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One of the most important sides of life is wildlife. There is growing research interest in monitoring 

wildlife. Line transect sampling is one of the techniques widely used for estimating the density of objects 

especially for animals and plants. In this research, a parametric estimator for estimation of the population 

abundance is developed. A new parametric model for perpendicular distances for detection function is 

utilised to develop the estimator. In this paper, the performance of the parametric model which was 

developed using a simulation study is presented. The detection function has non-increasing curve and a 

perfect probability at zero. Theoretically, the parametric model which has been developed is guar-anteed 

to satisfy the shoulder condition assumption. A simulation study is presented to validate the present 

model. Relative mean error (RME) and Relative Bias (RB) are used to compare the estimator with well-

known existing estimators. The results of the simulation study are discussed, and the performance of the 

proposed model shows promising statistical properties which outperformed the existing models. 
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I. INTRODUCTION 

 

Distance sampling method has been developed intensively 

over the last thirty years and has widely applied for 

estimation of population density ( D ) especially wildlife 

populations. In line transect method, a line transect of 

length L is placed within the interested area, observer 

travels a randomly placed line and perpendicular distances 

( ; 1,...,iZ i n= ) are taken from the line to each observed 

object. The perpendicular distances from the sampled 

object to line transect represent the sample data set. During 

the survey course, many objects remain undetected, this can 

be considered as special characteristic for the line transect 

method which gives an accurate estimates of population 

abundance even though not all objects have been detected. 

The probability of sighted object near the transect line is 

greater than the probability of sighted object away from the 

transect line (see also, Buckland et al., 2001).  

 

 

 

 

The paper by Burnham and Anderson (1976) showed that 

the population abundance D  of objects in a specific area 

satisfies the equation: 

  

( ) (0)

2

E n f
D

L
=    ( 1) 

where ( )E n is the expected value of sighted objects. 

Burnham and Anderson (1976) introduced the estimated 

representation of the population density as: 

ˆ (0)ˆ
2

nf
D

L
=         (2) 

Equation (2) states that the estimate of (0)f plays the 

major milestone for estimating the population density of 

objects. 

Let  1,..., nZ Z  be independent-valued random variables of 

perpendicular distances having common unknown density 

function ( )f z  and consider the random  sample 1,..., nZ Z

of size n . The conditional function  ( )f z depend to one of 
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most important concepts in line transect sampling, called 

detection function which defined as: 

 

( )g z P= (an object is detected / its perpendicular 

distance is z ) 

 

The probability density for a detected distance Z is: 

0

( ) ( ) ( ) ;0

w

f z g z g t dt Z w=     (3) 

Equation (3) was pioneered by Burnham and Anderson 

(1976). One of the ways to deal with line transect technique is 

that the detection function ( )g z  should have strictly 

monotone decreasing for 0z  . In addition, satisfies the 

shoulder condition at origin, it can consider mathematically, 

(0) 1g = and (0) 0g = , it important to refer that the 

probability density function (pdf) ( )f z  has the same shape 

of ( )g z  and the area under  ( )f z equal one. 

Let  1,..., nZ Z be a set of perpendicular distances which are 

usually assumed to be a random sample (Buckland et al., 

1993), having a density function  ( , )f z  depends on 

unknown parameter  , where   may one parameter or 

vector of parameters. Since the (0)f  is function of the 

parameter  therefore , the estimate of   lead us to estimate 

ˆ ˆ(0) (0, )f f = . Gates et al. (1968) presented exponential 

model, the density function is: 

( )
/   

; 0, 0 ,
x

zf z
e 

 


−

 =  (4) 

The corresponding detection function given as 

( ) /   , ; 0, 0xz zg e  −=      (5) 

The MLE estimate of ( )0f is, 

( )
1

0ˆ
MLEf

Z
=   (6) 

where Z is the sample mean.  It is worth to refer that the 

detection function ( )g z  (or the pdf ( ) f z ) does not 

satisfy the shoulder condition. In contrast, the half normal 

model ( ) f z  achieves the property of shoulder condition. 

Hemingway (1967) suggested the half normal model with 

pdf. 

2 22 2 2

2

2
( , ) ; 0, 0zf z e z 



−=     (7) 

and the half normal detection function is

2 22 2 2( , ) ; 0, 0zg z e z −=               (8) 

 

The MLE is the main estimator to estimate
2 . Given  n  

perpendicular distances 1,..., nZ Z  . The likelihood function 

based on the half normal model in Equation (7) as term of

(0)f can be written as: 

( )

2
2

1

(0)

4
(0) (0)

n
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i

f
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nL f f e



=

− 
=  (9) 

 

While, the log likelihood function based on the half normal 

model in Equation (9) is: 

( )
2

2

1

(0)
log (0) log (0)

4

n

i

i

f
L f n f z



=

= −       (10) 

To estimate (0)f , we maximize the Equation (10) and 

have: 

( )

( )
2

1

log (0) (0)
0

(0) (0) 2

n

i

i

d L f n f
z

d f f



=

= − =     (11) 

Then, the MLE of (0)f  is written as 

2ˆ (0)MLEf
T

= .                                     (12) 

Where 
2

1

1 n

i

i

T z
n =

=  . For the half normal model in 

Equation (7), by using the fact that  
2

1

1 n

i

i

T z
n =

=  is Gamma 

distributed. Quinn and Gallucci [15] derived the minimum 

variance unbiased estimator (MVUE) of ( )0f  which is 

given as: 

( )
( )

ˆ 1 2
0

 
MVUEf

n T 
=  

where 

( )
( ) 1/2( 1 / 2)

( / 2) 2 

n n
n

n


 −  
=  

  
. 

 

The shrinkage (SH) estimator is proposed by Zhang (2011) 

based on half normal model in Equation (7) as: 
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( ) ( )
2ˆ 2

0
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n

f n
n T




−
= . 

 

The estimator ( )ˆ 0SHf   is biased for ( )0f , but it 

achieves the smallest mean square error (MSE). 

By comparing the estimators, ( )ˆ 0MVUEf and ( )ˆ 0SHf

we found that: 

( ) ( ) ( )0ˆ2ˆ 0 MLESH
n

f n f
n


−

=  

 

Based on Magnus et al. (1978),  as n →  then 

( ) 1n → and 
2

1
n

n

−
→ , Therefore,  the three 

estimators asymptotically are equivalent.  

There many authors have considered parametric models, 

for example, Burnham and Anderson (1976), Pollock (1980), 

Burnham et. al., (1980) and Buckland (1993), Eidous (2004), 

Al-ababned and Eidous (2012), Al Eibood and Eidous (2017), 

Saeed et. al., (1986). The related results online transect 

sampling can be found in Buckland et. al., (2015). 

The methodology of this paper can be summarized as: First, 

we drive the estimate of  (0)f  based on the proposed model 

in Equation (15) which is mentioned in Section ΙΙ (Saeed et. 

al., 1986).Second, in Section ΙV, simulation study is done to 

compare the performance of the proposed estimate (0)f

comparing the performance of the proposed estimate (0)f

with the existing estimator especially the negative 

exponential and  half normal models which explain in Section 

IV .We use Relative Mean Error (RME)and Relative Bias (RB) 

values for the comparing purpose and the smallest values of 

RME and RB will give better performance. In this simulation 

study, the perpendicular distances data (Z) have been 

generated from Hazard-Rate (HR) model. 

 

 

II. THE MODEL 

 

Let  1,..., nZ Z  be independent and identically distributed 

(IID) random variables of perpendicular distances and 

( )f z  be the probability density function (pdf) where the

( )f z  depend on the detection function ( )g z . The 

proposed detection function is given by           

( )
2 2 2 22 22 2( , ) 2 ; 0, 0.i iz z

g z e e z
  − −

= −        (13) 

and the first derivative of 
2( , )g z  (Saeed et. al., 1986) is 

give as  

( )
2 2 2 22 22

2

2
( , ) 1i iz zz

g z e e
 



− − = −   (14) 

 

Since 
2(0, ) 0g  = ,  then the detection function 

2( , )g z   has a shoulder condition at the origin. In addition, 

2( , )g z  satisfies that  the probability of sighted object on 

the line equals one (
2(0, ) 1g  = ). Figure 1 shows the 

shapes of the detection function for certain values of 
2 . We 

can easily observe that  ( )
2 22

1 0iz
e

−
−   for all 

20, 0z   , then Equation (14) can be shown that 

2( , ) 0g z    . 

In order to estimate (0)f , we determine the 

corresponding pdf of  
2( , )g z  . Therefore, the 

corresponding pdf of  
2( , )g z  can be obtained by 

normalizing the detection function 
2( , )g z  as 

2 21
( , ) ( , )f z g z 


= ,  

where 
2

0

( , )g z dz 


=  .Hence, the pdf of z ,  
2( , )f z 

(Saeed et al., 1986) is given as 

( )
2 2 2 22 22

2

2
( , ) 2

(2 2 1)

i iz z
f z e e

 


− −
= −

−
        (15) 

where
20 and 0z   and the

2(0, )f   is 

2

2

2
(0, )

(2 2 1)
f 


=

−
  (16) 

 

Equation (16) shows that the 
2(0, )f  is a function of the 

parameter
2 . Therefore, it is enough to estimate 

2  for 

estimating 
2(0, )f  .  
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Figure 1. The detection function ( )g z of the proposed 

model for different parameter
2  

 

 

III. MAXIMUM LIKELIHOOD 

ESTIMATORS 

 

The maximum likelihood estimator MLE for
2(0, )f  can 

be found by estimating the parameter
2  using the MLE. 

Based on the model 
2( , )f z   in Equation (15), the 

likelihood function  
2( )L   given as: 

( )
2 2

2 2
1

2 2

1

2
2

2
1

( ) ( , )

2
2

(2 2 1)
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(17) 

and the log likelihood function is  

( )
2 2

2 2

22

2
1 1

2
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2(2 2 1)

1
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2
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 (18) 

 

Then, we maximize 
2  in the Equation (17) as

2 2

2
2

2 2 2 2
1

2

2 2 2
1

log ( ) 1

2 2( )

1
0

2( ) 2 1i

n
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i
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i

z
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d L n
z
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e
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−
=

= − +

 
− = 

− 




(19) 

 

The solution of the Equation (19) leads to obtain the MLE 

of 
2 , which can be determined by using suitable numerical 

methods such as Newton-Raphson method. 

 

IV. SIMULATION RESULTS AND 

DISSECTION 

 

A simulation study is performed to compare the performance 

between the proposed estimator and the existing estimators 

which are negative exponential and half normal models. The 

data of (0)f is simulated from the half normal model which 

satisfies (0) 0f  = and the negative exponential model 

which does not achieves (0) 0f   .The simulation study is 

based on simulated samples of sizes 50,100n = and 

200n = , which consider medium and large sample sizes. 

For this purpose, we generate the values 1,... nZ Z which 

represent the perpendicular distances data from Hazard-Rate 

(HR) model which is used by Hayes and Buckland (1971). The 

HR model is given by: 

 

( )1
( ) 1

(1 1 )

zf z e




−−= −
 −

  (20) 

 

In our simulation, four models have been selected from the 

HR density with parameter values 1.5,2,2.5,3 = and 

the corresponding truncation points 20,12,8,6 = ,which 

consider common values used in the literature. The 

performance of the proposed model is evaluated by using 

Relative mean error (RME) and Relative Bias (RB) which is 

defined as: 

 

( )ˆ (0) (0)

(0)

E f f
RB

f

−
=                          (21) 

and 

( )ˆ (0)

(0)

MSE f
RME

f
=                       ( 22) 

 

respectively. The values of RB and RME are reported in 

Table I and Table II for each considered estimator. Notes 

that  the 1,
ˆ (0)MLEf is the MLE estimate in Equation (6) 
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which is the exponential model, 2,
ˆ (0)MLEf is the MLE 

estimate in Equation (12) based on the half normal model 

and the MLE estimate of the proposed model is 3,
ˆ (0)MLEf

is the MLE estimate of theproposed estimator in Equation 

(16). 

 

Table 1. RME for the different estimators  

n    w  
1,
ˆ (0)MLEf  

2,
ˆ (0)MLEf  

2,
ˆ (0)MLEf  

50   0.1927 0.5648 0.5154 

10

0 

1.

5 
20 0.1611 0.5685 0.5189 

20

0 
  0.1523 0.5771 0.5283 

50   0.2415 0.4296 0.3663 

10

0 
2 12 0.1740 0.4391 0.3733 

20

0 
  0.1448 0.4382 0.3709 

50   0.4636 0.2631 0.2061 

10

0 

2.

5 
8 0.4089 0.2570 0.1801 

20

0 
  0.3846 0.2593 0.1741 

50   0.6121 0.1710 0.1867 

 

10 

 

0 

3 6 0.5781 0.1381 0.1259 

20

0 
  0.5645 0.1193 0.0881 

 

Table I presents the result of RME for the different 

estimators when the data are simulated from Hazard-Rate 

(HR) Model. Based on Table I, we can that the classical 

estimator, 1,
ˆ (0)MLEf is perform the best compared to other  

estimators 2,
ˆ (0)MLEf and 1, 20w = = ) which the 

RME gives the smallest values for 1, 20w = = and 

2.0, 12w = = , regardless of the sample size. The 

performance of the proposed estimators, 3,
ˆ (0)MLEf is 

outperformed other estimators for 2.5, 8w = = and 

3.0, 6w = = ,regardless of the sample size. Others 

noticeable finding, the RME values for 2,
ˆ (0)MLEf ) and 

3,
ˆ (0)MLEf are decreases as the sample size increases. The 

resulting RME values of this simulation study for the three 

estimators is presented in Figure 2. 

 

 

Figure 2. RME values for different estimators 

 

Table II shows the RB values for similar values of , w and 

sample size. Based on the table and using the absolute values 

of RB, the simulation results show similar conclusion as RME 

where the proposed estimator is outperform other estimators 

as the sample size and w decreases, and   increases. 

 

Table 2. RB for the different estimators 

n    w  
1,
ˆ (0)MLEf  

2,
ˆ (0)MLEf  

2,
ˆ (0)MLEf  

50   
-

0.1077 
-0.5596 

-

0.508

1 

100 1.5 20 
-

0.1136 

-

0.5659 

-

0.5153 

20

0 
  

-

0.1284 
-0.5759 

-

0.526

6 

50   0.1336 -0.4138 

-

0.342

4 

100 2 12 0.1156 0.4329 

-

0.363

9 
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20

0 
  0.1127 0.4352 

-

0.366

4 

50   0.4114 -0.2164 
-

0.1178 

100 
2.

5 
8 0.3835 -0.3713 

-

0.1412 

20

0 
  0.3701 

-

0.2498 

-

0.1553 

50   0.5702 
-

0.0643 
0.0547 

100 3 6 0.5585 
-

0.0857 
0.0306 

20

0 
  0.5542 

-

0.0926 
0.0230 

 

 

 

 

 

V. SIMULATION RESULTS AND 

DISSECTION 

 

In this paper, we have shown that the proposed model in 

Section II performance by comparing with the existing 

model. The proposed new parametric model is considered to 

estimate the population density and it satisfies the property 

of monotonically decreasing with the detected distances. 

Furthermore, it achieves the assumption of shoulder 

condition. Based on the simulation study, the proposed 

model is very promising to estimate the population 

abundance using line transect sampling. In addition, the 

proposed model gives good statistical properties and is 

recommended to be used to estimate the population 

abundance. 
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