The introduction of an opening in the web of the beam will alter the stress distribution within the members and also cause its collapse behaviour. Therefore, the effective design of web beam with an opening is always investigated. This project is to develop a finite element analysis in studying the web profile of the beam with openings and stiffener by using LUSAS 14.0. Nine models had been conducted in this project by analyse the linear analysis, stress, strain and buckling shape of beam The dimension of each models are 1500 mm span with 125mm x 550 mm section. Each models subjected to simply supported test The type of mesh are Quadrilateral Thin Shell with 4 nodes (QTS4) for each model. The results show that Spandek Corrugated Web has the highest strength followed by Trimdek Corrugated Web and Flat Web Beam. Nevertheless, the buckling load analysis shows Trimdek Corrugated Web Beam is the best corrugated to resist linear buckling than Spandek and Flat web beam.

ABSTRAK

Dalam aplikasi pembinaan, rasuk web biasanya membawa beban tegangan tekan dalam rasuk dan kegunaan flange adalah untuk menyokong beban luaran utama kepada rasuk. Oleh itu, rasuk web biasanya diselidiki dengan membandingkan ketebalan dan bentuk untuk meningkatkan. Ada pelbagai jenis profil besi bergelombang digunakan di Malaysia, seperti Spandek dan Trimdek. Selain it, pengenalan bukaan kepada web rasuk akan mengubah pengedaran tegangan di dalam rasuk. Oleh itu, desain rasuk web dengan bukaan selalu dikaji. Projek ini bertujuan untuk mengembangkan kefahaman analisis elemen dalam mempelajari profil web yang berbeza dari rasuk dengan bukaan dan pengaku dengan menggunakan program LUSAS 14.0. Sembilan model telah permodelan dalam projek ini untuk menganalisis nilai regangan dan lokasi dalam linier analisis dan menentukan bentuk buckling dari pelbagai jenis profil web dengan analisis buckling linier. Dimensi setiap model adalah sama, iaitu 1500 mm span, dan 125mm x 550 mm seksyen. Setiap model dikenakan beban uji tiga titik. Sedangkan jenis mesh digunakan adalah Quadrilateral Thin Shell with 4 nodes (QTS4) untuk setiap model. Perbandingan menunjukkan Spandek Bergelombang Web memiliki kekuatan yang paling tinggi diikuti oleh Trimdek Bergelombang Web dan datar Web rasuk. Disamping itu, Trimdek Bergelombang Web adalah terbaik dalam menentang bukling beban.

TABLE OF CONTENT

CHAPTER	TIT	LE	PAGE
	TIT	LE PAGE	i
	DEC	CLARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	TAB	BLE OF CONTENT	vii
	LIST	Γ OF TABLES	xi
	LIST	r of figures	xii
	LIST	r of symbols	xvii
	LIST	T OF ABBREVIATIONS	xviii
CHAPTER 1	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	2 .
	1.3	Objectives	3
	1.4	Scope of Study	3
	1.5	Significant of Study	. 4

CHAPTER 2	LITI	ERATURE REVIEW	4
	2.1	Introduction '	5
	2.2	Advantage of TCWB	8
	2.3	Previous Research	9
		2.3.1 Shear behavior of steel beam	
		with corrugated webs.	9
	2.4	Profile Web Beam	10
		2.3.1 Lysaght Spandek	10
		2.3.1.1 Advantages of Spandek	
		Product	11
		2.3.2 Lysaght Trimdek	12
		2.3.2.1 Benefits of Trimdek	
		Product	13
	2.5	Opening in Web Beam	13
	2.6	Stress -Strain Relationship	15
CHAPTER 3	MET	HODOLOGY	16
	3.1	Introduction	16
	3.2	LUSAS Modular Software	16
	3.3	Finite Element (FE)	18
		3.3.1 LUSAS Finite Element Software	18
	3.4	Advantages and Disadvantage of Finite Element	19
	3.5	Experimental set-up	19
	3.6	Finite Element Idealization	22
		3.6.1 Profiled Steel Sheeting of Beam component	22
		3.6.2 Thin Shell Surface Element (QTS4)	25
		3.6.3 Geometry	28
		3.6.4 Material	30

		2.6.5 Double 1 1 1 4 4 114	
		3.6.5 Boundary and support condition	31
		3.6.5.1 Boundary and support condition	31
		3.6.5.2 Loading	32
	3.7	Finite element analysis	33
		3.7.1 Linear Analysis	34
		3.7.2 Linear buckling analysis	34
CHAPTER 4	RES	ULT AND ANALYSIS	36
	4.1	Introduction	36
	4.2	Finite Element Analysis	36
	4.3	Result of Linear Analysis	38
		4.3.1.1 Deformed Mesh of Flat Web Beam Model	38
		4.3.1.2 Deformed mesh of Spandek Corrugated	
		Web Beam Model	40
		4.3.1.3 Deformed Mesh of Trimdek Corrugated	
		Web Beam Model	42
		4.3.2.1 Stress Maximum, σ_{max} of Flat Web	
		Beam Model	45
		4.3.2.2 Stress Maximum, σ_{max} of Spandek	
		Corrugated Web Beam Model	48
	-	4.3.2.3 Stress Maximum, σ_{max} of Trimdek	
•		Corrugated Web Beam Model	51
		4.3.3.1 Strain Maximum, E _{max} of Flat Web	
		Beam Model	55
·		4.3.3.2 Strain Maximum, Emax of Spandek	
		Corrugated Web Beam Model	58
		4.3.3.3 Strain Maximum, Emax of Trimdek	
		Corrugated Web Beam Model	61

	4.4	Linear Buckling Analysis	65
		4.4.1.1 Linear Buckling Analysis of Flat Web	
	•	Beam	65
		4.4.1.2 Linear Buckling Analysis of Flat Web	
		Beam with opening	68
		4.4.1.3 Linear Buckling Analysis of Flat Web	
		Beam with Opening and Stiffener	70
		4.4.2.1 Linear Buckling Analysis of Spandek	
		Corrugated Web Beam	73
		4.4.2.2 Linear Buckling Analysis of Spandek	
		Corrugated Web Beam with Openings	75
		4.4.2.3 Linear Buckling Analysis of Spandek	•
		Corrugated Web Beam with Opening	
		and Stiffener	77
		4.4.3.1 Linear Buckling Analysis of Trimdek	
		Corrugated Web Beam	80
		4.4.3.2 Linear Buckling Analysis of Trimdek	
		Corrugated Web Beam with Opening	82
		4.4.3.3 Linear Buckling Analysis of Trimdek	
		Corrugated Web Beam with Opening	•
		and Stiffener	84
CHAPTER 5	CON	NCLUSIONS AND RECOMMENDATIONS	
	5.1	Introduction	87
	5.2	Recommendation	88
REFERENCES			89
APPENDICES			

LIST OF TABLE

TABLES NO	TITLE	PAGE
2.1	Lightweight fabrication by corrugated	
	web I-beam, Masami Hamada (1984)	6
2.2	Physical Properties of Lysaght Spandek	10
2.3	Physical Properties of Lysaght Trimdek	12
3.1	Dimension and Properties of Profile web Girder.	21
3.2	Available Results in QSL8	27
3.3	Properties of Material	30
4.1	Buckling Load of the Flat Web Beam	67
4.2	Buckling Load of the Flat Web Beam with an Opening	69
4.3	Buckling Load of the Flat Web Beam with an Opening	
	and Stiffener	72
4.4	Buckling Load of the Spandek Corrugated Web Beam	74
4.5	Buckling Load of the Spandek Corrugated Web Beam	
	with an Opening	76
4.6	Buckling Load of the Spandek Corrugated Web Beam	
:	with an Opening and Stiffener	79
4.7	Buckling Load of the Trimdek Corrugated Web Beam	81
4.8	Buckling Load of the Trimdek Corrugated Web Beam	
	with an Opening	84
4.9	Buckling Load of the Trimdek Corrugated Web Beam	
	with an Opening and Stiffener	87

LIST OF FIGURE

FIGURES NO	TITLE	
2.1	Trapezoidal Corrugation	5
2.2	Sinusoidal Corrugation	5
2.3	Industrial Building and warehouse	
	(Zeman International)	7
2.4	The Hondani Bridge in Japan (Ezzeldin, 2005)	7
2.5	Crane Way Using Trapezoidal Corrugated Web	
	Beam (Usman, 2001)	8
2.6	Profile of Lysaght Spandek	10
2.7	Profile of Lysaght Trimdek	11
2.8	Idealized uniaxial stress-strain relationships for steel	14
3.1	Project Flow Chart	17
3.2	Dimensions of Test Girder and Profile steel sheets	
	of PEVA 45	20
3.3	Experimental Set-up of Test Specimens	20
3.4	3D View of Single Profiled Finite Element Model	22
3.5	Flat Web Beam Subjected to Three Point Test	23
3.6	Spandek Corrugated Web Beam Subjected to	
	Three Point Test	23
3.7	Trimdek Web Beam Subjected to Three Point Test	24
3.8	Attributes>Mesh>Surface> Surface Mesh dataset	25
3.9	Thin Shell Element (QTS4)	26
3.10	Continuum Stress in a Thin Shell Element.	26
3 11	Stress Resultant of a Thin Shell Flement	27

3.12	Local axes for Thin Shell Elements	27
3.13	Location, Thickness and Eccentricity of Element	28
3.14	Attibutes > Geometric > Geometric Surface	29
3.15:	Attributes > Material>Material Library	30
3.16	Attributes > Support > Structural Support	31
3.17	Attributes > Loading> Global Distributed	32
3.18	Flow Chart Analysis Involving LUSAS Software	35
4.1	Deformed Mesh of Flat Web Beam	38
4.2	Deformed Mesh of Flat Web Beam with Openings	38
4.3	Deformed Mesh of Flat Web Beam with Openings	
	and stiffener	39
4.4	Deformed Mesh of Spandek Corrugated Web Beam	40
4.5	Deformed Mesh of Spandek Corrugated Web Beam	
	with Openings	40
4.6	Deformed Mesh of Spandek Corrugated Web Beam	
	with Openings and stiffener	41
4.7	Deformed Mesh of Trimdek Corrugated Web Beam	42
4.8	Deformed Mesh of Trimdek Corrugated Web Beam	***
	with Openings	42
4.9	Deformed Mesh of Trimdek Corrugated Web Beam	
	with Openings and Stiffener	43
4.10	Contour Result of Stress Maximum on Flat Web Beam	45
4.11	Contour Result of Stress Maximum on Flat Web Beam	
	with Openings	45
4.12	Contour Result of Stress Maximum on Flat Web Beam	
	with Openings and stiffener	46
4.13	Flat Web Beam Stress (kN/m²) Vs Load (kN) Graph47	
4.14	Contour Result of Stress Maximum on Spandek	
	Corrugated Web Beam	48
4.15	Contour Result of Stress Maximum on Spandek	
	Corrugated Web Beam with Openings	48

4.32	Contour Result of Strain Maximum on Trimdek	
	Corrugated Web Beam with an Opening	61
4.33	Contour Result of Strain Maximum on Trimdek	
	Corrugated Web Beam with an Opening and stiffener	62
4.34	Trimdek Corrugated Web Beam Strain Vs	
	Load (kN) Graph	63
4.35	Maximum Strain of Flat Web Beam, Spandek	
	and Trimdek Corrugated Web Beam	64
4.36	Linear Buckling Analysis 1 of Flat Web Beam	65
4.37	Linear Buckling Analysis 2 of Flat Web Beam	66
4.38	Linear Buckling Analysis 3 of Flat Web Beam	66
4.39	Linear Buckling Analysis 1 of Flat Web Beam	
	with Openings	68
4.40	Linear Buckling Analysis 2 of Flat Web Beam	
	with Openings	68
4.41	Linear Buckling Analysis 3 of Flat Web Beam	
	with Openings	69
4.42	Linear Buckling Analysis 1 of Flat Web Beam	
	with Openings and stiffener	70
4.43	Linear Buckling Analysis 2 of Flat Web Beam	
	with Openings and stiffener	70
4.44	Linear Buckling Analysis 3 of Flat Web Beam	
	with Openings and stiffener	71
4.45	Linear Buckling Analysis 1 of Spandek Corrugated	
	Web Beam	73
4.46	Linear Buckling Analysis 2 of Spandek Corrugated	
	Web Beam	73
4.47	Linear Buckling Analysis 3 of Spandek Corrugated	
	Web Beam	74
4.48	Linear Buckling Analysis 1 of Spandek Corrugated	
	Web Beam with Openings	75

4.49	Linear Buckling Analysis 2 of Spandek Corrugated	
	Beam with Openings	75
4.50	Linear Buckling Analysis 3 of Spandek Corrugated Web	
	Beam with Openings	76
4.51	Linear Buckling Analysis 1 of Spandek Corrugated Web	
	Beam with Openings and Stiffener	77
4.52	Linear Buckling Analysis 2 of Spandek Corrugated Web	
	Beam with Openings and Stiffener	77
4.53	Linear Buckling Analysis 3 of Spandek Corrugated Web	
	Beam with Openings and Stiffener	78
4.54	Linear Buckling Analysis 1 of Trimdek Corrugated	
	Web Beam	80
4.55	Linear Buckling Analysis 2 of Trimdek Corrugated	
	Web Beam	8 0
4.56	Linear Buckling Analysis 3 of Trimdek Corrugated	
	Web Beam	81
4.57	Linear Buckling Analysis 1 of Trimdek Corrugated	
	Web Beam with Openings	82
4.58	Linear Buckling Analysis 2 of Trimdek Corrugated	
	Web Beam with Openings	82
4.59	Linear Buckling Analysis 3 of Trimdek Corrugated	
	Web Beam with Openings	83
4.60	Linear Buckling Analysis 1 of Trimdek Corrugated	
	Web Beam with Openings and Stiffener	85
4.61	Linear Buckling Analysis 2 of Trimdek Corrugated	
	Web Beam with Openings and Stiffener	85
4.62	Linear Buckling Analysis 3 of Trimdek Corrugated	
	Web Beam with Openings and Stiffener	86

LIST OF SYMBOLS

L	Total	Span	of Beam	/ Length
---	-------	------	---------	----------

- B Width of Flange
- D Overall Depth of Beam
- tw Thickness of Web
- t_f Thickness of Flange
- ε Strain
- ΔL Change in length
- σ Stress
- φ Change In Angle
- E Young Modulus
- N Force
- M Moment
- V Poisson Ratio
- σ_{max} Stress Maximum
- ε_{max} Strain Maximum

LIST OF ABBREVIATIONS

TCWB Trapezoidal Corrugated Web Beam

LUSAS London University Structural Analysis Software

FE Finite Element

QSL8 Quadrilateral Thin Shell Elements with 8 Nodes Clockwise

TSL6 Semiloof Curved Thin Shell Elements

QTS4 Quadrilateral Thick Shell Elements with 4 Nodes Clockwise

QTS8 Quadrilateral Thick Shell Elements with 8 Nodes Clockwise

ABAQUS Other Program of Finite Element Software

COSMOS/M · Other Program of Finite Element Software

CHAPTER 1

INTRODUCTION

1.1 Introduction

Steel structure building are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural, durability, strength, design, low inclusive cost and environmental protect as steel is manufacture to precise and uniform shapes.

In construction application, the web is usually carry most of the compressive stress and transmits shear in the beam while flanges support the major external loads. Therefore, web is usually investigated by comparing the thickness and the shape. It can decrease the cost and materials without weakening the load-carrying capability of the beam. The corrugated web is proposed to compare with the common plane web. There are different type of corrugated web were propose such the horizontal corrugated web of one arc corrugation, two arcs corrugation and vertically corrugated web, In this thesis, the study of vertically corrugated web beam, will be investigated while ordinary plane web beams were also test to develop the benchmark result.

Corrugated beam with web opening is commonly used where large web openings are provides along the beams. In modern buildings, provision of large ducts and pipes beneath beams and girders of structure steel framing in building structure may lead to unacceptably large construction depths between storeys. There is a tendency to use

water pipes and air ducts of increasing sizes, and opening of dimensions up to 75% of the depth of floor beams are often required. (Chung, 2001)

Finite element analysis has widely use by the engineer to do analysis of the structure and solve any real engineering problems with certain degree of complication. There are researchers who successfully use the finite element analysis to analyze structure, such as Beijing national nation, Bird Nest. The finite element analysis widely use rather than running series of laboratory test because the result more precise, and save cost and time.

1.2 Problem Statement

The use of corrugated web beam with opening is commonly used since it makes ducting and services work much more easily. Despite the advantage, the introduction of opening may reduce the strength of the beam if it is not properly design. The opening profile can depend on the shape of the duct to the web. The openings along the web beam will also reduce the strength of the beam

In the case of corrugated web, analysis can be carried out to find out the analysis of the influence of an opening on the web using LUSAS finite element software. This study was carried out to proven the software result about the stress and deflection of the corrugated web influence by the opening in the middle of the beam.

1.3 Objective

The objectives of this studied were:

- 1. To investigate the behaviour of the corrugated web beam.
- 2. To study the openings effect of the corrugated beam openings.
- 3. To analysis of the corrugated web beam with a stiffener.

1.4 Scope of Study

The scope of study will cover the theoretical investigation of corrugated web section with openings. The scope can be divided into several areas:-

- i. Study different type of corrugated shape and compare to the flat web beam.
- ii. Compare the effect of the openings.
- iii. Condition with stiffened/unstiffened corrugated web beam was studied.

Finite element analysis method is used in this study. The LUSAS Modeling version 14.0 at Computer lab in University Malaysia Pahang (UMP) will be used in order to simulate and directly analyze the effect of the opening in corrugated web beam.

1.5 Significant Of Study

Generally, the rapid growth in the industry is forcing the structure industry struggling to improve their product and service to a higher level. Therefore, series of test require analyzing by the industrial to improve the quality of the material. By saving the time and cost of a product, finite element analysis is always suggested rather than laboratory test.

In Malaysia, the usage of the corrugated web section of beam is not widely used compare to Flat Wed Beam. This is because of the complicated shape of fabricate due to its trapezoidal web shape which require the need to use the state of the art machine. As a result, the initial production of trapezoidal corrugated of web section is quite expensive. Moreover, the only one company produces trapezoidal corrugated web sections are produce by Trapezoidal Web Profile Sdn Bhd based in Pasir Gudang. However the potential of development of usage Trapezoidal corrugated web section of beam in industry will extremely increase due to the increment of the material price likes steel in the market.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Over the past 20 year, corrugated plates have found an increasing application in structural engineering, in aerospace engineering, marine engineering and building industry. In the early 1960s, trapezoidal corrugated web beam have been used for steel buildings and for highway bridges in Europe and Japan since the 1980s (Abbas, 2003).

A typical corrugate web steel I-beam is build up of two steel flanges welded to a corrugated web as shown in Figure 2.1. The web and flanges can be made from different type of steel grade depending on design requirement. There are two types of web corrugation profile web used in web I-beams, which are the trapezoidal profile and sinusoidal profile as shown in Figure 2.1 and 2.2 respectively, which used in structures that has special requirement to avoid fatigue failure. (Wang, 2003)

Figure 2.1 Trapezoidal Corrugation

Figure 2.2 Sinusoidal Corrugation

Corrugated steel web I-beam introduces the use of thin plates without stiffeners to improve both aesthetics and the economy of the buildings and bridges. Research has shown that corrugated web I-beam have improved shear stability and better fatigue resistance than conventional I-beam with flat webs (Abbas, 2003). It can eliminate the use of larger thickness stiffeners plate that allow the reduction in beam weight and result in economic design. When the corrugated webs are compared with stiffened flats webs, it can be found that the corrugated steel web I-beam enables the use of thinner webs. It was found that corrugated steel web I-beam have 9 to 13 % less weight than current traditionally stiffened girders with flat webs, see table 2.1 (Hamada, 1984)

Table 2.1 Lightweight fabrication by corrugated web I-beam, Hamada (1984)

Welded I-beam (mm)		Section modulus ratio per
Depth, web width, web	Corrugated web I-beam	unit width
Thickness, flange	(corrugation width) (mm)	(corrugated web I-
Thickness		beam/welded I-beam)
H 200 x 100 x 3.2 x 4.5	200 x 100 x 1.6 x 2.5 (150)	1.09
H 250 x 125 x 4.5 x 6.0	250 x 125 x 2.0 x 6.0 (180)	1.13
H 300 x 150 x 4.5 x 6.0	300 x 150 x 2.3 x 6.0 (220)	1.10
H 400 x 200 x 4.0 x 12.0	400 x 150 x 2.7 12.0 (300)	1.09

The supplication of trapezoidal corrugated web beam suitable to apply to building such as below:

- (a) Industrial Building and warehouse (see Figure 2.3)
- (b) Bridge construction for road and railways (see Figure 2.4)
- (c) Crane Bridged, Crane ways and crane supports (see Figure 2.5)
- (d) Floating construction and offshore projects
- (e) Shipbuilding works.

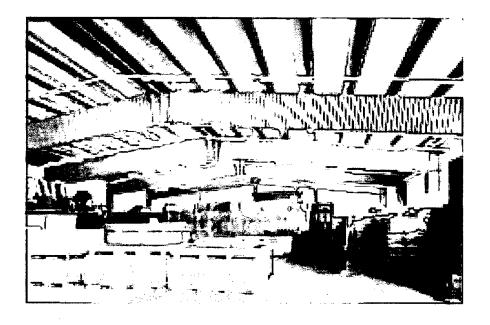


Figure 2.3 Industrial Building and warehouse (Zeman International)

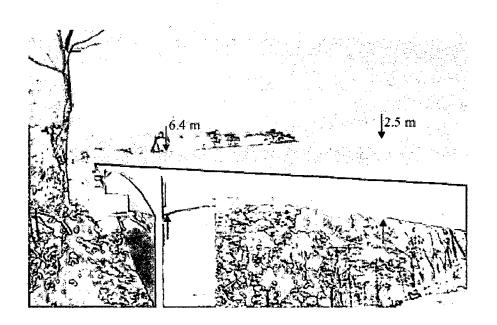


Figure 2.4: The Hondani Bridge in Japan (Ezzeldin, 2007)

Figure 2.5: Crane Way Using Trapezoidal Corrugated Web Beam (Usman, 2001)

2.2 Advantages of Trapezoidal Corrugated Web Beam (TCWB)

Engineers have realized that corrugation in webs increase their stability against buckling and can result in very economical designs. Less cost and higher load carrying capacity, corrugated web beam provide a high strength-to-weight ratio. Furthermore, erection cost is reduced, since the corrugation in the web provides a higher resistance against bending about the weak axis.

2.3 Previous Research

Extensive research has been directed, toward the study of corrugated steel web. The early study on the corrugated web was concentrate on vertically trapezoidal corrugation. Elgaaly investigated the failure mechanisms of these beams under different loading modes, namely shear mode, bending mode and compressive loads. They found that the web could be neglected in the beam design calculation due to insignificant contribution to the beam's load-carrying capability. (Khalid et.al, 2004)

2.3.1 Shear behavior of steel beam with corrugated webs.

Elgaaly, Hamilton and Seshadri (1996) verified the test results done by Smith (1992) and Hamilton (1993) using nonlinear finite element method. They compared the finite element analysis results with those of the tests and found that the finite element analysis results were very close to the test results.

Luo and Edlund (1996) use a non-linear finite element method to investigate the geometric parameters of corrugated web and compare the numerical result with existing formula. The parametric range studied concludes the ultimate shear capacity increase proportionally with the depth and not to be dependent on the ratio of girder length over girder depth. The post-buckling shear capacity also increases with girder depth but seems to be dependent on the ratio of girder length over girder depth. They also found that the corrugation depth does not significant to the ultimate shear capacity but it affects the buckling mode in the early post-buckling range.

2.4 Profiled Web Beam

In order to provide higher strength for the beam, a profile of trapezoidal corrugated beam is introduced. There are various types of profile steel sheeting used in Malaysia, such as Spandek and Trimdek.

2.4.1 Lysaght Spandek

Lysaght Spandek is a trapezoidal profile which is given a strong, bolder, and modern corrugated appearance. It was original design as a strong attractive roofing material for industrial, commercial construction, homes and public buildings underlining its versatility and pleasing appearance.

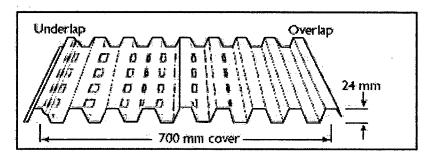


Figure 2.6: Profile of Lysaght Spandek