# INDOOR AIR QUALITY MANAGEMENT SYSTEM BASED ON INDUSTRIAL CODE OF PRACTICE ON INDOOR AIR QUALITY (ICOP 2010)

#### MUHAMMAD NOR AIMAN BIN YUSOF

### BACHELOR OF OCCUPATIONAL SAFETY AND HEALTH WITH HONORS

UNIVERSITI MALAYSIA PAHANG

## INDOOR AIR QUALITY MANAGEMENT SYSTEM BASED ON INDUSTRIAL CODE OF PRACTICE ON INDOOR AIR QUALITY 2010

#### MUHAMMAD NOR AIMAN BIN YUSOF

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Occupational Safety and Health with Honours

Faculty of Engineering Technology
UNIVERSITI MALAYSIA PAHANG

JANUARY 2018

#### STATETEMENT OF AWARD FOR DEGREE

#### **Bachelor Final Year Project Report**

Report submitted in the partial fulfillment of the requirement for the award of the degree of Bachelor of Occupational Safety and Health with Hons.



#### **SUPERVISOR'S DECLARATION**

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Occupational Safety and Health with Hons.

\_\_\_\_\_

(Supervisor's Signature)

Full Name : DR. HANIDA BINTI ABDUL AZIZ

Position : SENIOR LECTURER

FACULTY OF ENGINEERING TECHNLOGY

UNIVERSITI MALAYSIA PAHANG

Date : JANUARY 2018



#### STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

\_\_\_\_

(Student's Signature)

Full Name : MUHAMMAD NOR AIMAN BIN YUSOF

ID Number : PA14061

Date : JANUARY 2018

#### ACKNOWLEDGEMENT

I am sincerely grateful to Allah "S.W.T." for giving me wisdom, strength, patience and assistance to complete my research. Without His will and favor, the completion of this study would not simply achievable.

The completion of this research will not be possible without the guidance and help of several individuals who contributed and extended their valuable assistance in the preparation and the completion of this study. I would like to express my gratitude to my supervisor, Dr. Hanida Binti Abdul Aziz who has patiently guided me from my FYP1 until completing FYP2. She did also comments, stimulating suggestions, ideas and encouragement which helped me in in making this research possible. I would also like to express very special thanks to all lecturers for their suggestions and co-operation throughout the study.

My grateful thanks also go to both of my parents Yusof Bin Ismail and Zaharah Binti Deraman for their big contribution and support from the beginning until the end of my final year project. The project cannot be done without the enthusiasm and supports from them. My sincere appreciation also extends to all my friends, lecturers and others who provided assistance and advices, including the crucial input for my planning and findings. The guidance and support received from all was vital for the success of this research.

Last but not least, great appreciation goes to all my beloved friends for the help that was given to me from the time to time during project. This really brought us together to appreciate the true value of friendship and respect of each other.

#### **TABLE OF CONTENTS**

| DECL                   | ARATION               | Page |      |
|------------------------|-----------------------|------|------|
| SUPE                   | RVISOR DECLERATION    |      | v    |
| STUD                   | ENT DECLERATION       |      | vi   |
| ACKN                   | NOWLEDGEMENT          |      | vii  |
| ABST                   | RACT                  |      | viii |
| ABST                   | RAK                   |      | ix   |
| TABL                   | TABLE OF CONTENTS     |      | X    |
| LIST                   | LIST OF TABLES        |      | xiii |
| LIST                   | LIST OF FIGURES       |      | xiv  |
| LIST                   | LIST OF ABBREVIATIONS |      | xvi  |
|                        |                       |      |      |
| CHAPTER 1 INTRODUCTION |                       |      |      |
| 1.1                    | Introduction          |      | 1    |
| 1.2                    | Problem Statement     |      | 4    |
| 1.3                    | Research Objectives   |      | 5    |
| 1.4                    | Research Questions    |      | 5    |
| 1.5                    | Conceptual Framework  |      | 6    |
| 1.6                    | Scope of Study        |      | 7    |
| 1.7                    | Significant of Study  |      | 7    |
| 1.8                    | Expected Outcome      |      | 8    |

#### CHAPTER 2 LITERATURE REVIEW

| 2.1 | Introd                           | uction                                                    | 9                    |
|-----|----------------------------------|-----------------------------------------------------------|----------------------|
| 2.2 | Occup                            | pational Health Disease Related to Low Indoor Air Quality | 9                    |
| 2.3 | Indoo                            | r Air Quality                                             | 10                   |
| 2.4 | Indust                           | trial Code of Practice on Indoor Air Quality 2010         | 11                   |
| 2.5 | Indust                           | trial Hygiene Management System                           | 14                   |
| 2.6 | Finish                           | Material Management System for Indoor Air of Apartment    |                      |
|     | Buildi                           | ing (FinIAQ)                                              | 15                   |
| 2.7 | Concl                            | usion                                                     | 17                   |
| СНА | PTER 3                           | B DURABILITY ASSESSMENT METHOD                            |                      |
| 3.1 | Introd                           | uction                                                    | 18                   |
| 3.2 | Design of Study                  |                                                           | 18                   |
| 3.3 | PDCA Cycle                       |                                                           | 20                   |
|     | 3.3.1<br>3.3.2<br>3.3.3<br>3.3.4 | Do: Development of Framework and Prototype                | 20<br>21<br>22<br>22 |
| 3.4 | Tool Required                    |                                                           | 23                   |
| 3.5 | Qualit                           | Quality Control                                           |                      |
| 3.6 | Resea                            | rch Ethical                                               | 23                   |
|     | 3.6.1                            | Voluntary Participation                                   | 23                   |
|     | 3.6.2                            | Sensitivity of Information                                | 24                   |
| 3.7 | Concl                            | usion                                                     | 24                   |
| СНА | PTER 4                           | 4 RESULTS AND DISCUSSION                                  |                      |
| 4.1 | Introd                           | uction                                                    | 25                   |
| 4.2 | Requi                            | Requirement of ICOP 2010 in Managing IAQ                  |                      |

| 4.3 | Framework for Indoor Air Quality Management System |    |
|-----|----------------------------------------------------|----|
|     | 4.3.1 Overview of IAQMS Framework                  | 27 |
|     | 4.3.2 Framework for IAQ Investigation Process      | 29 |
|     | 4.3.3 Complaint Procedure Framework                | 35 |
|     | 4.3.4 Information, Instruction and Training        | 37 |
|     | 4.3.5 IAQ Assessor Framework                       | 40 |
| 4.4 | Prototype for Indoor Air Quality Management System | 44 |
| 4.5 | Validation of Indoor Air Quality Management System | 47 |
|     | 4.5.1 Case Study 1                                 | 47 |
|     | 4.5.2 Case Study 2                                 | 58 |
| 3.6 | Overall Findings of the Case Studies               | 65 |
| 4.7 | Conclusion                                         | 66 |
|     |                                                    |    |
| CHA | APTER 5 CONCLUSIONS AND RECOMMENDATIONS            |    |
| 5.1 | Conclusion                                         | 67 |
| 5.2 | Recommendation                                     |    |
|     |                                                    |    |
| 5.3 | Limitation of study                                | 69 |
| REF | FERENCES                                           | 70 |
| APP | PENDICES                                           | 72 |
| A   | Table 1 of ICOP 2010                               | 72 |
| В   | Table 2 of ICOP 2010                               | 73 |

#### LIST OF TABLES

| Table No. | Title                                                     | Page |
|-----------|-----------------------------------------------------------|------|
| 2.1       | Acceptable range for specific physical parameters         | 12   |
| 2.2       | List of indoor air contaminants and the acceptable limits | 13   |
| 4.1       | Requirement of ICOP 2010                                  | 26   |
| 4.2       | Overall findings of the cases studies                     | 65   |

#### LIST OF FIGURES

| Figure No. | Title                                                      | Page |
|------------|------------------------------------------------------------|------|
| 1.1        | Conceptual Framework                                       | 6    |
| 2.1        | FinIAQ management concept                                  | 16   |
| 2.2        | FinIAQ application concept                                 | 17   |
| 3.1        | Process flow of study                                      | 19   |
| 3.2        | PDCA Cycle                                                 | 20   |
| 4.1        | Overview of the IAQMS framework                            | 28   |
| 4.2        | Framework for IAQ Investigation process                    | 33   |
| 4.3        | Framework for Complaint Procedure                          | 36   |
| 4.4        | Framework for Information, Instruction and Training        | 39   |
| 4.5        | Framework for IAQ Assessor                                 | 43   |
| 4.6        | Main interface of IAQMS                                    | 45   |
| 4.7        | Linkage of the second interface                            | 46   |
| 4.8        | Main interface of IAQMS for case study 1                   | 49   |
| 4.9        | Interface for Complaints and Investigation of IAQ Problems | 50   |
| 4.10       | Interface for IAQ Assessment Indicator and Indoor Air      |      |
|            | Contaminant                                                | 51   |
| 4.11       | Interface for Control of IAQ                               | 52   |
| 4.12       | Interface for Information, Instruction and Training        | 53   |

| 4.13 | Interface for Information                                  | 54 |
|------|------------------------------------------------------------|----|
| 4.14 | Interface for Instruction                                  | 55 |
| 4.15 | Interface for Training                                     | 56 |
| 4.16 | Interface for Record Keeping                               | 57 |
| 4.17 | Main interface of IAQMS for case study 2                   | 60 |
| 4.18 | Interface for Complaints and Investigation of IAQ Problems | 61 |
| 4.19 | Interface for Complaint Procedure                          | 62 |
| 4.20 | Interface for IAQ Assessment Indicator and Indoor Air      |    |
|      | Contaminants                                               | 63 |
| 4.21 | Interface of IAO Assessment Report                         | 64 |

#### LIST OF ABBREVIATIONS

ASHRAE American Society of Heating, Refrigeration, and Air-conditioning Engineers

DOSH Department of Occupational Safety and Health

EPA Environmental Protection Agency

HRA Hazard Risk Assessment

HVAC Heating, ventilating and air conditioning

IAQ Indoor Air quality

IAQMS Indoor Air Quality Management System

ICOP Industrial Code of Practice

MS Management System

MVAC Mechanical ventilating and air conditioning

OSHA Occupational Safety and Health Act

SBS Sick Building Syndrome

SHE Safety, Health and Environment

USEPA United State Environmental Protection Agency

VOC Volatile Organic Compound

WHO World Health Organization