Synthesis and characterization of a La—Ni/α-Al₂O₃catalyst and its use in pyrolysis of glycerol to syngas

 Mohd Nasir Nor Shahirah^{ab}; Jolius Gimbun^{ac}; Su Shiung Lam^d; Yun Hau Ng^e; Chin Kui Cheng^{ac}
^a Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
^b Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Lot 1988, Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka,

Malaysia

^c Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia

^d Eastern Corridor Renewable Energy Group (ECRE), School of Ocean Engineering, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia

^e School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China

ABSTRACT

The reports the kinetics of syngas production current paper on from glycerolcatalytic pyrolysis over Ni/ α -Al₂O₃ catalyst promoted by lanthanum. The 3 wt%La-20 wt%Ni/77 wt%a-Al₂O₃ catalyst was synthesized and its physiochemical properties were characterized. The BET specific surface area was 2.20 m².g⁻¹, which was 0.11 m².g⁻¹ larger than the unpromoted Ni/ α -Al₂O₃ catalyst. Significantly, the BET results were supported by the FESEM image which showed that the promoted catalyst has smaller particle size compared to the unpromoted catalyst. The NH₃—and CO₂-TPD analyses indicates that the catalyst has net acidity with acid:base ratio of 1.12. Catalytic pyrolysis was performed in a 10 mm-ID stainless steel fixed bed reactor with reaction temperatures set at 973, 1023 and 1073 K, employing a weight-hourly-space-velocity (WHSV) of 4.5×10^4 ml g⁻¹ h⁻¹. From reaction studies, the highest glycerol conversion (X_G) value was 36.96% at 1073 K. The resulting syngas has H₂:CO ratios always lower than 2.0. Subsequently, mechanistic studies indicate that the catalytic glycerol pyrolysis occurred on single catalytic site via associative adsorption, with molecular surface reaction as the rate-determining step.

KEYWORDS:

Glycerol; Pyrolysis; Nickel; Lanthanum; Syngas