Temperature-insensitive pressure transducer based on reflected broadened spectrum with enhanced sensitivity

E. Vorathina, Z.M. Hafizia, A.M. Aizzuddinb, K.S. Limb

aAdvanced Structural Integrity and Vibration Research (ASIVR), Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP), 26600, Pekan, Pahang, Malaysia
bPhotonics Research Centre, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia

ABSTRACT

Pasting of half the grating of an FBG sensor on a natural rubber diaphragm was used to sense the pressure measurement. The pressure-induced strain on half of the grating resulted in bandwidth broadening. From the pressure range of 0 kPa to 20 kPa, the pressure sensitivity at 15 dB bandwidth changed was obtained at 77.7 pm/kPa with 99.94% of linearity. Through total reflected power monitoring via photodetector, the pressure transducer retrieved a sensitivity of 0.1686 dB m/kPa and evaded a complex demodulation technique. As a result of the temperature-independent bandwidth change, the pressure transducer was totally temperature insensitive.

KEYWORDS: Fibre Bragg grating (FBG); Pressure sensor; Pressure transducer; Temperature-insensitive

DOI: https://doi.org/10.1016/j.sna.2019.01.028