STUDY THE PERFORMANCE OF HYDROKINETIC TURBINE FOR HOME POWER

WIDAD BINTI MD.JAMALUDDIN

BACHELOR OF ENGINEERING TECHNOLOGY (ENERGY AND ENVIRONMENT) UNIVERSITI MALAYSIA PAHANG

STUDY THE PERFORMANCE OF HYDROKINETIC

TURBINE FOR HOME POWER

WIDAD BINTI MD.JAMALUDDIN

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Engineering Technology in Energy and Environment

> Faculty of Engineering Technology UNIVERSITI MALAYSIA PAHANG

> > JANUARY 2018

STATEMENT OF AWARD FOR DEGREE

1. Bachelor of Engineering Technology

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Engineering Technology in Energy and Environment

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of degree of Bachelor of Engineering Technology in Energy and Environment.

Signature:

Name of Supervisor: MUHAMAD RIDZUAN BIN RADIN MUHAMAD AMIN

Position: LECTURER, FACULTY OF ENGINEERING TECHNOLOGY, UNIVERSITI MALAYSIA PAHANG

Date: 18 JANUARY 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries in which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:

Name: WIDAD BINTI MD.JAMALUDDIN

ID Number: TC14006

Date: 18 JANUARY 2018

ACKNOWLEDGEMENTS

I am sincerely grateful to ALLAH "S.W.T" for giving me wisdom, strength, patience and assistance to complete my project work. Had it not been due to His will and favour, the completion of this study would not have been achievable.

This dissertation would not have been possible without the guidance and the help of several individuals who contributed and extended their valuable assistance in the preparation and the completion of this study. I am deeply indebted to my supervisor, encik Muhamad Ridzuan Bin Radin Muhamad Amin for his patient, guidance, comment, stimulating suggestions and encouragement which helped me in all the time of research, writing of this thesis and assistant throughout my project work

I also like to convey thanks to the faculty (FTEK) for providing the laboratory facilities for this research. My sincere appreciation also extends to all my friends which are Nur Afiqah, Wan Amalin Suraya, Musfirah Nadiah, Fahimah, Nur Fatin, Nurul Izaaz, Norazlin and of course Aiman Farhana, Ain Shahira, Fazlinna. All lecturers, teaching engineers and others who provided assistances and advices, including the crucial input for my planning and findings. The guidance and support received from all was vital for the success of this research.

Especially, I would also like to address my unlimited thanks to my family for their unconditional support, both financially and emotionally throughout my studies. My deepest gratitude goes to my family for their support, patience, love and trust during my study especially my father Md. Jamaluddin , my mother Hidayatun, my brother Muhammad Iqbal & Afdhal and my sisters Farhah, Durrah, Nurun Najat and Nadhrah. Finally, I would like to thank everyone who had involved in this study either directly or indirectly

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	
STUDENT'S DECLARATION	vi
ACKNOWLEDGEMENTS	vii
ABSTRACT	viii
ABSTRAK	ix
TABLE OF CONTENTS	х
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV
CHAPTER 1 INTRODUCTION	1
1.1 Background of Study	2
1.2 Problem statement	4
1.3 Objective of Study	4
1.4 Expected outcome	5
CHAPTER 2 LITERATURE REVIEW	5
2.1 Theory	8

х

CHAPTER 3 METHODOLOGY	10
3.1 Introduction	12
3.2 Flow chart	12
3.3 Fabrication of turbine	13
3.4 Electrical process	13
3.5 Equipment used	13
3.6 Performance testing	15
CHAPTER 4 RESULT & DISCUSSION	18
4.1 Results	18
4.2 Cost analysis and Gantt chart	25
CHAPTER 5 CONCLUSION AND DISCUSSION	27
5.1 Conclusion	27
5.2 Recommendation	27
CHAPTER 6 ETHICAL CONSIDERATION	28
REFERENCES	29
APPENDICES	32
APPENDIX A	32
APPENDIX B	

LIST OF TABLES

Table No.	Title	Page
Table 1.1	Classification of turbines used for pico-hydro based on	
	hydraulic head and type	1
Table 2.1	Average usage of electrical appliances in Malaysia	7
Table 4.1	Result of hydrokinetic turbine for 6 hours	15
Table 4.2	Product Cost Analysis	22

LIST OF FIGURES

Figure No.	Tittle	Page
Figure 1.1	Model of a horizontal-axis hydrokinetic turbine	1
Figure 1.2	Hydropower dam	3
Figure 3.1	Methodology of process flow	10
Figure 3.5.1	Tachometer, TACH20	12
Figure 3.5.2	Multimeter, KEW MATE 2012R	12
Figure 3.6.1	Measuring rotation with tachometer	15
Figure 3.6.2	Measured voltage using DMM	16
Figure 3.6.3	Measured voltage of power module using DMM	17
Figure 4.1	The prototype of hydrokinetic turbines	18
Figure 4.2	The graph of voltage generated by turbine in 6 hours	19
Figure 4.3	The graph of rotational of turbine (rpm) in 6 hours	20
Figure 4.4	The voltage of battery before charge	24
Figure 4.5	The voltage of battery after charge	24
Figure 6.1	Cutting metal sheet	32
Figure 6.2	Rolling process with roller machine	32
Figure 6.3	Drilling process on blades	33
Figure 6.4	Riveting process using air rivet	33
Figure 6.5	Grinding excess burr	33
Figure 6.6	Cutting framework workpiece	33
Figure 6.7	Attach framework by welding	33
Figure 6.8	Assemble turbine with framework	33
Figure 6.9	Paint the framework	34
Figure 6.10	Wires of electrical component	35
Figure 6.11	Installing wire for MBS	35

Figure 6.12	Wiring sockets	35
Figure 6.13	Tent for MBS	35
Figure 6.14	Connecting wire from HKT to tent	35
Figure 6.15	Installing HKT	36
Figure 6.16	Measuring speed using tachometer	36
Figure 6.17	Checking voltage using DMM	36
Figure 6.18	Voltage of battery charged	36

LIST OF SYMBOLS

η	Efficiency
ρ	Density
Ι	Ampere
Σ	Summation
ω	Angular velocity
V	Volt
W	Watt
kW	Kilowatt
Р	Power
v	Velocity
r	Radius
A _{ref}	Swept area of turbine

LIST OF ABBREVIATION

HKT	Hydrokinetic Turbine
HEC	Hydrokinetic energy converters
VOM	Volt-ohm-milliammeter
DMM	Digital multimeter
MIG	Metal Inert Gases
MBS	Main distribution box
RPM	Revolutions per minute
AC	Alternating current
DC	Direct current
СОМ	Common terminal
LED	Light-emitting diode