Heat transfer performance of TiO 2 – SiO 2 nanofluids in a tube with wire coil inserts

K.Abdul Hamid^a; W.H.Azmi^{abc}; RizalmanMamat^{ab}; K.V.Sharma^d ^a Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia ^b Automotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia ^c Centre of Excellence for Advanced Research in Fluid Flow, Lebuhraya Tun Razak, 26300

Kuantan, Pahang, Malaysia

^d Centre for Energy Studies, Department of Mechanical Engineering, JNTUH College of Engineering Kukatpally, Hyderabad 500085, India

ABSTRACT

The compound technique that combines nanofluids with wire coil inserts has proven itself in achieving double augmentation in heat transfer. This paper presents the thermal hydraulic performance of TiO₂-SiO₂ nanofluids with wire coil inserts. The experiments were conducted for Reynolds number from 2300 to 12,000 to determine the heat transfer performance and friction factor of TiO₂-SiO₂nanofluids with wire coil inserts. The TiO₂-SiO₂ nanofluids were prepared by using the two-step method for volume concentrations of 0.5–3.0%. The wire coil inserts are designed at various ratios of pitch over diameter (*P/D*) in the range of 0.83–4.17. The heat transfer performance of nanofluids was enhanced for a maximum of 254.4%, while the friction factor was obtained in the range of 1.76–6.38 times higher than water/EG in a plain tube. The thermal performance factor (TPF), η for the nanofluids with wire coil inserts at all volume concentrations was observed greater than 1.0. The optimum performance of TiO₂-SiO₂ nanofluids with wire coil occurred at 2.5% volume concentration and 1.50 pitch ratio. At this condition, the TiO₂-SiO₂ nanofluids with wire coil inserts applications.

KEYWORDS:

Heat transfer; Thermal hydraulic performance; TiO₂-SiO₂ nanofluids; Hybrid nanofluids; Wire coil inserts